
On tractability and congruence distributivity

Emil Kiss
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Abstract

Constraint languages that arise from finite algebras have
recently been the object of study, especially in connection
with the Dichotomy Conjecture of Feder and Vardi. An im-
portant class of algebras are those that generate congru-
ence distributive varieties and included among this class
are lattices, and more generally, those algebras that have
near-unanimity term operations. An algebra will generate
a congruence distributive variety if and only if it has a se-
quence of ternary term operations, called Jónsson terms,
that satisfy certain equations.

We prove that constraint languages consisting of rela-
tions that are invariant under a short sequence of Jónsson
terms are tractable by showing that such languages have
bounded width. Consequently, the class of instances of the
constraint satisfaction problem arising from such a con-
straint language that fail to have solutions is definable in
Datalog.

1. Introduction

The Constraint Satisfaction Problem (CSP) provides a
framework for expressing a wide class of combinatorial
problems. Given an instance of the CSP, the aim is to deter-
mine if there is a way to assign values from a fixed domain
to the variables of the instance so that each of its constraints
is satisfied. While the entire collection of CSPs forms an
NP-complete class of problems, a number of subclasses
have been shown to be tractable (i.e., to lie in P). A major
focus of research in this area is to determine the subclasses
of the CSP that are tractable.

One way to define a subclass of the CSP is to restrict
the constraint relations that occur in an instance to a given
finite set of relations over a fixed, finite domain, called a
constraint language. A central problem is to classify the

constraint languages that give rise to tractable subclasses of
the CSP. Currently, all constraint languages that have been
investigated have been shown to give rise to a subclass of
the CSP that is either NP-complete or in P. It is conjectured
in [10] that this dichotomy holds for all subclasses arising
from finite constraint languages.

In some special cases, the conjectured dichotomy has
been verified. For example, the work of Schaefer [18] and
of Bulatov [1] establish this over domains of sizes 2 and 3
respectively. For constraint languages over larger domains
a number of significant results have been obtained [5, 6, 9].

One method for establishing that the subclass of the CSP
associated with a finite constraint language is tractable is
to establish a type of local consistency property for the in-
stances in the subclass. In [11] Feder and Vardi introduce a
notion of the width of a constraint language and show that
languages of bounded width give rise to tractable subclasses
of the CSP. There is a natural connection between these sub-
classes of the CSP and definability within Datalog.

In work by Jeavons and his co-authors an approach to
classifying the tractable constraint languages via algebraic
methods has been proposed and applied with great success
[5]. In essence, their work allows one to associate a finite
algebraic structure to each constraint language and then to
analyze the complexity of the corresponding subclass of the
CSP in purely algebraic terms.

In this paper, we employ the algebraic approach to ana-
lyzing constraint languages and with it are able to identify a
new, general class of tractable constraint languages. These
languages arise from finite algebras that generate congru-
ence distributive varieties, or equivalently, that have a se-
quence of special term operations, called Jónsson terms,
that satisfy certain equations. Theorem 4.1 establishes the
tractability of these languages by showing that they are of
bounded width. Consequently, the class of instances of the
CSP arising from such a constraint language that fail to have
a solution is definable in Datalog.
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2. Preliminaries

In this section we introduce the necessary terminology
and results on the CSP and from universal algebra that will
be needed to prove the main result (Theorem 4.1) of this
paper.

In the following discussion we will employ standard ter-
minology and notation when dealing with n-tuples and rela-
tions over sets. In particular, if~a is a tuple over the sequence
of domains Ai, 1 ≤ i ≤ n, (i.e., is a member of

∏
1≤i≤n Ai)

and I is a subset of {1, 2, . . . , n} then projI(~a) denotes the
tuple (ai : i ∈ I) ∈

∏
i∈I Ai over the sequence of domains

(Ai : i ∈ I) and is called the restriction (or the projection)
of ~a to I . We extend this projection function to arbitrary
relations over the Ai. The ith element of the tuple ~a will be
denoted by ~a(i).

For R and S binary relations on a set A, we define the
relational product of R and S to be the binary relation con-
sisting of all pairs (a, b) for which there is some c with
(a, c) ∈ R and (c, b) ∈ S.

2.1. The Constraint Satisfaction Problem

Definition 2.1 An instance of the constraint satisfaction
problem is a triple P = (V,A, C) with

• V a non-empty, finite set of variables,

• A a non-empty, finite set (or domain),

• C a set of constraints {C1, . . . , Cq} where each Ci is a
pair (~si, Ri) with

– ~si a tuple of variables of length mi, called the
scope of Ci, and

– Ri an mi-ary relation over A, called the con-
straint relation of Ci.

Given an instance P of the CSP we wish to answer the
following question:

Is there a solution to P , i.e., is there a function
f : V → A such that for each i ≤ q, the mi-tuple
f(~si) ∈ Ri?

Note that if the variables of P are linearly ordered, then
by permuting and identifying indices of some of the con-
straints of P , we can obtain an instance having the same set
of solutions as P and such that the scope of each of its con-
straints is a strictly increasing sequence of elements from
V .

In general, the class of CSPs is NP-complete (see [14]),
but by restricting the nature of the constraint relations that
are allowed to appear in an instance of the CSP, it is possible
to find natural subclasses of the CSP that are tractable.

Definition 2.2 Let A be a domain and Γ a set of finitary
relations over A. CSP(Γ) denotes the collection of all in-
stances of the CSP with domain A and with constraint rela-
tions coming from Γ. Γ is called the constraint language of
the class CSP(Γ).

Definition 2.3 Call a finite constraint language Γ tractable
if the class of problems CSP(Γ) is tractable (i.e., lies in P).
If Γ is infinite and each finite subset Γ′ of Γ is tractable then
we say that Γ is tractable. If the entire class CSP(Γ) is in P
then we say that Γ is globally tractable.

Γ is said to be NP-complete if for some finite subset Γ′

of Γ, the class of problems CSP(Γ′) is NP-complete.

A key problem in this area is to classify the (globally)
tractable constraint languages. Note that in this paper we
will assume that P 6= NP. Feder and Vardi [11] conjecture
that every finite constraint language is either tractable or is
NP-complete.

We will find it convenient to extend the above notions of
instances of the CSP and constraint languages to a multi-
sorted setting. This approach has been used on a number of
occasions, in particular in [3].

Definition 2.4 A multi-sorted instance of the constraint
satisfaction problem is a pair P = (A, C) where

• A = (A1, A2, . . . , An) is a sequence of finite, non-
empty sets, called the domains of P , and

• C is a set of constraints {C1, . . . , Cq} where each Ci

is a pair (Si, Ri) with

– Si a non-empty subset of {1, 2, . . . , n} called the
scope of Ci, and

– Ri an |Si|-ary relation over (Aj : j ∈ Si),
called the constraint relation of Ci.

In this case, a solution to P is an n-tuple ~a over the se-
quence (Ai : 1 ≤ i ≤ n) such that projSj

(~a) ∈ Rj for
each 1 ≤ j ≤ q. Clearly, each standard instance of the CSP
can be expressed as an equivalent multi-sorted instance.

