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Abstract. We describe an algebraic approach to the constraint satis-
faction problem (CSP) and present recent results on the CSP that make
use of, in an essential way, this algebraic framework.

1 Introduction

This paper presents material from the talks that the authors gave at the Dagstuhl
seminar on the Complexity of Constraints held in 2006. The primary goals of
the talks were to describe an algebraic approach to the constraint satisfaction
problem and to present, within the algebraic context, recent results relating to
two of the main motivating conjectures in the field.

During our talks, by necessity, a fair amount of time was occupied in de-
scribing basic and advanced universal algebra. In particular, overviews of two
approaches to analyzing the local structure of finite algebras were given. The
first, known as tame congruence theory, was developed in the 1980s by David
Hobby and Ralph McKenzie and has played an important role in the develop-
ment of universal algebra ever since. The second is a much more recent approach
developed by Bulatov specifically to address questions relating to the CSP. For
readers who wish to learn more about basic universal algebra we recommend [17]
and [37]. For more information on tame congruence, the works [27] or [19] can be
consulted. The paper [10] contains details of the theory developed by Bulatov.

2 Constraint Satisfaction and Algebra

2.1 Constraint Satisfaction

We use the homomorphism definition of the CSP. A vocabulary τ is a finite set
of relational symbols; each symbol has an associated arity. A (finite) relational
structure H with vocabulary τ consists of a finite set H , its universe, and, for



every relational symbol R ∈ τ of arity n, an n-ary relation RH on H , the
interpretation of R by H. A homomorphism of a structure G to a structure H
with the same vocabulary τ is a mapping ϕ : G → H from the universe of G to
the universe of H such that for each (n-ary) relational symbol R ∈ τ and any
tuple (a1, . . . , an) ∈ RG the tuple (ϕ(a1), . . . , ϕ(an)) belongs to RH.

For a finite structure H the non-uniform constraint satisfaction problem,
denoted CSP(H), is the following combinatorial problem: Given a structure G of
the same vocabulary as H, decide whether or not there is a homomorphism from
G to H. The structure H is called the template, and G is called the instance. For
a class H of relational structures, in the uniform constraint satisfaction problem,
denoted CSP(H), the question is: given a structure H ∈ H and a structure G
over the same vocabulary as H, decide whether there exists a homomorphism
from G to H. Sometimes it is convenient to think of a uniform problem as of the
union or collection of non-uniform problems CSP(H) for H ∈ H.

Example 1 (NAE, Linear Equations, and H-Colouring).

1. Let HNAE be a relational structure with universe {0, 1} and one ternary
relation RHNAE = {0, 1}3 \ {(0, 0, 0), (1, 1, 1)}. It is easy to see that the
problem CSP(HNAE) is the same as the Not-All-Equal Satisfiability
problem, in which, given a set of propositional variables and a set of triples of
these variables, the question is whether or not it is possible to assign values
to the variables such that the variables from each of the specified triples take
both possible values, 0 and 1.

2. Let F be a finite field and Γ the set of all relations over F that can be
represented as the set of solutions of a linear equation over F . Let HLQ(F )
denote the set of all structures with universe F , whose relations are from Γ .
Then the uniform problem CSP(HLQ(F )) is equivalent in a certain sense to
the problem of solving systems of linear equations over F .3

3. Let H be a (directed) graph. In the H-Colouring problem we are asked
whether there is a homomorphism from a given graph G to H . So, the H-
Colouring problem is just the problem CSP(H).

Two major issues have arisen in the study of the study of the constraint
satisfaction problem. The first one is the computational complexity of solving
such problems. Although constraint satisfaction problems may belong to and be

3 The size of a CSP instance is defined to be the length of a reasonable encoding
of the structures involved, that is the instance in the case of a non-uniform prob-
lem, and the source structure and the template in the case of a uniform problem.
Usually such an encoding includes a list of elements of the structures and a list of
tuples in all relations. In some cases such a general representation is not the most
natural. For example, the natural representation of a CSP(HLQ(F )) instance is a
list of equations defining relations of the template. Although no example is known,
different representation may affect the complexity of uniform problems. However,
for the sake of generality throughout the paper we use the explicit representation of
relational structures. The choice of representation does not affect the complexity of
non-uniform problems.



complete in many complexity classes, see, e.g. [1, 33, 34], in this paper we con-
centrate on problems solvable in polynomial time (such problems are often said
to be tractable). The remaining problems are called intractable. (Throughout the
paper we assume P 6=NP.) All the intractable problems known so far turn out to
be NP-complete. This prompted Feder and Vardi [24] to suggest the Dichotomy
Conjecture: Every non-uniform CSP is either tractable or NP-complete.

The second issue is the descriptive complexity of non-uniform problems. Let
H be a relational structure. The class of structures homomorphic to H is often
denoted by CSP(H) (this does not cause any confusion, because CSP(H) is
the class of yes-instances of the corresponding constraint satisfaction problem,
and therefore the language associated to this problem). In many cases the class
CSP(H) can be characterized as the class of all structures satisfying some formula
in a certain logic. The goal is to describe structures H such that CSP(H) is
expressible in this logic. We concentrate on the logic corresponding to Datalog.
For definitions of Datalog, Datalog expressibility, related properties of structures
and problems, as well as results on other important logical languages the reader
is referred to [16] from the same volume.

Example 2 (continued).

1. NAE is NP-complete, [39].
2. Linear Equations is not expressible in Datalog, [24].
3. H-Coloring is tractable if and only if H is a bipartite graph. In this case

it is expressible in Datalog. Otherwise it is NP-complete, [26].

2.2 Polymorphisms and Algebras

In this section we provide a brief overview of the algebraic approach to the
constraint satisfaction problem.

At the core of this approach is the concept of a polymorphism. Let R be a
relation on a set A. An (n-ary) operation f on the same set is said to be a poly-
morphism of R if for any tuples a1, . . . ,an ∈ R the tuple f(a1, . . . ,an) obtained
by applying f component-wise also belongs to R. The relation R is called an
invariant of f . An operation f is a polymorphism of a relational structure H if it
is a polymorphism of each relation of the structure. The set of all polymorphisms
of H is denoted by Pol(H). For a collection C of operations Inv(C) denotes the
set of invariants of all operations from C.

Example 3 ([40]). Let R be the solution space of a system of linear equations
over a finite field F . Then the operation m(x, y, z) = x−y+z is a polymorphism
of R. Indeed, let A · x = b be the system defining R, and x, z,y ∈ R. Then

A · m(x, z,y) = A · (x − z + y) = A · x − A · z + A · y = b− b + b = b.

In fact, the converse can also be shown: if R is invariant under m then it is the
solution space of a certain system of linear equations.



