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Abstract

We describe the structure of those locally finite varieties whose first
order theory is decidable. A variety is a class of universal algebras de-
fined by a set of equations. Such a class is said to be locally finite
if every finitely generated member of the class is finite. It turns out
that in order for such a variety to have a decidable theory it must de-
compose into the varietal product of three special kinds of varieties; a
strongly Abelian variety; an affine variety; and a discriminator variety.

1 Introduction

Since the 1930’s, when precise notions of algorithm and decidability were
introduced, the decidability or undecidability of many familiar varieties has
been determined. For example, Tarski [21] proved that the theory of Boolean
algebras is decidable and in a series of papers [20, 7, 25] it was shown that a
variety of groups is decidable if and only if it contains no non-Abelian group.

In 1986 the authors, building on the work of Burris and McKenzie [3],
Zamyatin [23, 24, 25] and others were able to give an algebraic description of
the decidable locally finite varieties. In this paper we describe this structure
and give a rough outline of the proof. Complete details can be found in [17].
One of the principle tools used in this work is the recently discovered theory
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called tame congruence theory. This theory was developed in the early 1980’s
by McKenzie and his student David Hobby. We will present a small fragment
of this theory in section 3. The reader can consult [9] for more details.

By an algebra we mean simply any structure 〈A, fi(i ∈ I)〉 consisting of
a nonvoid set A and a system of finitary operations fi over A. A variety , or
equational class , is a class of similar algebras defined by some set of equations.
A variety is called locally finite if every one of its finitely generated algebras
is finite.

A variety V is called decidable if and only if its first order theory is a
recursive set of sentences. This means that there is an algorithm which will
determine, for any given sentence ϕ in the language of V , whether ϕ is true
for all members of V .

Usually, to establish the undecidability of a class of structures, another
class known to be undecidable is semantically embedded into the first class.
The class of finite graphs, Gfin, was shown to be undecidable by Lavrov in
[13]. It turns out that if a locally finite variety fails to have the structure
described in Theorem 2.14 then it allows a semantic embedding of this class
Gfin and hence is undecidable.

2 Special Kinds of Varieties

We introduce the families of Abelian varieties, strongly Abelian varieties,
affine varieties, and discriminator varieties. These are the varieties that are
needed in our description of the locally finite decidable varieties.

Given a set A and natural numbers n > 0 and i < n, we can define the
projection function pn

i : An → A by

pn
i (x0, . . . , xn−1) = xi for all x0, . . . , xn−1 ∈ A.

A clone on a set A is a set of finitary operations on A that contains the
projections pn

i for all 0 ≤ i < n < ω, and is closed under composition of
operations. By a polynomial clone on A, we mean any clone on A that
also contains all of the constant 0-ary operations on A. (A general clone is
not required by our definition to contain any 0-ary operations.)

Associated with any algebra A = 〈A, fA (f ∈ Φ)〉 are two important
clones. The clone of term operations of A, denoted Clo A, is the clone
on A generated by the set {fA : f ∈ Φ} of basic operations of A. An
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n-ary operation f on A belongs to Clo A iff there exists a term t in the
language L such that f = tA—i.e., f is the operation induced by the term
t. The clone of polynomial operations of A, denoted Pol A, is the clone
on A generated by the basic operations of A along with all of the constant
0-ary operations on A. We write ClonA for the set of all n-ary members
of Clo A (n-ary term operations of A); and, similarly, we write PolnA for
the set of all n-ary members of Pol A (n-ary polynomial operations of A).
It follows that if p ∈ PolnA, then for some m ∈ ω and a0, . . . , am−1 ∈ A
and for some f ∈ Clom+nA, we have p(x̄) = f(x̄, ā) for all x̄ ∈ An (where
ā = 〈a0, . . . , am−1〉).

Definition 2.1 Algebras A and B are said to be polynomially equivalent
if they have the same universe and precisely the same polynomial operations,
i.e., if Pol A = Pol B.

The concept of an Abelian algebra was introduced in the 1970’s and has
played an important role in the study of both congruence modular varieties
and locally finite varieties.

