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Abstract. We show that the Maltsev product of two idempotent
varieties of algebras that have n-ary and m-ary near unanimity
terms, respectively, will have a near unanimity term of arity n +
m−1. We also show that in general no lower arity near unanimity
term can be found.

1. Introduction

This paper deals with general algebraic structures (algebras, for
short) and equationally defined classes of algebras, called varieties.
Many familiar collections of algebras are varieties, for example, the fol-
lowing classes of algebras can be defined equationally: groups, abelian
groups, rings, vector spaces, Boolean algebras. One of the most suc-
cessful schemes for classifying and organizing the universe of varieties is
via the notion of a Maltsev condition, and critical structural properties
of varieties often can be correlated with the satisfaction of a particular
Maltsev condition.

The prototypical example of a Maltsev condition is the one discov-
ered by Maltsev [12]. He proved that the congruences (kernels of ho-
momorphisms) of algebras in a variety V permute if and only if V
possesses a ternary term p(x, y, z) such that V satisfies the equations
p(x, y, y) ≈ x and p(x, x, y) ≈ y.

Loosely speaking, a Maltsev condition is a condition that asserts the
existence of a set of terms that satisfy a specific set of equations. Since
we will be dealing with a particular, special set of Maltsev conditions
in this paper, the precise definition will not be provided here. Readers
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who wish to learn more about Maltsev conditions, or the basics of
universal algebra may consult one of [3], [8], [9], or [11].

Definition 1.1. An algebra A consists of a non-empty set A, called
the universe of A, along with a sequence of finitary functions on A,
〈fi : i ∈ I〉, indexed by some set I, called the basic operations of A.
The function τ : I → N that gives the arity, or number of variables, of
each of the basic operations fi is called the similarity type of A.

Of special significance in this paper are operations and algebras that
are idempotent:

Definition 1.2. An operation f(x0, x1, . . . , xn−1) on a set A is idem-
potent if f(a, a, . . . , a) = a for all a ∈ A. An algebra A is idempotent
if all of its basic operations are, and a collection of algebras is idempo-
tent if all of its members are.

Two algebras that have the same similarity type share the same basic
algebraic language and can be combined together in various ways. For
example, just as with groups, one can naturally form the Cartesian
product of two similar algebras. In addition, the notions of subgroup,
homomorphism, and quotient can be extended to algebras of arbitrary
similarity types in a natural way.

A big difference between groups and other types of algebras is that
the kernel of a group homomorphism f : G → H is a special type
of subgroup of G, whereas in general, the kernel of a homomorphism
f : A→ B is an equivalence relation on A that is compatible with the
basic operations of A. For groups, this equivalence relation is nothing
more than the partition of the group into the cosets of the kernel. As
with groups, the collection of kernels of homomorphisms from some
algebra A forms a lattice.

The basic operations of an algebra A, and the symbols used to repre-
sent them, can be combined via composition to form derived operations
on A, called the term operations and the terms of A. For example, one
can form the term p(x, y, z) = x · (y−1 · z) in the language of groups,
and in any given group G, one can interpret this term as a ternary
operation on G. Note that this term satisfies the conditions for the
original Maltsev condition stated earlier.

Definition 1.3. A variety is a class V of algebras, all of the same
similarity type, that can be defined by a set of equations involving
terms in the language of V .

The Maltsev conditions that we investigate in this paper are those
of having a near unanimity term of arity n, for some n > 2.
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Definition 1.4. Let A be an algebra and n > 2. A term t(x0, . . . , xn−1)
is a near unanimity term for A if A satisfies the following equations:

t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, x, . . . , x, y) ≈ x.

We say that t(x0, x1, . . . , xn−1) is a near unanimity term for a class of
algebras of the same similarity type if it is a near unanimity term for
each algebra in the class.