The following theorem relates polymorphisms, complexity, and expressibility
in Datalog

Theorem 1 ([29, 31, 35]). Let H1 and H2 be two structures with a common
universe.

1. If Pol(H1) ⊆ Pol(H2) then CSP(H2) is log-space reducible to CSP(H1).

2. If Pol(H1) ⊆ Pol(H2) and CSP(H1) is expressible in Datalog, then CSP(H2)
is expressible in Datalog.

An algebra is a pair A = (A; F ) consisting of a set A, the universe of A,
and a set F of operations on A, the basic operations of A. Operations that can
be obtained from the basic operations of A and the projection operations on A,
that is operations of the form f(x1, . . . , xn) = xi, by means of compositions are
called term operations of A. Term(A) denotes the set of all term operations of A.
Operations that can be obtained from term operations by substituting constants
are called polynomial operations (or just polynomials) of A.

Any relational structure H and therefore any non-uniform constraint satis-
faction problem can be associated with an algebra Alg(H) = (H ; Pol(H)) where
H is the universe of H. Conversely, any algebra A = (A; F ) corresponds to a class
of structures Str(A) that includes all the structures H with universe A, having
a finite vocabulary, and such that Term(A) ⊆ Pol(H). Therefore every algebra
gives rise to a uniform constraint satisfaction problem CSP(Str(A)), which we
will denote by CSP(A).

An algebra A is called tractable if CSP(H) is tractable for each H ∈ Str(A)
and is called NP-complete if CSP(H) for some H ∈ Str(A) is. Theorem 1 im-
plies that if CSP(H) is tractable then the algebra Alg(H) is tractable. We make
two observations. First, if an algebra A is not tractable, it does not mean that
CSP(H) is intractable for all H ∈ Str(A); this class always contains poor struc-
tures whose associated class of constraint satisfaction problems is very easy.
Second, if A is tractable it does not necessarily mean that the uniform problem
CSP(A) is tractable. Although no example is known, it may be the case that
the time complexity of problems CSP(H), H ∈ Str(A), does not have a uniform
polynomial bound, even though the complexity of each problem is polynomi-
ally bounded. To distinguish these two potential situations we sometimes call
tractable algebras locally tractable and algebras for which CSP(A) is tractable,
globally tractable. In other words, A is locally tractable if every non-uniform
problem from CSP(A) is solvable in polynomial time.

The relational width of an algebra A is a parameter related to certain prop-
erties of Datalog programs or propagation algorithms that solve the problems
CSP(H) for H ∈ Str(A). The algebra A is said to be of bounded width if CSP(H)
is expressible in Datalog for any structure H ∈ Str(A). For complete definitions
and discussion of this concept see [16] in the same volume.

The tractability and relational width of an algebra usually follows from the
presence of a certain polymorphism of a structure (or a term operation of an
algebra).



Example 4 ([5, 13, 20, 22, 29, 31]). If one of the following operations is a term
operation of an algebra A [a polymorphism of a relational structure H] then
CSP(A) [CSP(H)] is tractable:

• a semilattice operation, that is a binary operation f satisfying the equations:
(a) f(x, x) ≈ x (idempotency); (b) f(x, y) ≈ f(y, x) (commutativity);
(c) f(f(x, y), z) ≈ f(x, f(y, z)) (associativity);

• a 2-semilattice operation, that is a binary operation f satisfying the equa-
tions f(x, x) ≈ x,
f(x, y) ≈ f(y, x), and f(x, f(x, y)) ≈ f(x, y);

• a near-unanimity (NU ) operation, that is an operation f satisfying the equa-
tions f(x, . . . , x, y) ≈ f(x, . . . , x, y, x) ≈ . . . ≈ f(y, x, . . . , x) ≈ x.

• a majority operation, that is a ternary operation g satisfying the equations
g(x, x, y) ≈ g(x, y, x) ≈ g(y, x, x) ≈ x (thus a majority operation is a ternary
near-unanimity operation).

• a Mal’tsev operation, that is a ternary operation h satisfying the equations
h(x, x, y) ≈ h(y, x, x) ≈ y.

• a generalized majority-minority (GMM ) operation, that is an operation f
such that for any a, b ∈ A one of the following 2 conditions holds:
f(x, . . . , x, y) = f(x, . . . , x, y, x) = . . . = f(y, x, . . . , x) = x, for x, y ∈ {a, b};
or
f(x, . . . , x, y) = f(y, x, . . . , x) = x, for x, y ∈ {a, b}.

Example 5. If one of the following operations is a polymorphism of a relational
structure H, then CSP(H) is expressible in Datalog:

• a semilattice operation;
• a 2-semilattice operation;
• a near-unanimity operation;
• a majority operation.

On the other hand, the intractability of a relational structure (or an algebra)
seems to imply that it has rather uninteresting polymorphisms (term operations,
respectively). An operation f on a set A is said to be an essentially unary
surjective operation if f(x1, . . . , xn) = g(xi) for some i and some surjective map
g(x) of A.

Example 6 (continued).

1. An operation f is a polymorphism of HNAE if and only if f is an essentially
unary surjective operation, [31, 32].

2. An operation f is a polymorphism of all relations representable by lin-
ear equations over a field F if and only if f = α1x1 + . . . + αnxn where
α1, . . . , αn ∈ F are such that α1 + . . . + αn = 1, [40].

3. If H = Kℓ, a complete graph on ℓ > 2 vertices, then an operation f is a poly-
morphism of H if and only if f is an essentially unary surjective operation.
If H = K2 then H has a majority polymorphism.



The examples above and Theorem 1 provide necessary conditions for tractabil-
ity and expressibility in Datalog.

Corollary 1.

1. If every polymorphism of a structure H [every term operation of an alge-
bra A] is an essentially unary surjective operation then CSP(H) [CSP(A),
respectively] is NP-complete.

2. If there is a field F such that every polymorphism of a structure H [every
term operation of an algebra A] is of the form f = α1x1 + . . .+αnxn, where
α1, . . . , αn ∈ F are such that α1 + . . . + αn = 1, then CSP(H) [CSP(A),
respectively] is not expressible in Datalog [is not of bounded relational width].

If every term operation of a finite algebra A is essentially unary surjective
then A is said to be a G-set. If there is a module M over a ring R such that every
term operation of A can be represented as α1x1 + . . . + αnxn for α1, . . . , αn ∈ R
and α1 + . . . + αn = 1, then A is called an idempotent reduct of a module.

Example 4 allows one to classify 2-element algebras in terms of complexity.

Proposition 1 (Schaefer’s Dichotomy Theorem, [39]). For any 2-element
algebra A, the problem CSP(A) is (globally) tractable if and only if Term(A)
contains one of the following:

– the constant 0 or constant 1 operation;

– the conjunction or disjunction operations (which are semilattice);

– the majority operation (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x);

– the Mal’tsev operation x − y + z(mod 2).