In addition to the set of solutions of an instance of the
CSP, one can also consider partial solutions of the instance.

Definition 2.5 For P as in the previous definition and I a
subset of {1, 2, . . . , n}, the set of partial solutions of P over
I , denoted PI , is the set of solutions of the instance P ′ =
(A′, C′) where A′ = (Ai : i ∈ I) and C = {C ′

1, . . . , C
′
q}

with C ′
j = (I ∩ Sj ,proj(I∩Sj)(Rj)) for 1 ≤ j ≤ q.

Clearly if the set of partial solutions of an instance over
some subset of coordinates is empty then the instance has
no solutions.



Definition 2.6 Let C be a finite set (or sequence) of finite,
non-empty sets. A (multi-sorted) constraint language over C
is a collection of finitary relations over the sets in C. Given a
multi-sorted constraint language Γ over C, the class CSP(Γ)
consists of all multi-sorted instances of the CSP whose do-
mains come from C and whose constraint relations come
from Γ. ΓC denotes the set of all finitary relations over the
members of C.

In a natural way, the notions of tractability and NP-
completeness can be extended to multi-sorted constraint
languages.

Definition 2.7 A relation R over the sets Ai, 1 ≤ i ≤ n, is
subdirect if for all 1 ≤ i ≤ n, proj{i}(R) = Ai. We call a
multi-sorted instance P of the CSP subdirect if each of its
constraint relations is.

As noted in the introduction, one approach to proving the
tractability of a constraint language Γ is to apply a notion of
local consistency to the instances in CSP(Γ) to determine if
the instances have solutions. We present a notion of width,
called relational width, developed by Bulatov and Jeavons
[4] that, for finite constraint languages, is closely related to
the notion of width defined by Feder and Vardi (see [15]).

Definition 2.8 Let A = (A1, . . . , An) be a sequence of fi-
nite, non-empty sets, let P = (A, C) be an instance of the
CSP and let k > 0. We say that P is k-minimal if:

1. For each subset I of {1, 2, . . . , n} of size at most k,
there is some constraint (S, R) in C such that I ⊆ S,
and

2. If (S1, R1) and (S2, R2) are constraints in C and
I ⊆ S1 ∩ S2 has size at most k then projI(R1) =
projI(R2).

It is not hard to show that the second condition of this
definition is equivalent to having the set of partial solutions
PI of P equal to projI(Ri) for all subsets I of size at most
k and all i with I ⊆ Si.

In [4] it is shown that for a fixed k, there is a polynomial
time algorithm that converts a given instance of the CSP
into an equivalent one (i.e., that has the same solution set)
that is also k-minimal.

Definition 2.9 Let k > 0. A constraint language Γ has
relational width k if whenever P is a k-minimal instance of
CSP(Γ) whose constraint relations are all non-empty then
P has a solution. We say that Γ has finite relational width
if it has relational width k for some k > 0.

The following theorem records some relevant facts about
this notion.

Theorem 2.10 Let Γ be a constraint language.

1. ([4]) If Γ is of finite relational width then it is globally
tractable.

2. If Γ is finite, then it has finite relational width if and
only if it is of bounded width (according to the Feder-
Vardi definition). It follows, in this case, that the class
of instances from CSP(Γ) that fail to have a solution is
definable within Datalog.

A proof of the equivalence of bounded width and finite
relational width for finite constraint languages can be found
in [16, 15]. We will use this theorem to establish the global
tractability of languages that arise in the particular algebraic
context set out in Section 3.

2.2. Algebras

There are a number of standard sources for the basics
of universal algebra, for example [7] and [17]. The books
[12, 8] provide details on the more specialized aspects of
the subject that we will use in this paper.

Definition 2.11 An algebra A is a pair (A,F ) where A is
a non-empty set and F is a (possibly infinite) collection of
finitary operations on A. The operations in F are called the
basic operations of A. A term operation of an algebra A is
a finitary operation on A that can be obtained by repeated
compositions of the basic operations of A.

We assume some familiarity with the standard algebraic
operations of taking subalgebras, homomorphic images and
cartesian products. Note that in order to sensibly take a ho-
momorphic image of an algebra, or the cartesian product of
a set of algebras or to speak of terms and equations of an
algebra we need to have some indexing of the basic opera-
tions of the algebras. Algebras that have the same indexing
are said to be similar (or of the same similarity type).

When necessary, we distinguish between an algebra and
its underlying set, or universe. A subuniverse of an algebra
(A,F ) is a subset of A that is invariant under F . Note that
we allow empty subuniverses but not algebras with empty
universes.

Definition 2.12 A variety of algebras is a collection of sim-
ilar algebras that is closed under the taking of cartesian
products, subalgebras and homomorphic images. If K is
a class of similar algebras then V(K) denotes the smallest
variety that contains K.

Theorem 2.13 (Birkhoff) A class V of similar algebras is
a variety if and only if V can be axiomatized by a set of
equations.



It turns out that for a classK of similar algebras, V(K) =
HSP(K), i.e., the class of homomorphic images of subalge-
bras of cartesian products of members of K.

Definition 2.14 Let A be an algebra.

1. An equivalence relation θ on A is a congruence of A if
it is invariant under the basic operations of A.

2. The congruence lattice of A, denoted Con (A), is the
lattice of all congruences of A, ordered by inclusion.

3. 0A and 1A denote the smallest and largest congru-
ences of the algebra A.

The congruence lattice of an algebra is a very useful in-
variant and the types of congruence lattices that can appear
in a variety govern many properties of the algebras in the
variety. One particularly relevant and important property of
congruence lattices is that of distributivity.

Definition 2.15 An algebra A is said to be congruence dis-
tributive if its congruence lattice satisfies the distributive
law for congruence meet and join. A class of algebras is
congruence distributive if all of its members are.

Definition 2.16 For k > 0, we define CD(k) to be the class
of all algebras A that have a sequence of ternary term op-
erations pi(x, y, z), 0 ≤ i ≤ k, that satisfies the identities:

p0(x, y, z) = x

pk(x, y, z) = z

pi(x, y, x) = x for all i

pi(x, x, y) = pi+1(x, x, y) for all i even

pi(x, y, y) = pi+1(x, y, y) for all i odd

A sequence of term operations of an algebra A that satis-
fies the above equations will be referred to as Jónsson terms
of A. The following celebrated theorem of Jónsson relates
congruence distributivity to the existence of Jónsson terms.

Theorem 2.17 (Jónsson) An algebra A generates a con-
gruence distributive variety if and only if there is some
k > 0 such that A is in CD(k). In this case, all algebras in
V(A) lie in CD(k).

Definition 2.18 For k > 1, define Vk to be the variety of all
algebras that have as basic operations a sequence of k + 1
ternary operations pi(x, y, z), for 0 ≤ i ≤ k, that satisfy
the equations from Definition 2.16.

