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Abstract

We study the expression complexity of three basic prob-
lems involving the comparison of primitive positive formu-
las. We give two generic hardness results for the studied
problems, and discuss evidence that they are optimal.

1 Introduction

A primitive positive (pp) formula is a first-order for-
mula defined from atomic formulas and equality of vari-
ables using conjunction and existential quantification. The
class of primitive positive formulas includes, and is essen-
tially equivalent to, the class of conjunctive queries, which
is well-established in relational database theory as a perti-
nent and useful class of queries, and which has been stud-
ied complexity-theoretically from a number of perspectives
(see for example [18, 16, 1]). In this paper, we study the
complexity of the following fundamental problems, each of
which involves the comparison of two pp-formulas �, �′

having the same free variables, over a relational structure.

∙ Equivalence: are the formulas �, �′ equivalent–that is,
do they have the same satisfying assignments–over the
structure?

∙ Containment: are the satisfying assignments of � con-
tained in those of �′, over the structure?

∙ Isomorphism: does there exist a permutation of the
free variables for one of the formulas under which the
two formulas are equivalent?

We study the complexity of these computational prob-
lems with respect to various fixed structures. That is, we
parameterize each of these problems with respect to the
structure to obtain a family of problems, containing one

member for each structure, and study the resulting fami-
lies of problems. To employ the terminology of Vardi [20],
we study the expression complexity of the presented com-
parison tasks. The suggestion here is that various rela-
tional structures–which may represent databases or knowl-
edge bases, according to use–may possess structural char-
acteristics that affect the complexity of the resulting prob-
lems, and our interest is in understanding this interplay. The
present work focuses on relational structures that are finite
(that is, have finite universe), and we assume that the struc-
tures under discussion are finite.

Our study utilizes universal-algebraic tools that are cur-
rently being used to study computational problems related
to primitive positive formulas, such as the constraint satis-
faction problem (CSP), which can be viewed as the problem
of deciding if a primitive positive formula is satisfiable over
a given structure. It is known that, relative to a structure,
the set of relations that are definable by a primitive positive
formula forms a robust algebraic object known as a rela-
tional clone; a Galois correspondence associates, in a bijec-
tive manner, each such relational clone with a clone, a set of
operations with certain closure properties. This correspon-
dence provides a way to pass from a relational structure B
to an algebra AB whose set of operations is the mentioned
clone, in such a way that two structures having the same al-
gebra have the same complexity (for each of the mentioned
problems). In a companion paper [6] by the present authors,
we developed this correspondence and presented some ba-
sic complexity results for the problems at hand, including a
classification of the complexity of the problems on all two-
element structures.

In this paper, we present two general expression hard-
ness results on the problems of interest. In particular, each
of our two main results provides a sufficient condition on a
structure so that the problems are hard for certain complex-
ity classes. Furthermore, we give evidence that our results
are optimal, in that the conditions that they involve in fact



describe dichotomies in the complexity of the studied prob-
lems. We now turn to describe each of our hardness results
in greater detail.

Our first hardness result yields that for any structure B
whose associated algebra AB gives rise to a variety V(AB)
that admits the unary type, the equivalence and containment
problems are Πp

2-complete. Note that this is the maximal
complexity possible for these problems, as the problems
are contained in the class Πp

2. The condition of admitting
the unary type originates from tame congruence theory, a
theory developed to understand the structure of finite alge-
bras. We observe that this result implies a dichotomy in the
complexity of the studied problems under the G-set conjec-
ture for the CSP, a conjecture that predicts exactly where the
tractability/intractability dichotomy lies for the CSP. In par-
ticular, under the G-set conjecture, the structures not obey-
ing the described condition have equivalence and contain-
ment problems in coNP. The resolution of the G-set conjec-
ture, on which there has been focused and steady progress
over the past decade [10, 14, 11, 2], would thus, in combi-
nation with our hardness result, yield a coNP/Πp

2-complete
dichotomy for the equivalence and containment problems.
For the isomorphism problem, we also demonstrate that
the G-set conjecture would yield a dichotomy between two
modes of complexity behavior that cannot coincide, unless
the polynomial hierarchy collapses. In fact, this hardness
result already unconditionally implies dichotomies for our
problems for all classes of structures where the G-set con-
jecture has already been established, including the class
of three-element structures [10], the class of conservative
structures [7], and the class of undirected graphs [8].

One formulation of the G-set conjecture is that, for a
structure B whose associated algebra AB is idempotent,
the absence of the unary type in the variety generated
by AB implies that CSP(B) is polynomial-time tractable.
The presence of the unary type is a known sufficient con-
dition for intractability in the idempotent case [9, 11],
and this conjecture predicts exactly where the tractabil-
ity/intractability dichotomy lies for the CSP. It should be
noted, however, that the boundary that is suggested by our
hardness result for the equivalence, containment, and iso-
morphism problems is not the same as the boundary sug-
gested by the G-set conjecture for the CSP. The G-set con-
jecture, which is typically phrased on idempotent algebras,
yields a prediction on the CSP complexity of all structures
via a theorem [9] showing that each structure B has the
same CSP complexity as a structure B′ whose associated
algebra is idempotent. The mapping from B to B′ does
not preserve the complexity of our problems, and indeed,
there are examples [6] of two-element structures B such
that our hardness result applies to B–the equivalence and
containment problems on B are Πp

2-complete–but B′ does
not admit the unary type and indeed has a polynomial-time

tractable CSP [6]. Our new result requires establishing a
deeper understanding of the identified algebras’ structure,
some of which are CSP tractable, in order to obtain hard-
ness.

Our second hardness result, which concerns structures B
whose associated algebra AB is idempotent, implies that for
any such structure, if the variety V(AB) is not congruence
modular, then the equivalence and containment problems
are coNP-hard. Note that structures having all constants are
well-known to have idempotent algebras, and so this result
covers such structures.1 The question of whether or not this
second hardness result can be extended to all structures is
left as a tantalizing open question.

Previous work identified one most general condition for
the tractability of the equivalence and containment prob-
lems: if the algebra has few subpowers–a combinatorial
condition [3, 14] involving the number of subalgebras of
powers of an algebra–then these problems are polynomial-
time tractable. This second hardness result appears to
perfectly complement this tractability result: there are no
known examples of algebras AB (of structures B having
finitely many relations) that are not covered by one of these
results, and in fact the Edinburgh conjecture predicts that
none exist, stating that every such algebra AB that gener-
ates a congruence modular variety also has few subpow-
ers. Concerning this conjecture, it should be pointed out,
on an optimistic note, that the resolution of the Zadori con-
jecture, a closely related conjecture of which the Edinburgh
conjecture is a generalization, was recently announced by
L. Barto. We also point out that this conjecture (as with
the Zadori conjecture) is purely algebraic, making no ref-
erences to notions of computation. This second hardness
result similarly suggests a dichotomy for the isomorphism
problem.