In all other cases CSP(A) is NP-complete.

2.3 Varieties

For the purposes of settling the Dichotomy Conjecture and related questions, the
class of algebras to be considered can be significantly reduced. An algebra A is
called surjective if every one of its unary term operations is surjective. One way
to transform an algebra into a surjective algebra is as follows: Let g be a unary
term operation of A = (A; F ) with a minimal range. Then g(A) denotes the
algebra (g(A); Fg) where Fg = {gf |g(A) | f ∈ Term(A)}. It is not difficult to see
that this algebra is surjective. The algebra A is called idempotent if every one of
its term operations f satisfies the equation f(x, . . . , x) ≈ x. The full idempotent
reduct of A is the algebra Id(A) = (A; Fid) where Fid is the set of all idempotent
operations from Term(A).

Theorem 2 ([14]). Let A be an algebra.

1. If g is a unary term operation of A with minimal range then A is tractable
if and only if g(A) is tractable. The algebra A is NP-complete if and only if
g(A) is NP-complete.



2. If A is surjective then A is tractable if and only if Id(A) is tractable. The
algebra A is NP-complete if and only if Id(A) is NP-complete.

The main idea of the algebraic approach is to use some properties of an alge-
bra in order to determine the complexity of the associated constraint satisfaction
problem. To identify these properties, some connections between the complexity
of an algebra and the complexity of those algebras that can be obtained from it
by some standard algebraic constructions will be very helpful.

– Let A = (A; F ) be an algebra. The k-th direct power of A is the algebra
Ak = (Ak; F ) where we treat each (n-ary) operation f ∈ F as acting on Ak

component-wise.
– Let A = (A; F ) be an algebra, and let B be a subset of A such that, for any

(n-ary) f ∈ F , and for any b1, . . . , bn ∈ B, we have f(b1, . . . , bn) ∈ B. Such
a subset is called a subuniverse of A. When B is non-empty, the algebra
B = (B; F

B
), where F

B
consists of restrictions of operations f ∈ F to B, is

called a subalgebra of A.
– Let A1 = (A1; F1) and A2 = (A2; F2) such that F1 = {f1

i | i ∈ I},
F2 = {f2

i | i ∈ I}, and f1
i , f2

i are of the same arity, for some set I and
each i ∈ I. A mapping ϕ : A1 → A2 is called a homomorphism from A1

to A2 if ϕf1
i (a1, . . . , ani

) = f2
i (ϕ(a1), . . . , ϕ(ani

)) holds for all i ∈ I and all
a1, . . . , ani

∈ A1. If the mapping ϕ is onto then A2 is said to be a homomor-
phic image of A1.

By a classic result of Birkhoff (see Theorem 11.9 from [17]), properties of alge-
bras that are preserved under the taking of subalgebras, homomorphic images,
and direct products (a natural generalization of the direct power construction)
are precisely those that can be defined by equations. We note that except for the
last one, all of the properties of the operations listed in Example 4 are defined
by equations. Equationally defined classes of algebras, also known as varieties
of algebras, are fundamental objects of study in universal algebra [27, 37]. The
following theorems thus provide an important link between the constraint satis-
faction problem and universal algebra.

Theorem 3 ([14, 8]). Let A be a finite algebra. Then

1. if A is tractable then so is every subalgebra, homomorphic image, and direct
power of A.

2. if A has an NP-complete subalgebra, homomorphic image, or direct power,
then A is NP-complete itself.

Theorem 4 ([35]). Let A be a finite algebra. If A has bounded width then every
subalgebra, homomorphic image, and direct power of A has bounded width.

Using Birkhoff’s Theorem, the variety that an algebra A determines, denoted
by var(A), can be defined either as the class of all algebras that satisfy the same
equations that A does, or as the class of all algebras that arise as homomorphic
images of subalgebras of direct powers of A.



Corollary 2.

1. If A is tractable then so is every finite algebra from var(A). If var(A) contains
an NP-complete algebra then A is NP-complete.

2. If A has bounded width then every finite algebra from var(A) has bounded
width. If var(A) contains an algebra of unbounded width then A does not
have bounded width.

3. Tractability, NP-completeness, and bounded width are properties of an alge-
bra that depend only on the equations satisfied by the algebra.

Using Corollary 2 we can strengthen Corollary 1 as follows.

Theorem 5 ([14, 35]). Let A be an algebra

1. If var(A) contains a G-set then A is NP-complete.
2. If var(A) contains a reduct of a module then A does not have bounded width.

To date no NP-complete or unbounded width algebra is known that does
not satisfy the corresponding condition of Theorem 5. It is widely believed that
these necessary conditions are also sufficient, at least for idempotent algebras.

Conjecture 1 (complexity dichotomy conjecture) An idempotent algebra
A is tractable if and only if var(A) does not contain a G-set. Otherwise it is
NP-complete.

Conjecture 2 (bounded width conjecture) An idempotent algebra A has
bounded width if and only if var(A) does not contain a reduct of a module.

Conjectures 1 and 2 have been proved in a number of particular cases: 2-
element algebras ([39]), 3-element algebras ([12]), semigroups ([9, 23]). The fol-
lowing example shows that the undirected graphs dichotomy theorem by Hell
and Nešetřil [26] also fits Conjecture 1.

Example 7 ([11]). Let H be an undirected graph, A = Alg(H), and g a unary
term operation of A with a minimal range. Then H is non-bipartite if and only
if var(g(A)) contains a G-set. Otherwise g(H) is K2 and g(A) has a majority
term operation.

3 Alternate versions of the conjectures

The goal of this section is to present new formulations of Conjectures 1 and 2
that have emerged over the past several years. Central to our first formulation is
the notion of a congruence of an algebra A. A congruence θ of A is an equivalence
relation on A that is invariant under all basic (and therefore term) operations of
A. Every algebra A has two distinguished congruences 0A and 1A corresponding
to the smallest and largest equivalence relations on the set A. For θ a congruence
of A = (A; F ) and a ∈ A by a/θ we denote the θ-class containing a; and denote
{a/θ | a ∈ A}, the set of all θ-classes, by A/θ. The quotient algebra A/θ is the



algebra with universe A/θ and whose basic operations are {f/θ : f ∈ F}, where
for f ∈ F ,

f/θ(a1/θ, . . . , an/θ) = (f(a1, . . . , an))/θ.

It is elementary that the mapping ϕ : A → A/θ that maps an element a ∈ A to
a/θ is a surjective homomorphism and so it follows that A/θ is a homomorphic
image of A.

3.1 Tame Congruence Theory

In the early 1980’s Hobby and McKenzie developed a theory of the local structure
of finite algebras called tame congruence theory [27]. At the heart of the theory is
a notion of a neighbourhood of a finite algebra, relativized to certain congruences
of the algebra. The local structure of a finite algebra that emerges from their
theory is surprisingly well-behaved and has been used to prove many striking
theorems in universal algebra.