Note that an algebra is in CD(1) if and only if it has
size 1 and is in CD(2) if and only if it has a majority term
operation (i.e., a term operation m(x, y, z) that satisfies the
equations m(x, x, y) = m(x, y, x) = m(y, x, x) = x).

Some of the main results and conjectures dealing with
the CSP can be expressed in terms of Tame Congruence
Theory, a deep theory of the local structure of finite algebras
developed by Hobby and McKenzie. Details of this theory
may be found in [12] or [8]. The connection between the
CSP and Tame Congruence Theory was made by Bulatov,
Jeavons, and Krokhin [5] and we will touch on it in the next
subsection. In this paper we will only introduce some of the
basic terminology of the theory and will omit most details.

In Tame Congruence Theory, five local types of be-
haviour of finite algebras are identified and studied. The
five types are, in order:

1. the unary type,

2. the affine or vector-space type,

3. the 2 element Boolean type,

4. the 2 element lattice type,

5. the 2 element semi-lattice type.

We say that an algebra A omits a particular type if, locally,
the corresponding type of behaviour does not occur in A.
A class of algebras C is said to omit a particular type if all
finite members of C omit that type.

In [12], characterizations of finite algebras that gener-
ate varieties that omit the unary type or both the unary and
affine type are given. The characterizations are similar to
that given by Jónsson of the congruence distributive vari-
eties. It easily follows from the characterizations that if A is
a finite algebra that generates a congruence distributive va-
riety then the variety omits both the unary and affine types.

To close this subsection we note a special property of the
term operations of the algebras in Vk for all k > 1.

Definition 2.19 An n-ary operation f(x1, . . . , xn) on a set
A is idempotent if f(a, a, . . . , a) = a for all a ∈ A. An
algebra is idempotent if all of its term operations are idem-
potent.

Note that idempotency is hereditary in the sense that if a
function is the composition of some idempotent operations
then it too is idempotent. In another sense, if A is idem-
potent then all algebras in V(A) are idempotent, since this
condition can be described equationally. Finally, note that
Jónsson terms are idempotent and so all algebras in Vk for
k > 1 are idempotent.

2.3. Algebras and the CSP

The natural duality between sets of relations (constraint
languages) over a set A and sets of operations (algebras) on
A has been studied by algebraists for some time. Jeavons
and his co-authors [13] have shown how this link between
constraint languages and algebras can be used to transfer
questions about tractability into equivalent questions about



algebras. In this subsection we present a concise overview
of this connection.

Definition 2.20 Let A be a non-empty set.

1. Let R be an n-ary relation over A and f(x̄) an m-
ary function over A for some n, m ≥ 0. We say that
R is invariant under f and that f is a polymorphism
of R if for all ~ai ∈ R, for 1 ≤ i ≤ m, the n-tuple
f(~a1, . . . ,~am) ∈ R whose i-th coordinate is equal to
f(~a1(i), . . . ,~am(i)).

2. For Γ a set of relations over A, Pol (Γ) denotes the
set of functions on A that are polymorphisms of all the
relations in Γ.

3. For F a set of finitary operations on A, Inv(F ) denotes
the set of all finitary relations on A that are invariant
under all operations in F .

4. For Γ a constraint language over A, 〈Γ〉 denotes
Inv(Pol (Γ)) and AΓ denotes the algebra (A,Pol (Γ)).

5. For A = (A,F ), an algebra over A, ΓA denotes the
constraint language Inv(F ).

6. We call a finite algebra A tractable (NP-complete) if
the constraint language ΓA is.

7. We say that a finite algebra A is of finite relational
width (bounded width) if each finite constraint lan-
guage contained in ΓA is.

Note that if A is an algebra, then Inv(A) coincides with
the set of all subuniverses of finite cartesian powers of A.

Theorem 2.21 ([13]) Let Γ be a constraint language on a
finite set. If Γ is tractable then so is 〈Γ〉. If 〈Γ〉 is NP-
complete then so is Γ.

In algebraic terms, Theorem 2.21 states that a constraint
language Γ is tractable (or NP-complete) if and only if
the algebra AΓ is. So, the problem of characterizing the
tractable constraint languages can be reduced to the prob-
lem of characterizing the tractable finite algebras. In a fur-
ther step, Bulatov, Jeavons and Krokhin [5] provide a reduc-
tion down to idempotent algebras. For this class of algebras,
they propose the following characterization of tractability.

Conjecture 2.22 Let A be a finite idempotent algebra.
Then A is tractable if and only if the variety V(A) omits
the unary type.

They show that when this condition fails, the algebra is
NP-complete [5]. They also show that if A is a finite, idem-
potent algebra then V(A) omits the unary type if and only if
the class HS(A) does. This conjecture has been verified for

a number of large classes of algebras. For example, results
of Schaefer [18] and Bulatov [1] provide a verification for
algebras whose universes have size 2 and 3 respectively.

A conjecture similar to 2.22 has been proposed by Larose
and Zádori [16] for constraint languages of bounded width.

Conjecture 2.23 Let A be a finite idempotent algebra.
Then A is of bounded width if and only if V(A) omits the
unary and affine types.

In [16] Larose and Zádori verify one direction of this
conjecture, namely that if V(A) fails to omit the unary or
affine types then A is not of bounded width. Note that in
[2], Bulatov proposes a conjecture that is parallel to 2.23.
Larose and the second author have noted [19] that, as with
the unary type, one need only check in HS(A) to determine
if V(A) omits the unary and affine types when A is finite
and idempotent.

The main result of this paper can be regarded as provid-
ing some evidence in support of Conjecture 2.23. Theorem
4.1 establishes that if A is a finite member of CD(3) then
any finite constraint language contained in ΓA is of bounded
width and hence tractable.

3. Algebras in CD(3)

Recall that the variety V3 consists of all algebras A hav-
ing four basic operations pi(x, y, z), 0 ≤ i ≤ 3 that satisfy
the equations of Definition 2.16. Since the equations dic-
tate that p0 and p3 are projections onto x and z respectively,
they will play no role in the analysis of algebras in CD(3).

3.1. Jónsson ideals

For A an algebra in V3, define x · y to be the binary term
operation p1(x, y, y) of A. Note that the Jónsson equations
imply that x · y = p2(x, y, y) as well. This “multiplication”
will play a crucial role in the proof of the main theorem of
this paper.

Definition 3.1 For X a subset of an algebra B ∈ V3 let
J(X) be the smallest subuniverse Y of B containing X and
satisfying the following closure property: if x is in Y and
u ∈ B then u · x is also in Y .

We will call J(X) the Jónsson ideal of B generated by
X . The concept of a Jónsson ideal was developed in [19] for
any algebra that generates a congruence distributive variety
and was used in that paper to establish some intersection
properties of subalgebras that are related to relational width.

Definition 3.2 A finite algebra B ∈ V3 will be called
Jónsson trivial if it has no proper non-empty Jónsson ideals.



Note that B is Jónsson trivial if and only if J({b}) = B
for all b ∈ B. Also note that if B is Jónsson trivial then
every homomorphic image of it is, as well.

