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Abstract. This paper studies the complexity of determining if a
finite algebra generates a variety that satisfies various Maltsev con-
ditions, such as congruence distributivity or modularity. For idem-
potent algebras we show that there are polynomial time algorithms
to test for these conditions but that in general these problems are
EXPTIME complete. In addition, we provide sharp bounds in
terms of the size of two-generated free algebras on the number of
terms needed to witness various Maltsev conditions, such as con-
gruence distributivity.

1. Introduction

Many important features of an algebra and the variety it generates
are determined by the idempotent term operations of the algebra. In
particular several well studied properties of a variety, such as congru-
ence permutability, distributivity, and modularity, are governed by the
presence of systems of idempotent term operations that satisfy pre-
scribed identities. Such systems are examples of idempotent Maltsev
conditions. This paper is concerned with determining the complexity
of deciding if a finite algebra A generates, for example, a congruence
distributive variety, and, if so, of finding a system of idempotent term
operations that witness this. (Jónsson’s Maltsev condition for congru-
ence distributivity is given in Section 7.)

Our strongest results are obtained for idempotent algebras. In this
case we produce polynomial time algorithms that determine, for A

idempotent, if V (A), the variety generated by A, has any of the above
properties, as well as several others. The key to this is that we don’t
need to look at large cartesian powers of A to determine if the property
in question holds. For example, for A finite and idempotent V (A) is

2000 Mathematics Subject Classification. 08B05, 08B10, 68Q25, 03C05.
Key words and phrases. Maltsev condition, tame congruence theory, idempotent

algebra, computational complexity, congruence distributive, congruence modular.
The second author acknowledges the support of the NSERC of Canada.

1



2 RALPH FREESE, MATTHEW A. VALERIOTE

congruence distributive if and only if every 3-generated subalgebra of
A2 is; it is modular if every 4-generated subalgebra of A2 is.

On the other hand for non-idempotent algebras we show that there
is no polynomial time algorithm to determine if V (A) is congruence
distributive or modular. In fact in Section 9 we show that these, and
several other problems, are EXPTIME complete. In essence these re-
sults demonstrate that in general, it is very difficult to extract from
a given finite algebra information about the nature of its idempotent
term operations.

We also investigate the number of terms needed to witness various
Maltsev conditions for a variety. For example, in Section 7 we define
the Jónsson level of a congruence distributive variety V to be the least k
such that V has terms satisfying (7.1). We show that, if m = |FV(x, y)|,
then the Jónsson level of V is at most 2m−2 and give an example where
this bound is obtained. Similar results are obtained for Gumm terms
for modularity and Hagemann-Mitschke terms for k-permutability.

The necessary background on the universal algebra used in this paper
can be found in [2] or [22]. One class of algebras that we pay particular
attention to are the idempotent algebras.

Definition 1.1.

(1) An operation f(x1, . . . , xn) on a set A is idempotent if for all
a ∈ A, f(a, a, . . . , a) = a.

(2) An algebra A is idempotent if all of its basic operations are
idempotent.

Note that since the composition of idempotent operations is idem-
potent, it follows that all term operations of an idempotent algebra are
idempotent. The proof of the following proposition is elementary and
is left as an exercise.

Proposition 1.2. Let A be an algebra.

(1) A is idempotent if and only if for each a ∈ A, {a} is a subuni-
verse of A.

(2) If A is idempotent and C is a congruence class of some con-
gruence α of A, then C is a subuniverse of A.

2. Tame Congruence Theory

We make use of the structure theory of finite algebras called Tame
Congruence Theory that Hobby and McKenzie developed in the 1980s.
Details of this theory can be found in [11] or [3]. As basic tame con-
gruence theoretic terminology and results arise in this paper we will
refer the reader to the relevant parts of [11].
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According to tame congruence theory, given a covering pair of con-
gruences α≺β of a finite algebra A, the local behaviour of the β-classes
is captured by the so-called (α, β)-traces (Definition 2.15 of [11]) and
that modulo α, the induced structure on them is limited to one of five
possible types:

(1) A unary algebra whose basic operations are all permutations
(unary type);

(2) A one-dimensional vector space over some finite field (affine
type);

(3) A 2-element boolean algebra (boolean type);
(4) A 2-element lattice (lattice type);
(5) A 2-element semilattice (semilattice type).

This allows us to assign a type from {1, 2, 3, 4, 5} to each covering
pair α≺β of a finite algebra A (Definition 5.1 of [11]); we denote this
type by typ(α, β). The set of all types that are realized by covering
pairs of congruences of a finite algebra A is denoted by typ{A} and if
K is a class of algebras, then typ{K} denotes the union of all of the
typesets of the finite algebras in K.

The set of types is ordered by the lattice of types given in Figure 1.
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Figure 1. The Pentagon of Types

The following results demonstrate that for a finite idempotent alge-
bra A, whether or not V (A) omits one of the order ideals of the lattice
of types can be determined locally.

Proposition 2.1. If A is a finite idempotent algebra and i ∈ typ(V(A))
then there is a finite strictly simple algebra S of type j for some j ≤ i

in HS(A). If

(1) j = 1 then S is term equivalent to a 2-element set;
(2) j = 2 then S is term equivalent to the idempotent reduct of a

module;
(3) j = 3 then S is functionally complete ;
(4) j = 4 then S is polynomially equivalent to a 2-element lattice;
(5) j = 5 then S is term equivalent to a 2-element semilattice.
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Proof. This is a combination of Proposition 3.1 from [27] and Theo-
rem 6.1 from [25]. �

Corollary 2.2. Let A be a finite idempotent algebra and T an order
ideal in the lattice of types. Then V(A) omits T if and only if S(A)
does. In particular, V(A) omits 1 and 2 if and only if S(A) omits 1

and 2.

The following lemma ties in with the previous proposition and will
be used in Section 6. An algebra is strictly simple if it is simple (i.e.,
has no non-trivial congruences) and has no non-trivial subalgebras (i.e.,
has no proper subalgebras with more than one element).

Lemma 2.3. Let A be a finite idempotent algebra and let S ∈ HS(A)
be strictly simple. Then there are elements a, b ∈ A such that, if
B = SgA(a, b), then 1B = CgB(a, b) and is join irreducible with unique
lower cover ρ such that S = B/ρ.

Proof. Choose B ∈ S(A) as small as possible having S as a homomor-
phic image, say S = B/ρ. We claim that if a, b ∈ B with (a, b) /∈ ρ then
then they generate B. To see this, let B′ = SgB(a, b) and let h be the
quotient map from B to S with kernel ρ. Then h(B′) is a non-trivial
subuniverse of S and so must equal S. Thus B′ = B.

Now let a, b ∈ B with (a, b) /∈ ρ. Since the block of CgB(a, b) contain-
ing a and b is a subuniverse of B then from the previous paragraph, we
conclude that CgB(a, b) = 1B and that ρ is its unique lower cover. �

3. Congruence Modular Idempotent Varieties

Corollary 2.2 is the starting point of our development of a polynomial-
time algorithm that determines if a given finite idempotent algebra
generates a congruence modular variety. According to the characteri-
zation of locally finite congruence modular (distributive) varieties found
in Chapter 8 of [11], a finite algebra A generates a congruence modular
(distributive) variety V if and only if the typeset of V is contained in
{2, 3, 4} ({3, 4}) and all minimal sets of prime quotients of finite alge-
bras in V have empty tails (Definition 2.15 of [11]). Note that in the
congruence distributive case the empty tails condition is equivalent to
the minimal sets all having exactly two elements.

It follows from Corollary 2.2, that if A is idempotent then one can
test the first condition, on omitting types 1 and 5 (or 1, 2, and 5)
by searching for a 2-generated subalgebra of A whose typeset is not
contained in {2, 3, 4} ({3, 4}). As noted in Section 6, this test can be
performed in polynomial time, as a function of the size of A.
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The following sequence of lemmas establishes that when A is finite,
idempotent and V = V (A) omits types 1 and 5, then to test for the
existence of tails in V we need only look for them in the 3-generated
subalgebras of A2.

Throughout the remainder of this section, let S be a finite set of finite,
similar, idempotent algebras closed under the taking of subalgebras
such that V = V (S) omits 1 and 5. We will suppose that some finite
algebra B in V has a prime quotient whose minimal sets have non-
empty tails and show that there is a 3-generated subalgebra of the
product of two members of S with this property.

Since S is closed under the taking of subalgebras then we may assume
that the algebra B from the previous paragraph is a subdirect product
of a finite number of members of S. Choose n minimal such that for
some Ai ∈ S, the product

∏

i≤n Ai has a subdirect product B that
has a prime quotient with non-empty tails. Under the assumption that
n > 1 we will prove that n = 2.

For this n, select the Ai and B so that |B| is as small as possible.
Let α≺β be a prime quotient of B with non-empty tails and choose
β minimal with this property. Let U be an 〈α, β〉-minimal set and let
N be an 〈α, β〉 trace of U . Let 0 and 1 be two distinct members of N
with (0, 1) /∈ α.

Lemma 3.1. Let t be a member of the tail of U . Then β is the congru-
ence of B generated by the pair (0, 1) and B is generated by {0, 1, t}.

Proof. Using Lemma 6.2 of [11] our assumptions on β imply that it is
join irreducible and that α is its unique subcover. So, any pair (a, b) ∈
β \ α will generate the congruence β. In particular, β is generated by
the pair (0, 1).

Let C be the subalgebra of B generated by {0, 1, t}. We will obtain
a contradiction under the assumption that |C| < |B| and the minimal
sets of C all have empty tails. Let β ′ and α′ be the restrictions of β and
α to C, respectively. Then α′ < β ′ since (0, 1) ∈ β ′ \ α′ and so there
are δ ≺ γ in Con(C) with α′ ≤ δ≺ γ ≤ β ′ and such that (0, 1) ∈ γ \ δ.

Suppose that |C| < |B| and all 〈δ, γ〉 minimal sets have empty tails.
Let V be a 〈δ, γ〉 minimal set and let p(x) be some polynomial of C

with range V and with (p(0), p(1)) /∈ δ. Such a polynomial exists by
Theorem 2.8 of [11] since (0, 1) ∈ γ \ δ.

The polynomial p(x) can be expressed in the form sC(x, 0, 1, t) for
some term s(x, y, z, w) of V and so extends to a polynomial p′(x) =
sB(x, 0, 1, t) of B. Since (p(0), p(1)) ∈ γ \ δ then (p′(0), p′(1)) ∈ β \ α
and so p′ must map the minimal set U onto a polynomially isomorphic
set W . If the type of 〈δ, γ〉 is 3 or 4 then by assumption, the minimal set
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V has exactly 2 elements (since it has no tail) and so either p(t) = p(0)
or p(t) = p(1). In either case, this implies that p′ maps the tail element
t of U to the body of the minimal set W . This is impossible, since U
and W are polynomially isomorphic.

If the type of 〈δ, γ〉 is 2 then C|V has a Maltsev polynomial s(x, y, z).
Since {p(0), p(1), p(t)} ⊆ V and since this polynomial has an extension
to a polynomial of B it follows that there is a polynomial f(x, y, z)
of B that satisfies the Maltsev identities when restricted to the set
{p′(0), p′(1), p′(t)} ⊆ W . This contradicts Lemma 4.26 of [11], since
p′(0) and p′(1) are in the body of W and p′(t) is in the tail, since p′ is
a polynomial isomorphism from U to W . �

For i ≤ n, let πi be the projection homomorphism from B onto Ai

and let ρi be the kernel of πi. By the minimality of n we know that
the intersection of any proper subset of the ρi, 1 ≤ i ≤ n is strictly
above 0B.

Lemma 3.2. Let ρ be the intersection of a proper subset of the ρi,
1 ≤ i ≤ n. Either β ≤ ρ or α∨ ρ = 1B.

Proof. Suppose that β 6≤ ρ (or equivalently (0, 1) /∈ ρ). Since β is
join irreducible then β ∧ ρ ≤ α and so β ∧ ρ = α∧ ρ. Furthermore,
α∨ ρ = β ∨ ρ, or else we can find a prime quotient between these
two congruences that is perspective with 〈α, β〉. But then the algebra
B/ρ has a prime quotient whose minimal sets have non-empty tails.
Since this algebra is isomorphic to a subdirect product of fewer than
n members of S, we conclude, by the minimality of n, that indeed
α∨ ρ = β ∨ ρ.