Definition 1. Let A be a finite algebra and α a minimal congruence of A (i.e.,
0A < α and if β is a congruence of A with 0A < β ≤ α then β = α.)

– An α-minimal set of A is a subset U of A such that
• U = p(A) for some unary polynomial p(x) of A that is not constant on

at least one α-class, and
• with respect to containment, U is minimal with this property.

– An α-neighbourhood (or α-trace) of A is a subset N of A such that
• N = U ∩ (a/α) for some α-minimal set U and α-class a/α, and
• |N | > 1.

It follows from the definition that a given α-minimal set U contains within
it at least one (and possibly several) α-neighbourhoods. The union of all of the
α-neighbourhoods in U is called the body of U , while the remaining elements
of U form the tail of U . What is surprising is that the structure that A induces
on any one of its α-neighbourhoods is quite uniform and is restricted to one
of five possible types. What is meant by induced structure is given in the next
definition.

Definition 2. Let A be an algebra and U ⊆ A. The algebra induced by A on U
is the algebra with universe U whose basic operations consist of the restriction
to U of all polynomials of A under which U is closed. We denote this induced
algebra by A|U .

Note the difference between this notion and the more familiar one of sub-
universe (recall that a subuniverse of an algebra A is a subset of A that is
closed under all term operations of A). In the theory developed by Hobby and
McKenzie, the polynomials of an algebra play a central role and in fact, two
finite polynomially equivalent algebras (i.e., two algebras over the same universe
whose sets of polynomials coincide) are, for the most part, indistinguishable
using tame congruence theory.



Theorem 6. Let A be a finite algebra and α a minimal congruence of A.

– If U and V are α-minimal sets then A|U and A|V are isomorphic and in fact
there is a polynomial p(x) of A that maps U bijectively on to V .

– If N and M are α-neighbourhoods then A|N and A|M are isomorphic via the
restriction of some polynomial of A.

– If N is an α-neighbourhood then A|N is polynomially equivalent to one of:

1. A unary algebra whose basic operations are all permutations (unary
type);

2. A one-dimensional vector space over some finite field (affine type);
3. A 2-element boolean algebra (boolean type);
4. A 2-element lattice (lattice type);
5. A 2-element semilattice (semilattice type).

Much more can be said about the α-neighbourhoods and minimal sets of
an algebra but for now we point out that the previous theorem allows us to
assign a type to each minimal congruence α of an algebra according to the
behaviour of the α-neighbourhoods. For example, a minimal congruence whose
α-neighbourhoods are all polynomially equivalent to a vector-space is said to
have affine type (or to have type 2).

In Figure 1 two α-minimal sets of an algebra A, U and V , of a minimal con-
gruence α are pictured, along with two α-neighbourhoods, N and M , contained
in them. The dashed lines delineate the α-blocks of the algebra.

Taking this idea one step further, given a pair of congruences (α, β) of A with
β covering α (i.e., α < β and there are no congruences of A strictly between the
two), one can form the quotient algebra A/α and then consider the congruence
β/α = {(a/α, b/α) : (a, b) ∈ β}. Since β covers α in the congruence lattice of
A then β/α is a minimal congruence of A/α and so can be assigned one of the
five types. In this way we can assign to each covering pair of congruences of A a
type and so end up with a labelled congruence lattice for A.

For modestly sized algebras, one can, without too much effort, compute their
labelled congruence lattices. Since in general, the size of the congruence lattice
of a finite algebra can be much larger than the algebra, the task of computing
the labelled congruence lattice of an algebra is by no means tractable. If one is
just interested in determining the type of a given covering pair of congruences or
in the set of labels that appear in the labelled congruence lattice of an algebra,
polynomial time algorithms exist (see [3]).

Example 8. Consider the algebra A with universe {0, 1, 2, 3} having a single bi-
nary basic operation x · y defined by:

· 0 1 2 3
0 0 0 0 3
1 0 1 0 1
2 0 0 2 3
3 3 1 3 3



N classesα−A

MV

U

Fig. 1. Minimal Sets

Besides the two congruence 0A and 1A, A only has two other (minimal)
congruences, α and β, pictured in Figure 2 as partitions (using the dotted lines)
of the universe of A.

1
α   = 

0

3

2 0 2

1 3
β  =   

Fig. 2. The Congruences α and β, with their minimal sets

We claim that the type of α is boolean and the type of β is semilattice. To
see this, consider the polynomials p(x) = x · 1 and q(x) = x · 2. The range of p
is {0, 1} and so N = {0, 1} is both an α-minimal set and an α-neighbourhood
(since p is non constant on some α-class and has minimal range subject to
this property). On the other hand, the range of q is {0, 2, 3} and so is either a
β-minimal set or properly contains one since q is not constant on the only non-



trivial β-class. By analyzing the set of unary polynomials of A it can be seen
that in fact V = {0, 2, 3} is indeed a β-minimal set and hence that M = {0, 2}
is a β-neighbourhood.

Now that α and β-neighbourhoods have been identified, we need only deter-
mine the types of the algebras that A induces on each of them to determine the
types of α and β. We see that the restriction of x · y to N provides a semilattice
operation on N and so the type of α cannot be unary or affine since algebras
of these types do not support a semilattice polynomial. Since all boolean opera-
tions can be obtained by composition from a boolean semilattice operation and
complementation, it suffices to produce a unary polynomial of A that maps 0
to 1 and 1 to 0 in order to establish that the type of α is boolean. It can be
checked that the polynomial (((x · 3) · 2) · 1) fits the bill. We leave the details of
the calculation of the type of β to the reader and conclude the presentation of
this example by claiming that the types of the covering pairs (β, 1A) and (α, 1A)
are boolean and semilattice, respectively.

While the type-labelled congruence lattice of a finite algebra carries much
information about the algebra, it turns out that just knowing the set of labels
that appear in the labelled congruence lattice of a finite algebra or the variety
that it generates is useful.

Definition 3.

1. The typeset of a finite algebra A, denoted typ{A}, is the set of labels that
appear in its labelled congruence lattice, and so is a subset of {unary, affine,
boolean, lattice, semi-lattice}.

2. The typeset of a class of algebras K is the union of the typesets of all of its
finite members and is denoted by typ{K}.

3. We say that a finite algebra or a class of algebras omits a particular type if
that type does not appear in its typeset.

The following result, found in [8] provides a connection with Conjecture 1,
the Complexity Dichotomy Conjecture.

Theorem 7. Let A be a finite idempotent algebra and V the variety generated
by A. Then V omits the unary type if and only if var(A) does not contain a G-set.
In fact, this condition holds if and only if there is no algebra in HS(A) that is
term equivalent to a set (i.e., whose basic operations are just projections).