All put together, the picture that emerges from this work
is a trichotomy in the complexity of the studied problems.
In the case of equivalence and containment, one appears to
have Πp

2-completeness for an algebra with a variety admit-
ting the unary type; coNP-completeness for an algebra with
a non-congruence modular variety omitting the unary type,
and polynomial-time tractability otherwise, with a picture
for isomorphism that is similar but shifted slightly upwards.
We certainly look forward to future work on these problems
and the related challenging conjectures.

2 Preliminaries

Here, a signature is a set of relation symbols, each hav-
ing an associated arity; we assume that all signatures are of
finite size. A relational structure over a signature � consists
of a universe B and, for each relation symbol R ∈ �, a re-
lation RB ⊆ Bk where k is the arity of R. We assume that

1By constants, here we mean singleton unary relations.
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all relational structures under discussion have universes of
finite size. A primitive positive formula (pp-formula) on �
is a first-order formula formed using equalities on variables
(x = x′), atomic formulas R(x1, . . . , xk) over �, conjunc-
tion (∧), and existential quantification (∃).

We now define the problems that will be studied. For the
isomorphism problem, we will make use of the following
notion. A sectioning for a formula with free variables X is
a pair of mappings (s : X → S, t : X → T ) such that the
pair mapping (s, t) : X → S×T is a bijection. Let �, �′ be
formulas with free variablesX�,X�′ and sectionings (s, t),
(s′, t′), respectively. We say that a bijection � : X�′ →
X� respects the sectionings if for all x, x1, x2 ∈ X�′ , (1)
s′(x1) = s′(x2) if and only if s(�(x1)) = s(�(x2)), and
(2) t′(x) = t(�(x)). One can think of s(x) as the section
of a variable x, and of t(x) as its type; the requirement on
(s, t) requires that each section has exactly one variable of
each type, and the given notion of respecting requires that
sections are mapped to sections in a type-preserving way.

Definition 2.1 We define the following computational
problems. For each of the first two, an instance consists
of a relational structure B and a pair (�, �′) of pp-formulas
over the signature of B having the same set of free variables
X; for the third problem (PPISO), an instance consists of
these objects and, in addition, sectionings (s, t) and (s′, t′)
for the formulas.

∙ PPEQ: decide if � and �′ are equivalent, that is,
whether for all f : X → B, it holds that B, f ∣= �
iff B, f ∣= �′.

∙ PPCON: decide if � is contained in �′, that is, whether
for all f : X → B, it holds that B, f ∣= � implies
B, f ∣= �′.

∙ PPISO: decide if � and �′ are isomorphic, relative to
the given sectionings, that is, whether there exists a
bijection � : X → X respecting the sectionings such
that for all f : X → B, it holds that B, f ∣= � if and
only if B, f ∘ � ∣= �′.

For every relational structure B, we define PPEQ(B) to
be the problem PPEQ where the structure is fixed to be
B; hence, an instance of PPEQ(B) is just a pair (�, �′)
of pp-formulas. We define the problems PPCON(B) and
PPISO(B) similarly. □

It is straightforward to verify that the PPEQ and PPCON
problems are contained in Πp

2, and that the PPISO problem
is contained in Σp3.

We use the described formulation of the PPISO prob-
lem as it is robust with respect to changes in represen-
tation, as shown, for example, by the following proposi-
tion. We use BOOL-PPISO to denote the restriction of the

PPISO to instances where the structure B is boolean (two-
element). Throughout the paper, the notion of reduction
used is logspace many-one reducibility.

Proposition 2.2 The problem PPISO reduces to the prob-
lem BOOL-PPISO.

Proof. See Appendix A. □
In this paper, we will overload problems such as PPISO

and use a problem to denote the set of all problems that
reduce to it. This will allow us to talk about, for instance,
PPISO-completeness.

Proposition 2.3 For each structure B, the problem
PPCON(B) reduces to the problem PPEQ(B).

Proof. The reduction, given an instance (�, �′) of
PPCON(B), outputs the instance (�, �∧ �′) of PPEQ(B).
□

We now review the relevant algebraic concepts to be
used. An algebra is a pair A = (A,F ) such that A is a
nonempty set, called the domain or universe of the algebra,
and F is a set of finitary operations on A. Let A = (A,F )
be an algebra; a term operation of A is a finitary operation
obtained by composition of (1) operations in F and (2) pro-
jections on A, and a polynomial operation is a finitary op-
eration obtained by composition of (1) operations in F , (2)
projections on A and (3) constants from A. An operation
f(x1, . . . , xn) on A is said to be idempotentif the equality
f(a, a, . . . , a) = a holds for all a ∈ A. An algebra A is
idempotent if all of its term operations are.

Let B be a nonempty set, let f be an n-ary operation on
B, and let R be a k-ary relation on B. We say that f pre-
serves R (or f is a polymorphism of R), if for every length
n sequence of tuples t1, . . . , tn ∈ R, denoting the tuple ti
by (ti,1, . . . , ti,k), it holds that the tuple f(t1, . . . , tn) =
(f(t1,1, . . . , tn,1), . . . , f(t1,k, . . . , tn,k)) is in R. We ex-
tend this terminology to relational structures: an operation
f is a polymorphism of a relational structure B if f is a
polymorphism of every relation of B. We use Pol(B) to
denote the set of all polymorphisms of a relational struc-
ture B, and use AB to denote the algebra (B,Pol(B)). We
remark that it is well-known and straightforward to verify
that a relational structure B having all constants (singleton
unary relations) has an idempotent algebra AB. Dually, for
an operation f , we use Inv(f) to denote the set of all rela-
tions that are preserved by f , and for a set of operations F ,
we define Inv(F ) as

∩
f∈F Inv(f). We will make use of the

following result connecting the Pol(⋅) and Inv(⋅) operators
to pp-definability.

Theorem 2.4 (Geiger [12]/Bodcharnuk et al. [5]) Let B
be a finite relational structure. The set of relations
Inv(Pol(B)) is equal to the set of relations that are pp-
definable over B.
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We associate to each algebra A = (A,F ) a set of prob-
lems PPEQ(A), namely, the set containing all problems
PPEQ(B) where B has universe A and F ⊆ Pol(B). We
define PPCON(A) and PPISO(A) similarly. For a com-
plexity class C, we say that the problem PPEQ(A) is C-
hard if PPEQ(A) contains a problem PPEQ(B) that is C-
hard. We define C-hardness similarly for PPCON(A) and
PPISO(A).

Theorem 2.5 Let B be a finite relational structure, and
let C be a complexity class closed under logspace reduc-
tion. The problem PPEQ(B) is C-hard if and only if
PPEQ(AB) is C-hard. The same result holds for PPCON(⋅)
and PPISO(⋅).

Proof. The proof of [6, Theorem 2] applies to all of the
problems. □

The notion of a variety is typically defined on indexed al-
gebras; a variety is a class of similar algebras that is closed
under the formation of homomorphic images, subalgebras,
and products. For our purposes here, however, we may
note that the variety generated by an algebra A, denoted
by V(A), is known to be equal to HSP ({A}), where the
operator H (for instance) is the set of algebras derivable by
taking homomorphic images of algebras in the given argu-
ment set.