Thus the set
P = {β ∧ ρ, ρ, α, β, α∨ ρ}

forms a pentagon in Con(B). Let C be the (α∨ ρ)-class that contains 0
and let M = C∩U . Note that C contains 1 and, since B is idempotent,
that C is a subuniverse of B. By Lemma 2.4 of [11], we conclude
that the restriction to M is a surjective lattice homomorphism from
the interval I[0B, α∨ ρ] in Con(B) to the interval I[0M , (α∨ ρ)|M ] in
Con(B)|M . Note that since (0, 1) ∈ β|M \ α|M , this restriction map
separates α and β. Then, the image under the restriction map of the
pentagon P is a pentagon in Con(B)|M . This implies that M contains
some elements of the tail of U , since otherwise Con(B)|M is modular
(in the type 3 or 4 case, |M | = 2, and in the type 2 case, B|M is
Maltsev). Thus, there is some t in the tail of U with (0, t) ∈ α∨ ρ.
Using Lemma 3.1 we conclude that C = B since it contains {0, 1, t}.
Thus, α∨ ρ = 1B. �
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Lemma 3.3. α∨ ρi < 1B for at least one i and α∨ ρj = 1B for at least
one j.

Proof. Suppose that α∨ ρi = 1B for all i. By Theorem 7.7 of [11] we
know that modulo the solvability congruence, Con(B) is join semi-
distributive and so 1B is solvably related to

α∨(
∧

i≤n

ρi) = α∨ 0B = α.

Then, the algebra B/α is solvable and so lies in the subvariety of all
locally solvable algebras of V. Since V omits type 1, then this subva-
riety has typeset {2} and so, by Theorem 7.11 of [11], is congruence
permutable. But then B/α can’t have any minimal sets with tails. So,
for at least one i we must have that α∨ ρi < 1B.

Finally, suppose that α∨ ρi < 1B for all i ≤ n. Then β ≤ ρi for all
i ≤ n and so β ≤

∧

i≤n ρi = 0B, a contradiction. �

Theorem 3.4. Let V be the variety generated by some finite set S of
finite, idempotent algebras that is closed under taking subalgebras. If V

omits types 1 and 5 and some finite member of V has a prime quotient
whose minimal sets have non-empty tails then there is some 3-generated
algebra B with this property that belongs to S or is a subdirect product
of two algebras from S.

Proof. Choose n > 0, Ai ∈ S, for 1 ≤ i ≤ n and B as above. From
Lemma 3.1 we know that B is 3-generated. If n > 1 then by the
previous lemma we can choose i and j ≤ n with β ≤ ρi and α∨ ρj = 1B.
If n > 2 then Lemma 3.2 applies to ρ = ρi ∧ ρj and so we know that
either β ≤ ρ or α∨ ρ = 1B. This yields a contradiction as the former
is not possible, since β 6≤ ρj and the latter can’t hold since both α and
ρ are below ρi.

So, the minimality of n forces n ≤ 2 and the result follows. Note that
in the case that n = 2, we have that the congruences {0B, α, β, ρi, 1B}
form a sublattice of Con(B) that is isomorphic to the pentagon, for i
such that α∨ ρi = 1B. �

By taking a suitable idempotent reduct of a 3-element algebra related
to Polin’s Variety [5], it is possible to find an idempotent algebra A

such that V (A) is not congruence modular, omits types 1 and 5 (in
fact has typeset {3}), but with the algebras in H S(A) having minimal
sets with empty tails. This demonstrates that in general one must look
for tails in subalgebras of A2.
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Day Quadruples. In this subsection we introduce Day quadruples
which will play a role in our fastest algorithms for testing for congruence
modularity, both in the idempotent and non-idempotent cases.

If a, b, c and d are elements of an algebra A, the sublattice of Con(A)
generated by

α = CgA(c, d)

β = CgA((a, b), (c, d))

γ = CgA((a, c), (b, d))

is a homomorphic image of the lattice in Figure 2.

α

β
γ

Figure 2. Day’s Extended Pentagon

Of course if V (A) is congruence modular all such pentagons must
collapse. Formalizing this, we call a quadruple (a, b, c, d) in an algebra
A a Day quadruple if in the subalgebra B generated by {a, b, c, d}

(3.1) (a, b) /∈ CgB(c, d)∨[CgB((a, b), (c, d))∧CgB((a, c), (b, d))]

In his Master’s thesis [4] Alan Day gave a Maltsev condition defining
congruence modularity and proved the following.

Theorem 3.5. Let V be a variety and let a, b, c and d be the free
generators of FV(a, b, c, d). Then V is congruence modular if and only
if (a, b, c, d) is not a Day quadruple.

By modifying a construction of Kearnes and Kiss found in [16] we
obtain the following characterization of finite idempotent algebras that
generate congruence modular varieties.

Theorem 3.6. Let A be a finite idempotent algebra and V be the vari-
ety it generates. Then V fails to be congruence modular if and only if
there is a Day quadruple (a, b, c, d) in A2. Moreover, this Day quadru-
ple can be chosen so that

(1) a = (x0, x1), b = (x0, y1), c = (y0, x1), and d = (y0, y1) for some
x0, x1, y0, y1 in A;
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(2) if V omits type 1 then these elements may be chosen so that

d ∈ SgA
2

(a, b, c);
(3) if V omits both type 1 and type 5 then these elements may be

chosen so that d ∈ SgA
2

(a, b, c) and c ∈ SgA
2

(a, b, d).

Proof. One direction is trivial so assume that V is not congruence mod-
ular. If V admits type 1 or 5 then then there is a strictly simple algebra
B in H S(A) that is term equivalent to a 2-element set or a 2-element
semilattice. It is easy to see that in each case B2 has a Day quadruple
satisfying (1). Now if under a homomorphism the elements a, b, c, d
map to a′, b′, c′, d′, respectively, and (a′, b′, c′, d′) is a Day quadruple,
then (a, b, c, d) is also a Day quadruple. Using this it follows that A2

has a Day quadruple satisfying (1). Using the fact that the square of a
two-element semilattice is three generated, it is easy to see that (2) also
holds. So we may assume V omits types 1 and 5. Since V is not mod-
ular it must contain an algebra with a minimal set with a non-empty
tail by Theorem 8.5 of [11].

By Theorem 3.4 there is a 3-generated subalgebra B of A or of A2

which has a minimal set with a non-empty tail. This gives two cases
and we begin with the latter; that is, we assume there is a 3-generated
subalgebra B of A2 which has a minimal set with a non-empty tail,
but no 3-generated subalgebra of A has such a minimal set.

The proof of Theorem 3.4 and the lemmas leading to it show that
we may assume that B is generated by {0, 1, t}, β = CgB(0, 1) is join
irreducible with lower cover α, and there is an 〈α, β〉-minimal set U such
that 0 and 1 are contained in a trace and t is in the tail. Moreover, by
Lemma 3.1, B is generated by 0, 1, and any element of the tail. Also,
β ≤ ρ1 and α∨ ρ2 = 1B, where ρi are the projection kernels.

First we show that we may assume (0, t) ∈ ρ2. Since α∨ ρ2 = 1B,
there is a α–ρ2 path from 0 to 1. Since the minimal set is the image of B
under an idempotent polynomial, we may assume this path lies in the
minimal set. If the type of this minimal set is 3 or 4, the body is just
{0, 1}. These elements are ρ1–related, hence not ρ2–related (otherwise
they would be equal). It follows that the first link of the path must
relate 0 to a tail element and we can use this element in place of t.

If the type is 2 the body has a Maltsev term so if the path lies entirely
in the body, there is a path of the form 0 α 0′ ρ2 1 which implies 0′

and 1 are related by both ρ1 and ρ2, and so equal which implies 0
and 1 are α related, a contradiction. Since α cannot connect a body
element to a tail element, there must be body element ρ2 related to a
tail element.
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In general, if a congruence θ contains some (a, c) with a in the body
and c in the tail of a type 2 minimal set, then every element of the
body is θ-related to something in the tail. To see this let d(x, y, z) be a
pseudo-Maltsev operation for the minimal set and let b be in the body.
Then f(x) = d(b, x, a) is a permutation of the minimal set and so must
map the tail to the tail. Then b = d(b, a, a) θ d(b, c, a) and the latter is
in the tail.

Thus we may assume (0, t) ∈ ρ2, as asserted. These arguments also
show that every element of the body is ρ2 related to some tail element.

Let Ai = B/ρi, i = 1, 2. Then we can write 0 = 〈u, v〉, 1 = 〈u, w〉,
t = 〈r, v〉 for some u and r ∈ A1 and v and w ∈ A2. As noted,
1 = 〈u, w〉 is ρ2 related to a tail element which must be 〈s, w〉, for
some s ∈ A1.

Since B is generated by 0, 1, and t, there is a ternary term g (neces-
sarily idempotent since B is) such that 〈s, w〉 = g(〈u, v〉, 〈u, w〉, 〈r, v〉).
But then 〈s, v〉 = g(〈u, v〉, 〈u, v〉, 〈r, v〉) is in B. Since 〈u, v〉 and 〈u, w〉
are β-related, 〈s, v〉 and 〈s, w〉 are as well.

We claim 〈s, v〉 is in the minimal set U . To see this let e be the
idempotent unary polynomial mapping B onto the minimal set. Then,
since 〈s, v〉 is β (and hence ρ1) related to 〈s, w〉 ∈ U and ρ2 related
to 0 = 〈u, v〉 ∈ U , e(〈s, v〉) ρ1 〈s, w〉 and e(〈s, v〉) ρ2 〈u, v〉. Hence
e(〈s, v〉) = 〈s, v〉; so 〈s, v〉 ∈ U .

Now, since 〈s, w〉 is in the tail, 〈s, w〉 α 〈s, v〉. Let a = 0 = 〈u, v〉,
b = 1 = 〈u, w〉, c = 〈s, v〉, and d = 〈s, w〉. Since CgB((a, b), (c, d)) ≤ ρ1

and CgB((a, c), (b, d)) ≤ ρ2 their intersection is 0B. Since CgB(c, d) ≤
α, 〈a, b〉 /∈ CgB(c, d) and thus (a, b, c, d) is a Day quadruple. Clearly
item (1) holds and, since 0, 1 and any tail element generate B, item (3)
also holds.

Now we turn to the other case: we assume that some 3-generated
subalgebra of A has minimal sets with non-empty tails with respect to
some prime quotient 〈α, β〉. As noted above (see Lemma 3.1), it follows
that there is a subalgebra B of A generated by elements {0, 1, t} such
that these three elements belong to some minimal set U of B with
{0, 1} belonging to an 〈α, β〉-trace contained in U and t in the tail of
U . In addition, we may assume that no proper subalgebra of B has
minimal sets with non-empty tails.

We may choose the 〈α, β〉-minimal set U and elements 0 and 1 con-
tained in some 〈α, β〉-trace of U with C = SgB({0, 1}) as small as
possible. Let ν = CgC((0, 1)) and let µ be a congruence of C such that
α|C ∧ ν ≤ µ≺ ν. Note that since C is a proper subalgebra of B (it is
contained in the β-class of 0), all of its minimal sets have empty tails.
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Let W be a minimal set of C with respect to this covering pair. Since
(0, 1) ∈ ν \µ, there is a unary polynomial p(x) of C with range W and
with (p(0), p(1)) /∈ µ, and hence (p(0), p(1)) /∈ α. But then in B, the
set {p(0), p(1)} is contained in the body of some 〈α, β〉-minimal set U ′.
By the minimality of SgB({0, 1}), it follows that {p(0), p(1)} is also a
generating set for C and so we may assume that {p(0), p(1)} = {0, 1},
i.e., that {0, 1} is also contained in some 〈µ, ν〉-trace N ⊆ W .

Claim 3.7. There is some element t′ ∈ B with (t, t′) ∈ β and with

(1, t′) ∈ SgB2

({(1, 1), (0, 1), (0, t′)}) and

(0, t′) ∈ SgB
2

({(1, 1), (0, 1), (1, t′)}).