This theorem allows us to restate the Complexity Dichotomy Conjecture in
terms of types:

Conjecture 1 (the complexity dichotomy conjecture, version 2) A finite
idempotent algebra A is tractable if and only if the variety generated by A omits
the unary type (or equivalently, that every subalgebra of A omits the unary type).

Something similar occurs when considering Conjecture 2, the Bounded Width
Conjecture, namely we can express it in terms of omitting tame congruence
theoretic types.



Theorem 8 ([41]). Let A be a finite idempotent algebra and V the variety gen-
erated by A. Then V omits the unary and affine types if and only if var(A) does
not contain an algebra that is term equivalent to a reduct of a module over some
finite ring. In fact, this condition holds if and only if there is no algebra in HS(A)
that is term equivalent to a set or to the full idempotent reduct of a module over
some finite ring.

In the language of tame congruence theory, the Bounded Width Conjecture
becomes:

Conjecture 2 (the bounded width conjecture, version 2) A finite idem-
potent algebra A has bounded width if and only if the variety generated by A

omits the unary and affine types (or equivalently, that every subalgebra of A

omits these types).

We conclude this sub-section with a brief discussion of the complexity of
determining if a given finite relational structure or finite algebra is tractable or
has bounded width, assuming that Conjectures 1 and 2 are true.

Theorem 9 ([8, 15, 41]). Under the assumption that Conjectures 1 and 2 are
true,

1. the problems of determining if a finite relational structure H is tractable or
has bounded width is NP-hard, and

2. the problems of determining if a finite idempotent algebra A is tractable or
has bounded width are polynomial-time solvable.

We note that without the assumption of idempotency, Freese and Valeriote
have shown [25] that to determine if the variety generated by a finite algebra
omits the unary type or both the unary and affine types are both EXPTIME-
complete problems.

3.2 Weak Near-unanimity operations

Recall that a near-unanimity operation on a set A is a function t(x1, . . . , xn),
for n > 1, that satisfies the equations

t(y, x, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, x, . . . , x, y) ≈ x

From [30] we know that if a relational structure H has a near-unanimity poly-
morphism then CSP(H) is tractable. The following variation of this notion was
developed by E. Kiss and Valeriote while investigating the Bounded Width Con-
jecture.

Definition 4. An operation t(x1, . . . , xn), for n > 1, on a set A is a weak near-
unanimity operation if it is idempotent and satisfies the equations

t(y, x, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, x, . . . , x, y)



Clearly any near-unanimity operation is also a weak near-unanimity operation
but there are algebras that have term operations of the latter sort but not of the
former. For example, for any positive integer n, the term operation x1 + x2 +
· · ·+xn+1 of the group of integers modulo n is a weak near-unanimity operation.
It is not difficult to show that this group fails to have a near-unanimity term
operation in any number of variables. We leave it as an exercise to show that the
operation x ·(y ·z) on our 4-element example is a weak near-unanimity operation
(and that this algebra does not have a near unanimity term operation).

While it is not too difficult to show that if a finite algebra has a weak near-
unanimity term operation then the variety that it generates must omit the unary
type, the converse is much more difficult to show. A recent result of Maroti and
McKenzie establishes this, along with a characterization of finite algebras that
generate varieties that omit both the unary and affine types.

Theorem 10 ([38]). Let A be a finite algebra and V the variety that it gener-
ates.

1. V omits the unary type if and only if A has a weak near-unanimity term
operation.

2. V omits the unary and affine types if and only if there is some N > 0 such
that for all k ≥ N , A has a weak near unanimity term of arity k.

This surprising result allows us to provide restatements of the conjectures.

Conjecture 1 (the complexity dichotomy conjecture, version 3) A finite
idempotent algebra A is tractable if and only if A has a weak near-unanimity
term.

Conjecture 2 (the bounded width conjecture, version 3) A finite idem-
potent algebra A has bounded width if and only if for all but finitely many k > 0,
A has a k-ary weak near unanimity term.

4 Tractability via few subpowers

In this section we discuss a thread of tractability results that culminates in a
theorem that unifies them in terms of a notion of a finite algebra having few
subpowers.

Definition 5 ([2]). A finite algebra A is said to have few subpowers if there is
some polynomial p(n) such that for each n > 0,

sA(n) = log2 |{B : B is a subuniverse of An}| ≤ p(n).

It is not difficult to see that for any finite algebra A of size m, the function
sA(n) is bounded above by mn. In general sA(n) will grow exponentially and
so the few subpowers condition imposes certain restrictions on the algebra A.
One consequence of a finite algebra A having few subpowers is the existence of a



polynomial g(n) such that for any n > 0, every subalgebra of An has a generating
set of size bounded above by g(n). In fact this “small generating set” property
is equivalent to having few subpowers. Before characterizing such algebras, we
present some examples.

Using a theorem of Baker and Pixley from [4] it follows that if A is a finite
algebra that has a k-ary near unanimity term operation (see Example 4) then
the function sA(n) is bounded above by a polynomial of degree k−1 and so such
algebras have few subpowers. An early tractability result of Jeavons, Cohen and
Cooper [30] establishes that algebras having near unanimity terms are tractable,
and it is no coincidence that this tractability result can be proved using the
Baker-Pixley theorem.

In [24], Feder and Vardi prove that if a relational structure H has a polymor-
phism of the form x · y−1 · z for some group operation x · y on H then CSP(H)
is tractable. Generalizing this, Bulatov [5] proves that if a finite algebra A has
a term p(x, y, z) that satisfies the equations p(x, x, y) ≈ p(y, x, x) ≈= y for all
x, y ∈ A then A is also tractable (any operation that satisfies these equations
is known as a Mal’tsev operation, see Example 4). The proof of this theorem
found in [13] exploits the fact that any finite algebra with a Mal’tsev term has
the small generating sets property (and hence, few subpowers).

While Mal’tsev and near unanimity operations are of quite different charac-
ter, Dalmau in [22] managed to find a common generalization of them via the
generalized majority-minority operation (see Example 4 for the definition). In a
modification of the algorithm presented in [13], Dalmau shows in [22] that any
finite algebra that has a GMM term is tractable. As in the case of algebras with
Mal’tsev terms, these algebras have few subpowers and the small generating sets
property and it is this latter property that plays a crucial role in the proof.

In [2] a characterization of finite algebras with few subpowers is given in
terms of the presence of a special type of operation.

Definition 6. A k-edge operation on a set A is a k+1-variable operation t that
satisfies the equations:

t(x, x, y, y, y, . . . , y, y) ≈ y

t(x, y, x, y, y, . . . , y, y) ≈ y

t(y, y, y, x, y, . . . , y, y) ≈ y

t(y, y, y, y, x, . . . , y, y) ≈ y

...

t(y, y, y, y, y, . . . , y, x) ≈ y.