Definition 2.2 Let α, β, γ ∈ Con A. We write C(α, β; γ), and say that α
centralizes β modulo γ, provided that the following condition holds:

For every n ≥ 1, for every f ∈ Clon+1A, and for all 〈a, b〉 ∈ α
and 〈c1, d1〉, . . . , 〈cn, dn〉 ∈ β we have

f(a, c̄) ≡γ f(a, d̄) ↔ f(b, c̄) ≡γ f(b, d̄).

Definition 2.3 Let A be any algebra. The center of A is the binary rela-
tion Z(A) defined by 〈x, y〉 ∈ Z(A) ←→

for all n ≥ 1, for all f ∈ Clon+1A, and for all c1, d1, . . . , cn, dn ∈ A

f(x, c̄) = f(x, d̄) ↔ f(y, c̄) = f(y, d̄).

It is a congruence on A. The algebra A is called Abelian iff Z(A) = 1A,
and called centerless iff Z(A) = 0A.

Definition 2.4 Let A be any algebra, α, β, γ, δ be congruences on A.
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(1) If α ≤ β, we say that β is Abelian over α iff C(β, β; α).

(2) If δ ≤ γ, we say that γ is solvable over δ iff there exists a finite chain
of congruences α0 = δ ≤ α1 ≤ · · · ≤ αn = γ with αi+1 Abelian over
αi for all i < n.

(3) If δ ≤ γ, we say that γ is locally solvable over δ iff for every finitely
generated subalgebra B ≤ A and for the restricted congruences δ|B
and γ|B of B, we have that γ|B is solvable over δ|B.

(4) We say that A is solvable iff 1A is solvable over 0A; locally solvable
iff 1A is locally solvable over 0A.

We now strengthen the Abelian property in two mutually incompatible ways:
to strongly Abelian algebras and to affine algebras.

Definition 2.5 Let α ≤ β be congruences of an algebra A. We say that β
is strongly Abelian over α iff for all n ≥ 1, for all f ∈ Clon+1A, and for all
a ≡ b ≡ c (mod β) and 〈u1, v1〉, . . . , 〈un, vn〉 ∈ β we have

f(a, ū) ≡α f(b, v̄) → f(c, ū) ≡α f(c, v̄).

We say that A is strongly Abelian iff 1A is strongly Abelian over 0A.

Definition 2.6 Let δ ≤ γ be congruences of an algebra A.

(1) We say that γ is strongly solvable over δ iff there exists a finite chain
of congruences α0 = δ ≤ α1 ≤ · · · ≤ αn = γ such that αi+1 is strongly
Abelian over αi for all i < n.

(2) We say that γ is locally strongly solvable over δ iff for every finitely
generated subalgebra B ≤ A and for the restricted congruences δ|B
and γ|B of the algebra B, we have that γ|B is strongly solvable over
δ|B.

(3) The algebra A is said to be strongly solvable iff 1A is strongly solv-
able over 0A; and is said to be locally strongly solvable iff 1A is
locally strongly solvable over 0A.

The proof of the following theorem can be found in [9].

4



THEOREM 2.7 For every locally finite variety V , the class of all locally
solvable algebras in V , and the class of all locally strongly solvable algebras
in V , are varieties.

Two equivalence relations α and β on a set A are said to permute iff
whenever aα b β c there exists some element d such that a β d αc. A. I. Malt-
sev [14] proved that a variety V has the property that every two congruences
on any algebra in V permute iff there exists a term t(x, y, z) in the language
of V for which the equations t(x, y, y) ≈ x and t(x, x, y) ≈ y are valid in V .
When such a term exists, we say that V is Maltsev. An operation on a set
A that obeys these two equations on A is called a Maltsev operation; also,
an algebra having a term operation that obeys these equations is called a
Maltsev algebra. A useful corollary of Maltsev’s result is that a variety V is
Maltsev if and only if the free algebra FV(3) has permuting congruences.

Definition 2.8 An algebra A is called affine iff A is polynomially equiva-
lent with an algebra M that is a module over a ring.

Definition 2.9

(1) If (P) is any one of the properties “Abelian”, “strongly Abelian”,
“affine”, “locally solvable”, “locally strongly solvable” defined above,
we say that a variety is (P) iff every algebra in the variety is (P).