Example 1.5. Consider the two element algebra B = 〈{0, 1},∧,∨〉,
where 1 and 0 represent the truth values “true” and “false”, respec-
tively, and ∧ and ∨ are the logical operations “and” and “or”. Then
the term

(x ∧ y) ∨ (x ∧ z) ∨ (y ∧ z)

is a ternary near unanimity term for B.

For a fixed n > 2, the condition of having a near unanimity term
of arity n is a Maltsev condition that has been well studied [1] and
recently has played an important role in developments on the border
between algebra and computer science ([10], [2], [14], [4]).

Given two varieties V0 and V1 of the same similarity type, one can
form their join, V0∨V1, the smallest variety that contains both V0 and
V1. If Vi is generated by an algebra Ai, i = 0, 1, then V0 ∨ V1 can be
seen to be equal to the variety generated by the product A0 ×A1. In
this paper, we investigate how well near unanimity terms are preserved
under joins of varieties, and more generally under Maltsev products.

Definition 1.6. Let V0 and V1 be varieties of the same similarity type
τ . The Maltsev product of V0 and V1, denoted V0 ◦ V1, is the class
of all algebras A of similarity type τ such that for some congruence
θ of A, the quotient A/θ is in V1 and for each a ∈ A, the θ-class
a/θ = {b ∈ A : (a, b) ∈ θ} is a subuniverse of A such that the
subalgebra of A with universe a/θ belongs to V0.

Note that when A is an idempotent algebra, then a/θ will be a
subuniverse of A for any a ∈ A and congruence θ of A. Also note
that in general, V0 ◦ V1 will not be a variety, but will always be a
quasi-variety (a class defined by implications, rather than equations).
In the idempotent case, the Maltsev product can be regarded as a
generalization of the usual Cartesian product in that if B ∈ V0 and
C ∈ V1 then B×C ∈ V0 ◦V1 (witnessed by the kernel of the projection
onto the second coordinate).

The problem that we resolve in this paper is the following:

Problem 1.7. Suppose that V0 and V1 are idempotent varieties of the
same similarity type such that V0 and V1 have near unanimity terms
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of arities n and m respectively. Determine the smallest arity of a near
unanimity term that V0 ∨ V1 and V0 ◦ V1 must always have.

We focus on idempotent varieties, since it is known that in general
the join of two varieties that have near unanimity terms will not have
one [7]. As a warm up exercise, we show that in the idempotent case
there will always be a near unanimity term of arity nm.

Proposition 1.8 (Lemma 3.8 of [15] or Corollary 2.6 of [13]). If the
idempotent varieties V0 and V1 have near unanimity terms of arities
n and m respectively, then V0 ◦ V1 has a near unanimity term of arity
nm.

Proof. Suppose that p0(x0, x1, . . . , xn−1) and p1(x0, x1, . . . , xm−1) are
near unanimity terms for V0 and V1, respectively, and consider the
nm-ary term t(x0, . . . , xmn−1):

p0(p1(x0, . . . , xm−1), p1(xm, . . . , x2m−1), . . . , p1(xm(n−1), . . . , xmn−1)).

We show that if A is an algebra and θ is a congruence of A such that
A/θ ∈ V1 and a/θ is a subuniverse of A such that the subalgebra of
A with universe a/θ belongs to V0, then t is a near unanimity term for
A. From this we conclude that t is a near unanimity term for V0 ◦ V1.

Suppose that a, b ∈ A and consider the value of t(a, . . . , a, b, a, . . . , a)
in A. All but one instance of the term p1 in this evaluation of t,
will evaluate to a, since p1 is an idempotent term operation and so
p1(a, a, . . . , a) = a. The remaining instance of p1 in t is of the form
c = p1(a, . . . , a, b, a, . . . , a) and so in general will not be equal to a.
Since p1 is a near unanimity term for A/θ, then at least we know that
c will be θ-related to a. We then have that this evaluation of t will be
equal to p0(a, . . . , a, c, a, . . . , a). Since a and c lie in the same θ-class
and p0 is a near unanimity term for each θ-class, then we can conclude
that p0(a, . . . , a, c, a, . . . , a) = a, as required. �

In this paper we resolve Problem 1.7 by showing that we can always
find a near unanimity term of arity n+m− 1 for V0 ∨ V1 and V0 ◦ V1.
We also show that in general one cannot hope to find a lower arity near
unanimity term for V0 ∨ V1 or V0 ◦ V1.

