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Abstract. We say that a finite algebra A = 〈A; F 〉 has the ability to count if
there are subalgebras C of A

3 and Z of A such that the structure 〈A; C, Z〉 has
the ability to count in the sense of Feder and Vardi. We show that for a core

relational structure A the following conditions are equivalent: (i) the variety
generated by the algebra A associated to A contains an algebra with the ability

to count; (ii) A
2 has the ability to count; (iii) the variety generated by A admits

the unary or affine type. As a consequence, for CSP’s of finite signature, the
bounded width conjectures stated in Feder-Vardi [9], Larose-Zádori [16] and

Bulatov [4] are identical.

1. Introduction

Constraint Satisfaction Problems (CSP’s) provide a convenient framework in
which to express several standard combinatorial problems such as graph colouring,
graph reachability, satisfiability and so on. Roughly speaking, a CSP consists of
a set of constraints placed on a collection of variables, and one must decide if
values can be assigned to the variables so as to satisfy all constraints. In general
this class of problems is NP-complete but by restricting the types of constraints
one may obtain tractable subclasses. It is also convenient to consider CSP’s as
homomorphism problems: given a fixed relational structure A, CSP (A) denotes
the decision problem consisting of all structures A′ that admit a homomorphism
to A. The question is to determine the complexity of CSP (A) in terms of the
structure A.

In particular, a central problem in the study of these non-uniform constraint sat-
isfaction problems is the Dichotomy Conjecture, that asserts that for every structure
A, CSP (A) is either polynomial-time solvable or NP-complete [8]. Problems of so-
called bounded width form a large class of tractable CSP’s. These problems, which
are equivalently described in terms of the query language Datalog or as those prob-
lems having bounded treewidth duality, are solvable by local consistency methods.
An important problem in the area is to determine whether the property of having
bounded width is actually decidable (see [9, 5].) In their seminal paper [9], Feder
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and Vardi introduced the notion of “ability to count” for CSP’s. This simple com-
binatorial property is sufficient to guarantee that a CSP does not have bounded
width. Two proofs of this fact are found in [9], one of them relying on Razborov’s
monotone circuit lower bound for matching [18]. A related result can be found in
Atserias, Bulatov and Dawar [2]: it is proved there that the problem of existence
of solutions for systems of equations over an Abelian group cannot be expressed in
certain counting logics, which properly extend the language Datalog.

In [16], the universal algebraic aspects of CSP’s with bounded width are investi-
gated. To the problem CSP (A) one associates naturally an algebra on the universe
A whose basic operations are those that are compatible with the basic relations of
A. It is proved in [16] that if CSP (A) has bounded width, then the associated
algebra must satisfy certain special identities; it is conjectured that in fact this
condition, that the variety generated by the algebra associated to the CSP omits
the unary and affine types, is equivalent to having bounded width (see Conjecture
1 below). A similar conjecture is described in [4]: a colour scheme is defined on
CSP’s: certain pairs of elements are called edges, some of which are red, yellow
or blue. A variant of the notion of bounded width called relational width (which
for CSP’s of finite signature is equivalent to bounded width, see [5]) is conjectured
to be equivalent to the absence of blue edges. This conjecture, for CSP’s of finite
signature, is equivalent to Conjecture 1 [6]. In the paper mentioned earlier Feder
and Vardi outline a conjecture stating that the ability to count essentially cap-
tures those CSP’s that do not have bounded width. In the present paper we will
make this connection more precise, and show that it actually matches the algebraic
conjectures mentioned above.

We now give a detailed outline of the contents of the paper. In section 2 we
present some required basic concepts and definitions; in particular, we introduce
the notion of an algebra with the ability to count (Definition 2.4). In section 3, we
prove a special case of our main result, namely that a finite idempotent algebra has
the ability to count precisely if the variety it generates admits either the unary or
affine type (Theorem 3.1). In section 4, we extend the result to the general case: we
introduce the notion of finite core algebra (Definition 4.1), and show that the variety
generated by a finite, core algebra contains an algebra with the ability to count if
and only if it admits the unary or affine type (Theorem 4.7). As a byproduct of our
investigations we also show that there is a polynomial-time algorithm to determine
whether the variety generated by a finite core algebra omits the types in an order
ideal of types (Corollary 4.5). In particular, this shows that having the ability to
count is a decidable property for idempotent algebras. In section 5 we present an
interesting connection to the circuit complexity of CSP’s (Proposition 5.1). Finally,
in section 6, we discuss the implications and limitations of our results.

2. Preliminaries

In this section we introduce the notation and concepts we require for our results
(see also [5].)

2.1. CSP’s and the ability to count. Let τ = {R1, . . . , Rm} be a vocabulary,
i.e., a finite set of relational symbols. Each relational symbol Ri has a positive
integer ri associated to it called its arity. A τ -structure is a relational structure
A = 〈A;R1(A), . . . , Rm(A)〉 where Ri(A) ⊆ Ari for each 1 ≤ i ≤ m. Throughout
the paper we use the same boldface and capital letters to denote a structure and its
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universe, respectively. A homomorphism from a τ -structure A′ to a τ -structure A

is a mapping h : A′ → A such that for every r-ary R ∈ τ and every (a1, . . . , ar) ∈
R(A′), we have (h(a1), . . . , h(ar)) ∈ R(A).