(2) A variety V is said to be congruence-modular (or -distributive) iff
the congruence lattice of each algebra in V is a modular (or distributive)
lattice.

The basic results concerning affine algebras and affine varieties are fully
detailed in Freese, McKenzie [8]. We describe these results here without
giving proofs. Note that if V is affine, then, since the free algebra on three
generators in V has a Maltsev term operation, it follows that V is Maltsev.

THEOREM 2.10 An algebra A is affine if and only if it satisfies one of
these conditions (which are equivalent).

(i) A is Abelian and possesses a polynomial operation p(x, y, z) obeying
the equations p(x, y, y) ≈ x and p(x, x, y) ≈ y.
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(ii) A possesses a term operation p(x, y, z) obeying the above equations
and such that for every basic operation f of A, the equation

p(f(x̄), f(ȳ), f(z̄)) ≈ f(p(x0, y0, z0), . . . , p(xn−1, yn−1, zn−1))

is valid in A (if f is n-ary).

THEOREM 2.11 A variety V is affine if and only if it is congruence-
modular and Abelian. If V is affine then it is in fact Maltsev; and there
exists a term t(x, y, z) in the language of V and a ring R with unit such that
every algebra in V is polynomially equivalent with a unitary left R-module in
which x− y + z = t(x, y, z), and every unitary left R-module is polynomially
equivalent with an algebra in V .

The concept of a discriminator variety is in many respects the polar op-
posite of that of an Abelian variety. On any set U we can define an operation
tU(x, y, z) by stipulating that tU(x, y, z) is z if x = y, and is x if x 6= y. This
operation tU is called the ternary discriminator on U .

Definition 2.12 A variety V is called a discriminator variety iff there
exists a term t(x, y, z) in the language of V such that V = V(S) where
S is the class of all A ∈ V such that tA = tA (i.e., the term t defines the
discriminator on the universe of A). Such a term t is called a discriminator
term for V .

There is a very nice structure theory for discriminator varieties, the details
of which can be found in Burris, Sankappanavar [5]. Several important facts
about these varieties are given below without proof. An algebra A is called
hereditarily simple iff |A| > 1 and every subalgebra B ≤ A with more
than one element is simple. A variety V is called arithmetical iff V is
congruence-distributive and Maltsev.

THEOREM 2.13 Let V be a discriminator variety with discriminator term
t. Then V is an arithmetical variety. The equations

t(x, y, y) ≈ t(x, y, x) ≈ t(y, y, x) ≈ x

are valid in V . Every algebra in V is centerless; and every finite algebra in
V is isomorphic to a direct product of simple algebras. The following are
equivalent for every A ∈ V : A is subdirectly irreducible; A is hereditarily
simple; tA = tA.
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One last concept is needed before we can state our result. Varieties
V1, . . . ,Vn in the same language L are called independent iff there exists
an L-term t(x1, . . . , xn) such that Vi |= t ≈ xi for i = 1, . . . , n. If V1, . . . ,Vn

are independent, then every algebra A in V = V1 ∨ · · · ∨ Vn is isomorphic
to a product A1 × · · · ×An with A1 ∈ V1 , . . . , An ∈ Vn and the algebras
Ai are determined up to isomorphism. In this case, we write V1 ⊗ · · · ⊗ Vn

for the join variety V = V1 ∨ · · · ∨ Vn, and say that V is the product of its
subvarieties V1, . . . ,Vn.

THEOREM 2.14 Let V be any decidable locally finite variety. There exists
a strongly Abelian variety V1, an affine variety V2, and a discriminator variety
V3 such that

V = V1 ⊗ V2 ⊗ V3.

These three subvarieties of V are uniquely determined and are all decidable.

3 Tame Congruence Theory

One of the key steps in the development of tame congruence theory was the
realization that locally the behaviour of finite algebras is quite limited. This
is made precise in the following definitions and theorems. The reader may
wish to refer to [9] for further details and proofs. (For the basic theory of
universal algebra, consult [5] or [16].)

Definition 3.1 Let A be a finite algebra and let α and β be congruences of
A.