Theorem 2.6 Suppose that B ∈ V(A). Then, for every
problem PPEQ(B) ∈ PPEQ(B), there exists a problem
PPEQ(B′) ∈ PPEQ(A) such that PPEQ(B) reduces to
PPEQ(B′), and likewise for PPCON(⋅) and PPISO(⋅).

Proof. See Appendix B. □

3 Unary Type

Throughout this section, let B be a finite relational struc-
ture and V be the variety generated by AB. Further assume
that V admits the unary type . In [6] it is shown that if in ad-
dition AB is assumed to be idempotent, then PPEQ(B) is
Πp

2-complete and PPISO(B) is BOOL-PPISO-hard. In this
section we establish the same hardness results, but without
assuming the idempotency of AB.

Our proof of Theorem 3.1 makes use of the detailed in-
formation on tame congruence theory provided in [13] and
[15]. This theory associates a typeset to a non-trivial finite
algebra, which contains one or more of five types: (1) the
unary type, (2) the affine type, (3) the boolean type, (4) the
lattice type, and (5) the semilattice type. By extension, a
typeset is associated to each variety, namely, the union of
all typesets of finite algebras contained in the variety. A va-
riety is said to admit a type if the type is contained in its
typeset, and is otherwise said to omit the type.

Theorem 3.1 If B is a finite relational structure such that
the variety generated by AB admits the unary type, then

∙ PPEQ(B) and PPCON(B) are Πp
2-complete, and

∙ PPISO(B) is PPISO-complete.

Prior to embarking on the proof of Theorem 3.1, we
point out that from it we can deduce, modulo the G-Set
conjecture, dichotomies for the class of pp-equivalence, pp-
containment, and pp-isomorphism problems.

Theorem 3.2 If the G-Set conjecture holds, then for
all finite relational structures B, either PPEQ(B) and
PPCON(B) are Πp

2-complete or they are in coNP. In addi-
tion, either PPISO(B) is PPISO-complete and Πp

2-hard or
it is in Σp2.

It can be remarked that no Πp
2-hard problem is in Σp2 un-

less Πp
2 = Σp2 and the polynomial hierarchy collapses.

Proof. According to the G-Set conjecture, if B is a finite
relational structure such that the variety generated by AB

omits the unary type, then CSP(B∗) is in P, where B∗ is
obtained from B by adding to it all relations of the form
{b} for b ∈ B. From this it follows that PPEQ(B) and
PPCON(B) are in coNP and that PPISO(B) is in Σp2.

On the other hand, if the variety generated by AB

admits the unary type, then by Theorem 3.1 we con-
clude that PPEQ(B) and PPCON(B) are Πp

2-complete and
PPISO(B) is PPISO-hard; the problem PPISO is straight-
forwardly verified to be Πp

2-hard. □

Lemma 3.3 There is a finite algebra A in V and some con-
gruence � on A such that:

∙ � covers 0A in Con (A),

∙ the type of the congruence pair ⟨0A, �⟩ is unary,

∙ the ⟨0A, �⟩-traces are all polynomially equivalent to
two-element sets.

Proof. This lemma follows from Theorem 6.17 and Lem-
mma 6.18 of [13] along with our assumption that V admits
the unary type. □

Fix an algebra A and congruence � as in the lemma and
choose some ⟨0A, �⟩-minimal set U , some ⟨0A, �⟩-trace
N = {0, 1} contained in U and some unary polynomial
e(x) of A with e(A) = U and e(x) = e(e(x)) for all x.

Definition 3.4 (see Definition 6.13 of [13]) For an el-
ement a ∈ A and n > 0, let ân denote the n-tuple
(a, a, . . . , a). We will drop the subscript when the arity of
the tuple is clear.

For an n-ary relation R over N that contains the con-
stant tuples 0̂ and 1̂, we define the n-ary relation A(R) over
A to be the universe of the subalgebra of An generated by
R ∪ {ân : a ∈ A}.
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Lemma 3.5 If R is an n-ary relation over N that contains
the constant tuples 0̂ and 1̂, M = {a, b} is a ⟨0A, �⟩-trace
and p(x) is a polynomial of A with p(0) = a and p(1) = b
then A(R) ∩Mn = p(R). In particular A(R) ∩Nn = R.

Furthermore, any member (a1, . . . , an) of A(R) is �-
constant, i.e., (ai, aj) ∈ � for all 1 ≤ i ≤ j ≤ n and if
p(x) is a unary polynomial of A, then (p(a1), . . . , p(an)) ∈
A(R).

Proof. The first part follows from Lemma 6.14 (2) of [13]
and from the fact that any two ⟨0A, �⟩-traces are polynomi-
ally isomorphic in A (see Corollary 5.2. (2) of [13]). The
second holds since N is contained in a single �-class of A
and A(R) contains all constant tuples and is a subuniverse
of An. □

In the proof of the hardness results of this section, we
will need detailed information about relations over A of the
form A(R), where R is a relation over N . We employ the
theory of multitraces, developed in [15], to aid us. For a
more general presentation of this notion, see Section 3 of
that article.

Definition 3.6 A multitrace is a subset T of A of the form
f(N,N, . . . , N) for some polynomial f(x̄) of A.

We can use the notion of a multitrace to gain a clear pic-
ture of the relations A(R) in the special case where n > 0
and R = Nn. For the rest of this section, let k = ∣A∣.

Proposition 3.7 For n > 0, let �n = A(Nn).

∙ �n =
∪
{Tn : T is a multitrace}.

∙ For n ≥ k, we have

�n(x1, . . . , xn) iff
⋀

{1≤i1<⋅⋅⋅<ik≤n}

�k(xi1 , . . . , xik).

Proof. If T is a multitrace, then there is some m-
ary polynomial f(x1, . . . , xm) of A such that T =
f(N,N, . . . , N). Since �n is the universe of the subalge-
bra of An generated by Nn and all of the constant n-tuples,
it follows that Tn ⊆ �n. Conversely, if � = (a1, . . . , an)
is in �n then there is some m > 0, some m-ary polynomial
t(x̄) of A and n-tuples bi ∈ Nn, for 1 ≤ i ≤ m, such that
� = t(b1, . . . , bm) (where t is applied coordinatewise). But
then � ∈ Tn, where T is the multitrace t(N,N, . . . , N).

For the second part of this proposition, suppose that
n > k and � = (a1, . . . , an) is in �n. Then there is some
multitrace T with ai ∈ T for all 1 ≤ i ≤ n. In particular, if
1 ≤ i1 < i2 < ⋅ ⋅ ⋅ < ik ≤ n then aij ∈ T for all 1 ≤ j ≤ k
and from this it follows that (ai1 , . . . , aik) ∈ �k.

In the other direction, since k = ∣A∣, we can choose
some sequence 1 ≤ ii < i2 < ⋅ ⋅ ⋅ < ik ≤ n such that for all
1 ≤ j ≤ n, aj = aim for some m ≤ k. If (ai1 , . . . , aik) ∈

�k then by the first part of this proposition, there is some
multitrace T with (ai1 , . . . , aik) ∈ T k and thus � ∈ Tn. □

The following theorem records some relevant features of
multitraces.