We first consider the case when the type of 〈µ, ν〉 is 3 or 4. Then
{0, 1} is a 〈µ, ν〉-minimal set of C and so there are polynomials j(x, y)
and m(x, y) of C that act as a lattice join and meet operations on
{0, 1}. Since C is generated by {0, 1}, there are terms q and r such
that j(x, y) = q(x, y, 0, 1) and m(x, y) = r(x, y, 0, 1). Since these can
be viewed as polynomials on B it follows that β is not abelian over α
and so the type of 〈α, β〉 must also be 3 or 4.

Lemma 4.17 of [11] shows that a minimal set of type 3 or 4 has a
pseudo-meet and pseudo-join operation. (Pseudo-meet and join oper-
ations are define in Definition 4.16 of [11].) The proof of Lemma 4.15
shows that the pseudo-meet operation can be constructed starting
with any polynomial that acts as a meet on {0, 1}. Hence there are
terms q′(x, y, u, v) and r′(x, y, u, v) such that j′(x, y) = q′(x, y, 0, 1) and
m′(x, y) = r′(x, y, 0, 1) act as pseudo-join and pseudo-meet operations
on U . We may choose the terms q′(x, y, u, v) and r′(x, y, u, v) so that
both are idempotent in the variable x.

We define a sequence of elements and subuniverses as follows:

t0 = t

ti+1 =

{

q′(ti, 1, 1, 1) if i is even
r′(ti, 1, 1, 1) if i is odd

Si =

{

SgB2

({(0, 1), (1, 1), (0, ti)}) if i is even

SgB2

({(0, 1), (1, 1), (1, ti)}) if i is odd

Since q′(x, 1, 1, 1) β q′(x, 0, 0, 1) = x and r′(x, 1, 1, 1) β r′(x, 1, 0, 1)
for all x ∈ U it follows that (ti, t) ∈ β for all i ≥ 0. For i even, we have
that

(0, ti+1) = q′((0, ti), (0, 1), (0, 1), (1, 1)) and

(1, ti+1) = q′((0, ti+1), (1, 1), (0, 1), (1, 1))
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and so Si+1 ⊆ Si and (0, ti+1) ∈ Si. Similarly, for i odd, Si+1 ⊆ Si and
(1, ti+1) ∈ Si. Since B is finite, it follows that Si = Si+1 for some i > 0

and from this we conclude that (1, ti+1) ∈ SgB2

({(1, 1), (0, 1), (0, ti+1)})

and (0, ti+1) ∈ SgB
2

({(1, 1), (0, 1), (1, ti+1)}).
If the type of 〈µ, ν〉 is 2 then there is some polynomial d(x, y, z)

of C under which the minimal set W is closed and whose restriction
to W is Maltsev. Since C is generated by {0, 1}, there is some term
s(x, y, z, u, v) such that d(x, y, z) = s(x, y, z, 0, 1) for all x, y, z in C.

Choose some k > 0 such that the term s
(k)
x (x, y, z, u, v) is idempotent

in the variable x for all algebras in V and let

r(x, y, y′, z, u, v) = s(k−1)
x (s(x, y, z, u, v), y′, z, u, v).

Note that, if f(x, y, z) = d(d(x, y, z), y, z), then f(x, y, y) = x holds
on W . Thus r(0, 1, 1, 1, 0, 1) = 0 and r(1, 1, 1, 1, 0, 1) = 1 and so the
idempotent polynomial r(x, 1, 1, 1, 0, 1) of B maps U onto some other
〈α, β〉-minimal set U ′ that contains 0 and 1. Without loss of generality,
we may assume that U = U ′ and so r(t, 1, 1, 1, 0, 1) = t.

The element t′ = r(t, 1, 1, 1, 1, 1) of B is β-related to t and has the
property that r(t′, 1, 1, 1, 1, 1) = t′ since r(x, 1, 1, 1, 1, 1) is an idempo-
tent polynomial. Also,

r(0, 0, 1, 1, 0, 1) = s(k−1)
x (s(0, 0, 1, 0, 1), 1, 1, 0, 1) = s(k−1)

x (1, 1, 1, 0, 1) = 1

and so we have that

(1, t′) = r((0, t′), (0, 1), (1, 1), (1, 1), (0, 1), (1, 1)).

This establishes that (1, t′) is in the subalgebra of B2 generated by
{(1, 1), (0, 1), (0, t′)}. A similar argument shows r(1, 1, 0, 0, 0, 1) = 0
and hence

(0, t′) = r((1, t′), (1, 1), (0, 1), (0, 1), (0, 1), (1, 1)),

which finishes the proof of the claim.

We now follow the proof of Theorem 2.4 found in [16] up until
Claim 2.6. We define S to be the subalgebra of B2 generated by the
diagonal of B and the set {(0, 1), (0, t′)} and D to be the subalgebra of
S generated by {(1, 1), (0, 1), (0, t′)}. By the previous claim, we know
that (1, t′) ∈ D. Define γ to be the restriction of the congruence 0B×1B

to S, δ to be the congruence of S generated by 〈(0, t′), (1, t′)〉 and θ to
be the join of δ with the congruence of S generated by 〈(0, 1), (1, 1)〉.
A modest modification of the proof of their Claim 2.5 can be made
to show that in S, the congruences {γ, δ, θ} are part of a pentagon in
Con(S). In applying Lemma 2.2 of [16], a crucial fact is that (t, t′) ∈ β.
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The fact that {γ, δ, θ} are part of a pentagon in Con(S) implies that
((1, 1), (0, 1), (0, t′), (1, t′)) form a Day quadruple, which by the claim
satisfies the conditions of the theorem. �

The two-element set and the two-element semilattice show the hy-
potheses in the last two conditions are necessary.

Corollary 3.8. Let A be a finite idempotent algebra that generates a
variety V that omits type 1. Then V is congruence modular if and only
if every 3-generated subalgebra of A2 is congruence modular.

Combining this theorem and corollary with the following proposition
leads to various characterizations of finite idempotent algebras that
generate congruence modular varieties.

Proposition 3.9. Let V be the variety generated by a finite idempo-
tent algebra A. If one of the following conditions holds then typ(V) is
contained in {2, 3, 4} ({3, 4}):

(1) Every 2-generated subalgebra of A omits types 1 and 5 (and 2).
(2) The congruence lattice of the square of every 2-generated subal-

gebra of A is modular (distributive).
(3) The congruence lattice of every 4-generated (3-generated) sub-

algebra of A2 is modular (distributive).
(4) The prime quotients of every 3-generated subalgebra of A2 have

minimal sets with empty tails.
(5) The prime quotients of the square of every 2-generated subalge-

bra of A have minimal sets with empty tails.

Proof. By Proposition 2.1, if V admits type 1 or 5 (or 2) then there
is a strictly simple algebra B in H S(A) that is of one of these types.
Since B is 2-generated, the implication involving condition (1) holds.

If B is of type 1 or 5 then it is term equivalent to a 2-element
set or a 2-element semilattice and so the 4 element algebra B2 fails
to be congruence modular and it has prime quotients whose minimal
sets have non-empty tails. In fact, some 3-generated subalgebra of
B2 has minimal sets with non-empty tails and has a non-distributive,
non-permutable congruence lattice. If B is of type 2 then it is term
equivalent to the idempotent reduct of a module over some finite ring.
In this case, B2 has a 3-generated subalgebra that fails to be congruence
distributive. From this, the remaining implications follow. �

Corollary 3.10. Let A be a finite idempotent algebra and V the variety
generated by A. Then V is congruence modular if and only if:

(1) The minimal sets of the prime quotients of all 3-generated sub-
algebras of A2 have empty tails, or
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(2) Every 4-generated subalgebra of A2 is congruence modular.

V is congruence distributive if and only if every 3-generated subalgebra
of A2 is congruence distributive.

Proof. If V is congruence modular (distributive) then the listed condi-
tions must hold. Conversely, if the minimal sets of the prime quotients
of all 3-generated subalgebras of A2 have empty tails then by the pre-
vious proposition we know that V omits types 1 and 5. Then, by
Theorem 3.4 we conclude that V has no tails and so is congruence
modular.

If every 4-generated (3-generated) subalgebra of A2 is congruence
modular (distributive) then by the previous proposition, V omits types
1 and 5 (and 2). Then by Corollary 3.8 it follows that V is congruence
modular (distributive). �

4. Semidistributivity

For a, b and c in an algebra A let

α = CgA(b, c)

β = CgA(a, c)

γ = CgA(a, b).

If Con(A) is modular then the subalgebra generated by these elements
is a homomorphic image of the lattice in Figure 3.

α β γ

Figure 3. Jónsson’s Extended Diamond

Of course, for the variety to be distributive, the copy of M3 at the top
of the lattice must collapse. This will happen if either of the following
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conditions hold:

(a, c) ∈ [CgA(a, c)∧CgA(b, c)]∨[CgA(a, c)∧CgA(a, b)](4.1)

(a, b) ∈ CgA(b, c)∨[CgA(a, c)∧CgA(a, b)](4.2)

Under congruence modularity these conditions are the same, but, if
we do not assume modularity they are not. The first is the basis of
Jónsson’s Maltsev condition for congruence distributivity given in (7.1):
a variety V is congruence distributive if and only if the first condition
holds for FV(a, b, c). On the other hand, the second condition holds
whenever Con(A) is join semidistributive since CgA(b, c)∨CgA(a, c) =
CgA(b, c)∨CgA(a, b) = CgA(a, b, c). In fact K. Kearnes and E. Kiss
have shown in [15] that a variety V is congruence semidistributive
if and only if the second equation holds for FV(a, b, c). The corre-
sponding Maltsev condition for semidistributivity, from Hobby and
McKenzie [11], is similar to Jónsson’s except the second equation,
di(x, y, x) ≈ x for all i, is replaced with di(x, y, x) ≈ di+1(x, y, x) for all
even i.

For idempotent algebras with have the following easy analog to The-
orem 3.6.

Theorem 4.1. Let A be a finite idempotent algebra and V be the va-
riety it generates. The following are equivalent.

(1) V is congruence semidistributive.
(2) V omits types 1, 2 and 5.
(3) for all x and y in A, if a = (x, x), b = (x, y) and c = (y, x),

then in the subalgebra B of A2 generated a, b and c

(a, b) ∈ CgB(b, c)∨[CgB(a, c)∧CgB(a, b)]

Proof. Combining results from [11] and [15], conditions (1) and (2) can
be shown to be equivalent. As pointed out above condition (3) holds
in a semidistributive variety so (1) implies (3).

If one of these types 1, 2 or 5 occurs in typ(V (A)) then, by Propo-
sition 2.1, H S(A) contains a strictly simple algebra B which is term
equivalent to a 2-element set, a 2-element semilattice or the idempotent
reduct of a module over some finite ring. It is elementary to show that
in all cases, (3) fails. So (3) implies (2). �

In Corollary 5.6 of [17], Kearnes and Szendrei show that a locally
finite variety V omits types 1 and 2 if and only if it satisfies the con-
gruence inclusion

α∧(β ◦ γ) ⊆ β ∨(α∧(γ ∨(α∧ β)))
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and, by Theorem 9.10 of [11], this is equivalent to the members of V

having meet semidistributive congruence lattices. From this we get the
following theorem.

Theorem 4.2. Let A be a finite idempotent algebra and V be the va-
riety it generates. Then the following are equivalent.

(1) V is congruence meet semidistributive.
(2) V omits types 1 and 2.
(3) for all x and y in A, if a = (x, x), b = (x, y) and c = (y, x),

then in the subalgebra B of A2 generated a, b and c

(a, c) ∈ β ∨(α∧(γ ∨(α∧ β))),

where α = CgB(a, c), β = CgB(a, b), and γ = CgB(b, c).

Proof. Conditions (1) and (2) are shown to be equivalent in locally
finite varieties in Theorem 9.10 of [11].

By the remarks above (1) implies (3).
If V admits type 1 or 2, then, by Proposition 2.1, H S(A) contains

a strictly simple algebra B which is term equivalent to a 2-element
set or the idempotent reduct of a module over some finite ring. It is
elementary to show that in both cases, condition (3) fails. Thus (3)
implies (2). �

5. Maltsev and Majority terms

We now turn our attention to more specialized Maltsev conditions,
ones that are determined by the existence of special idempotent ternary
terms. It is well known that a variety V is congruence permutable if and
only if V has a term p(x, y, z) that satisfies the equations: p(x, x, y) ≈ y
and p(y, x, x) ≈ y. The following theorem provides a local characteriza-
tion of congruence permutable finitely generated idempotent varieties.