(1) We say that a function f : A → A collapses β into α and write
f(β) ⊂ α if 〈f(a), f(b)〉 ∈ α for all 〈a, b〉 ∈ β.

(2) By a congruence quotient of A we mean a pair 〈α, β〉 of congruences
of A such that α < β. A congruence quotient 〈α, β〉 of A is called a
prime quotient iff β covers α in Con A (the congruence lattice of
A). The relation of covering between two elements of Con A is written
α ≺ β.

(3) Let 〈α, β〉 be a congruence quotient of A and let

UA(α, β) = {f(A) : f ∈ Pol1A and f(β) 6⊂ α}

7



and MA(α, β) be the set of all minimal members of UA(α, β) relative
to the ordering of inclusion. A member of MA(α, β) is called an 〈α, β〉-
minimal set of A.

Definition 3.2 Let A be a finite algebra and suppose that α ≺ β ∈ Con A.
By an 〈α, β〉-trace in A we mean any set N ⊂ A such that for some U ∈
MA(α, β), N ⊂ U and N is of the form (x/β) ∩ U for some x ∈ U such that
(x/α) ∩ U 6= (x/β) ∩ U . The body and the tail of an 〈α, β〉-minimal set U
with respect to 〈α, β〉 are defined by

body =
⋃{〈α, β〉-traces contained in U},

tail = U − body.

For U a nonvoid subset of an algebra A, we let (Pol A)|U denote the set of
all f |U where f ∈ Pol A and U is closed under f . The (non-indexed) algebra
A|U having universe U and fundamental operations (Pol A)|U is called the
algebra induced by A on U .

In tame congruence theory we focus on the algebras induced on the min-
imal sets, bodies and traces of finite algebras. As the next theorem demon-
strates, there are few possibilities for the algebraic structure induced on a
trace by a finite algebra.

THEOREM 3.3 Let A be a finite algebra and let 〈α, β〉 be a prime quotient
of A. If N1 and N2 are 〈α, β〉-traces then α|Ni

is a congruence of A|Ni
for

i = 1, 2 and the algebras (A|N1)/(α|N1) and (A|N2)/(α|N2) are isomorphic.
Furthermore these quotient algebras are polynomially equivalent to exactly
one algebra (up to isomorphism) from the following list:

(1) a faithful G-set, for some finite group G,

(2) a vector space,

(3) a two-element Boolean algebra,

(4) a two-element lattice,

(5) a two-element semilattice.
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We say that the type of the prime quotient 〈α, β〉 is equal to i if the algebra
(A|N1)/(α|N1) is polynomially equivalent to an algebra in the ith entry of
this list. We denote this type by typ(α, β).

Definition 3.4

(1) Let 〈δ, γ〉 be any congruence quotient of a finite algebra A. We define
typ{δ, γ} to be the set

{typ(α, β) : δ ≤ α ≺ β ≤ γ}.

(2) For a finite algebra A we define typ{A} to be typ{0A, 1A}.
(3) For a class K of algebras we define typ{K} to be the set

⋃ {typ{A} : A ∈ K and A is finite} .

We say that a finite algebra omits type i if i /∈ typ{A}. A class K omits
type i if every finite member of K does so.

COROLLARY 3.5 Let A be a finite algebra and let α and β be congru-
ences of A. typ{α, β} ⊆ {1,2} if and only if β is solvable over α.

One of the interesting aspects of the work of Hobby and McKenzie can
be found in chapters 8 and 9 of [9]. There they show that certain Maltsev
conditions (for locally finite varieties) are easily expressible in the language
of tame congruence theory. For example, a locally finite variety V is n-
permutable for some n if and only if V omits types 1, 4 and 5.

In chapter 11 of [9] the following theorem is proved.

THEOREM 3.6 Let V be a locally finite decidable variety. Then V omits
types 4 and 5.

4 A Sketch of the Proof

Throughout this section we fix a decidable locally finite variety V . From
Theorem 3.6 we know that typ{V} ⊆ {1,2,3}. We first define three sub-
varieties, V1, V2 and V3, of V ; and we prove that every member of V is a
subdirect product of three algebras belonging to these subvarieties.
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Definition 4.1

(1) A subdirect product of the algebras 〈Bi : i ∈ I〉 is an algebra
A ≤ ∏

i∈I Bi such that A maps onto each of the algebras Bi via the
coordinate projection. An embedding f : A −→ ∏

i∈I Bi is called
subdirect if f(A) is a subdirect product of the Bi’s.