Theorem 3.8 Let T be a multitrace, say T =
f(N,N, . . . , N) for some m-ary polynomial f of A.
There is a p-ary polynomial f ′(x̄) of A for some p ≤ m
and some unary polynomials (called coordinate maps)
gi(x) of A, for 1 ≤ i ≤ p, such that

∙ T = f ′(N,N, . . . , N) and gi(T ) ⊆ N for all i,

∙ for all xj ∈ N , and all i, gi(f ′(x1, . . . , xp)) = xi,

∙ for all x ∈ T , x = f ′(g1(x), . . . , gp(x)),

∙ the set Np is in bijective correspondence with T
via the map that takes a p-tuple (n1, . . . , np) to
f ′(n1, . . . , np).

Proof. This follows from Theorem 3.10 of [15]. □

The following definition provides a way to translate
primitive positive formulas over a set of Boolean relations to
primitive positive formulas over relations compatible with
A. This translation will be used to establish our hardness
results.

Definition 3.9 Let ℛ be a set of finitary relations over
{0, 1}. If �(x1, . . . , xn) is a pp-formula over the rela-
tions in ℛ and if {y1, . . . , ym} is its set of quantified vari-
ables, define A(�)(x1, . . . , xn) to be the pp-formula over
the relations {A(R) : R ∈ ℛ} ∪ {�j : j ≤ k}
obtained from � by replacing each occurrence of a re-
lation R ∈ ℛ by A(R) and by conjoining the formula
�n+m(x1, . . . , xn, y1, . . . , ym). If n + m > k, we make
use of the second part of Proposition 3.7 to express �n+m
in terms of �k.

Theorem 3.10 If �(x1, . . . , xn) is a pp-formula over the
set of finitary relations ℛ over {0, 1} and each R ∈ ℛ
contains the constant tuples 0̂ and 1̂ then

{� ∈ {0, 1}n : �(�)} = {� ∈ An : A(�)(�)} ∩ {0, 1}n

and

{� ∈ An : A(�)(�)} = A({� ∈ {0, 1}n : �(�)}).

Proof. Suppose that {y1, . . . , ym} are the quanti-
fied variables of �. For the first equality, if � =
(a1, . . . , an) ∈ {0, 1}n and �(�) is witnessed by the el-
ements bi ∈ {0, 1}, 1 ≤ i ≤ m, then all of these el-
ements are in N and hence �n+m(a1, . . . , an, b1, . . . , bm)
holds. If some clause R(u1, . . . , um) of � holds,
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where ui ∈ {a1, . . . , an, b1, . . . , bm} then by construc-
tion A(R)(u1, . . . , un) also holds. From this it follows
that A(�)(a1, . . . , an) holds, using the same witnesses bi,
1 ≤ i ≤ m.

Conversely, suppose that � = (a1, . . . , an) ∈ {0, 1}n
and A(�)(�) holds, witnessed by the elements bi ∈ A,
1 ≤ i ≤ m. Since each relation A(R) that appears as a
clause in A(�) is closed under the unary operation e(x),
applied coordinatewise (see Lemma 3.5), it follows that the
elements e(bi), 1 ≤ i ≤ m also witness that A(�)(�) holds.
We use here that e is the identity map on its range, and in
particular that e(0) = 0 and e(1) = 1. We claim that in
fact, the elements e(bj) are all members of {0, 1}. Since
the clause �n+m(a1, . . . , an, b1, . . . , bm) holds then all of
these elements lie in the same �-class, and in particular be-
long to the �-class that contains 0, since a1 ∈ {0, 1}. We
conclude that for each j, e(bj) ∈ {0, 1} since e maps the
entire �-class that contains 0 into {0, 1}.

Finally, Lemma 3.5 provides that A(R) ∩ {0, 1}n = R
for all R ∈ ℛ and from this it follows that the elements
e(bj), 1 ≤ j ≤ m, also witness that �(�) holds. Thus the
first equality has been established.

For the second equality, we can apply the A(⋅) opera-
tor to both sides of the first equality to obtain that A({� ∈
{0, 1}n : �(�)}) is equal to

A({� ∈ An : A(�)(�)} ∩ {0, 1}n)

and so it will suffice to prove that

A({� ∈ An : A(�)(�)}∩{0, 1}n) = {� ∈ An : A(�)(�)}

to complete the proof.
The containment of the left hand side of this derived

equality in the set {� ∈ An : A(�)(�)} follows after ob-
serving that this set is a subuniverse of An and that it con-
tains all constant n-tuples ĉ, for c ∈ A. The latter follows
from the fact that each relation A(R) contains all constant
tuples and so every constant n-tuple over A is a solution of
A(�).

For the remaining containment, let � = (a1, . . . , an)
be a solution of A(�), witnessed by the elements bi ∈ A,
1 ≤ i ≤ m. Since �n+m(a1, . . . , an, b1, . . . , bm) holds
then there is some multitrace T of A that contains all of
these elements. By Theorem 3.8, it follows that for some
p > 0, there is some p-ary polynomial f ′ and coordinate
maps gi(x), 1 ≤ i ≤ p, that satisfy the properties stated in
that theorem. In particular, T = f ′(N,N, . . . , N) and for
all c ∈ T , c = f ′(g1(c), . . . , gp(c)).

From Lemma 3.5 it follows that for any q-ary relation
R ∈ ℛ, if cj ∈ T , for 1 ≤ j ≤ q, and (c1, . . . , cq) ∈ A(R),
then

(gi(c1), . . . , gi(cq)) ∈ (A(R) ∩ {0, 1}q) = R,

for any i. This is because for each coordinate map gi, we
have that gi(T ) ⊆ {0, 1}. Extending this to our pp-formula
A(�), it follows that not only is (gi(a1), . . . , gi(an)) a solu-
tion, witnessed by gi(bj), 1 ≤ j ≤ m, but it is also a mem-
ber of {0, 1}n. So, each of these tuples belongs to the gener-
ating set of the relation A({� ∈ An : A(�)(�)}∩{0, 1}n).

Since for each j, aj = f ′(g1(aj), . . . , gp(aj)) and
A({� ∈ An : A(�)(�)} ∩ {0, 1}n) is closed under f ′,
applied coordinatewise, we conclude that � = (a1, . . . , an)
is also a member of this relation, as required. □

Corollary 3.11 Let ℛ be a set of finitary relations over
{0, 1} such that each R ∈ ℛ contains the constant tu-
ples. Two pp-formulas �(x1, . . . , xn) and  (x1, . . . , xn)
over the relations in ℛ will be equivalent (contained, iso-
morphic with respect to sectionings) if and only if the pp-
formulas A(�) and A( ) are equivalent (contained, iso-
morphic with respect to sectionings) over {A(R) : R ∈
ℛ} ∪ {�j : j ≤ k}.

Proof of Theorem 3.1. To establish that PPEQ(B) and
PPCON(B) are Πp

2-complete, it will suffice to show that it
is Πp

2-hard, since both problems are contained in Πp
2. By

Theorem 4 and Lemma 4 from [6] it follows that there
is some finite relational structure C = ({0, 1},ℛ) such
that each R ∈ ℛ contains the constant tuples 0̂ and 1̂
and such that PPEQ(C) and PPCON(C) are Πp

2-hard.
By those proofs, one also readily obtains that PPISO(C)
is BOOL-PPISO-hard (for the definition of BOOL-PPISO
given in this paper).