We now define a notion of distance in an algebra that will
be applied to Jónsson trivial algebras to establish some use-
ful features of the subalgebras of their cartesian products.

Definition 3.3 Let A and B be arbitrary similar algebras
and S a subdirect subalgebra of A× B.

1. Let S0 = 0A and S1 be the relation on A defined by:

(a, c) ∈ S1 ⇐⇒ (a, b), (c, b) ∈ S for some b ∈ B.

2. For k > 0, let Sk+1 = Sk ◦ S1.

3. For a, b ∈ A, we write d(a, b) = k if the pair (a, b)
is in Sk and not in Sk−1 and will say that the distance
between a and b relative to S is k. If no such k exists,
d(a, b) is said to be undefined.

4. If d(a, b) is defined for all a and b ∈ A we say that A
is connected with respect to S.

Proposition 3.4 Let A, B and S be as in the definition.

1. For each k ≥ 0, the relation Sk is a reflexive, symmet-
ric subalgebra of A2.

2. If A is an idempotent algebra and c ∈ A then for any
k ≥ 0, the set of all elements a with d(a, c) ≤ k is a
subuniverse of A.

3. If A is a simple algebra then either d(a, b) is undefined
for all a 6= b ∈ A (equivalently S1 = 0A) or A is
connected with respect to S.

Lemma 3.5 Let A and B be finite algebras in V3 and S a
subdirect subalgebra of A×B. Suppose that A is connected
with respect to S. Then for every x, y, z ∈ A we have

d(x · y, z) ≤ max
([

d(x, y) + 1
2

]
, d(y, z)

)
.

PROOF: Let d(y, z) = m, d(x, y) = n and choose ele-
ments ai ∈ A for 0 ≤ i ≤ n with x = a0, an = y and
(ai, ai+1) ∈ S1 for 0 ≤ i < n. For k the largest inte-
ger below [(n + 1)/2] we get that d(x, ak) and d(ak, y) are
both at most k. Therefore if d = max(k,m), then the pairs
(x, ak), (y, ak), (y, z) are in Sd, and so

(p2(x, y, y), p2(ak, ak, z)) ∈ Sd .

But p2(x, y, y) = x · y and p2(ak, ak, z) = z, proving the
lemma. •

Corollary 3.6 For A, B and S as in the previous lemma,
suppose that d(a, b) ≤ n for all a, b ∈ A. Let m ≥ [(n +
1)/2] be any integer and c ∈ A. Then the set of all elements
of A whose distance from c is at most m is a Jónsson ideal
of A.

PROOF: As noted earlier the set I = {a ∈ A : d(a, c) ≤
m} is a subuniverse of A since A is idempotent. We need
only show that I is closed under multiplication on the left.
So, suppose that a ∈ I and u ∈ A. Since d(u, c) ≤ n, we
have d(u · a, c) ≤ max(m, d(a, c)) ≤ m by the previous
lemma. •

Corollary 3.7 Let A and B be finite members of V3 such
that A is Jónsson trivial and connected with respect to some
subdirect subalgebra S of A × B. Then d(a, b) ≤ 1 for all
a, b ∈ A (or equivalently, S1 = A2).

PROOF: Suppose that the maximum distance n between the
points of A is at least 2 and that a, b ∈ A with d(a, b) =
n. Then m, the largest integer below [(n + 1)/2] is less
than n. From the previous lemma, the set of all elements
u ∈ A with d(a, u) ≤ m is a proper Jónsson ideal of A,
contradicting that A is Jónsson trivial. •

Lemma 3.8 Let A, B be finite members of V3 with A
Jónsson trivial and simple and let S be a subdirect subalge-
bra of A× B. Then either S = A×B, or S is the graph of
an onto homomorphism from B to A.

PROOF: As A is simple, then either S1 = 0A or A is con-
nected with respect to S. In the former case, we conclude
that S is the graph of an onto homomorphism from B to A
and in the latter, it follows from the previous corollary that
S1 = A2.

For a ∈ A, let Sa = {b ∈ B : (a, b) ∈ S} and choose
a with |Sa| maximal. Let I denote the set of those elements
x of A for which Sx = Sa. To complete the proof we will
need to demonstrate that I = A and Sa = B. To show that
I = A it will suffice to prove that it is a Jónsson ideal of A.

Indeed, let u ∈ A and c ∈ I be arbitrary. Then (u, c) ∈
S1 (since S1 = A2) and therefore there is a b ∈ B such that
(u, b) and (c, b) are in S. Note that since c ∈ I then b ∈ Sa.
If d is any element of Sa then c ∈ I implies that (c, d) ∈ S,
so we get that

(p2(u, c, c), p2(b, b, d)) = (u · c, d) ∈ S.

Since this holds for every d ∈ Sa, we conclude that u·c ∈ I .
Finally, since S is subdirect it follows that Sa = B. •

We apply this lemma to obtain a simple description of
subdirect products of finite, simple, Jónsson trivial mem-
bers of V3 and then show how to use this description to
prove that certain k-minimal instances of the CSP have so-
lutions, when k ≥ 3.



Lemma 3.9 Let Ai, for 1 ≤ i ≤ n, be finite members of V3

with A1 Jónsson trivial. Let S be a subdirect product of the
Ai’s such that for all 1 < i ≤ n, the projection of S onto
coordinates 1 and i is equal to A1× Ai. Then S = A1×D,
where D = proj{2≤i≤n}(S).

PROOF: We prove this by induction on n. For n = 2, the
result follows by our hypotheses. Consider the case n = 3
and let D be the projection of S onto A2 ×A3. Let (u, v) ∈
D and let I(u,v) = {a ∈ A1 : (a, u, v) ∈ S}. Our goal
is to show that I(u,v) = A1 and we can accomplish this
by showing that it is a non-empty Jónsson ideal. Clearly
I(u,v) is a non-empty subuniverse of A1 since all algebras
involved are idempotent.

Let a ∈ I(u,v), b ∈ A1 and choose elements y ∈ A3 and
x ∈ A2 with (b, u, y) and (a, x, y) ∈ S. By our hypotheses,
these elements exist. Applying p2 to these elements, along
with (a, u, v), we get the element (b · a, u, v), showing that
b · a ∈ I(u,v). Thus I(u,v) is a Jónsson ideal.

Now, consider the general case and suppose that the re-
sult holds for products of fewer than n factors. Let S1 =
proj{1≤i<n}(S) and S2 = proj{2≤i<n}(S). Then S is iso-
morphic to a subdirect product of A1, S2 and An and, by
induction, S1 = A1 × S2. Then, applying the result with
n = 3 to this situation, we conclude that S = A1 × D, as
required. •

Corollary 3.10 Let Ai be finite, simple, Jónsson trivial
members of V3, for 1 ≤ i ≤ n, and let S be a subdirect
product of the Ai’s. If, for all 1 ≤ i < j ≤ n, the projec-
tion of S onto Ai × Aj is not the graph of a bijection then
S =

∏
1≤i≤n Ai.