(2) An irredundant subdirect product of 〈Bi : i ∈ I〉 is a subdirect
product A of 〈Bi : i ∈ I〉 such that for each i ∈ I, A fails to be
embedded in

∏
j 6=i Bj via the natural projection.

(3) A subdirect product A of 〈Bi : i ∈ I〉 is called direct iff A =
∏

i∈I Bi.

(4) An algebra A is called subdirectly irreducible if and only if |A| > 1
and for every subdirect embedding f : A −→ ∏

i∈I Bi, there is some
i ∈ I such that the composition of f with the projection onto Bi is an
isomorphism between A and Bi.

Equivalent to an algebra A being subdirectly irreducible is the existence
of a smallest nonzero congruence in Con A. We call this congruence (when
it exists) the monolith of A.

Definition 4.2 For 1 ≤ i ≤ 3, let Si be the class of all finite, subdirectly
irreducible algebras A ∈ V such that the type of 〈0A, β〉 is i, where β is the
monolith of A. We define Vi to be the variety generated by Si.

Here are three easy consequences of the definition.

THEOREM 4.3

(i) Every finite subdirectly irreducible algebra in V belongs to V1∪V2∪V3.

(ii) Every locally solvable algebra in V belongs to V1 ∨ V2.

(iii) V = V1 ∨ V2 ∨ V3; in fact, every algebra in V is a subdirect product
of three algebras C1,C2 and C3 belonging, respectively, to V1, V2 and
V3.
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Proof. Since V is decidable, then it follows from Theorem 3.6 that
every finite, subdirectly irreducible algebra in V belongs to S1 ∪ S2 ∪ S3.

Let A ∈ V be locally solvable. Since V is locally finite, every finitely gen-
erated subalgebra of A is finite; and so A belongs to the variety generated
by its finite subalgebras. Hence it suffices to prove that all finite subalgebras
of A belong to V1 ∨ V2. Let B be a finite subalgebra of A. B is a subdi-
rect product of subdirectly irreducible homomorphic images of B, which are
solvable, and hence have monoliths of types 1 or 2. Thus B ∈ SPfin(S1∪S2),
implying that B ∈ V1 ∨ V2.

It follows easily from part (i) that every finite algebra in V can be em-
bedded into a product C1 × C2 × C3 with Ci ∈ Vi. The class of algebras
that can be so embedded is closed under the formation of ultraproducts and
of subalgebras. The statement thus follows from the fact that every locally
finite algebra can be embedded into an ultraproduct of its finite subalgebras.

With the three subvarieties V1, V2 and V3 defined, we now set out to
describe the structure of each of them. The next lemmas are used to show
that V3 is a discriminator variety.

LEMMA 4.4 Let F be a finite, subdirectly irreducible, centerless algebra
in V . Every subalgebra of F having at least two elements is simple and
non-Abelian.

LEMMA 4.5 Every irredundant subdirect product of finitely many alge-
bras in S3 is direct.

THEOREM 4.6 V3 is a discriminator variety.

Proof. By Lemma 4.4, V3 is generated by the class of finite, simple,
non-Abelian algebras in V3. Thus if V3 can be shown to be Maltsev, then it
will follow from Theorem 9.1 of [3] that V3 is a discriminator variety.

Let F be the free algebra on three generators in V3. Thus V3 is Maltsev iff
F has permuting congruences. Since F is finite, and V3 = HSP(S3) is locally
finite, there exists a finite set K ⊂ S3 such that F ∈ HSP(K). Thus our task
is reduced to proving that V ′ = HSP(K) is Maltsev. By Lemma 4.4, we can
assume that every nontrivial subalgebra of an algebra in K belongs to K.
Then SPfin(K) consists of the trivial one-element algebras and the algebras
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isomorphic to irredundant subdirect products of finitely many members of
K. By Lemma 4.5, we have SPfin(K) ⊂ P(K). Thus by Theorem 3.4 of [15],
V ′ is Maltsev.