Theorem 5.1. Let A be a finite idempotent algebra. Then A generates
a congruence permutable variety V if and only if for every x0, x1, y0,
y1 in A,

(5.1) (c, a) ∈ CgB(a, b) ◦ CgB(b, c)

where a = (x0, y0), b = (x0, y1), c = (x1, y1) and B = SgA
2

({a, b, c}).

Proof. We claim that if the stated condition holds then A2 has no Day
quadruple as described in Theorem 3.6 and so A generates a congruence
modular variety. To see this, consider the pairs a = (x0, x1), b =
(x0, y1), c = (y0, x1), and d = (y0, y1) for some x0, x1, y0, y1 from A. In
the subalgebra B of A2 generated by {b, c, d} we have, by (5.1), that
(b, c) ∈ CgB(c, d) ◦ CgB(d, b). So there is some element e = (u, v) ∈ B
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with (b, e) ∈ CgB(c, d) and (e, c) ∈ CgB(d, b). This forces u = x0 and
v = x1 and so we conclude that e = a and thus (a, b) ∈ CgB(c, d).
Therefore (a, b, c, d) is not a Day quadruple.

If V (A) is not congruence permutable then let B be a member of
smallest size that is not congruence permutable. By a result of Idziak
(see Theorem 3.2 in [28]), it follows that we can find congruences γ, α
and β of B such that γ ≺α, γ ≺β and α and β fail to permute. By
the minimality of |B|, we have that γ = 0B and so B is isomorphic to
a subdirect product of the algebras B/α and B/β. Since V is congru-
ence modular then we may use results from commutator theory as well
as tame congruence theory to conclude that the types of 〈0B, α〉 and
〈0B, β〉 are 3 or 4 (in fact we can easily rule out type 4) for if either
α or β is of type 2 (and hence solvable) then these two congruences
permute (see Theorem 6.2 of [7]).

Choose a, c ∈ B with (a, c) ∈ α ◦ β and (c, a) /∈ α ◦ β and let b ∈ B
with (a, b) ∈ α and (b, c) ∈ β. Let C be the subalgebra of B generated
by {a, b, c} and let α′ = CgC(a, b) and β ′ = CgC(b, c). It follows that
in C, the congruences α′ and β ′ fail to permute since (a, c) ∈ α′ ◦ β ′

and (c, a) /∈ α′ ◦ β ′. Thus, by the minimality of |B| we conclude that
B = C and so is generated by {a, b, c}.

Let D be the (α∨ β)-class that contains a. Then since B is idem-
potent, D is a subuniverse of B that contains {a, b, c} and so, by the
previous paragraph is equal to B. Thus, α∨ β = 1B and so by the mod-
ularity of Con(B) it follows that α≺ 1B and β ≺ 1B. But then B/α
and B/β are both simple, non-abelian algebras (since typ(α, 1B) =
typ(0B, β), typ(β, 1B) = typ(0B, α) ∈ {3, 4} ) and so, by Theorem 10.1
of [7] (or Theorem 14.5 of [11]), belong to H S(A). We conclude that B

belongs to H S(A2) since it is a subdirect product of these two simple
algebras. By pulling back a, b and c into A2 we end up with elements
x0, x1, y0, and y1 for which (5.1) fails. �

Corollary 5.2. A finite idempotent algebra generates a congruence
permutable variety if and only if each 3-generated subalgebra of A2 is
congruence permutable.

The ternary term m(x, y, z) of an algebra A is a majority term for
A if it satisfies the identities: m(x, x, y) ≈ m(x, y, x) ≈ m(y, x, x) ≈ x.
Under the assumption that A is finite and idempotent, we will show
that the presence of a majority term can be efficiently determined by
ruling out a certain configuration amongst the 3-generated subalgebras
of A3.
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Definition 5.3. We will call a triple 〈a, b, c〉 of elements from an alge-
bra A, a majority triple of A if, with B = SgA({a, b, c}), there is some
element d ∈ B such that

(a, d) ∈ (CgB(a, b)∧CgB(a, c)) and (d, c) ∈ (CgB(b, c)∧CgB(a, c)).

In this case, we say that the element d resolves the triple 〈a, b, c〉. If
there is no element that resolves the triple, then we say that it is a
non-majority triple of A.

Proposition 5.4. If m(x, y, z) is a majority term of an algebra A then
for every B ∈ V(A) and all a, b, c ∈ B, 〈a, b, c〉 is a majority triple
of B and is resolved by the element mB(a, b, c). Conversely, if 〈x,y, z〉
is a majority triple in the free algebra of V(A) generated by {x,y, z}
then A has a majority term.

Proof. Suppose that m(x, y, z) is a majority term of A and B ∈ V (A).
It is elementary to verify that if a, b, c ∈ B then the element mB(a, b, c)
resolves the triple 〈a, b, c〉.

Conversely, let F be the free algebra in V (A) generated by x, y

and z and suppose that the element d of F resolves the majority triple
〈x,y, z〉. Then d is of the form mF(x,y, z) for some term m(x, y, z)
of A. It is straightforward to verify that m must be a majority term
for A. �

Lemma 5.5. Let ~t = 〈a, b, c〉 be a majority triple in the algebra A

that is resolved by the element d. Then all triples of A obtained by
permuting the elements of ~t are majority and are resolved by d.

Proof. Let B = SgB({a, b, c}). Since d resolves 〈a, b, c〉 then d ∈ B
and (a, d) ∈ CgB(a, b)∧CgB(a, c) and (d, c) ∈ CgB(b, c)∧CgB(a, c).
So, in order to show that d resolves 〈b, a, c〉 we need to show that
(b, d) ∈ CgB(a, b)∧CgB(b, c). Since (b, a) and (a, d) ∈ CgB(a, b) then
by transitivity we get that (b, d) ∈ CgB(a, b). Similarly, (b, c) and
(c, d) ∈ CgB(b, c) implies that (b, d) ∈ CgB(b, c), as required. By sym-
metry, the other 4 triples obtained from ~t are also majority and resolved
by d. �

Theorem 5.6. Let A be a finite idempotent algebra that generates a
congruence distributive variety. Then, A has a majority term if and
only if every triple 〈a, b, c〉 of elements from A3 is a majority triple.

Proof. One direction of this theorem follows from Proposition 5.4. For
the other, let V = V (A) and suppose that A does not have a ma-
jority term. Then by Proposition 5.4 there is some finite algebra
B ∈ V and elements a, b, c ∈ B such that 〈a, b, c〉 is a non-majority



ON THE COMPLEXITY OF SOME MALTSEV CONDITIONS 19

triple of B. Without loss of generality, we may assume that B is
generated by {a, b, c}. Choose B and the non-majority triple 〈a, b, c〉
so that the size of B is as small as possible in V and the congru-
ence CgB({a, b, c}) is as small as possible in Con(B). It follows that
CgB(a, b)∧CgB(a, c)∧CgB(b, c) = 0B and that CgB({a, b, c}) = 1B.
This last claim makes use of the idempotency of B (and is the only
point in the proof where idempotency is used). We can also conclude
that B is isomorphic to a 3-generated subdirect product of the algebras
B/CgB(a, b), B/CgB(a, c) and B/CgB(b, c).

If we can show that CgB(a, c)≺ 1B then by the symmetry of the set
up, it will follow that CgB(a, b) and CgB(b, c) are also subcovers of 1B.
We can then conclude that B is a subdirect product of three simple
algebras: B/CgB(a, c), B/CgB(a, b), and B/CgB(b, c). By Jónsson’s
Theorem (see Corollary 6.10 of [2]) we have that these algebras be-
long to H S(A) and from this, it follows that there is a 3-generated
subalgebra of A3 whose generators form a non-majority triple.

Using the congruence distributivity of B it follows that the 3 con-
gruences CgB(a, b), CgB(a, c), and CgB(b, c) generate a sublattice of
Con(B) that is isomorphic to the 8 element boolean lattice. If these
congruences were to generate a smaller sublattice then it is not hard
to show that 〈a, b, c〉 must be a majority triple.

If CgB(a, c) is not a subcover of 1B then there is a congruence ǫ of
B with 0B ≺ ǫ < CgB(a, b)∧CgB(b, c). By the minimality of |B| it
follows that in the algebra C = B/ǫ, 〈ā, b̄, c̄〉 is a majority triple and
so is resolved by d̄ for some d ∈ B (for x ∈ B, x̄ denotes the element
x/ǫ of C).

Let µ = CgB(a, b)∧CgB(a, c) and ν = CgB(b, c)∧CgB(a, c) and let
µ̄ = µ/ǫ and ν̄ = ν/ǫ in Con(C). Since d̄ resolves 〈ā, b̄, c̄〉 in C then
(ā, d̄) ∈ µ̄ and (d̄, c̄) ∈ ν̄. Pulling this back up to B we get that
(a, d) ∈ µ∨ ǫ and (d, c) ∈ ν ∨ ǫ.

Consider the triple 〈a, d, c〉 of B. Since µ∨ ν ∨ ǫ ≤ CgB(a, c)∨ ǫ then
CgB({a, d, c}) ≤ CgB(a, c)∨ ǫ < 1B. By the minimality of |B| and of
CgB({a, b, c}) in Con(B) it follows that 〈a, d, c〉 is a majority triple of
B. Thus, there is some element e ∈ B so that

(a, e) ∈ CgB(a, d)∧CgB(a, c) and (e, c) ∈ CgB(d, c)∧CgB(a, c).

Since (a, d) ∈ µ∨ ǫ ≤ CgB(a, b) then

(a, e) ∈ CgB(a, b)∧CgB(a, c) = µ.

Similarly, (e, c) ∈ ν and so the element e resolves the triple 〈a, b, c〉.
This contradiction implies that CgB(a, c)≺ 1B and so we are done. �
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The following proposition shows that the hypothesis of congruence
distributivity in the previous theorem is not necessary. In fact, the
proposition provides another characterization of finite idempotent al-
gebras that generate congruence distributive varieties.

Proposition 5.7. Let A be a finite idempotent algebra such that

(5.2) (a, c) ∈ [CgE(a, b)∧CgE(a, c)]∨[CgE(b, c)∧CgE(a, c)],

where E = SgA3

({a, b, c}), for all elements a, b, c from A3 of the form

a = (0, 1, 1), b = (3, 1, 2), and c = (0, 2, 2)

for some {0, 1, 2, 3} ⊆ A. Then V(A) is congruence distributive.

Proof. If one of the types 1, 2, and 5 occurs in typ(V (A)) then by
Proposition 2.1, H S(A) contains a strictly simple algebra B that is,
term equivalent to a 2-element set, a 2-element semilattice or the idem-
potent reduct of a module over some finite ring. It is elementary to
show that in all cases, the hypotheses of our proposition fail to hold.

To complete the proof it is enough to show that V (A) is congruence
modular since a locally finite, modular variety that omits type 2 is con-
gruence distributive. If V (A) is not modular then, by Theorem 3.6, A

has elements 0, 1, 2 and 3 such that if u = (0, 1), v = (0, 2), w = (3, 1)

and w′ = (3, 2) form a Day quadruple in B = SgA
2

(u, v, w, w′) and w′ ∈

SgA2

(u, v, w) and w ∈ SgA2

(u, v, w′). Let β = CgB((u, v), (w, w′)),
γ = CgB((u, w), (v, w′)) and α = CgB(w, w′)∨(β ∧ γ). Then (u, v) /∈ α
since (u, v, w, w′) is a Day quadruple. Let a = (0, 1, 1), b = (3, 1, 2),

c = (0, 2, 2) and E = SgA3

({a, b, c}) and let µ = CgE(a, b)∧CgE(a, c)
and ν = CgE(b, c)∧CgE(a, c). The following claim shows that under
these circumstances (5.2) fails for the elements a, b, and c.

Claim 5.8. Let (0, 0′, 0′′) ∈ E with (0, 0′) α (0, 0′′) in B. If (r, s, t) ∈ E
with (0, 0′, 0′′) µ (r, s, t) or (0, 0′, 0′′) ν (r, s, t) then r = 0 and in B,
(0, 0′) α (0, s) α (0, t) .