PROOF: For 1 ≤ i < j ≤ n, we have, by Lemma 3.8 that
either the projection of S onto Ai × Aj is the graph of a
bijection between the two factors (since they are both sim-
ple) or is the full product. The former case is ruled out by
assumption and so we are in a position to apply the previous
lemma inductively to reach the desired conclusion. •

Definition 3.11 A subdirect product S of the algebras Ai,
1 ≤ i ≤ n, is said to be almost trivial if, after suitably rear-
ranging the coordinates, there is a partition of {1, 2, . . . , n}
into intervals Ij , 1 ≤ j ≤ p, such that S = projI1

(S) ×
· · · × projIp

(S) and, for each j, if Ij = {i : u ≤ i ≤ v}
then there are bijections πi : Au → Ai, for i ∈ Ij such that
projIj

(S) = {(a, πu+1(a), . . . , πv(a)) : a ∈ Au}.

Corollary 3.12 Let Ai be finite, simple, Jónsson trivial
members of V3, for 1 ≤ i ≤ n, and let S be a subdirect
product of the Ai’s. Then S is almost trivial.

PROOF: For 1 ≤ i, j ≤ n, set i ∼ j if i = j or the projec-
tion of S onto Ai and Aj is equal to the graph of a bijection

between these two factors. In this case, let πi,j denote this
bijection.

It is not hard to see that ∼ is an equivalence relation on
the set {1, 2, . . . , n} and, by applying Lemma 3.8, if i 6∼ j
then the projection of S onto Ai and Aj is equal to Ai ×
Aj . By using the bijections πi,j and Corollary 3.10 it is
elementary to show that S is indeed almost trivial. •

For A a finite sequence of finite algebras, P = (A, C)
denotes a multi-sorted instance of the CSP whose domains
are the universes of the algebras in A and whose constraint
relations are subuniverses of cartesian products of members
from A.

Theorem 3.13 Let A be a finite sequence of finite, simple,
Jónsson trivial members of V3 and let P = (A, C) be a
subdirect, k-minimal instance of the CSP for some k ≥ 3.
If the constraint relations of P are all non-empty then P has
a solution.

Definition 3.11 and analogs of Corollary 3.12 and Theo-
rem 3.13 can be found at the end of Section 3.3 in [3]. The
proof of Corollary 3.4 given in that paper can be used to
prove our Theorem 3.13. As we shall see, this theorem will
form the base of the inductive proof of our main result.

3.2. The reduction to Jónsson trivial alge-
bras

The goal of this subsection is to show how to reduce a
k-minimal instance P of the CSP whose domains all lie in
V3 and whose constraint relations are all non-empty to an-
other k-minimal, subdirect instance P ′ whose domains are
all Jónsson trivial and whose constraint relations are non-
empty. In order to accomplish this, we will need to work
with a suitably large k ≥ 3.

To start, let A = (A1, . . . , An) be a sequence of finite
algebras from V3 and let M = max{|Ai| : 1 ≤ i ≤ n}.
Let k > 0 and P = (A, C) be a k-minimal instance of the
CSP with C consisting of the constraints Ci = (Si, Ri),
1 ≤ i ≤ m. By taking suitable subalgebras of the Ai

we may assume that P is subdirect and, of course, we
also assume that the Ri are all non-empty. In addition, k-
minimality assures that we may assume that the scope of
each constraint of P consists of at least k variables and
that no two constraints have the same k-element set as their
scopes.

Since P is k-minimal then its system of partial solu-
tions over k-element sets satisfies an important compati-
bility property. Namely, if I and K are k-element sets of
coordinates then proj(I∩K)(PI) = proj(I∩K)(PK). In this
section we will denote PI by Λ(I) and call this function the
k-system (of partial solutions) determined by P . Since P is
subdirect then for all I , Λ(I) will be a subdirect product of
the algebras Ai, for i ∈ I .



We wish to consider the situation in which some Ai, say
A1, has a proper Jónsson ideal J . The main result of this
subsection is that if the scopes of the constraints of P all
have size at most k (and hence exactly k), or if k ≥ M2

then we can reduce the question of the solvability of P to
the solvability of a k-minimal instance with A1 replaced by
J . Doing so will allow us to proceed by induction to reduce
our original instance down to one whose domains are all
Jónsson trivial.

So, let J be a proper non-empty Jónsson ideal of A1

and define ΛJ to be the following function on the set of
k-element subsets of {1, 2, . . . , n}:

• If I is a k-element set that includes 1 then define ΛJ(I)
to be {~a ∈ Λ(I) : ~a(1) ∈ J}.

• If 1 /∈ I , define ΛJ(I) to be the set of all ~a ∈ Λ(I)
such that for all i ∈ I the restriction of ~a to I \ {i} can
be extended to an element of ΛJ({1} ∪ (I \ {i})).

Lemma 3.14 If k ≥ 3 then

1. ΛJ(I) is non-empty for all I and if 1 ∈ I then the
projection of ΛJ(I) onto the first coordinate is equal
to J .

2. For I , K, k-element subsets of {1, 2, . . . , n},
proj(I∩K)(ΛJ(I)) = proj(I∩K)(ΛJ(K)).

Corollary 3.15 If all of the constraints of P have scopes
of size k then there is a k-minimal instance PJ of the con-
straint satisfaction problem over the domains J and the Ai,
for 2 ≤ i ≤ n, whose constraint relations are all non-empty
and whose solution set is contained in the solution set of P .

PROOF: It follows from our assumptions on the sizes of
the scopes of the constraints of P that the constraints can
be indexed by the k-element subsets of {1, 2, . . . , n} and
that for such a subset I , the constraint CI is of the form
(I, RI) where RI is a subdirect product of the algebras Ai,
for i ∈ I .

We set PJ to be the instance of the CSP over the domains
J and the Ai, for 2 ≤ i ≤ n, that has, for each k-element
subset I of {1, 2, . . . , n}, the constraint C ′

I = (I,R′
I),

where R′
I = ΛJ(I). It follows by construction and from the

previous lemma that PJ is a k-minimal instance of the CSP
whose constraint relations are all non-empty and whose so-
lutions are also solutions of P . •

The previous corollary can be used to establish the
tractability of the constraint languages arising from finite
members of V3, while the following lemma will be used to
prove that these languages are in fact globally tractable.

Lemma 3.16 Assume that k ≥ M2 and let C = (S, R) be
a constraint of P . Then there is a subuniverse RJ of R such
that for all k-element subsets I of S, the projection of R
onto I is equal to ΛJ(I).

Corollary 3.17 If k ≥ M2 then there is a k-minimal in-
stance PJ of the constraint satisfaction problem over J and
the Ai, for 2 ≤ i ≤ n, whose constraint relations are all
non-empty and whose solution set is contained in the solu-
tion set of P .