From Corollary 3.11 there is a finite algebra A in the va-
riety generated by AB such that PPEQ(C), PPCON(C)
and PPISO(C) reduce to PPEQ(A), PPCON(A), and
PPISO(A) respectively. Finally, using Theorems 2.6 and
2.5 we conclude that PPEQ(B) and PPCON(B) is Πp

2-
complete and PPISO(B) is BOOL-PPISO-hard; by Propo-
sition 2.2, PPISO(B) is PPISO-hard and hence PPISO-
complete. □

4 Non-Congruence Modularity

A variety is idempotent if each algebra in the variety is
idempotent. A variety is congruence modular if the congru-
ence lattice of each algebra in the variety is modular. We let
MFISO denote the problem of deciding whether two mono-
tone Boolean formulas are isomorphic; recall that a mono-
tone Boolean formula is one formed using just the connec-
tives AND (∧) and OR (∨).

Theorem 4.1 Let B be a finite relational structure. If
V(AB) is idempotent and not congruence modular, then:

(i) PPEQ(B) and PPCON(B) are coNP-hard, and
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(ii) PPISO(B) is MFISO-hard.

The Edinburgh conjecture, discussed in the introduc-
tion, predicts that for all structures B, either V(AB) is
not congruence modular, or AB has few subpowers. This
conjecture would imply a P/coNP-hard dichotomy for the
PPEQ(⋅) and PPCON(⋅) problems for all such structures:
by the conjecture, the structures not covered by Theo-
rem 4.1 have that AB has few subpowers, in which case
the problem PPEQ(B) is in P by [6, Theorem 7], and
PPCON(B) is in P as well by an application of Proposi-
tion 2.3. Similarly, under this conjecture we have a di-
chotomy in the complexity of PPISO(B): either we have
MFISO-hardness by the theorem–and hence coNP-hardness
by [19, Theorem 19]–or, we have that PPISO(B) is in NP
as a consequence of PPEQ(B) being in P. Note that this
would give a dichotomy unless the polynomial hierarchy
collapses, as no coNP-hard problem can be in NP unless
NP = coNP.

Proof. We exploit the fact, enlightened by [17, Lemma 1
and Lemma 2], that the failure of congruence modularity in
V(AB) is nicely witnessed by a finite algebra A ∈ V(AB),
and congruences �, �, and  of A with the following prop-
erties: there exist finite algebras B and ℂ in V(AB) such
that A = B × ℂ; � and  are the kernels of the projections
of A onto B and ℂ respectively; there exist a partition of
B into two nonempty blocks B0 and B1, and congruences
�0 < 1ℂ and �1 = 1ℂ of ℂ such that � is

{((b, c), (b, c′)) ∣ b ∈ Bi ⇒ (c, c′) ∈ �i, i = 0, 1}. (1)

Note that � and  form a pair of factor congruences on A
and � < �; thus, 0A, �, �, , and 1A form a pentagon in
the congruence lattice of A, thus witnessing the failure of
congruence modularity in V(AB).

Let A be the relational structure with universe A = B×
C and relations �, �, and .

(i) We now prove that PPCON(A) is coNP-hard. Note
that PPCON(A) is in PPCON(A), because �, �, and
 are congruences of A, and hence are preserved by
the fundamental operations of A. Since A ∈ V(AB),
by Theorem 2.6, PPCON(A) logspace reduces to some
PPCON(B′) in PPCON(AB), so that PPCON(AB) is
coNP-hard, which finally implies that PPCON(B) is coNP-
hard by Theorem 2.5. The coNP-hardness of PPEQ(B) fol-
lows immediately by Proposition 2.3.

We describe a reduction from the coNP-complete prob-
lem of deciding entailment between two monotone Boolean
formulas [4, Theorem 4.1], call it MBCON, to PPCON(A).
The reduction has two stages, which we now prepare.

We introduce the following intermediate problem. LetB
andC be disjoint finite sets. Let S be a sorted structure, that
is, a relational structure with universeB∪C and sortsB and

C, equipped with the ternary sorted relationR ⊆ B×C×C
given by,

{(b, c, c′) ∣ b ∈ Bi ⇒ (c, c′) ∈ �i, i = 0, 1}. (2)

A sorted pp-formula � on S is a conjunction of constraints
of either the form R(x, y, z), with x of sort B and y, z
of sort C, or the form x = y, with x and y of the same
sort, where some variables can be existentially quantified.
A sorted assignment sends variables of sort B to B, and
variables of sort C to C. A sorted assignment f of the free
variables of � satisfies � over S if there exists a sorted as-
signment of all the variables of �, extending f , that satis-
fies each constraint of �. Let x1, . . . , xn and y1, . . . , ym be
variables of sort B and C respectively, and let � and  be
sorted pp-formulas over S having free variables x1, . . . , xn
and y1, . . . , ym. Then, � entails  over S, if and only if
the satisfying assignments of  over S contain the satisfy-
ing assignments of � over S; the entailment problem on S is
to decide, given two sorted pp-formulas � and  as above,
whether or not � entails  over S.

The proof proceeds by first reducing MBCON to the en-
tailment problem on S, and then reducing the entailment
problem on S to PPCON(A).

The reduction from MBCON to the entailment problem
on S works as follows. Let x = x1, . . . , xn, and let �(x) be
a monotone Boolean formula. By induction on the structure
of �(x), we construct a sorted pp-formula �′(x, y1, y2) on
S, where the variables x are of sort B and the variables
y1, y2 are of sort C, as follows: for i ∈ {1, . . . , n}, if �(x)
is xi, then �′(x, y1, y2) = R(xi, y1, y2); if �(x) is �1(x) ∧
�2(x), then �′(x, y1, y2) = �′1(x, y1, y2)∧�′2(x, y1, y2); if
�(x) is �1(x) ∨ �2(x), then

�′ = (∃z) (�′1(x, y1, z) ∧ �′2(x, z, y2)) , (3)

where z is a fresh variable of sort C. The reduction is now,
given an instance (�,  ) of MBCON, construct the instance
(�′,  ′) of the entailment problem on S.

We now prove that the reduction is correct. The key step
is to establish a correspondence between the satisfying as-
signments of � (over the two-element Boolean lattice) and
�′ over S. Let f be a Boolean assignment of variables
x1, . . . , xn, and let g be a sorted assignment of variables
x1, . . . , xn, y1, y2. Say that f and g match if: f(xi) = 0
implies g(xi) ∈ B0, and f(xi) = 1 implies g(xi) ∈ B1.

Claim 4.2 Let g be a sorted assignment of
x1, . . . , xn, y1, y2, matching the Boolean assignment
f of x1, . . . , xn. Then, g satisfies �′ over S if and only if, f
does not satisfy � implies (g(y1), g(y2)) ∈ �0.