The following lemma and corollary are needed in our investigation of the
subvarieties V1 and V2.

LEMMA 4.7 If A is any finite algebra in V , then A/Z(A) is a centerless
algebra.

COROLLARY 4.8 If A ∈ V then Z(A) is the largest locally solvable
congruence of A. Every locally solvable algebra in V is Abelian.

We now introduce a concept that will allow us to characterize the subva-
rieties V1 and V2.

Definition 4.9 Let A be a finite algebra. If i, j ∈ {1, . . . ,5} are dis-
tinct types, we say that A possesses the (i, j) transfer principle iff for all
χ0, χ1, χ2 ∈ Con A, if χ0 ≺ χ1 ≺ χ2 and typ(χ0, χ1) = i and typ(χ1, χ2) = j,
then there exists β ≤ χ2 such that χ0 ≺ β and typ(χ0, β) = j.

A locally finite variety possesses the (i, j) transfer principle if every finite
member does.

THEOREM 4.10 Let i, j be distinct members of {1,2,3}. Every finite
algebra in V possesses the (i, j) transfer principle.

THEOREM 4.11 V1 ∨ V2 is the class of all Abelian algebras in V .

Proof. By Theorem 4.3, every Abelian algebra in V belongs to V1∨V2.
To prove the converse, it will suffice, by Corollary 4.8, to prove that every
algebra in V1 ∨ V2 is locally solvable. Since V1 ∨ V2 is generated by the class
S1∪S2, it will suffice, by Theorem 2.7, to prove that every algebra in S1∪S2 is
solvable. Now S1∪S2 is just the class of finite subdirectly irreducible algebras
in V with Abelian monolith. So let A be a finite subdirectly irreducible
algebra belonging to V whose monolith β is Abelian. We shall show that A
is solvable.

By Theorem 3.6, we have typ{A} ⊂ {1,2,3}. By Corollary 3.5, A is
solvable iff typ{A} ⊂ {1,2}. Now in order to reach a contradiction, assume
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that 3 ∈ typ{A}. Among all the prime quotients 〈χ0, χ1〉 in Con A with
typ(χ0, χ1) = 3, choose one 〈δ, γ〉 such that the cardinality of the interval
I[0A, γ] is as small as possible. Since typ(0A, β) ∈ {1,2} where β is the
monolith, we have δ 6= 0A. Now choose any ξ ∈ Con A such that ξ ≺ δ. By
our choice of 〈δ, γ〉, the type of 〈ξ, δ〉 is not 3—so it must be 1 or 2. Now
by the (1,3) or the (2,3) transfer principle, there exists a congruence λ such
that ξ ≺ λ < γ and typ(ξ, λ) = 3. This contradicts our choice of 〈δ, γ〉 and
ends the proof.

We now focus on the Abelian subvariety A = V1 ∨ V2. Using the trans-
fer principals and some tame congruence theory it is possible to show that
typ{V1} = 1 and typ{V2} = 2. From this we conclude the following.

THEOREM 4.12 The subvariety V1 is strongly Abelian and the subvariety
V2 is affine.

To establish the independence of the three subvarieties V1, V2 and V3,
and hence finish the proof of Theorem 2.14, we found it necessary to first
characterize the decidable locally finite strongly Abelian varieties. There is a
close correspondence between these varieties and multi-sorted unary varieties.

A k-sorted unary algebra A is a structure of the form

〈A1, A2, . . . , Ak; {fi : i ∈ I}〉
where the Ai are nonempty disjoint sets and for each i ∈ I, fi is a map from
Aσ(i) to Aτ(i) for some σ(i) and τ(i) less than or equal to k.