Let’s assume that (0, 0′, 0′′) µ (r, s, t). That r = 0 and s = 0′ follows
from the fact that µ is contained in ρ1 ∩ ρ2, where, for 1 ≤ i ≤ 3, ρi

is the kernel of the projection map of E onto its ith coordinate. Since
(0, 0′, t) ∈ E then there is some term p(x, y, z) such that p(b, a, c) =
(0, 0′, t). By projecting this equality onto the first two components
we get that p(w, u, v) = (0, 0′). Projecting on to the first and last
components gives p(w′, u, v) = (0, t). Thus (0, 0′) α (0, t).

The case that (0, 0′, 0′′) ν (r, s, t) can be handled in a similar fashion.
�
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Corollary 5.9. A finite idempotent algebra A has a majority term if
and only if for all 0, 1, 2, 3, 4, 5 ∈ A, 〈(0, 1, 2), (3, 1, 4), (0, 5, 4)〉 is a
majority triple of A3.

Proof. As noted in Proposition 5.4, if A has a majority term then every
triple of A is a majority triple. Conversely, if the stated condition holds,
then the hypotheses of the previous proposition hold and so V (A) is
congruence distributive. The proof of Theorem 5.6 shows that if V (A)
is congruence distributive and fails to have a majority term then one
can find a non-majority triple 〈a, b, c〉 of A3 such that (a, c) agree in
the first coordinate, (a, b) in the second, and (b, c) in the third. The
hypothesis of this corollary rules this out and so we conclude that A

has a majority term. �

By examining the idempotent reduct of Polin’s Variety (see [5, 13]) it
can be seen that in general it is not sufficient to look for non-majority
triples in the square of a generating algebra in order to determine if an
idempotent variety has a majority term.

6. Polynomial-time Algorithms

The results from the previous sections easily lead to polynomial-
time algorithms for testing if V (A) has various properties for a finite,
idempotent algebra A. In this section we give outlines of some of these
algorithms and analyze their speeds.

If A is an algebra with underlying set (or universe) A, we let |A| =
|A| be the cardinality of A and ||A|| be the input size; that is,

||A|| =

r
∑

i=0

kin
i

where, ki is the number of basic operations of arity i and r is the largest
arity. We let

n = |A| m = ||A||

r = the largest arity of the operations of A

Of course if we assume the similarity type is fixed, r can be viewed
as a constant and the next proposition shows that subalgebras and
principal congruences can be computed in linear time. However, we do
not make this assumption. Note that as long as n > 1, r ≤ log2 m. We
do, however, make the assumption that r ≥ 2.

Throughout this section we let c denote a constant independent of
these parameters.

Proposition 6.1. Let A be a finite algebra with the parameters above.
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(1) If S is a subset of A, then SgA(S) can be computed in time

c r ||SgA(S)|| ≤ c r ||A|| = crm

(2) If a, b ∈ A, then CgA(a, b) can be computed in c r ||A|| = crm
time.

Proof. If f is an k–ary operation, to test if S is already closed under f ,
involves showing f applied to every k-tuple of elements of S lies in S.
This can be done in cksk time, where s = |S|.

Now for an arbitrary subset S, to show that SgA(S) can be com-
puted in the advertised time, we need an algorithm that for each k–ary
operation f and each k–tuple only applies f to this k–tuple once. We
leave the construction of such an algorithm to the reader.

The second statement is proved in [6]. �

Since the join of two congruences of A is the same as their join in the
lattices of equivalence relations on A, join and meets can be computed
in time cn2 (in fact they can be computer in time cn log2 n). Now if A

is idempotent we can use Theorem 3.6 to test if V (A) is congruence
modular. Namely for each x0, x1, y0, y1 in A we form a = (x0, x1),
b = (x0, y1), c = (y0, x1), and d = (y0, y1), find the subalgebra of A2

generated by them, and then test if (3.1) holds. By the proposition
and the remarks above, this can be done in time at most a constant
times rm2. Since there are n4 choices for x0, x1, y0, y1, this algorithm
decides if V (A) is congruence modular in time at most a constant
times rn4m2.

Theorem 6.2. Let A be a finite idempotent algebra with parameters
as above. Then each of the following can be determined in the time
indicated:

V(A) is congruence modular: crn4m2.

V(A) is congruence distributive: crn4m2.

V(A) is congruence semidistributive: crn2m2.

V(A) is congruence meet semidistributive: crn2m2.

V(A) is congruence permutable: crn4m2.

V(A) is congruence k-permutable for some k: crn3m.

A has a majority term: crn6m2.

Proof. We’ve already established the first statement and the third and
the fourth can be proved similarly using Theorem 4.1 and Theorem 4.2
or by referring to Theorem 6.3. The second follows from the first and
third.
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For permutability we can use Theorem 5.1. We test, for every x0,
x1, y0, y1 ∈ A, if (0, 1) ∈ CgC(c, 1) ◦ CgC(0, c), where 0 = (x0, x1),

c = (x0, y1), 1 = (y0, y1) and C = SgA2

(0, c, 1). Thus permutability can
be tested in time crn4m2. Using Corollary 5.9 a similar argument gives
the bound for testing for a majority term. Finally, the k-permutability
result follows from Theorem 6.3 since this condition is equivalent to
omitting the types {1, 4, 5}. �

Theorem 6.3. Let A be a finite idempotent algebra with parameters
as above and let T be a proper order ideal in the lattice of types. If
2 /∈ T then there is an algorithm to determine if V(A) omits T with
run-time crn3m. If 2 ∈ T then there is an algorithm with run-time
crn2m2.

Proof. We first present the case T = {1, 4, 5}. By Proposition 2.1 and
Lemma 2.3 we know that V (A) omits T if and only if A does not
contain elements a, b such that, if B = SgA(a, b), then 1B = CgB(a, b),
is join irreducible with unique lower cover ρ with S = B/ρ polynomially
equivalent to a 2-element set, lattice, or semilattice. Moreover, we may
assume that restriction of the natural map of B onto B/ρ to any proper
subalgebra is not onto.

Thus in order to rule out the types in T we need to determine, for
each subset {a, b} of A, first whether 1B = CgB(a, b) has a unique lower
cover ρ with exactly two classes, where B = SgA(a, b). So we compute
B = SgA(a, b) in time crm and then compute CgB(a, b) also in time
crm, by Proposition 6.1. If this is not 1B we abandon a, b and go to
the next pair. So we assume 1B = CgB(a, b).

Assume for a moment that 1B = CgB(a, b) is join irreducible with
lower cover ρ, where ρ has exactly two blocks. If c ∈ B is in the ρ-block
of a, then the minimality of B implies SgB(b, c) is B and this implies
CgB(b, c) = 1B. Thus we can test if 1B is join irreducible and find
its lower cover ρ by forming CgB(a, c) and CgB(b, c) for each c ∈ B.
Exactly one of these should be less than 1B. (If not we abandon this
a, b.) If CgB(a, c) < 1B, c is in the ρ-block of a; otherwise of b. This
produces a partition of B into two blocks. We can check that this is a
congruence in time crm; see [6]. Thus the total time for testing if 1B

is join irreducible and finding ρ is cnrm.

At this point S = B/ρ is a two element algebra and we take {0, 1}
as its universe, with 0 = a/ρ and 1 = b/ρ. By Proposition 2.1 the
type of S will be in {1, 4, 5} if and only if all the operations respect
the ordering 0 < 1. If f is a basic operation of S with arity j, we
can check if it preserves the order by testing if f(v) ≤ f(u) for each
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v≺u in {0, 1}j. There are j2j−1 covers in the Boolean lattice {0, 1}j.
Since j ≤ r and 2j−1 ≤ nj , the total time required to check that the
operations respect order is bounded by crm.

Thus the total time for a fixed a, b is bounded by cnrm, and thus
the total time is bounded by crn3m.

For the cases T = {1} and T = {1, 5}, first note that during the
test to see if f respects order, we can also find which coordinates f
depends on. Namely, if v ≺u then they agree in all but one coordinate
and if f(v) 6= f(u) then f depends on that coordinate and the loop
described above can be modified to find all such dependencies. S is of
type 1 if each operation depends on one variable. Assuming the type is
not 1, it will be type 5 if either 0 or 1 is an absorbing element. To test
the former, we test if f(1, . . . , 1, 0, 1, . . . , 1) = 0, where 0 is in the ith

position, for all i such that f depends on i. Using these modifications
to the algorithm, we can test if V (A) omits T = {1} or T = {1, 5} in
time bounded by crn3m.

To determine if V (A) omits an order ideal T that contains 2 we first
determine if V (A) omits T \ {2}. If it does, then we use Theorem 4.2
to test if it also omits type 2. The first part can be done in time
bounded by crn3m and the second by crn2m2. Since m ≥ n, the time
is bounded by the later. �

7. Jónsson Terms

By Jónsson’s famous result [12], a variety V has distributive congru-
ence lattices (is congruence distributive, for short) if and only if there
are 3-ary terms d0, . . . , dk (called Jónsson terms) such that

d0(x, y, z) ≈ x

di(x, y, x) ≈ x for 0 ≤ i ≤ k

di(x, x, y) ≈ di+1(x, x, y) for all even i < k(7.1)

di(x, y, y) ≈ di+1(x, y, y) for all odd i < k

dk(x, y, z) ≈ z.

Let CD(k) be the class of all varieties having terms that satisfy (7.1).
Clearly CD(k − 1) ⊆ CD(k). If a variety V is in CD(k) but not in
CD(k− 1), we say V has Jónsson level k. The Jónsson level of a single
algebra A is the level of V (A).

In this section we present a straightforward method to calculate the
Jónsson level of a finite algebra A and find the corresponding Jónsson
terms. This is an exponential time algorithm, but, as we will show
in Corollary 9.3, there is no way to avoid this. A consequence of this
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method is that the Jónsson level of a variety V is at most 2m−2, where
m = |FV(x, y)|. Moreover, we will give an example where this bound
is achieved.

We also present similar results for Gumm terms for modularity and
Hagemann-Mitschke terms for k-permutability.

The ALVIN variant. In [22], a slight variant of Jónsson’s condition
for distributivity is used. Namely in (7.1), “even” and “odd” are inter-
changed. While both conditions define congruence distributivity, they
are not quite the same. Let CD′(k) be the class of all varieties that
satisfy (7.1) with “even” and “odd” interchanged. We say a variety has
alvin level k if it is in CD′(k) but not in CD′(k − 1). The distributivity
level of a variety is the minimum of its Jónsson level and its alvin level.
It is easy to see that CD(k) ⊆ CD′(k + 1) and CD′(k) ⊆ CD(k + 1) so
these notions differ by at most 1. In addition we have the following.

Proposition 7.1. With CD(k) and CD′(k) defined as above, we have

(1) CD(k) = CD′(k) when k is odd.
(2) V ∈ CD(2) if and only if it has a majority term.
(3) V ∈ CD′(2) if and only if it has a Pixley term.
(4) CD′(2) ( CD(2).
(5) CD′(2k) * CD(2k) and CD′(2k) * CD(2k) for k > 1.

Proof. One can check that letting d′
i(x, y, z) = dk−i(z, y, x) gives terms

of the other type when k is odd. A Pixley term p(x, y, z) is defined by
the equations p(x, x, y) ≈ p(y, x, x) ≈ y and p(x, y, x) ≈ x. For such a
term, m(x, y, z) = p(x, p(x, y, z), z) is a majority term. Lattices are a
variety with a majority term but without a Pixley term. A method to
construct examples proving the last statement is given in Section 8. �

Let F2 = FV(x, y) be the free algebra with generators x and y over
a variety V. The variable patterns that occur in (7.1) are (x, x, y),
(x, y, x) and (x, y, y). (The pattern (x, y, z) occurs in the first and
last equation, but the first equation can be replace by the equations
d0(x, x, y) ≈ x and d0(x, y, y) ≈ x and the resulting condition is equiva-
lent; so (7.1) may be viewed as a system of equations in two variables.)
It is convenient to interchange x and y in the last equation and con-
sider the subuniverse, S, of F3

2 generated by the transpose of the three
patterns; that is, by (x, x, y), (x, y, x) and (y, x, x). A typical element
of S looks like

(7.2) f((x, x, y), (x, y, x), (y, x, x)) = (f(x, x, y), f(x, y, x), f(y, x, x)),

where f is a 3-variable term. Let T be the subset of S consisting of
those triples whose middle coordinate is x. Let ρi, i = 1, 2, 3, be the
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kernel of the ith coordinate projection and define ρ on T by ρ = ρ1 ∪ ρ3

so that (a, x, c) ρ (a′, x, c′) if a = a′ or c = c′. Using f = di and
f = di+1 in the above equation, we get the triples

(di(x, x, y), di(x, y, x), di(y, x, x))

(di+1(x, x, y), di+1(x, y, x), di+1(y, x, x))

which by (7.1) are in T and ρ-related. Thus the di’s witness a ρ-path of
length k in T starting at (x, x, y) and ending at (y, x, x). Conversely, if
we have such a ρ-path in T , then the terms that give the corresponding
elements (as elements of S) are easily seen to be Jónsson terms or the
alvin variant of Jónsson terms, depending on whether the first link in
the path is ρ1 or ρ3.