PROOF: From the preceding lemma it follows that the in-
stance PJ over the domains J and the Ai, for 2 ≤ i ≤ n,
with constraints C ′ = (S, RJ), for each constraint C =
(S, R) of P , is k-minimal and has all of its constraint re-
lations non-empty. Since the constraint relations of PJ are
subsets of the corresponding constraint relations of P then
the result follows. •

Theorem 3.18 Let A = (A1, . . . , An) be a sequence of fi-
nite algebras from V3 and let P = (A, C) be a k-minimal
instance of the CSP whose constraint relations are non-
empty. If k ≥ 3 and the sizes of the scopes of the con-
straints of P are bounded by k or if k ≥ M2, where
M = max{|Ai| : 1 ≤ i ≤ n}, then there is a subdi-
rect k-minimal instance P ′ of the CSP over Jónsson trivial
subalgebras of the Ai such that the constraint relations of
P ′ are non-empty and the solution set of P ′ is contained in
the solution set of P .

PROOF: This theorem is proved by repeated application of
Corollaries 3.15 and 3.17. •

3.3. The reduction to simple algebras

In this subsection we show, for k ≥ 3, how to reduce a
k-minimal instance of the CSP whose domains are Jónsson
trivial members of V3 and whose constraint relations are all
non-empty to one which has in addition, domains that are
simple algebras. Our development closely follows parts of
the proof of Theorem 3.1 in [3].

Definition 3.19 Let Ai, 1 ≤ i ≤ m, be similar algebras
and let Θ = (θ1, . . . , θm) be a sequence of congruences
θi ∈ Con (Ai).

1.
∏m

i=1 θi denotes the congruence on
∏m

i=1 Ai that iden-
tifies two m-tuples ~a and ~b if and only if (ai, bi) ∈ θi

for all i.

2. If I is a subset of {1, 2, . . . ,m} and R is a subalgebra
of

∏
i∈I Ai then R/Θ denotes the quotient of R by the

restriction of the congruence
∏

i∈I θi to R.



Let A = (A1, . . . , An) be a sequence of finite, Jónsson
trivial members of V3 and let P = (A, C) be a subdirect, k-
minimal instance of the CSP whose constraint relations are
all non-empty. Let C = {C1, C2, . . . , Cm} where, for 1 ≤
i ≤ m, Ci = (Si, Ri) for some subset Si of {1, 2, . . . , n}
and some subuniverse Ri of

∏
i∈Si

Ai. Suppose that one of
the Ai is not simple, say for i = 1, and let θ1 be a maximal
proper congruence of A1.

Recall that for I ⊆ {1, 2, . . . , n}, PI denotes the set of
partial solutions of P over the variables I . If |I| ≤ k then
since P is k-minimal, PI is non-empty and is a subdirect
subuniverse of

∏
i∈I Ai.

Since the algebra A1/θ1 is a simple, Jónsson trivial al-
gebra then it follows by Lemma 3.8 that for 2 ≤ i ≤ n,
P{1,i}/(θ1 × 0Ai

) is either the graph of a homomorphism
πi from Ai onto A1/θ1 or is equal to A1/θ1 × Ai. Let W
consist of 1 along with the set of all i for which the former
holds. For 2 ≤ i ≤ n, let θi be the kernel of the map πi if
i ∈ W , and 0Ai

otherwise.
Let Θ = (θ1, . . . , θn) and set P/Θ = (A/Θ, C/Θ)

where A/Θ = (A1/θ1, . . . , An/θn) and C/Θ consists of
the constraints Ci/Θ = (Si, Ri/Θ), for 1 ≤ i ≤ m.

Note that since P is subdirect and k-minimal then so is
P/Θ and that each Ai/θi is Jónsson trivial, since this prop-
erty is preserved by taking quotients.

Lemma 3.20 If the instance P/Θ has a solution, then there
is some k-minimal instance P ′ = (A′, C′) such that

• A′ = (A′
1, . . . , A′

n), where for each 1 ≤ i ≤ n, A′
i a

subalgebra of Ai.

• A′
1 is a proper subset of A1,

• C′ = {C ′
1, . . . , C

′
m} where, for each 1 ≤ i ≤ m, C ′

i =
(Si, R

′
i) for some non-empty subuniverse R′

i of Ri.

Hence, any solution of P ′ is a solution of P .

4. Proof of the main result

In the preceding section we established techniques for
reducing k-minimal instances of the CSP over domains
from V3 to more manageable instances. The following the-
orem employs these techniques to establish the finite rela-
tional width of constraint languages arising from finite al-
gebras in CD(3).

Let A be a finite algebra in CD(3). Then A has term
operations p1(x, y, z) and p2(x, y, z) that satisfy the equa-
tions:

pi(x, y, x) = x , i = 1, 2
p1(x, x, y) = x

p1(x, y, y) = p2(x, y, y)
p2(x, x, y) = y

Associated with A is the constraint language ΓA =
Inv(A), consisting of all relations invariant under the basic
operations of A.

Theorem 4.1 If Γ is a subset of ΓA whose relations all have
arity k or less, for some k ≥ 3, then Γ has relational width
k. If M = |A|2 then ΓA has relational width M .

Corollary 4.2 If Γ is a finite subset of ΓA then Γ is tractable
and the class of instances of CSP(Γ) that fail to have a so-
lution is definable within Datalog. ΓA is globally tractable.

PROOF: (of the Theorem) We may assume in fact that A =
(A, p0, p1, p2, p3), where p0(x, y, z) = x and p3(x, y, z) =
z for all x, y, z ∈ A since if we can establish the theorem
for this sort of algebra, it will then apply to all algebras with
universe A that have the pi as term operations.

Our assumption on A places it in the variety V3 and so
the results from the previous section apply. Let Γ be a subset
of ΓA. If Γ is finite, let k be the maximum of 3 and the
arities of the relations in Γ and replace Γ by Γk, the set of
all relations in ΓA of arity k or less. Establishing relational
width k for this enlarged Γ will, of course, be a stronger
result. If Γ is not finite, replace it by ΓA and set k = |A|2.
We will show that in either case, Γ has relational width k.

Our goal is to show that if P is a k-minimal instance of
CSP (Γ) whose constraint relations are all non-empty then
P has a solution. We may express P in the form (A, C)
where A = (A, A, . . . , A) is a sequence of length n, for
some n > 0, and where C is a set of constraints of the form
C = (S, R), for some non-empty subset S of {1, 2, . . . , n}
and some non-empty subuniverse R of A|S|.

In order to apply the results from the previous section
as seamlessly as possible, we enlarge our language Γ to a
closely related, but larger, multi-sorted language. Let H be
the set of all quotients of subalgebras of A. Note that H is
finite and all algebras in it have size at most |A|. If Γ = Γk,
replace it with the set of all subuniverses of l-fold products
of algebras from H, for all 1 ≤ l ≤ k, and otherwise, re-
place it by the set of all subuniverses of finite products of al-
gebras fromH. In both cases, we have extended our original
constraint language. P can now be viewed as a k-minimal
instance of CSP (Γ), the class of multi-sorted CSPs whose
instances have domains from H and whose constraint rela-
tions are from Γ.