Theorem 11 ([2]). A finite algebra A has few subpowers if and only if it has
a k-edge term for some k > 0. If this condition fails to hold then the function
sA(n) grows exponentially.

Using this characterization the tractability of algebras with few subpowers
can be deduced.



Corollary 3 ([28]). If the finite algebra A has few subpowers then it is globally
tractable.

We note that the proof of this corollary closely follows the GMM tractability
proof of Dalmau. We also note that the theorem and corollary settle conjec-
tures posed by Chen [18] and Dalmau [21] on the nature of algebras with few
subpowers.

We conclude this section with a result of Marković and McKenzie [36, 2]
that highlights the singular position that algebras with near unanimity term
operations occupy. We have already noted that if a finite idempotent algebra
has a near unanimity operation, then it has bounded width and few subpowers
and so can be shown to be tractable in two distinct ways. The following theorem
provides a converse to this.

Theorem 12. Let A be a finite idempotent algebra. If A is of bounded width
and has few subpowers then it has a near unanimity term operation.

5 Coloured graphs and finite algebras

The conditions of tractability and bounded width that appear in Conjectures 1
and 2 are known to be necessary. In order to prove that they are also suffi-
cient for the complexity dichotomy conjecture one needs to design an algorithm
(or algorithms) that solves CSPs satisfying the tractability condition, and for
the bounded width conjecture, that the constraint propagation algorithm solves
CSPs satisfying the bounded width condition. In all known cases algorithms (of
proofs of the soundness of algorithms) use some local structure of algebras. Usu-
ally this structure can be explained in terms of the action of term operations of
algebras on small subsets. In this section we propose an approach to the local
structure of a finite idempotent algebra that is based on term operations of the
algebra.

5.1 Coloured graphs of algebras

5.2 The graph

The results of this section were first presented in [10]. We relate to every idem-
potent finite algebra A an edge-coloured graph Gr(A). If A = (A; F ) and B ⊆ A,
then by 〈B〉 we denote the subalgebra generated by B, that is the smallest sub-
algebra of A containing B.

Definition 7. Let A = (A; F ) be a finite idempotent algebra. The vertex set of
the graph Gr(A) is the universe A of A. A pair ab of vertices is an edge if and
only if there exists a congruence θ of 〈a, b〉 and a term operation f of A such that
either f/θ is an affine operation on 〈a, b〉/θ, or f/θ is a semilattice operation
on {a/θ, b/θ}, or f/θ is a majority operation on {a/θ, b/θ} (see Figure 3).

The color of an edge is defined as follows.
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Fig. 4. Gr(A); edges of the semilattice type are drawn solid, edges of the majority type
are dotted

– If there exists a congruence θ and a term operation f ∈ Term(A) such that
f/θ is a semilattice operation on {a/θ, b/θ} then ab is said to have the semi-
lattice type.

– An edge ab is of the majority type if it is not of the majority type and there
are a congruence θ and a term operation f of A such that f/θ is a majority
operation on {a/θ, b/θ}.

– An edge ab is of the affine type if it is not of the semilattice or majority type
and there are a congruence θ and a term operation f of A such that f/θ is
an affine operation on 〈a, b〉/θ.

We sometimes call the set a/θ ∪ b/θ a thick edge.

Example 9. Let A = ({0, 1, 2}; f) be an algebra, where the operation f is defined
by its Cayley table

f(x, y) 0 1 2
0 0 1 2
1 1 1 0
2 2 0 2

(In fact, f occurs in [12]; in that paper it is called operation (6).) We have:
〈0, 1〉 = {0, 1}, 〈0, 2〉 = {0, 2}, 〈1, 2〉 = {1, 2, 3}; the only congruence of 〈1, 2〉
such that 1, 2 belong to distinct classes is the equality relation; f witnesses that
01 and 02 are edges of semilattice type; 12 cannot be an edge of the semilat-
tice type because no term operation of A is semilattice on {1, 2}; however, the
operation g(x, y, z) = f(f(x, f(y, z)), f(f(x, y), z)) is a majority operation on
{1, 2}. Thus, Gr(A) is the graph shown in Figure 4. Note also that this graph
was implicitly used in [12] to prove the tractability of A.



Observe that it is possible that for some pair a, b different congruences of
〈a, b〉 witness different types of the edge ab. Following the definition we always
choose the ‘strongest’ type of the edge. Thus, the semilattice type is stronger
than the majority type, which, in turn, is stronger than the affine type.

Example 10. Let A, B be algebras with universes {0, 1} and {a, b}, respectively,
and operations f, g. These operations are defined as follows:

– f is a semilattice operation on A, i.e. f(0, 0) = f(0, 1) = f(1, 0) = 0, f(1, 1) =
1;
– f is the first projection on B, i.e. f(x, y) = x for all x, y ∈ {a, b};
– g is the ternary first projection on A, i.e. g(x, y, z) = x for all x, y, z ∈ {0, 1};
– g is a majority operation on B; note that there is only one majority operation
on a 2-element set.

Then let C denote the direct product of A and B, that is the algebra with universe
C = {(x, y) | x ∈ {0, 1}, y ∈ {a, b}}, and operations f, g on C acting as follows:

f((x1, y1), (x2, y2)) = (f(x1, x2), f(y1, y2))

and
g((x1, y1), (x2, y2), (x3, y3)) = (g(x1, x2, x3), g(y1, y2, y3)).

As is easily seen, 〈(0, a), (1, b)〉 = C and the equivalence relations η1, η2 de-
fined by ((x1, y1), (x2, y2)) ∈ η1 if and only if x1 = x2, and ((x1, y1), (x2, y2)) ∈ η2

if and only if y1 = y2, are congruences of C. Observe that f/η1
is a semilattice

operation on C/η1
= {(0, a)/η1

, (1, b)/η1
}; and that C/η2

= {(0, a)/η2
, (1, b)/η2

}

is isomorphic to B. Thus, congruence η1 witnesses that (0, a)(1, b) is an edge of
semilattice type, while η2 witnesses that the same edge has majority type. Since
the semilattice type is stronger, this edge has semilattice type.

5.3 Connectedness and omitting types

We show that connectedness of the graph Gr(A) and the colours of edges that
appear in it are closely related to omitting types in the sense of tame congruence
theory, and to Conjectures 1 and 2.

Theorem 13 ([10]). For an idempotent algebra A the following conditions are
equivalent:

(1) var(A) omits the unary type;

(2) var(A) does not contain a G-set;

(3) for any subalgebra B of A the graph Gr(B) is connected.

We shall refer to condition (3) from Theorem 13 as to the connectedness
condition.