Theorem 7.2. Let V be a variety and let S be the subalgebra of F3
V
(x, y)

generated by (x, x, y), (x, y, x) and (y, x, x). Let T be the subset of S
consisting of triples whose middle coordinate is x. V is congruence dis-
tributive if and only if there is a ρ-path in T from (x, x, y) to (y, x, x).
If V is congruence distributive then the distributivity level of V is the
length of the shortest such path. Moreover, if V is congruence distribu-
tive and m = |FV(x, y)| then

(1) the distributivity level is at most 2m − 2,
(2) the Jónsson level is at most 2m − 2,
(3) the alvin level is at most 2m − 1,

and these are the best possible for all m > 2 (and the first two are best
for all m). If m > 2 and the minimal length of a path is 2m − 2, then
this path must correspond to Jónsson terms.

Proof. The first two statements follow from the remarks above. To
see the first enumerated statement, first note that, in a shortest path,
there can be at most two elements with the same first coordinate and
similarly for the third coordinate. Moreover, if the first link of the se-
quence has the form (x, x, y) −→ (x, x, b) (corresponding to a Jónsson
path) then none of the elements except the first has its third coordi-
nate y. Similarly if the first link has the form (x, x, y) −→ (a, x, y)
(corresponding to an alvin path), then only the first element has first
coordinate x. Thus a minimal ρ-path between (x, x, y) and (y, x, x) can
have at most 2m − 1 elements and so has length at most 2m − 2.

In order to see the other statements we first need a claim.

Claim 7.3. If the distributivity level of V is 2m − 2 and there is an
alvin path witnessing this, then V is k–permutable, for some k.
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Proof. Let σ be the automorphism of FV(x, y) which interchanges x
and y and let τ be the relation on T given by (a, x, b) τ (c, x, d) if a =
σ(d). If the terms giving rise to these triples are f and g, respectively,
then this condition says f(x, x, y) = g(x, y, y). It follows that if there
is a τ -path in T going from (x, x, y) to (y, x, x), then V has Hagemann-
Mitschke terms, as displayed in (8.1).

Now suppose there is a minimal ρ-path from (x, x, y) to (y, x, x) of
length 2m−2 and that the first link is ρ3; that is, the first two elements
are (x, x, y) and (a, x, y). Since the length is even, the last link must be
ρ1, so the last two elements are (y, x, b) and (y, x, x). The projection
onto the first coordinate of path has one x (in the first prosition) and
every other element of FV(x, y) occurs twice, consecutively with the
first projection of the last two elements both y. Every element except
x also occurs twice in the projection onto the third coordinate, which
begins with two y’s and ends with a single x.

To show there is a τ -path, we start by noting the first link of the
ρ-path, (x, x, y) ρ (a1, x, y), is a τ -link. σ(a1) is the third projection of
two consecutive triples of the ρ-path. Let (a2, x, σ(a1)) be the second
of these. Note this triple is the first of the two consecutive triples with
first projection a2. Continuing is this way we get τ -related triples. This
does not cycle so eventually we get to a triple of the form (y, x, e) which
is then τ -related to (y, x, x), proving V is k-permutable. �

Assume the distributivity level of V is 2m − 2 and there is an alvin
path witnessing this. By the claim V is k-permutable for some k.
As is shown in the next section, k ≤ m. Now a ρ-path in T is
a (ρ1 ∧ ρ2)∪(ρ3 ∧ ρ2)-path in S, and since these are congruences, its
length is at most m. This implies 2m − 2 ≤ m, which implies m ≤ 2.
This proves the second and third enumerated statements and the last
statement.

We present an example below which, for each m, constructs a variety
whose 2-generated free algebra has size m with distributivity level and
Jónsson level 2m − 2 and alvin level 2m − 1. �

The Example. Let Mn = {0, . . . , n} and define σ on Mn by σ(r) =
n− r. Define operations d2k+1, 0 ≤ 2k +1 ≤ n, on Mn by applying the
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following rules in order:

d2k+1(a, b, a) = a

d2k+1(a, b, c) = σ(d2k+1(σ(a), σ(b), σ(c))) if a > c

d2k+1(a, b, c) = a if k < a

d2k+1(a, b, c) = c if k + 1 > c

d2k+1(a, b, c) = k if b ≤ k

d2k+1(a, b, c) = k + 1 otherwise

The algebra Mn is the algebra on Mn with operations d2k+1, 0 ≤ 2k +
1 ≤ n. One easily verifies that these operations are order preserving.

First we show that Mn is the 2-generated free algebra in V (Mn) with
free generators 0 and n. Clearly Mn is generated by 0 and n. More
generally, if v ≤ u then the interval between v and u is a subuniverse
generated by u and v. Let ρv,u be the retraction map: ρv,u(z) = v
if z ≤ v, ρv,u(z) = u if z ≥ u, and ρv,u(z) = z otherwise. One can
verify that σ and ρv,u commute with each d2k+1 (for the case a > c,
the identity σρv,u = ρσ(u),σ(v)σ helps) and so σ is an automorphism and
ρv,u is an endomorphism of Mn. It follows that, for each u and v, there
is an endomorphism mapping 0 to v and n to v, which implies Mn is
free.

Lemma 7.4. Let S be the subalgebra of M3
n generated by (0, 0, n),

(0, n, 0) and (n, 0, 0). S is invariant under S3, the group of all permu-
tations of the three coordinates, since the generators are. The elements
of S consist of all the images under S3 of the set

(7.3) {(a, b, c) : a ≤ b ≤ c, and b + c = n − 1 or n}.

Proof. Let U be the set of all images under permutations in S3 of the
set given in (7.3) so that U consists of all triples (a, b, c) whose two
largest elements sum to either n − 1 or n. We want to show that
U is a subuniverse. This, of course, will imply S ⊆ U . So suppose
(ai, bi, ci) ∈ U , for i = 0, 1, 2. We want to show that

d2k+1((a0, b0, c0), (a1, b1, c1), (a2, b2, c2))

= (d2k+1(a0, a1, a2), d2k+1(b0, b1, b2), d2k+1(c0, c1, c2))(7.4)

is also in U .

First we show that U ′ = {(a, b, c) ∈ M3
n : a + b, a + c, b + c ≤ n} is

a subuniverse of M3
n. Suppose that (ai, bi, ci) ∈ U ′. Then bi ≤ n − ci,

and so, since d2k+1 preserves order, d2k+1(b0, b1, b2) ≤ d2k+1(n− c0, n−
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c1, n − c2). Thus

d2k+1(b0, b1, b2) + d2k+1(c0, c1, c2)

= d2k+1(b0, b1, b2) + n − d2k+1(n − c0, n − c1, n − c2)

≤ d2k+1(b0, b1, b2) + n − d2k+1(b0, b1, b2) = n

showing U ′ is a subuniverse.
Now assume (ai, bi, ci) ∈ U . Since U ⊆ U ′ it is enough to show that

some two of the three components of (7.4) sum to at least n − 1.
There is a symmetry between a, b and c so we may assume a0 =

min(a0, b0, c0), and thus b0 + c0 = n − ε0, where ε0 = 0 or 1. If
b2 + c2 = n − ε2, where ε2 = 0 or 1, then the above calculation shows

d2k+1(b0, b1, b2) + d2k+1(c0, c1, c2)

= d2k+1(b0, b1, b2) + n − d2k+1(n − c0, n − c1, n − c2)

= n − [d2k+1(b0 + ε0, n − c1, b2 + ε2) − d2k+1(b0, b1, b2)]

One can show that d2k+1(b0 + ε0, u, b2 + ε2)− d2k+1(b0, v, b2) is either 0
or 1 for ε0, ε2 ∈ {0, 1} and any u and v with u ≥ v. It follows that

(d2k+1(a0, a1, a2), d2k+1(b0, b1, b2), d2k+1(c0, c1, c2)) ∈ U

in this case.
So we may assume b2 + c2 < n− 1 and by symmetry we may assume

a2 and b2 are the two largest of a2, b2, and c2 and that a2 + b2 = n−ε2.
Now we have

d2k+1(b0, b1, b2) + d2k+1(c0, c1, c2)

= d2k+1(b0, b1, b2) + n − d2k+1(n − c0, n − c1, n − c2)

= n + d2k+1(b0, b1, b2) − d2k+1(b0 + ε0, n − c1, n − c2).

If b0 ≤ b2, then b0 + ε0 ≤ b2 + ε0 ≤ n − c2. Whenever a ≤ c,
d2k+1(a, b, c) ∈ {a, k, k + 1, c} and if k + 1 ≤ c, the value is one of
{a, k, k + 1}. Using this and the fact that b1 ≤ n − c1, one can show
that if k + 1 ≤ b2, then d2k+1(b0 + ε0, n − c1, n − c2) − d2k+1(b0, b1, b2)
is either 0 or 1 and so

d2k+1(b0, b1, b2) + d2k+1(c0, c1, c2)

is n or n − 1.
So we may assume b2 < k +1. Summarizing our assumptions at this

point:

(1) b0 and c0 are the largest of (a0, b0, c0)
(2) a2 and b2 are the largest of (a2, b2, c2)
(3) b0 ≤ b2 ≤ k
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Item (2) implies c2 ≤ b2. So c2 ≤ b2 ≤ k ≤ (n − 1)/2 and thus
n− c2 ≥ (n+1)/2 > k. Since b0 + c0 ∈ {n− 1, n}, c0 ≥ (n− 1)/2 ≥ c2.
We claim that d2k+1(n − c0, n − c1, n − c2) ∈ {k, k + 1} and calculate

n − c0 = b0 + ε0 ≤ b2 + ε0 ≤ k + ε0.

If n−c0 = k+1 then d2k+1(n−c0, n−c1, n−c2) = k+1. In all other cases
n−c0 ≤ k < n−c2, which implies d2k+1(n−c0, n−c1, n−c2) ∈ {k, k+1},
as claimed. Thus d2k+1(c0, c1, c2) ∈ {n − k, n − k − 1}.

Similar arguments show d2k+1(a0, a1, a2) ∈ {k, k + 1}. Indeed, a0 ≤
b0 ≤ b2 ≤ k ≤ (n − 1)/2 and so a2 ≥ (n − 1)/2. Thus a0 ≤ k ≤ a2 and
as before this implies d2k+1(a0, a1, a2) ∈ {k, k + 1}.

Hence d2k+1(a0, a1, a2) + d2k+1(c0, c1, c2) is at least n − 1, showing

(d2k+1(a0, a1, a2), d2k+1(b0, b1, b2), d2k+1(c0, c1, c2)) ∈ U

in this case.
In the remaining case we have

(1) b0 and c0 are the largest of (a0, b0, c0)
(2) a2 and b2 are the largest of (a2, b2, c2)
(3) b2 < b0

Using an argument similar to the one showing b2 + c2 < n− 1, we may
assume a0 + b0 < n − 1. Thus

(7.5) a0 < n − b0 ≤ n − b2 = a2 + ε2,

which implies a0 ≤ a2.
We want to show that

d2k+1(n − b0, n − b1, n − b2) − d2k+1(a0, a1, a2)

= d2k+1(n − b0, n − b1, a2 + ε2) − d2k+1(a0, a1, a2)

is at most 1. This will be the case if n−b0 ≤ k, so we assume k < n−b0.
This implies d2k+1(n−b0, n−b1, n−b2) = n−b0 and so d2k+1(b0, b1, b2) =
b0. Also k < n − b0 = c0 + ε0 and so k ≤ c0. So, if c0 ≤ c2, then
d2k+1(c0, c1, c2) = c0, which gives d2k+1(b0, b1, b2) + d2k+1(c0, c1, c2) =
b0 + c0 = n − ε0, as desired.