2. An (n+m− 1)-ary near unanimity term

For this section, let V0 and V1 be idempotent varieties of the same
similarity type and let p0(x0, x1, . . . , xn−1) and p1(x0, x1, . . . , xm−1) be
near unanimity terms for V0 and V1, respectively, for some n and m > 2.
Let d = n+m− 1.
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Definition 2.1. Let S be a subset of the variables {x0, x1, . . . , xd−1}.
A term t(x0, x1, . . . xd−1) of arity d is a near unanimity term for S
if

• t is a near unanimity term for the variety V1, and
• V0◦V1 satisfies the equation t(x, x, . . . , x, y, x, . . . , x) ≈ x when-

ever y is substituted in t for any one of the variables xi from S
and x is substituted for all of the other variables of t.

A d-ary term that is a near unanimity term for the entire set of d
variables will, of course, be a d-ary near unanimity term for the Maltsev
product V0 ◦ V1.

Theorem 2.2. If V0 and V1 are idempotent varieties of the same sim-
ilarity type that have n-ary and m-ary near unanimity terms, respec-
tively, then V0 ◦V1 will have a near unanimity term of arity n+m− 1.

Proof. Let p0(x0, x1, . . . , xn−1) and p1(x0, x1, . . . , xm−1) be near una-
nimity terms for V0 and V1, respectively, and let d = n+m−1. We show
by induction on the size of a subset S of the variables {x0, x1, . . . , xd−1}
that there is d-ary term tS that is a near unanimity term for S. When
|S| = d, we will have produced the required term.

The base of our induction is the case |S| = n. By suitably permuting
variables, we may assume that S = {x0, x1, . . . , xn−1}. Define tS to be
the term

p0(p1(x0, xn, xn+1, ...,xn+m−2), p1(x1, xn, xn+1, ..., xn+m−2), ...,

p1(xn−1, xn, xn+1, ..., xn+m−2)).

It is not hard to see that tS is a near unanimity term for the variety
V1, since p1 is and p0 is idempotent. With a little more effort, it can
be verified that V0 ◦ V1 will satisfy the equation

tS(x, x, . . . , x, y, x, . . . , x) ≈ x

whenever y is placed in one of the first n variables of tS. The proof of
this is similar to that of Proposition 1.8.

For the induction step, assume that n− 1 < k < d, that |S| = k+ 1,
and that the claim holds for all subsets of variables of size k or less. As
in the base case, it suffices to consider the case S = {x0, x1, . . . , xk}.

For 0 ≤ i < n, let Si = {x0, x1, . . . , xk} \ {xi} and let ti be a d-ary
term that is a near unanimity term for the set Si. By the induction
hypothesis, such terms exist. Define tS to be the term

p0(t0(x0, . . . , xd−1), t1(x0, . . . , xd−1), ..., tn−1(x0, . . . , xd−1)).
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Since each of the terms ti is a near unanimity term for the variety V1
and p0 is an idempotent term, then tS will also be a near unanimity
term for the variety V1.