Proof. (⇒) Suppose that g satisfies �′ over S. The proof is
by induction on the structure of �′. If �′ = R(xi, y1, y2),
then by (2) g(xi) ∈ Bj implies (g(y1), g(y2)) ∈ �j for
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j = 0, 1. By construction, � = xi, and if f does not
satisfy �, then g(xi) ∈ B0 (as f matches g), and then
(g(y1), g(y2)) ∈ �0. If �′ = �′1 ∧ �′2, then g satisfies both
�′1 and �′2 over S. By construction, � = �1 ∧ �2. If f does
not satisfy �, then either f does not satisfy �1 or f does
not satisfy �2; say without loss of generality that f does not
satisfy �1. By the induction hypothesis, (g(y1), g(y2)) ∈
�0. If �′(x, y1, y2) = (∃z)(�′1(x, y1, z) ∧ �′2(x, z, y2)),
then there exists a point c ∈ C such that extending g by
g(z) = c, g satisfies both �′1(x, y1, z) and �′2(x, z, y2) over
S. By construction, � = �1 ∨ �2. If f does not satisfy
�, then f does not satisfy �1 and f does not satisfy �2.
Then, by the induction hypothesis, (g(y1), g(z)) ∈ �0 and
(g(z), g(y2)) ∈ �0, so that by transitivity, (g(y1), g(y2)) ∈
�0.

(⇐) Suppose that g does not satisfy �′ over S. We show
that f does not satisfy � but (g(y1), g(y2)) /∈ �0. The proof
is by induction on the structure of �′. If �′ = R(xi, y1, y2),
then by (2) the only possibility for g to not satisfy �′ is
when g(xi) ∈ B0 and (g(y1), g(y2)) /∈ �0 (note that in
fact, g(xi) ∈ B1 implies (g(y1), g(y2)) ∈ �1 holds triv-
ially because �1 = 1ℂ). By construction, � = xi. As f
matches g, by definition f(xi) = 0, that is, f does not sat-
isfy �, and we are done. If �′ = �′1 ∧ �′2, then either g
does not satisfy �′1 over S, or g does not satisfy �′2 over
S; say without loss of generality that g does not satisfy �′1
over S. By construction, � = �1 ∧ �2, so by the induction
hypothesis, f does not satisfy �1 but (g(y1), g(y2)) /∈ �0.
It follows that f does not satisfy �, and we are done. Fi-
nally, let �′(x, y1, y2) = (∃z)(�′1(x, y1, z) ∧ �′2(x, z, y2));
recall that in this case, by construction, � = �1 ∨ �2. If
g does not satisfy �′ over S, then there does not exist a
point c ∈ C such that extending g by g(z) = c, g satis-
fies both �′1(x, y1, z) and �′2(x, z, y2) over S. In particu-
lar, the extension g(z) = g(y1) of g satisfies �′1(x, y1, z)
over S, hence it does not satisfy �′2(x, z, y2) over S; here,
the induction hypothesis gives that f does not satisfy �2,
but (g(z), g(y2)) = (g(y1), g(y2)) /∈ �0. Similarly, the
extension g(z) = g(y2) of g satisfies �′2(x, z, y2) over S,
hence it does not satisfy �′1(x, y1, z) over S, and the in-
duction hypothesis gives that f does not satisfy �1, but
(g(y1), g(z)) = (g(y1), g(y2)) /∈ �0. Hence, f does not
satisfy �, but (g(y1), g(z)) = (g(y1), g(y2)) /∈ �0, and we
are done. □

Let � and  be Boolean formulas, and let �′ and  ′ be
the sorted pp-formulas given by the reduction. Note that
Boolean assignments of x1, . . . , xn determine a partition
of sorted assignments of x1, . . . , xn, y1, y2: for, sorted as-
signments g and g′ are in the same block of the partition if
and only if they match the same Boolean assignment f . By
Claim 4.2, a sorted assignment g satisfies �′ (respectively,
 ′) if and only if its matching Boolean assignment satis-
fies � (respectively,  ), or (g(y1), g(y2)) ∈ �0; therefore,

the Boolean assignments satisfying  contain the Boolean
assignments satisfying � if and only if, the sorted assign-
ments satisfying  ′ over S contain the sorted assignments
satisfying �′ over S.

This completes the first part of the proof. The second re-
duction, from the entailment problem on S to PPCON(A),
works as follows. Let � be a sorted pp-formula on S over
variables x1, . . . , xn and y1, . . . , ym of sort B and C re-
spectively. We construct a pp-formula �′ on A, as fol-
lows. For each variable z in �, introduce a fresh variable
z′ = (z1, z2); z′ is existentially quantified in �′ if and only
if z is existentially quantified in �′. If � contains the con-
straint xi = xj for some i, j ∈ {1, . . . , n}, then �′ contains
the conjunct �(x′i, x

′
j); if � contains the constraint yi = yj

for some i, j ∈ {1, . . . ,m}, then �′ contains the conjunct
(y′i, y

′
j); if � contains the constraint R(xi, yj , yk), then �′

contains the conjunct

(∃w′1)(∃w′2)(�(w′1, x
′
i) ∧ �(w′2, x

′
i)∧

(w′1, y
′
j) ∧ (w′2, y

′
k) ∧ �(w′1, w

′
2)),

(4)

where w′1 and w′2 are fresh variables. The reduction is now,
given an instance (�,  ) of the entailment problem on S,
construct the instance (�′,  ′) of PPCON(A). The con-
struction is a sequence of local substitutions, hence it is fea-
sible in logspace.

We now prove that the reduction is correct. The key
step is to establish a correspondence between the satis-
fying assignments of � over S and �′ over A. Let f
be a sorted assignment of variables x1, . . . , xn in B and
y1, . . . , ym in C, and let g be an assignment of variables
x′1, . . . , x

′
n, y
′
1, . . . , y

′
m in A = B × C. Say that f and g

match if: f(xi) = b implies g(x′i) = (b, ⋅), and f(yi) = c
implies g(y′i) = (⋅, c). For sake of notation, say that the free
variables in � are x′1, . . . , x

′
n′ , y′1, . . . , y

′
m′ .

Claim 4.3 Let g be an assignment of
x′1, . . . , x

′
n′ , y′1, . . . , y

′
m′ in B × C, matching the sorted

assignment f of x1, . . . , xn′ , y1, . . . , ym′ . Then, g satisfies
�′ over A if and only if f satisfies � over S.

Proof. (⇒) Suppose that g satisfies �′ over A, and let g′

be an extension of g to the quantified variables of �′ that
satisfies each conjunct in �′. Let f ′ be the sorted assign-
ment of the variables x1, . . . , xn, y1, . . . , ym in � defined
by f ′(xi) = b if and only if g′(x′i) = (b, ⋅), and f ′(yi) = c
if and only if g′(y′i) = (⋅, c); by definition, the restriction of
f ′ to the free variables of �, that is, f , matches g. We prove
that f satisfies � over S, by checking that f ′ satisfies each
conjunct of � over S.