Theorem 14. Let A be an idempotent algebra. The following conditions are
equivalent:



(1) var(A) omits the unary and affine types;

(2) var(A) does not contain an algebra that is term equivalent to a reduct of a
module over some finite ring;

(3) A satisfies the connectedness condition, and Gr(A) does not contain edges of
the affine type.

Since this result appears here for the first time we give a proof of it. We shall
use an improved version of Lemma 1 from [10].

Lemma 1. Let A be a finite idempotent algebra, and let ab be an edge of the
affine type in Gr(A). Then there are a maximal congruence θ of 〈a, b〉 (that
is there is no congruence strictly between θ and the total congruence) and a
module M with the universe 〈a, b〉/θ over a ring R such that every term operation
of 〈a, b〉/θ can be represented as an operation α1x1 + . . . + αnxn of M with
α1, . . . , αn ∈ R, α1 + . . . + αn = 1.

Proof (of Theorem 14): The equivalence of (1) and (2) is follows from
Theorem 8. We show that (3) is equivalent to (1).

If for some subalgebra B of A the graph Gr(B) is not connected then by
Theorem 13 var(B) ⊆ var(A) contains a G-set that is term equivalent to a reduct
of any module, because in an idempotent variety any G-set is term equivalent
to an algebra whose basic operations are projections. If Gr(A) contains an edge
of the affine type ab then by Lemma 1 the algebra 〈a, b〉/θ for a certain θ is a
reduct of a module.

By Theorem 8 if var(A) contains an algebra term equivalent to a reduct of
a module, then there is a subalgebra B of A and a congruence θ of B such that
B/θ is term equivalent to a reduct of a module. If this algebra is a G-set then
Gr(B) is not connected by Theorem 13. Otherwise we assume that B is a minimal
(with respect to containment) subalgebra with this property and θ is a maximal
congruence of B. Then θ is the only maximal congruence of B. Indeed, if η is
another maximal congruence of B, then any class C of η that is not contained in
a class of θ induces a proper subalgebra C of B, and C/θ is still term equivalent
to a reduct of a module; a contradiction with minimality of B. It is not hard to
see, that, for any a, b ∈ B such that (a, b) 6∈ θ, the pair ab is an edge of the affine
type. 2

Using Theorems 13 and 14 we can give yet another formulation of the com-
plexity and bounded width conjectures.

Conjecture 1 (the complexity dichotomy conjecture, version 4) A finite
idempotent algebra is tractable if and only if it satisfies the connectedness con-
dition.

Conjecture 2 (the bounded width conjecture, version 4) A finite idem-
potent algebra A has bounded width if and only if it satisfies the connectedness
condition and the graph Gr(A) does not contain edges of the affine type.



5.4 Improving an algebra

The study of finite algebras in the context of the complexity of the CSP does not
necessarily suppose investigation of the exact structure of finite algebras. There-
fore we can transform algebras under consideration as long as such a transfor-
mation preserves properties supposedly responsible for tractability, e.g. omitting
the unary type. In this subsection we show two such transformations.

We say that the graph Gr(A) is semilattice-connected, if for any two vertices
a, b ∈ A there is a path in Gr(A) consisting of edges of the semilattice type. The
semilattice/majority connectedness of Gr(A) is defined similarly.

Proposition 2. Let A be an idempotent algebra satisfying the connectedness
condition, let ab be an edge of Gr(A) of the semilattice or majority type, and
let Rab = (a/θ ∪ b/θ) be the corresponding thick edge, where θ is a congruence
certifying the type of ab.

(1) Aab = (A; F ′), where F ′ is the set of all term operations of A preserving
Rab, satisfies the connectedness condition.

(2) If ab is has the semilattice type and Gr(A) is semilattice-connected, then
Gr(Aab) is semilattice-connected.

(3) If ab has the majority type and Gr(A) is semilattice/majority-connected, then
Gr(Aab) is semilattice/majority-connected.

As the following example shows, constructing a reduct by adding an edge
of the affine type can destroy the connectedness condition and even make a
tractable algebra NP-complete.

Example 11. Let A = ({0, 1, 2}; h), where h(x, y, z) = x− y + z and +,− denote
the operation of addition and subtraction modulo 3. It is well known (see e.g.
[40]) that the term operations of A are the operations of the form α1x1 + . . . +
αnxn, where α1, . . . , αn are integers and α1 + . . . + αn = 1 (mod 3). Therefore,
for any a, b ∈ A, 〈a, b〉 = A, the only maximal congruence of 〈a, b〉 is the equality
relation, and ab is an edge of the affine type.

Since the affine operation x−y+z is an operation of A, the problem CSP(A)
can be solved by Gaussian elimination [31]. Take an edge of Gr(A), say 01 and a
term operation f(x1, . . . , xn) = α1x1+. . .+αnxn of A. If f preserves {0, 1}, then,
for any i ∈ {1, . . . , n}, we have f(0, . . . , 0, 1, 0, . . . , 0) = αi ∈ {0, 1} (1 is on the
ith place). Furthermore, if αi, αj = 1, then f(0, . . . , 0, 1, 0, . . . , 0, 1, 0, . . . , 0) =
αi + αj = 2 6∈ {0, 1} (1s are on the ith and jth places). Thus, only one of the αs
is non-zero, which means that f is a projection. Hence, every term operation of
A01 is a projection and CSP(A01) is NP-complete.

Proposition 2 amounts to saying that we may restrict our attention to algebras
A such that every thick edge of the semilattice or majority type of Gr(A) is a
subalgebra.

The second transformation preserving the connectedness condition is based
on the following statement that shows that the term operations certifying the
type of edges can be significantly unified.



Proposition 3. Let A be an idempotent algebra. For an edge, θ always denotes
a congruence certifying its type. There are term operations f, g, h of A such that

f
{a/θ,b/θ}

is a semilattice operation if ab is an edge of the semilattice type, it

is the first projection if ab is an edge of the majority or affine type;
g
{a/θ,b/θ}

is a majority operation if ab is an edge of the majority type, it is the

first projection if ab is an edge of the affine type, and g
{a/θ,b/θ}

(x, y, z) =

f
{a/θ,b/θ}

(x, f
{a/θ,b/θ}

(y, z)) if ab has the semilattice type;

h
〈ab〉/θ

is an affine operation operation if ab is an edge of the affine type, it is the

first projection if ab is an edge of the majority type, and h
{a/θ,b/θab

}
(x, y, z) =

f
{a/θ,b/θ}

(x, f
{a/θ,b/θ}

(y, z)) if ab has the semilattice type.

Example 9 (continued). Let us reconsider the algebra A from Example 9. By
Proposition 2, since 12 is an edge of the majority type, the algebra A12 satisfies
the connectedness condition. The operations f, g, h satisfying the conditions of
Proposition 3 can be chosen as follows: g is the operation obtained in Example 9,
f(x, y) = g(x, x, y) (the binary operation defined in Example 9 does not fit,
because it does not preserve {1, 2}) and h(x, y, z) = f(x, f(y, z)).