To show that tS is a near unanimity term for the set S, consider the
case where y is substituted for x0 and x is substituted for all of the
other variables of tS. We have that if A ∈ V0 ◦ V1, witnessed by the
congruence θ, then for a, b ∈ A, the element c = t0(b, a, . . . , a) ∈ a/θ,
since t0 is a near unanimity term for the algebra A/θ. For i > 0,
ti(b, a, . . . , a) = a, since ti is a near unanimity term for the set Si and
x0 ∈ Si. So in A,

tS(b, a, a, . . . , a) = p0(c, a, a, . . . , a) = a,

since a, c ∈ a/θ and p0 is a near unanimity term for the subalgebra of
A with universe a/θ. The same argument works for any other variable
from S and we conclude that tS is a near unanimity term for S. �

To conclude this section, we note that the depth of the near una-
nimity term constructed in the proof of Theorem 2.2 is equal to m+ 1
and that its length, the number of occurrences of p0 and p1, is equal to
nm + nm−1 + · · · + n + 1. For small values of n and m we have been
able to construct slightly shallower and much shorter near unanimity
terms [5], and we speculate that with more care, this could be done in
general.

3. A lower bound

In this section we show that in general the Maltsev product of two
idempotent varieties that have near unanimity terms of arities n and
m respectively, will not have a near unanimity term of arity less than
n+m− 1. In fact, we show that even when considering the Cartesian
product of two finite idempotent algebras that each have near unanim-
ity terms, a lower arity cannot be achieved. From this it follows that in
the join of the two varieties, a lower arity near unanimity term cannot
be found in general.

Let n, m > 2 and let τ be the similarity type that consists of n-ary
and m-ary operation symbols p0 and p1, respectively. We will build
two 2-element idempotent algebras A0 and A1 of similarity type τ
such that for i = 0, 1, pi is a near unanimity term for Ai and such
that the algebra A0×A1 does not have a near unanimity term of arity
n+m− 2. Using Theorem 2.2, we know that this product will have a
near unanimity term of arity n+m− 1.
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Define A0 to be the algebra of similarity type τ with universe {0, 1}
and basic operations pA0

0 and pA0
1 defined by:

pA0
0 (x0, x1, . . . , xn−1) =

∧
0≤i<j<n

(xi ∨ xj)

pA0
1 (x0, x1, . . . , xm−1) =

∧
0≤i<m

xi

Define A1 to be the algebra of similarity type τ with universe {0, 1}
and basic operations pA1

0 and pA1
1 defined by:

pA1
0 (x0, x1, . . . , xn−1) =

∨
0≤i<n

xi

pA1
1 (x0, x1, . . . , xm−1) =

∨
0≤i<j<m

(xi ∧ xj)

It is easy to check that all four of these operations are idempotent and
that pA0

0 and pA1
1 are near unanimity operations.

In order to show that the product A0 × A1 does not have a near
unanimity term of arity n+m−2, we make use of the following propo-
sition.

Proposition 3.1. Let k > 2. If an algebra A has a k-ary near
unanimity term then for all ai, bi ∈ A, for 0 ≤ i < k, the k-tuple
(a0, a1, . . . , ak−1) is a member of the subuniverse of Ak generated by
the k-tuples (b0, a1, . . . , ak−1), (a0, b1, . . . , ak−1), . . . , (a0, a1, . . . , bk−1).

Proof. Suppose that t is a k-ary near unanimity term for A and let ai,
bi ∈ A, for 0 ≤ i < k. By applying the term t coordinate-wise to the k
generators

(b0, a1, . . . , ak−1), (a0, b1, . . . , ak−1), . . . , (a0, a1, . . . , bk−1).

and using the fact that t is a near unanimity term on A, we produce
the k-tuple (a0, a1, . . . , ak−1), as required. �

Theorem 3.2. The algebra A0 ×A1 does not have a near unanimity
term of arity n+m− 2.

Proof. We will show that the condition from the previous proposition
fails for k = n+m−2 and the algebra A = A0×A1. For 0 ≤ i < m−1,
let ~ci be the (n+m− 2)-tuple

((0, 0), . . . , (0, 0), (0,1), (0, 0), . . . , (0, 0);(1, 0), . . . , (1, 0)),

where (0, 1) occurs in the ith coordinate and (1, 0) occurs n− 1 times.