If g′ satisfies the conjunct �(x′i, x
′
j) in �′, that is,

g′(x′i) = (b, ⋅) and g′(x′j) = (b, ⋅) for some b ∈ B, then
f ′ satisfies the counterpart xi = xj in � because f ′(xi) =
f ′(xj) = b by definition of f ′. The case of conjuncts of the
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form (y′i, y
′
j) in �′ is similar. If g′ satisfies a conjunct of

the form in (4) in �′, then by direct inspection, the following
holds: g′(x′i) = (b, ⋅), g′(w′1) = (b, ⋅), and g′(w′2) = (b, ⋅)
for some b ∈ B; g′(y′j) = (⋅, c1) and g′(w′1) = (⋅, c1) for
some c1 ∈ C; g′(y′k) = (⋅, c2) and g′(w′2) = (⋅, c2) for
some c2 ∈ C; and, ((b, c1), (b, c2)) ∈ �. By (1), this im-
plies that, b ∈ Bi implies (c1, c2) ∈ �i for i = 1, 2. But
then, by (2), f ′ satisfies the counterpart in � of the conjunct
under consideration, R(xi, yj , yk), because by definition,
f ′(xi) = b, f ′(yj) = c1, and f ′(yk) = c2.

(⇐) Conversely, suppose that the sorted assignment f
satisfies � over S. Let f ′ be an extension of f to the quanti-
fied variables of � that satisfies each constraint in �. Let g′

be the assignment of the variables x′1, . . . , x
′
n, y
′
1, . . . , y

′
m

in � onto B × C defined by g′(x′i) = (b, ci) if and only if
f ′(xi) = b and g′(y′i) = (bi, c) if and only if f ′(yi) = c,
where bi and ci are arbitrary fixed points in B and C re-
spectively. By definition, the restriction of g′ to the free
variables of �′, call it g, matches f . We prove that g satis-
fies �′ over A, by checking that g′ satisfies each conjunct
of �′ over A.

If f ′ satisfies the constraint xi = xj in �, that is,
f ′(xi) = f ′(xj) = b for some b ∈ B, then g′ satisfies
the counterpart �(x′i, x

′
j) in �′, because g′(x′i) = (b, ⋅) and

g′(x′j) = (b, ⋅) by definition of g′. The case of constraints
of the form yi = yj in � is similar. If f ′ satisfies a constraint
of the form R(xi, yj , yk) in �, then by (2), f(xi) = b ∈ Bl
implies (f ′(yj), f

′(yk)) = (c1, c2) ∈ �l for l = 1, 2. In
this case, a conjunct � of the form in (4) occurs in �′. We
extend g′ to the existentially quantified variables w′1 and w′2
in (4) by letting g′(w′1) = (b, c1) and g′(w′2) = (b, c2). By
direct inspection, this extension of g′ satisfies �. □

Now, let � and  be sorted pp-formulas on S,
and let �′ and  ′ be the pp-formulas on A given
by the reduction. Note that sorted assignments of
x1, . . . , xn′ , y1, . . . , ym′ determine a partition of the assign-
ments of x′1, . . . , x

′
n′ , y′1, . . . , y

′
m′ in B × C: for, assign-

ments g and g′ are in the same block of the partition if
and only if they match the same sorted assignment f . By
Claim 4.3, the satisfying assignments of �′ (respectively,
 ′) are exactly those in blocks that match satisfying assign-
ments of � (respectively,  ). Hence, the sorted assignments
satisfying � over S are contained in the sorted assignments
satisfying  over S, if and only if the assignments satisfy-
ing � over A are contained in the assignments satisfying  
over A. This completes the second part of the proof.

We conclude that PPCON(A) is coNP-hard, and the
proof of statement (i) is complete.

(ii) We now prove that PPISO(A) is MFISO-hard.
Along the lines of the first paragraph of part (i), noticing
that PPISO(A) is in PPISO(A), this implies that PPEQ(B)
is MFISO-hard.

We describe a reduction from the problem of deciding
whether two monotone Boolean formulas are isomorphic to
the problem PPISO(A). Along the lines of part (i), the
reduction proceeds in two stages. Say that two sorted pp-
formulas are isomorphic (on S) if and only if they have an
isomorphism on S that fixes the sorts, that is, sends vari-
ables of sort B (respectively, C) to variables of sort B (re-
spectively, C). The isomorphism problem on S is to decide,
given two sorted pp-formulas � and  , whether or not � and
 are isomorphic over S.

First, we reduce from the monotone Boolean formulas
isomorphism problem to PPISO(S). Let (�,  ) be a pair
of monotone Boolean formulas over variables x1, . . . , xn,
and let (�′,  ′) be the pair of sorted pp-formulas on S, over
variables x1, . . . , xn of sort B and variables y1, y2 of sort
C, computed in part (i). The following claim shows that
the reduction is correct.

Claim 4.4 � and  are isomorphic if and only if �′ and  ′

are isomorphic.

Proof. (⇒) Let � be an isomorphism of � and  , and let
�′(xi) = �(xi) and �′(yj) = yj for i = 1, . . . , n and
j = 1, 2. We claim that �′ is an isomorphism of �′ and  ′

on S (clearly, �′ fixes the sorts). Let g be a sorted assign-
ment of x1, . . . , xn, y1, y2, and let f be the Boolean assign-
ment matching g. First suppose that g satisfies �′ on S. By
Claim 4.2, either (g(y1), g(y2)) ∈ �0, or f satisfies �. In
the former case, (g ∘�′(y1), g ∘�′(y2)) = (g(y1), g(y2)) ∈
�0, and g ∘ �′ satisfies  ′ on S by Claim 4.2. In the latter
case, by hypothesis, f ∘� satisfies  . Since g ∘�′ and f ∘�
match, by Claim 4.2, g ∘ �′ satisfies  ′ on S. Conversely,
suppose that g does not satisfy �′ on S. By Claim 4.2, f
does not satisfy � and (g(y1), g(y2)) /∈ �0. By hypothesis,
f ∘ � does not satisfy  . As g ∘ �′ and f ∘ � match, by
Claim 4.2, g ∘ �′ does not satisfy  ′ on S.

(⇐) Let �′ witness that �′ and  ′ are isomorphic on S,
and let �(xi) = �′(xi) for i = 1, . . . , n. Let f be a Boolean
assignment of x1, . . . , xn, and let g be a sorted assignment
of x1, . . . , xn, y1, y2 matching f . Without loss of general-
ity, assume that (g(y1), g(y2)) /∈ �0; for otherwise, pick
two points c1 and c2 such that (c1, c2) /∈ �0 (such points
exist because �0 < 1ℂ), settle g(y1) = c1 and g(y2) = c1,
and note that g still matches f . First suppose that f satisfies
�. By Claim 4.2, g satisfies �′ on S. By hypothesis, g ∘ �′
satisfies �′ on S. As (g(y1), g(y2)) /∈ �0, and f ∘� matches
g ∘�′, we conclude by Claim 4.2 that f ∘� satisfies  . Con-
versely, suppose that f does not satisfy �. By Claim 4.2, g
does not satisfy �′ on S, and by hypothesis, g ∘ �′ does not
satisfy  ′ on S; similarly, f ∘ � does not satisfy  . □

This completes the first part of the proof. Second, we
reduce from PPISO(S) to PPISO(A).