So we may assume n−c0 ≤ n−c2. If k ≤ n−c0, then d2k+1(c0, c1, c2) =
c0 and we are done. So n−c0 ≤ k and, since n−b2 < n−c2, k < n−c2.
Hence d2k+1(n − c0, n − c1, n − c2) is k or k + 1 and so d2k+1(c0, c1, c2)
is n − k or n − k − 1.

Since a0 ≤ n − c0 ≤ k and also k < n − b0 and (7.5) imply k ≤ a2.
Hence a0 ≤ k ≤ a2 which implies d2k+1(a0, a1, a2) is either k or k + 1.
It follows that d2k+1(a0, a1, a2) + d2k+1(c0, c1, c2) is n or n− 1 (since we
know it is at most n). This completes the proof that U is a subuniverse.
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Showing that the subalgebra generated by (0, 0, n), (0, n, 0) and
(n, 0, 0) contains U is straightforword and left to the reader. �

The lemma implies that the subset T of Theorem 7.2 is {(a, 0, c) :
a + c is n − 1 or n}; and so the shortest ρ-path connecting (0, 0, n) to
(n, 0, 0) has length 2n (and uses all the elements of T ). Since m =
|A| = n + 1, 2n = 2m − 2, proving that Mn achieves the bound of
Theorem 7.2. The lemma also implies that the first link of a shortest
ρ-path must begin with ρ1, and hence the alvin level is 2m − 1.

We note that Howard Lee in his thesis work has independently pro-
duced a class of examples with properties similar to our Mn’s and that
in particular have arbitrarily large Jónsson levels [20].

8. Gumm Terms and other Maltsev Conditions

3-ary terms d0, . . . , dk−1, p are called Gumm terms if the equations
of (7.1) hold except the last equation is replaced by the two equations

dk−1(x, y, y) ≈ p(x, y, y)

p(x, x, y) ≈ y

By Gumm’s result [8], a variety has modular congruence lattices if and
only if it has Gumm terms for some k. We say a variety has Gumm
level k if Gumm terms exist for this k but for no smaller k. (Under
this counting, a variety having Jónsson level 1 satisfies x ≈ y, while a
variety having Gumm level 1 is a variety having a Maltsev term.)

We can determine the Gumm level and find Gumm terms for (the
variety V generated by) a finite algebra using a method similar to the
one for Jónsson terms. As before we let S be the subalgebra of F3

V
(x, y)

generated by (x, x, y), (x, y, x) and (y, x, x), and we let T be the subset
of S of triples whose middle coordinate is x. Looking at (7.2) when f
is the p of Gumm’s condition, we see the first coordinate is y and the
third coordinate will equal the third coordinate of the triple obtained
in (7.2) using f = dk−1.

Theorem 8.1. Let V be a variety and let S be the subalgebra of F3
V
(x, y)

generated by (x, x, y), (x, y, x) and (y, x, x). Let T be the subset of S
consisting of triples whose middle coordinate is x. V is congruence
modular if and only if there is a sequence u0,u1, . . . ,uk−1, v of elements
in S such that

(1) u0 = (x, x, y),
(2) uj ∈ T , j = 0, . . . , k − 1,
(3) uj ρ uj+1, j = 0, . . . , k − 2,
(4) v0 = y and v2 = uk−1

2 .
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If V is congruence modular then the Gumm level of V is the least k
for which such elements exist. Moreover, if V is congruence modular
then the Gumm level is at most 2m− 2, where m = |FV(x, y)| and this
is the best possible bound in terms of m.

Proof. All statements except for the last should be clear. The alge-
bras Mn given above show the bound here is the best possible. In-
deed, Lemma 7.4 shows that the only member of S, whose first coor-
dinate is y, is (y, x, x). So v must be (y, x, x) and thus the sequence
u0,u1, . . . ,uk−1, v is a sequence which actually gives Jónsson terms so
the proof above shows that the bound of this theorem is achieved. �

Remarks on speed. Theorem 8.1 leads to an algorithm to test if a
variety V is congruence modular using a certain 3-generated subalgebra
S of F3

V
(x, y). By Proposition 6.1 S can be found in time a constant

times r||S||, where r is the highest arity of the basic operations. Since
the rest of the test in Theorem 8.1 can be done in less time, we see
that we can test for modularity in this time.

Using Day’s Theorem 3.5 we obtain the next result which gives an
algorithm with running time a constant times r||S′||, where here S′ is
a particular 4-generated subalgebra of F2

V
(x, y).

Theorem 8.2. Let S′ be the subalgebra of F2
V
(x, y) generated by a =

(x, x), b = (x, y), c = (y, x) and d = (y, y). Then V is congruence

modular if and only if (a, b) ∈ CgS′

(c, d).

Proof. Let a′, b′, c′ and d′ be free generators of F4 = FV(a′, b′, c′, d′)
and let

ρ1 = CgF4((a′, b′), (c′, d′)), ρ2 = CgF4((a′, c′), (b′, d′)), ρ = ρ1 ∧ ρ2.

Since F4/ρ1 and F4/ρ2 are both isomorphic to FV(x, y), F4/ρ is a subdi-
rect product of two copies of FV(x, y), and a = a′/ρ, etc., has the form
of the theorem. Now (a′, b′, c′, d′) is a Day quadruple in FV(a′, b′, c′, d′)
if and only if (a, b, c, d) is one in F4/ρ. The result follows easily from
this. �

To summarize, we can determine if V is congruence modular by cal-
culating a certain 3-generated subalgebra, S, of F3

V
(x, y), or by calcu-

lating a certain 4-generated subalgebra, S′, of F2
V
(x, y).

Since S′ is 4-generated, unary polynomials can be represented with
five-place terms and so the theorem leads to the following Maltsev con-
dition. We have permuted the variables so that the pattern of the three
inside variables looks much like Jónsson’s condition for distributivity.
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Theorem 8.3. A variety V has modular congruence lattices if and only
if there are 5-ary terms f0, . . . , fk such that V satisfies

f0(u, x, y, z, v) ≈ x

fi(y, x, y, x, y) ≈ x for 0 ≤ i ≤ k

fi(x, x, x, y, y) ≈ fi+1(x, x, x, y, y) for all even i < k

fi(x, x, y, y, y) ≈ fi+1(x, x, y, y, y) for all odd i < k

fk(u, x, y, z, v) ≈ z.

This Maltsev condition is not new: it was discovered by Nation [23],
who derived it in a more conventional manner as the Maltsev condition
associated with a certain lattice equation. He noted that this condition
shows modularity can be defined using two-variable equations (Day’s
Maltsev condition has three-variable equations; of course Gumm’s con-
dition also only involves two variables, but was proved later).

Hagemann-Mitschke terms for k-permutability. In [9] it was
shown that a variety has k-permutable congruences if and only if it
has ternary terms p0, p1, . . . , pk such that

p0(x, y, z) ≈ x

pi(x, x, y) ≈ pi+1(x, y, y), for i = 0, . . . , k − 1(8.1)

pk(x, y, z) ≈ z

Theorem 8.4. Let V be a variety and let S be the subalgebra of F2
V
(x, y)

generated by (x, x), (x, y) and (y, y). Let τ be the relation on S defined
by (a, b) τ (c, d) if a = d. V has k-permutable congruences if and only
if there is a τ -path in S from (x, x) to (y, y) of length at most k.

If V is k-permutable then k ≤ m, where m = |FV(x, y)| and this is
the best possible.

Proof. For an example showing the bound is the best possible we use
a reduct of an algebra constructed by Kearnes [14]. Let Kn be the
algebra with universe {0, 1, . . . , n − 1} and operations

hi(x, y, z) = (x∧ z)∨(x∧ pn−i(y))∨(z ∧ pi(y))

i = 1, . . . , n − 1, where ∨ and ∧ are just the lattice operations on Kn,
and

pi(x) =

{

i if x < i

i − 1 otherwise

Then Kn is freely generated by 0 and n−1 and the subalgebra generated
by (0, 0), (0, n − 1) and (n − 1, n − 1) is {(a, b) ∈ K2

n : b ≥ a − 1}. It
follows that Kn is n but not n − 1 permutable.
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We leave the details, as well as the rest of the proof, to the reader. �

Examples of finite k-permutable but not k − 1-permutable algebras
were first given by E. T. Schmidt [24].

It is interesting to note that the variety generated by Kn is also
congruence distributive with Jónsson level n, which is of course the
maximum for an n-permutable variety. So it is in CD(n) \ CD(n − 1).
It is also in CD′(n) \ CD′(n − 1) (this refers to the ALVIN variant of
Jónsson’s condition). When n is even, terms showing V (Kn) ∈ CD′(n)
are fi(x, y, z), i = 0, . . . , n, where fi(x, y, z) = hi(x, y, z) when i is odd,
and

fi(x, y, z) = hi(x, hi(x, y, z), z)

for i even.
If we take the reduct of Kn to the fi’s, the resulting algebra K′

n is
still in CD′(n), of course, but it is not in CD(n). K′

n is also the free
algebra on two generators, x = 0 and y = n − 1, in its variety. Using
arguments similar to those used in Lemma 7.4, one can show that the
subalgebra S generated by (x, x, y), (x, y, x) and (y, x, x) consists of all
triples in {0, . . . , n − 1}3 whose two larger coordinates sum to n − 2,
n − 1, or n, except that when this sum is n, the summands are not
allowed to be even numbers. Using this it follows that K′

n is CD′(n)
but not CD(n). This example finishes the proof of Proposition 7.1.

In Section 6 polynomial time algorithms were presented to determine
if a given finite idempotent algebra generates a congruence modular,
congruence distributive, or congruence k-permutable variety for some
k. We close this section with a problem that deals with possible spe-
cializations of these results.

Problem 8.5. For a fixed k, are there polynomial time algorithms to
determine if a given finite idempotent algebra has: Gumm level k, or
Jónsson level k, or is k-permutable?

We note that Theorem 6.2 settles this problem for Jónsson level 2
and 2-permutability, since an algebra has a majority term if and only
if it has Jónsson level 2.

9. Some Hardness Results

In this section we will see that the results from Sections 3, 5 and 6
for finite idempotent algebras do not carry over to the non-idempotent
case. Example 4.6 from Kiss-Prohle [18] provides, for each n, an alge-
bra An of size n such that H S(An−1

n ) is congruence distributive and
permutable, has type set {3}, no non-majority triples, and no tails.
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Nevertheless, An has a two element quotient that is essentially unary
and so HSP(An) satisfies no non-trivial idempotent Maltsev condi-
tion. Note that as presented, the clone of An does not appear to be
finitely generated, but in any case, we only need to use the 3-ary term
operations of An to obtain the desired properties. These examples
demonstrate that many of the results from Sections 3 and 5 breakdown
in the absence of idempotency.

We now turn our attention to the polynomial time algorithms pre-
sented in Section 6. The main result of this section is that without
the idempotency hypothesis, a number of problems not only fail to be
polynomial-time solvable, but are in fact exponential-time complete.
Consider the following problems:

GEN-CLO: Given a finite set A, a finite set of operations F on A and
an operation h on A, is h in the clone on A generated by F?

GEN-CLO1: Given a finite set A, a finite set of unary operations F on
A and a unary operation h on A, is h in the clone on A generated by
F?

GEN-CLO
′: Given a finite set A, a finite set of operations F on A and

a unary operation h on A, is h in the clone on A generated by F?

In each of these problems, the size of an instance is measured by
the size of the set A and the sizes of the operation tables of the input
operations.

Kozen [19] has shown that GEN-CLO1 is PSPACE complete and in
[1], Bergman, Juedes, and Slutzki prove that GEN-CLO is EXPTIME
complete. Note that they claim that H. Friedman had earlier proved
this result. By examining the proof presented by Bergman et al., it can
be seen that in fact GEN-CLO

′ is EXPTIME complete.