For 0 ≤ j < n− 1, let ~dj be the (n+m− 2)-tuple

((0, 0), . . . , (0, 0);(1, 0), . . . , (1, 0), (0,0), (1, 0), . . . , (1, 0)),
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where the last occurrence of (0, 0) is in coordinate (m+j−1) and (1, 0)
occurs n− 2 times. Let S be the subuniverse of An+m−2 generated by

the ~ci and the ~dj. We will show that the tuple

~e = ((0, 0), . . . , (0, 0);(1, 0), . . . , (1, 0))

is not in S and conclude, by Proposition 3.1, that A does not have a
near unanimity term of arity (n+m− 2), as claimed.

Since A0 and A1 are idempotent, it is immediate that {(0, 0), (0, 1)}
and {(0, 0), (1, 0)} are subuniverses of A. From this it follows that
C = {(0, 0), (0, 1)}m−1 × {(0, 0), (1, 0)}n−1 is a subuniverse of An+m−2.

Claim 3.3. The set C \ {~e} is a subuniverse of An+m−2 that contains
the subuniverse S.

The second part of this claim follows from the first after observing
that the generators of S are contained in C \ {~e}. To prove the first
part of the claim, we need to show that C \ {~e} is closed under the
two basic operations of An+m−2. That is, if we apply pi, i = 0 or 1,
coordinate-wise to elements from C \ {~e} then we cannot produce the
tuple ~e.

The cases i = 0 and i = 1 are similar and so we will only work
through the case i = 0. Suppose that we have tuples ~uj from C, for
0 ≤ j < n, with p0(~u0, . . . , ~un−1) = ~e in An+m−2. We will argue that
for this to occur, at least one of the ~uj’s must be equal to ~e. From this,
the claim will follow.

For 0 ≤ j < n, since ~uj ∈ C then there are elements ujk from {0, 1},
for 0 ≤ k < n+m− 2, with

~uj = ((0, uj0), (0, u
j
1), . . . , (0, u

j
m−2);(u

j
m−1, 0), . . . , (ujm+n−3, 0)).

By examining the first m − 1 components of p0(~u0, . . . , ~un−1) = ~e and
referring to the definition of the operation pA1

0 , we can infer that ujk = 0
for all j and k, with 0 ≤ j < n and 0 ≤ k < m − 1. We also see that
for all k with m− 1 ≤ k < m+ n− 2,

pA0
0 (u0k, u

1
k, . . . , u

n−1
k ) = 1.

For this to occur, for each k, at most one of the ujk can equal 0, for
0 ≤ j < n. By applying the pigeonhole principle, we conclude that the
only way that this can happen is if there is some j with ujk = 1 for all
m − 1 ≤ k < m + n − 2. For this value of j, we’ve established that
~uj = ~e, thereby proving the claim.

It is immediate from the claim that the element ~e is not in the
subuniverse S and so by Proposition 3.1 the theorem has been proved.

�
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Corollary 3.4. For all n, m > 2 there are idempotent, finitely gen-
erated varieties V0 and V1 that have n-ary and m-ary near unanimity
terms, respectively, such that V0 ∨ V1 and V0 ◦ V1 do not have a near
unanimity term of arity n+m− 2.

4. Concluding remarks

The results in this paper can be viewed as being part of a wider effort
to understand how certain types of Maltsev conditions are preserved
under Maltsev products and the joins of varieties. This general study
was initiated by Freese and McKenzie in [7].

The first two authors of this paper conducted their research on this
project under the supervision of the third author. At the time, Cam-
panella was a Masters student in the graduate program in Mathemat-
ics at McMaster University and Conley was an NSERC Undergraduate
Student Research Assistant, jointly funded by the Arts & Science pro-
gram at McMaster. At several key phases in this project, we made use
of the Universal Algebra calculator UACalc and the associated java li-
brary [6]. We are grateful to Ralph Freese for maintaining this valuable
resource.
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