We import a technical lemma from [6]. LetX be a set, let
{X1, . . . , Xk} be a partition of X , and let � be a permuta-
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tion of X . We say that � fixes Xi if {�(x) ∣ x ∈ Xi} = Xi.

Lemma 4.5 [6] Let � be a signature, let B be a relational
structure over �, and let � and  be pp-formulas on �. For
each k ≥ 2, it is possible to construct in logspace, given a
partition {X1, . . . , Xk} of the set X of free variables of �
and  , two pp-formulas �′ and  ′ on � satisfying: �′ and  ′

are isomorphic if and only if � and  have an isomorphism
that fixes X1, . . . , Xk.

Let (�,  ) be a pair of sorted pp-formulas on S over
variables x1, . . . , xn of sort B, and y1, . . . , ym of sort C,
let (�′,  ′) be the pair of pp-formulas on A over vari-
ables x′1, . . . , x

′
n, y
′
1, . . . , y

′
m computed (in logspace) in part

(i), and let (�′′,  ′′) be the pair of pp-formulas on A
computed (in logspace) by Lemma 4.5 given the partition
{{x′1, . . . , x′n}, {y′1, . . . , y′m}}. The following claim shows
that the reduction is correct.

Say that a sectioning for a formula is simple if it has ex-
actly as many sections as the free variables of the formula,
and one type. Over any relational structure, two sorted pp-
formulas are isomorphic with respect to the simple section-
ings, if and only if they have an isomorphism; in fact, any
bijection respects the simple sectionings.

Claim 4.6 � and  are isomorphic on S if and only if �′′

and  ′′ are isomorphic on A with respect to the simple sec-
tionings.

Proof. See Appendix C. □

This completes the second part of the proof. We con-
clude that PPISO(A) is MFISO-hard, and the proof of
statement (ii) is complete. □
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Appendix

A Proof of Proposition 2.2

Proof. Let �, �′,B, (s, t), (s′, t′) be an instance of PPISO
with signature �. Fix a d ≥ 1 such that there is an in-
jective mapping r : B → {0, 1}d. Define �̂ to be the
signature with the same relation symbols as �, but where
the arity of R ∈ �̂ is dk, where k is the arity of R ∈ �.
We create a boolean relational structure B̂ by defining
RB̂ = {(r(b1), . . . , r(bk)) ∣ (b1, . . . , bk) ∈ RB} for all
relation symbols R. The new instance is created as follows.
The new pair of formulas ( , ′) is created from the old
pair (�, �′) by replacing each variable v with a sequence
of variables v1, . . . , vd. The free variables of  and  ′ is
thus X ′ = {xi ∣ x ∈ X, i ∈ [d]} where X denotes the
free variables of � and �′. The sectioning of  is given
by (ŝ, t̂) : X ′ → S × (T × [d]), where ŝ(xi) = s(x) and
t̂(xi) = (t(x), i), and the sectioning of  ′ is given from that
of �′ in an analogous way. It is straightforward to verify that
this reduction is correct. □

B Proof of Theorem 2.6

Proof. We first treat powers; suppose B = Ak. Con-
sider a problem PPEQ(B) ∈ PPEQ(AB), and let � de-
note the signature of B. Let �′ be the signature that has
the same symbols as �, but where the arity of a symbol
of R ∈ �′ is km, where m is the arity of R ∈ �. De-
fine B′ to be the structure whose relation RB′

contains the
tuple (a11, . . . , a

k
1 , . . . , a

1
m, . . . , a

k
m) if and only if the tu-

ple ((a11, . . . , a
k
1), . . . , (a1m, . . . , a

k
m)) belongs to the rela-

tion RB. Clearly, we have PPEQ(B′) ∈ PPEQ(A). To
reduce an instance (�, �′) of PPEQ(B) to PPEQ(B′), we
simply replace, in each of �, �′, each variable v with a se-
quence of k variables v1, . . . , vk. It is straightforward to
verify that the original instance (�, �′) was a yes instance if
and only if the new formulas are. The same reduction ap-
plies to PPCON(⋅). For the problem PPISO(⋅), we apply
the same transformation to the formulas, and define new
sectionings as follows. Let (s, t), (s′, t′) : X → S × T be
the original sectionings. The new sectionings are denoted
by (s1, t1), (s′1, t

′
1) : X → S × T1 where T1 = T × [k] and

the mappings are defined by s1(vi) = s(v), s′1(vi) = s′(v),
t1(vi) = (t(v), i), and t′1(vi) = (t(v), i). It is straight-
forward to verify that the original formulas are isomorphic
with respect to (s, t), (s′, t′) if and only if the new formulas
are isomorphic with respect to (s1, t1), (s′1, t

′
1).

In the case that B is a subalgebra or homomorphic image
of A, the result is proved in [6, Proposition 4] for PPEQ(⋅),
and from the argumentation there it is clear that exactly the
same reduction works for PPCON(⋅). For PPISO(⋅), we

apply the same reduction to the original pair of formulas
(�, �′) to obtain a new pair ( , ′), and associate the sec-
tioning of � with  , and that of �′ with  ′. □

C Proof of Claim 4.6

Proof. (⇒) Let � be an isomorphism of � and  , and let
�′(x′i) = x′j if and only if �(xi) = xj for i, j ∈ {1, . . . , n},
and �′(y′i) = y′j if and only if �(yi) = yj for i, j ∈
{1, . . . ,m}. We check that �′ is an isomorphism of �′ and
 ′. Let g be an assignment of x′1, . . . , x

′
n, y
′
1, . . . , y

′
m, and

let f be the sorted assignment of x1, . . . , xn, y1, . . . , ym
matching g. Now, g satisfies �′ on A if and only if f satis-
fies � on S (by Claim 4.3), if and only if f ∘ � satisfies �
on S (� is an isomorphism), if and only if g ∘ �′ satisfies �′

on A (by Claim 4.3, since f ∘ � and g ∘ �′ match). There-
fore, �′ is an isomorphism of �′ and  ′. Moreover, �′ fixes
{x′1, . . . , x′n} and {y′1, . . . , y′m}. Hence, by Lemma 4.5, �′′

and  ′′ are isomorphic on A.
(⇐) Let �′′ be an isomorphism of �′′ and  ′′ on A. By

Lemma 4.5, there exists an isomorphism of �′ and  ′ on
A that fixes {x′1, . . . , x′n} and {y′1, . . . , y′m}. Let �(xi) =
xj if and only if �′(x′i) = x′j for i, j ∈ {1, . . . , n}, and
�(yi) = yj if and only if �′(y′i) = y′j for i, j ∈ {1, . . . ,m}.
Let f be a sorted assignment of x1, . . . , xn, y1, . . . , ym and
let g be an assignment of x′1, . . . , x

′
n, y
′
1, . . . , y

′
m matching

f . It is easy to check that, by Claim 4.3, f satisfies � on S
if and only if f ∘ � satisfies  on S. Hence, � and  are
isomorphic on S. □
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