We now describe a procedure that takes as input an instance Γ =
〈A, F, h〉 of GEN-CLO

′ and produces a finite algebra BΓ with certain
properties.

Let 0, 1 be two elements not in A and let B = A ∪ {0, 1}. For an
operation g(x1, . . . , xn) on A, let g′(x1, . . . , xn) denote the operation on
B that extends g and is such that g′(b1, . . . , bn) = 0 if bi = 0 or 1 for
some i. For G a set of operations on A, G′ will denote the set of all g′

for g ∈ G.
Let x∧ y denote the operation on B such that

x∧ y =

{

x if x = y

0 otherwise.
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Note that ∧ defines a flat meet semilattice operation on B and induces
the partial order x ≤ y if and only if x = x∧ y. For x, y ∈ B we define
x∨ y to be the least upper bound of {x, y} with respect to this partial
order, if it exists. So, the join of two elements will exist if and only if
they are comparable with respect to ≤.

With ∧ and ∨ defined as in the previous paragraph, it is not hard
to see that the ternary operation (x∧ y)∨(x∧ z) is defined for all x,
y, z ∈ B. Also note that on B, (x∧ y)∨(x∧ z) ∈ {x, 0}. With more
effort, or by consulting Section 6 of [21], it can be seen that any algebra
having (x∧ y)∨(x∧ z) as a term operation belongs to CD(4).

Let BΓ be the algebra with universe B and with basic operations
F′ ∪ {th(x

′, x, y, z)}, where th is defined as follows:

th(x
′, x, y, z) =

{

(x∧ y)∨(x∧ z) if h′(x) = x′

0 otherwise.

Note that th(0, x, y, z) = 0 for all x, y, z ∈ A and th(1, x, y, z) = 0
for all x, y, z ∈ B. Also note that th(x

′, x, y, z) ∈ {x, 0}. Without loss
of generality, we may assume that the identity map, idA ∈ F and so
id′

A is in F′. Note that the operation id′
A is the identity on A and maps

0 and 1 to 0.

Lemma 9.1. Let u(x) be a term operation of BΓ. If u(A) ⊆ A then
there is some term operation v(x) of the algebra 〈A, F〉 such that u(a) =
v(a) for all a ∈ A.

Conversely, if v(x) is a term operation of 〈A, F〉 then v′(x) is a term
operation BΓ.

Proof. We prove the first part by induction on the length of a term
that defines u and leave the proof of the second part to the reader.
If u is defined by a term of length 1 then u(x) = x for all x ∈ B
and so setting v(x) = x works. If u is defined by a term of length
greater than 1 then for all x ∈ B, u(x) = f ′(s1(x), . . . , sn(x)) or
u(x) = th(s1(x), s2(x), s3(x), s4(x)) for some f ∈ F and some unary
term operations si(x) of BΓ that have shorter lengths.

In the former case, since u(A) ⊆ A it follows that si(A) ⊆ A for
all i. By induction we conclude that for each i there is a term oper-
ation vi(x) of 〈A, F〉 such that si(a) = vi(a) for all a ∈ A. It follows
that by setting v(x) to be the term operation f(v1(x), . . . , vn(x)) that
u(a) = v(a) for all a ∈ A. In the latter case, u(A) ⊆ A implies,
by the remark above, that s2(a) ∈ A, for a ∈ A, and that u(a) =
th(s1(a), s2(a), s3(a), s4(a)) = s2(a). By induction s2(a) = v2(a), for
some term operation v2 of 〈A, F〉, and thus u(a) = v2(a), for all a ∈ A,
as required. �



ON THE COMPLEXITY OF SOME MALTSEV CONDITIONS 37

Theorem 9.2. Let Γ = 〈A, F, h〉 be an instance of GEN-CLO
′. If h is

in the clone on A generated by F then (x∧ y)∨(x∧ z) is in the clone of
BΓ. Conversely, if BΓ has any idempotent term that depends on more
than one variable then h is in the clone on A generated by F.

Proof. If h is in the clone on A generated by F then by the previ-
ous lemma h′(x) is a term operation of BΓ. Then (x∧ y)∨(x∧ z) =
th(h

′(x), x, y, z) is a term operation of BΓ.
Conversely, suppose that n > 1 and u(x1, . . . , xn) is an idempotent

term operation of BΓ that depends on all n variables. Since u is surjec-
tive and th(x

′, x, y, z) is the only basic operation of BΓ that is surjective
then it follows that

u(x1, . . . , xn) = th(s1(x̄), s2(x̄), s3(x̄), s4(x̄))

for some n-ary term operations si of BΓ. Since u(x, x, . . . , x) = x for
all x ∈ B then

x = th(u1(x), u2(x), u3(x), u4(x))

for all x ∈ B, where ui(x) = si(x, x, . . . , x). When x ∈ A we conclude
that u2(x) = x and u1(x) = h′(x). Then, by the previous lemma there
is a term operation v(x) of 〈A, F〉 such that h(x) = u1(x) = v(x) for all
x ∈ A. This establishes that h is in the clone on A generated by F. �

We would like to thank Ross Willard for his comments on an ear-
lier version of the construction used in this section. With his input
we were able to strengthen the following corollary considerably. We
would also like to mention that there are some similarities between our
construction and one introduced by Hobby in [10] to establish a related
hardness result.

Corollary 9.3. The following problems are all EXPTIME complete:
Given a finite algebra A,

(1)n for a fixed n > 1, does A have an idempotent term operation
that depends on n variables?

(2)n for a fixed n > 1, does A have an idempotent term operation
that depends on k variables for some k between 2 and n vari-
ables?

(3) does A have a semilattice term operation?
(4)T does A generate a variety that omits all of the types in the set

T , where T is one of:
(a) {1},
(b) {1, 2},
(c) {1, 5},
(d) {1, 2, 5}.
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(5) does A generate a congruence modular variety?
(6) does A generate a congruence distributive variety?
(7)n For a fixed n > 3, is A in CD(n)?

Proof. From the theorem it follows that if the instance Γ = (A, F, h)
of GEN-CLO

′ is such that h is not in the clone on A generated by F

then BΓ does not have any idempotent term operation that depends
on more than one variable. It then follows that for each of the listed
problems, the answer is negative for the algebra BΓ.

On the other hand, if h is in the clone on A generated by F then
(x∧ y)∨(x∧ z) is a term operation of BΓ and so the answer to each of
the listed problems is positive for BΓ.

Since the construction of the algebra BΓ from Γ can be carried out
in polynomial time we conclude that the EXPTIME complete problem
GEN-CLO

′ can be reduced to each of the listed problems. It is not
hard to see that each of the first three problems is in EXPTIME; for
the remaining problems, membership in EXPTIME follows from the
observations and remarks found in Sections 7 and 8. So each of the list
problems is EXPTIME complete. �

The previous corollary does not settle the issue of the complexity of
determining if a finite algebra has a majority term (or equivalently has
Jónsson level 2) and so we pose the following problem. Note that for
idempotent algebras, Theorem 6.2 establishes that this question can be
solved by a polynomial time algorithm.

Problem 9.4. Is the problem of determining if a finite algebra has a
majority (or Maltsev) term EXPTIME-complete?

Corollary 9.5. The following problems are EXPTIME hard and belong
to 2-EXPTIME: Given a finite algebra A,

(1) Does A have an idempotent term operation that depends on
more than one variable?

(2) Does A have idempotent term operations that depend on arbi-
trarily large numbers of variables?

Proof. Our encoding of instances of GEN-CLO
′ as finite algebras can be

used to establish the hardness of both problems. To place the prob-
lems in the complexity class 2-EXPTIME, we make use of a result of
Urbanik [26]. In his Lemma 20, he shows that a finite algebra A has
an idempotent term operation that depends on more than 1 variable
if and only if it has one that depends on at most max{|A|, 3} vari-
ables. The problem of determining if a given algebra has this property
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is a member of 2-EXPTIME, since checking this condition just involves
constructing all term operations of A of arity at most max{|A|, 3}.

Using Theorems 1 and 2 from [26] it follows that A has idempotent
term operations that depend on arbitrarily large numbers of variables
if and only if A has an idempotent term operation that depends on
more than log2 |A| variables (for then the idempotent reduct of A is
not a diagonal algebra). From this we conclude that the second of our
problems lies in 2-EXPTIME. �

We speculate that both problems are actually in EXPTIME and pose
the following problem.

Problem 9.6. Determine if either problem from the previous corollary
is in EXPTIME.

Let ID-MEMn be the problem that takes as input a finite algebra
A, a subset S of A of size at most n and an element a ∈ A and asks
whether a is in the subalgebra of the idempotent reduct of A generated
by S.

Corollary 9.7. For every n > 1 the problem ID-MEMn is EXPTIME
complete.

Proof. Given an instance 〈A, S, a〉 of ID-MEMn, to determine if a is in
the subalgebra of the idempotent reduct of A generated by S, we need
only construct the n-ary idempotent term operations of A and then ap-
ply them to the elements of S until the element a appears. This process
can be carried out in time bounded by an exponential function of the
size of A and so ID-MEMn is in EXPTIME. To establish EXPTIME
hardness of ID-MEMn, we reduce the EXPTIME complete problem of
determining if a finite algebra has an idempotent term operation that
depends on between 2 and n variables to ID-MEMn.

For A an algebra, let A⋄ denote the idempotent reduct of A. Note
that for any algebra, (A⋄)n = (An)⋄. A key observation is that if a
finite algebra A has an idempotent term that depends on m variables

then there are tuples ~bi, i ≤ m, and ~a in Am such that ~a is in the

subalgebra of (Am)⋄ generated by the ~bi’s and is not equal to any of

the ~bi’s.

To see this, suppose that t(x̄) is an m-ary idempotent term of A that
depends on all of its variables. Then for each i ≤ m, there are bj

i , for
j ≤ m of A such that t(b1

i , . . . , b
m
i ) = ai 6= bi

i. Then in (Am)⋄,

t(~b1, . . . ,~bm) = ~a = (a1, a2, . . . , am)



40 RALPH FREESE, MATTHEW A. VALERIOTE

where ~bi = (bi
1, b

i
2, . . . , b

i
m) and so ~a is in the subalgebra of the idem-

potent reduct of Am generated by the ~bi’s but is not equal to any of
them.

On the other hand, if a finite algebra A has a subset S of size m
and an element a such that a is not in S but is in the subalgebra of A⋄

generated by S then A has an m-ary idempotent term that depends
on at least 2 variables, since there must be some idempotent term that
when applied to the elements of S yields a.

So, given a finite algebra A and n > 1, to determine if A has an
idempotent term that depends on between 2 and n variables we need
only check to see if there is some 1 < m ≤ n, a subset S of Am of
size at least 2 and at most m, and an element ~a in Am that is not
in S such that ~a is in the subalgebra of the idempotent reduct of Am

generated by S. This in turn is equivalent to testing ID-MEMn with
the algebra An on all subsets S of An of size at least 2 and at most n
and all elements ~a ∈ An \ S. From this we conclude that ID-MEMn is
EXPTIME hard and hence EXPTIME complete. �
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[18] Emil W. Kiss and Péter Pröhle. Problems and results in tame congruence the-
ory. A survey of the ’88 Budapest Workshop. Algebra Universalis, 29(2):151–
171, 1992.

[19] Dexter Kozen. Lower bounds for natural proof systems. In 18th Annual Sym-
posium on Foundations of Computer Science (Providence, R.I., 1977), pages
254–266. IEEE Comput. Sci., Long Beach, Calif., 1977.

[20] Howard Lee. Finite algebras that generate congruence distributive varieties.
presentation at the American Mathematical Society Annual Meeting, San An-
tonio, Texas, 2006.

[21] Ralph McKenzie. Tarski’s finite basis problem is undecidable. Internat. J. Al-
gebra Comput., 6(1):49–104, 1996.

[22] Ralph McKenzie, George McNulty, and Walter Taylor. Algebras, Lattices, Va-
rieties, Volume I. Wadsworth and Brooks/Cole, Monterey, California, 1987.

[23] J. B. Nation. Varieties whose congruences satisfy certain lattice identities. Al-
gebra Universalis, 4:78–88, 1974.

[24] E. T. Schmidt. On n-permutable equational classes. Acta Sci. Math. (Szeged),
33:29–30, 1972.
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