We now prove that every k-minimal instance of CSP (Γ)
whose constraint relations are non-empty has a solution. If
this is not so, let Q be a counter-example such that the sum
of the sizes of the domains of Q is as small as possible. Note
that independent of this size, no domain of Q is bigger than
|A| since they all come from H. Also note that Q must be
subdirect.

From Theorem 3.18 it follows that all of the domains of
Q are Jónsson trivial. Then, from Lemma 3.20 we can de-
duce that all of the domains of Q are simple. If not, then



either there is a proper quotient of Q that is k-minimal and
that does not have a solution, or the k-minimal instance pro-
duced by the lemma cannot have a solution. In either case,
we contradict the minimality of Q. Thus Q is a subdirect,
k-minimal instance of CSP (Γ) whose domains are all sim-
ple and Jónsson trivial and whose constraint relations are
all non-empty. From Theorem 3.13 we conclude that in fact
Q has a solution. This contradiction completes the proof of
the theorem. •

5. Conclusion and Acknowledgments

The main result of this paper establishes that for cer-
tain constraint languages Γ that arise from finite algebras
that generate congruence distributive varieties, the problem
class CSP (Γ) is tractable. This class of constraint lan-
guages includes those that are compatible with a majority
operation but also includes some languages that were not
previously known to be tractable.

We feel that the proof techniques employed in this paper
may be useful in extending our results to include all con-
straint languages that arise from finite algebras that generate
congruence distributive varieties and perhaps beyond.

Problem 1: Extend the algebraic tools developed to handle
algebras in CD(3) to algebras in CD(n) for any n > 3.
In particular, generalize the notion of a Jónsson ideal to this
wider setting.

We note that in [19] some initial success at extending the
notion of a Jónsson ideal has been obtained.

The bound on relational width established for the lan-
guages addressed in this paper seems to depend on the size
of the underlying domain of the language. Nevertheless,
we are not aware of any constraint language that has finite
relational width that is not of relational width 3.

Problem 2: For each n > 3, produce a constraint language
Γn that has relational width n and not n− 1. As a strength-
ening of this problem, find Γn that in addition have compat-
ible near unanimity operations.

The first author acknowledges the support of the Hungar-
ian National Foundation for Scientific Research (OTKA),
grants no. T043671 and T043034, while the second, the
support of the Natural Sciences and Engineering Research
Council of Canada. Support of the Isaac Newton Insti-
tute for Mathematical Sciences and the organizers of the
Logic and Algorithms programme is also gratefully ac-
knowledged.
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6. Appendix

6.1. Proofs of Lemmas 3.14, 3.16 and 3.20

PROOF: (of Lemma 3.14) Since P is subdirect then for any
k-element set I with 1 ∈ I we have that ΛJ(I) is non-empty
and projects onto J in the first coordinate.

Let I be some k-element set of coordinates with 1 /∈
I . For ease of notation, we may assume that I =
{2, 3, . . . , k, k + 1}. Let ~a = (a1, a2, a3, . . . , ak) be any
member of ΛJ({1, 2, . . . , k}). We will show that there is
some ak+1 ∈ Ak+1 such that (a2, a3, . . . , ak+1) ∈ ΛJ(I).
This will not only show that ΛJ(I) is non-empty, but will
also allow us to easily establish condition (2) of the lemma.

We construct the element ak+1 as follows. Since Λ is the
k-system for P then there is some element u ∈ Ak+1 such
that (a2, . . . , ak, u) ∈ Λ(I). Furthermore, there is some
v ∈ Ak+1 such that (a1, a3, . . . , ak, v) ∈ Λ({1, 3, . . . , k +
1}) and then some v′ ∈ A2 with (v′, a3, . . . , ak, v) ∈ Λ(I).
Similarly, there are w and w′ with (a1, a2, a4, . . . , ak, w) ∈
Λ{1, 2, 4, . . . , k + 1}) and (a2, w

′, a4, . . . , ak, w) ∈
Λ(I). Let ak+1 = p1(u, v, w) ∈ Ak+1. By ap-
plying the operation p1 to the tuples (a2, . . . , ak, u),
(v′, a3, . . . , ak, v) and (a2, w

′, a4, . . . , ak, w) we see that
the tuple (a2, a3, . . . , ak+1) ∈ Λ(I).

We now need to show that for all 2 ≤ i ≤ k + 1 there
is some b ∈ J with (b, a2, . . . , ai−1, ai+1, . . . , ak+1) ∈
ΛJ({1, 2, . . . , i− 1, i+1, . . . , k +1}). There are a number
of cases to consider.

• If i = k + 1 then the tuple (a2, . . . , ak) extends to
(a1, a2, . . . , ak), a member of ΛJ({1, 2, . . . , k}), as
required.

• If i = 2: There are x ∈ A1 and y ∈ A3

with (x, a3, . . . , ak, u) and (a1, y, a4, . . . , ak, w) ∈
Λ({1, 3, . . . , k + 1}). Applying p1 to these tu-
ples, along with the tuple (a1, a3, a4, . . . , ak, v)
(in the second variable) produces the tuple (x ·
a1, a3, . . . , ak, ak+1) ∈ Λ({1, 3, . . . , k + 1}). Since
a1 ∈ J and J is a Jónsson ideal, then x · a1 ∈ J and
so this tuple belongs to ΛJ({1, 3, . . . , k + 1}), as re-
quired.

• If i = 3 or 3 < i < k + 1 then small variations of the
previous argument will work.

To complete the proof of this lemma we need to estab-
lish the compatibility of ΛJ on overlapping elements of its
domain. Let I and L be distinct members of the domain of
ΛJ with non-empty intersection N and let i ∈ I \ L and
l ∈ L \ I .

Let ~a ∈ ΛJ(I) and let ~c be the projection of ~a onto the
coordinates in N . The restriction of ~a to I \ {i} extends
to an element ~a′ ∈ ΛJ({1} ∪ (I \ {i})). Since Λ is the

k-system for P , the restriction of ~a′ to {1} ∪ N extends to
an element ~b′ of Λ({1} ∪ (L \ {l})). Note that ~b′(1) ∈ J

and the restriction of ~b′ to N is ~c. By the first part of this
proof, it follows that the restriction of ~b′ to L \ {l} extends
to an element~b of ΛJ(L) as required. •

PROOF: (of Lemma 3.16) For K a subset of S and ~a ∈ R,
we will say that ~a is reduced over K if for all (k − 1)-
element subsets I of K, the restriction of ~a to I can be ex-
tended to an element of ΛJ({1}∪I). We define RJ to be the
set of all tuples ~a ∈ R that are reduced over S. RJ is also
equal to all elements ~a of R such that for all k-element sub-
sets I of S, the restriction of ~a to I is in ΛJ(I). RJ is natu-
rally a subuniverse of R and so the challenge is to show that
it satisfies the conditions of the lemma. Our proof breaks
into two cases, depending on whether or not the coordinate
1 is in S.