Propositions 2 and 3 together allow us to restrict ourselves to the study of
idempotent algebras that have at most three basic operations, one binary and
two ternary, and such that, for any edge of the semilattice or majority ab and
a congruence θ certifying this, the thick edge a/θ ∪ b/θ is a subalgebra. In the
next section we shall see that the class of algebras to be studied can be further
narrowed down.

Edges of the semilattice type In this section we focus on edges of the semi-
lattice type of the graph Gr(A). Note first that if one fixes a congruence θab for
each edge of Gr(A) that certifies its type, and a term operation f such that f is a
semilattice operation on {a/θab

, b/θab
} for every edge ab of the semilattice type

of Gr(A), then one can define an orientation of every such edge. An edge ab of
the semilattice type is oriented from a to b if f(a/θab

, b/θab
) = f(b/θab

, a/θab
) =

b/θab
. For instance, the edges 01, 02 of the graph from Example 9 are oriented

from 0 to 1 and 2 respectively. Clearly, orientation strongly depends on the choice
of the operation f . The graph Gr(A) oriented accordingly to a term operation f
will be denoted by Grf (A). We then can define semilattice-connected and strongly
semilattice-connected components of Grf (A). We will also use the natural order
on the set of strongly semilattice-connected components of Grf (A): for compo-
nents A, B, A ≤ B if there is a directed path in Grf (A) consisting of edges of the
semilattice type and connecting a vertex from A with a vertex from B. Later
we show that certain restrictions on the set of strongly semilattice-connected
components of Grf (A) yield the tractability of CSP(A).



First we show that if for an edge ab of the semilattice type there is no semi-
lattice term operation on the set {a, b} then ab can be thrown out of the graph
Gr(A) such that the connectedness condition is preserved in the remaining graph.
Therefore, we can assume that for any edge of the majority type ab there is a
semilattice term operation on {a, b}.

Proposition 4. Let A be an algebra and Gr′(A) the subgraph of Gr(A) obtained
by omitting edges ab of the semilattice type such that there is no semilattice
operation on {a, b}. Then Gr′(A) is connected. If Gr(A) is semilattice-connected
then Gr′(A) is semilattice-connected. If Gr(A) is semilattice/majority-connected
then Gr′(A) is semilattice/majority-connected.

The graph Gr′(A) oriented according to a binary term operation f will be
denoted by Gr′f (A).

We conclude this subsection with a result that shows how properties of the
graph Gr(A) can help in establishing the tractability and bounded width of the
algebra A. Let us consider algebras A with a binary term operation f such that,
for every subalgebra B of A, the subgraph of Gr′f (A) induced by B has a unique
maximal strongly semilattice-connected component. This condition we shall call
the maximal semilattice component condition.

Theorem 15. If an algebra A satisfies the maximal semilattice component con-
dition, then CSP(A) is of relational width 3.

Observe that a 2-semilattice, that is a groupoid with a 2-semilattice ba-
sic operation, satisfies the maximal semilattice component condition. Indeed, if
A has a 2-semilattice term operation f , then f is a semilattice operation on
{a, f(a, b)} and {b, f(a, b) = f(b, a)}. This means that Gr′f (A) is semilattice-
connected. Moreover, if a, b belong to different maximal strongly semilattice-
connected components B and C, then f(a, b) belongs to a strongly semilattice-
connected component D such that B ≤ D and C ≤ D, a contradiction with the
maximality of B, C. The same argument is valid for any subalgebra of A, thus,
A satisfies the maximal semilattice component condition. Since every semilattice
operation is also a 2-semilattice operation, the same holds for algebras with a
semilattice term operation. Thus, by Theorem 15, we obtain the main result of
[6], and also the results of [7], since a binary commutative conservative operation
is a 2-semilattice operation, and also the results of [31, 29] concerning semilattice
operations.

5.5 Conservative algebras and their graphs

Let H be a relational structure. In the conservative (list) constraint satisfaction
problem, denoted CCSP(H), the question is, given a structure G and, for each
element g ∈ G, a list L(g) of elements of H, whether there exists a homomorphism
ϕ : G → H such that ϕ(g) ∈ L(g) for all g ∈ G.

Example 12 (List-H-Colouring). Let H be a (directed) graph. In the List
H-Colouring problem we are given a graph G and, for each vertex v of G,



a set L(v) of vertices of H . The question is whether there is a homomorphism
ϕ from G to H such that ϕ(v) ∈ L(v) for every vertex v of G. Clearly, List
H-Colouring can be represented in the form of the conservative CSP.

Notice that, for any structureH, the problem CCSP(H) is equivalent to CSP(H∗),
where H∗ is an expansion of H obtained by adding all unary relations. A struc-
ture H such that for each subset S ⊆ H there is a relational symbol R in the
vocabulary with RH = S is said to be conservative. Thus, instead of conservative
CSPs we may study ordinary constraint satisfaction problems corresponding to
conservative structures.

On the algebraic side, every term operation f of an algebra A that gives rise
to a conservative CSP must be conservative, that is f(x1, . . . , xn) ∈ {x1, . . . , xn}
for all x1, . . . , xn. Algebras satisfying this condition are also called conservative.

If A is a conservative algebra, then in particular every 2-element subset of
A induces a subalgebra of A. Therefore, A satisfies the connectedness condition
if and only if every pair of its elements constitutes an edge of Gr(A). Moreover,
every edge of this graph is 2-element, implying that the operations f, g, h con-
structed in Proposition 3 are a semilattice (that is conjunction or disjunction)
operation, the majority operation (x ∨ y) ∧ (y ∨ z) ∧ (z ∨ x), and the Mal’tsev
operation x − y + z(mod 2) on each 2-element subset from A, respectively (we
denote the elements of this subset by 0 and 1).

Theorem 16. A conservative algebra A is tractable if and only if it satisfies the
connectedness condition, that is, for any 2-element subalgebra B of A (we assume
B = {0, 1}), there exists a term operation t such that t

B
is either a semilattice

operation x∨ y or x∧ y, or the majority operation (x∨ y) ∧ (y ∨ z)∧ (z ∨ x), or
the Mal’tsev operation x− y + z(mod 2). In this case A is also globally tractable.
Otherwise A is NP-complete.

Observe that by Proposition 3 the tractability of a conservative algebra is
witnessed by term operations of arity at most 3. This observation implies a
stronger version of Theorem 16. An algebra such that each of its k-element
subsets induces a subalgebra is called k-conservative.

Corollary 4. If A is a 3-conservative algebra then A is globally tractable if and
only if it satisfies the connectedness condition. Otherwise it is NP-complete.
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