By a derived operation of A we mean an operation obtained by composing
some of the fi or one of the identity functions idi : Ai −→ Ai. Given a
sequence g1, . . . , gk of derived operations having their ranges contained in
A1, . . . , Ak respectively and a sequence of numbers less than or equal to k,
η = 〈n1, . . . , nk〉, we can define a k-ary operation [g1, . . . , gk, η] on the set
A1 × · · · × Ak as follows:

[g1, . . . , gk, η](〈a1
1, . . . , a

k
1〉, . . . , 〈a1

k, . . . , a
k
k〉) = 〈g1(a

σ(1)
n1

), . . . , gk(a
σ(k)
nk

)〉,
where the domain of gi is Aσ(i). Let C(A) be the clone of operations on the
set A1 × · · · × Ak generated by the set of all such k-ary operations.

We call an algebra B quasi-unary if for some k-sorted unary algebra A,
B is isomorphic to an algebra with universe A1 × · · · × Ak and clone equal
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to C(A). It is not hard to show that B is strongly Abelian. The first step in
our characterization of the decidable locally finite strongly Abelian variety is
to prove the following lemma.

LEMMA 4.13 Let S be a decidable locally finite strongly Abelian variety.
Then every algebra in S is quasi-unary.

A k-sorted unary algebra A is called linear if for all nonconstant derived
operations f and g of A having the same domain, there is some other derived
operation h (having the appropriate domain and range) such that A satisfies
the equation f(x) ≈ hg(x) or the equation g(x) ≈ hf(x). We extend this
definition to quasi-unary algebras in the natural way, i.e., a quasi-unary
algebra B is called linear if the multi-sorted unary algebra that is associated
with it is linear.

THEOREM 4.14 Let S be a locally finite strongly Abelian variety of finite
type. Then S is decidable if and only if every algebra in S is quasi-unary
and linear. This is equivalent to having some generating algebra of S of this
form.

5 Conclusion

Theorem 2.14 reduces the study of decidable locally finite varieties to the
examination of decidable locally finite varieties that fall into one of the three
special cases. As we have noted, the decidable locally finite strongly Abelian
varieties have been characterized.

For locally finite discriminator varieties, no criterion for decidability is
known. We begin our list of open problems with this one.

Problem 1: Which locally finite discriminator varieties are undecidable?

S. Burris and H. Werner [6] proved that every finitely generated discrimi-
nator variety of finite type is decidable. Some more recent results on Problem
1 can be found in S. Burris [2] and S. Burris, R. McKenzie and M. Valeriote
[4].

The decidability question for locally finite affine varieties is very interest-
ing and seems to be very difficult. Corresponding to a locally finite affine
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variety V there is a finite ring R such that, according to Burris and McKenzie
[3] Theorem 10.6, the variety of left unitary modules over R is decidable if
and only if V is decidable. Thus we have the next problem.

Problem 2: Which finite rings R with unit have the property that the va-
riety of left unitary modules over R is decidable?

W. Baur [1] constructed some finite rings having an undecidable theory
of modules. F. Point [18] and M. Prest [19] have made a deep study of this
problem.

The methods used to prove Theorem 2.14 are clearly applicable to the
next problems, although new methods may also be needed.

Problem 3: Which locally finite quasivarieties (universal Horn classes) are
undecidable?

Problem 4: For which locally finite varieties is the class of finite members
undecidable?

In A. P. Zamyatin [24], a list is given of all the varieties of rings whose
class of finite members is decidable. Recently P. M. Idziak [10, 11, 12] has
characterized those finitely generated congruence distributive varieties of fi-
nite type whose class of finite members is decidable. He proves that such a
variety must be congruence permutable and the congruence lattice of every
subdirectly irreducible algebra in the variety must be linearly ordered. If
either of these conditions fail then the variety is shown to be ω-unstructured.

In [22] it is shown that every locally finite, Abelian variety whose theory
of its finite members is decidable is the varietal product of a strongly Abelian
variety and an affine variety.

We close with a corollary of our structure theory.

COROLLARY 5.1 There exists an algorithm which produces, given a fi-
nite algebra of finite type, a finite ring with unit such that the algebra gen-
erates a decidable variety iff the variety of left unitary modules over the ring
is decidable.

Proof. Due to the restrictive nature of the structure of any finite
algebra that generates a decidable variety, such an algorithm can be found.
We can use the algorithm described in Burris, McKenzie (Theorem 11.3),
adding to it the test for decidability of a strongly Abelian variety contained
in our Theorem 4.14.
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