Suppose that 1 ∈ S. We may assume that S =
{1, 2, . . . ,m} for some m ≤ n. We need to show that if
I is a k element subset of S and ~a ∈ ΛJ(I) then there is
some~b ∈ RJ whose restriction to I is ~a.

First consider the sub-case where 1 ∈ I . If ~a ∈ ΛJ(I)
then by the k-minimality of P there is some ~b ∈ R whose
restriction to I is ~a. Since~b(1) = ~a(1) ∈ J it follows that~b
is in RJ , as required.

Now, suppose that 1 /∈ I and assume that I =
{2, 3, . . . , k + 1}. By the k-minimality of P there is some
~c ∈ R whose restriction to I is ~a. For each 2 ≤ i ≤ k + 1
there is some ji ∈ J and some ~ci ∈ R such that ~ci(1) = ji

and such that the restrictions of ~ci and ~a to I \ {i} are the
same.

Since k > |J | it follows from the Pigeonhole principle
that there are i 6= l with ji = jl. We may assume that i = 2
and l = 3 and set j = ji. Define ~b to be p1(~c,~c2,~c3). This
element belongs to R and satisfies: ~b(1) = ~c(1) · j ∈ J and
the restriction of ~b to I is ~a. To establish this equality over
coordinate 2 we make use of the identity p1(x, y, x) = x

and over coordinate 3 p1(x, x, y) = x. Finally, ~b is in RJ

since~b(1) ∈ J .
For the remaining case, assume that 1 /∈ S, say S =

{2, 3, . . . ,m + 1}. We will show by induction on s that if
k − 1 ≤ s ≤ m − 1, K is a subset of {2, 3, . . . ,m + 1}
of size s and ~a ∈ R is reduced over K then if i ∈ S \ K

there is some ~b ∈ R that is reduced over K ∪ {i} and such
that projK(~a) = projK(~b). A consequence of this claim is
that for any k-element subset I of S, any element of ΛJ(I)
can be extended to a member of RJ . From this, the lemma
follows.

Lemma 3.14 establishes the base of this induction. As-
sume the induction hypothesis holds for k−1 ≤ s < m−1
and let K be a subset of {2, 3, . . . ,m + 1} of size s + 1.
By symmetry, we may assume that K = {2, 3, . . . , s + 2}.



Let ~a ∈ R be reduced over K. We will show that there is
some ~a′ ∈ R which equals ~a over K and is reduced over
K ∪ {s + 3}.

By the induction hypothesis, for each 2 ≤ i ≤ s + 2
there is some ~ai ∈ R such that the projections of ~a and ~ai

onto K \ {i} are the same and ~ai is reduced over (K ∪{s+
3}) \ {i}. By the Pigeonhole principle it follows that there
is some a ∈ As+3 and a set Q contained in K of size at
least M such that for i ∈ Q, ~ai(s + 3) = a.

Let i and l be distinct members of Q and let ~a′ be the
element p1(~a,~ai,~al) of R. Note that over the coordinates
in K, ~a′ and ~a are equal and that at s + 3, ~a′ equals b · a,
where b = ~a(s + 3).

We claim that~a′ is reduced over K∪{s+3}. To establish
this we need to show that over any subset U of K ∪{s+3}
of size k − 1, the restriction to U of ~a′ can be extended to
a member of ΛJ({1} ∪ U). When U avoids the coordinate
s + 3 there is nothing to do, since ~a is reduced over K.

So, assume that U contains s+3 and let ~d be an extension
to some element in Λ({1} ∪ U) of the restriction of ~a to
U . Since for each v ∈ Q the element ~av is reduced over
(K∪{s+3})\{v} then there is a member~cv of ΛJ({1}∪U)
whose restriction to U \ {v} is equal to the restriction of ~av

over this set. If there is some v ∈ Q \ U then the element
p1(~d,~cv,~cv) ∈ ΛJ({1} ∪ U) witnesses that the restriction
of ~a′ to U can be extended as desired.

If, on the other hand, Q ⊆ U then choose two elements
u and v of Q such that ~cu(1) = ~cv(1) ∈ J . An application
of the Pigeonhole principle ensures the existence of these
elements since |Q| > |J |. Then, the element p1(~d,~cu,~cv) ∈
ΛJ({1} ∪U) and its restriction to U is equal the restriction
of ~a′ on U . •

PROOF: (of Lemma 3.20) Let (s1, . . . , sn) be a solution of
P/Θ. We can regard each si as a congruence block of θi

and hence as a subuniverse of Ai. For i ∈ W , define A′
i to

be the subalgebra of Ai with universe si and for i /∈ W , set
A′

i = Ai. For 1 ≤ j ≤ m, let

R′
j = Rj ∩

∏
i∈Sj

A′
i.

We now set out to prove that the instance P ′ = (A′, C′)
has the desired properties. Since θ1 is a proper congruence
of A1 then s1 is a proper subset of A1 and so A′

1 is properly
contained in A1. Since (s1, . . . , sn) is a solution to P/Θ it
follows that for 1 ≤ j ≤ m, R′

j is a non-empty subuniverse
of Rj .

We need only verify that P ′ is k-minimal, so let 1 ≤ a <
b ≤ m and I be some subset of Sa ∩ Sb of size at most k.
To establish that projI(R′

a) = projI(R′
b) it will suffice to

show that

projI(R
′
i) = projI(Ri) ∩

∏
l∈I

A′
l.

for all i, since P is k-minimal.
By the definition of R′

i it is immediate that the relation
on the left of the equality sign is contained in that on the
right. In the case that W ∩Si = ∅ the other inclusion is also
clear.

If W ∩ Si 6= ∅ we have that projW∩Si
(Ri/Θ) is a sub-

direct product of simple, Jónsson trivial algebras that are all
isomorphic to A1/θ1. Since the projection of this subdirect
product onto any two coordinates in W ∩ Si is equal to the
graph of a bijection then in fact, the entire subdirect product
is isomorphic to A1/θ1 in a natural way (using the bijections
πi from the definition of W ). Then, using Lemma 3.9 and
the definition of W (or more precisely, the complement of
W ), we conclude that Ri/Θ is isomorphic to A1/θ1 × D,
where D = proj(Si\W )(Ri).

Now, suppose that ~a ∈ projI(Ri) ∩
∏

l∈I A′
l. Then

there is some ~b ∈ Ri with projI(~b) = ~a. If W ∩ I = ∅
then, by the concluding remark of the previous paragraph,
proj(Si\W )(~b) and hence projI(~b) can be extended to an el-
ement of Ri that lies in

∏
l∈Si

A′
l (here we use the fact that

we have a solution of P/Θ to work with). This establishes
that, in this case, ~a ∈ projI(R′

i).
Finally, suppose that for some w we have w ∈ W ∩ I .

The vector ~b from Ri that projects onto ~a over I has the
property that ~b(w) ∈ sw (since ~a does). The structure of
Ri/Θ worked out earlier implies that ~b(l) ∈ sl for all l ∈
W ∩ Si since (s1, . . . , sn) is a solution to P/Θ. From this
we conclude that~b ∈ R′

i, as required. •