Given a τ -structure A, we let CSP (A) denote the class of all τ -structures A′

that admit a homomorphism to A. A structure A is a core if every homomorphism
h : A → A is onto. It is easy to see that for every structure A there exists a
core structure A′, unique up to isomorphism, such that CSP (A) = CSP (A′). We
denote the class of all τ -structures that do not admit a homomorphism to A by
¬CSP (A).

Datalog was originally introduced as a database query language. We view it
here simply as a means to define classes of τ -structures. Let τ be a signature. A
Datalog program over the signature τ consists of a finite set of rules of the form
h ← b1 ∧ . . . ∧ bk where each of the bi and h are atomic formulas of the form
R(xj1 , . . . , xjr

) where R is a relational symbol from the signature τ ′′ = τ ∪ τ ′

where τ ′ is disjoint from τ . The left side of the rule is called the head of the rule,
and the righthand side is the body. Symbols from τ ′ are called intensional database

predicates (IDBs) while the symbols in τ , which can occur only in the body of a rule,
are called extensional database predicates (EDBs). Roughly speaking, a Datalog
program receives a τ -structure as input, and computes recursively the contents of
the IDB’s. We are interested here in Datalog programs equipped with a special
0-ary IDB which signals, when it becomes non-empty, that the input τ -structure is
accepted (precise definitions of the semantics of Datalog can be found in [12, 7], see
also [9]). It is immediate from the definition that the class of structures accepted
by a Datalog program is homomorphism closed, i.e., if there is a homomorphism
A→ B and A is accepted then so is B.

Definition 2.1. Let A be a τ -structure. We say that CSP (A) has bounded width
if ¬CSP (A) is definable in Datalog, i.e., if there exists a Datalog program that

accepts precisely those structures that do not admit a homomorphism to A.

Various equivalent formulations of bounded width may be found in [5]. If
CSP (A) has bounded width then it is tractable; for instance well-known decision
problems such as 2-colouring, HORN 3-SAT, directed and undirected reachability
all have bounded width. However, other standard problems in PTIME such as
solving linear equations over finite fields are known not to have bounded width.
In [9], Feder and Vardi investigate the problem of determining which CSP’s have
bounded width and introduce the concept of the “ability to count” as an attempt
to capture those problems that do not have bounded width. It is still open whether
the property of bounded width is actually decidable.

The ability to count is a natural combinatorial generalisation of the following
elementary property of an Abelian group: suppose that we are given a system of
linear equations on a finite Abelian group, such that each equation is of the form
(i) x + y + z = α or (ii) x = 0, where α is some non-zero element of the group. If
we can find two sets L and R of equations of the system such that each variable
appears in exactly one equation from L and one equation from R, and furthermore
the set L contains one more equation of form (i) than R, then the system has no
solution. Indeed, it suffices to sum all equations in L and R respectively, yielding

∑

x∈X

x = kα and
∑

x∈X

x = (k − 1)α
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for some positive integer k; subtracting the second equation from the first yields
0 = α, contrary to our choice of α; hence the system cannot have a solution.

The following definition is sketched on p. 85 of [9]:

Definition 2.2. Let A = 〈A;C,Z〉 be a structure where C is a 3-ary relation and

Z is unary. We say that A has the ability to count if the following two conditions

hold:

(1) A contains elements 0 and 1 such that

(a) 0 ∈ Z,

(b) (0, 0, 1), (0, 1, 0) and (1, 0, 0) ∈ C;

(2) Suppose A′ = 〈A′;C ′, Z ′〉 is a structure similar to A, such that there exist

subsets L and R of C ′ ∪ Z ′ and the following conditions are satisfied:

(a) every a′ in A′ appears in exactly one tuple from L and exactly one

tuple from R;

(b) there is precisely one more element in L ∩ C ′ than in R ∩ C ′.

Then there is no homomorphism from A′ to A.

By extension we say that a structure B has the ability to count if among its basic

relations there are relations C and Z such that 〈B;C,Z〉 has the ability to count.

For example, consider the structure A′ = 〈A′;C ′, Z ′〉 where A′ = {x, y, z},
C ′ = {(x, y, z)} and Z ′ = {x, y, z}. We may partition C ′∪Z ′ as L = {(x, y, z)} and
R = {x, y, z} (of course, the elements of R are viewed as 1-ary tuples.) Hence if the
structure A = 〈A;C,Z〉 has the ability to count then there is no homomorphism
from A′ to A. In particular, we conclude that no triple of elements from Z can be
in C, and that 1 6∈ Z (note that this implies that 0 6= 1.) Notice also that it is not
clear at first glance that the ability to count is a decidable property of a structure
since there is no a priori bound on the size of the input structures.

Feder and Vardi show that if a structure A has the ability to count, then the
problem ¬CSP (A) does not have bounded width [9]. They proceed to conjecture
that in essence, all CSP’s without bounded width should occur in this way. One of
our goals in this paper is to make this link precise, and to show that this conjecture
is equivalent to the bounded width conjecture (Conjecture 1 below.) For this we
shall require some algebraic machinery that we develop next.

2.2. CSP’s and algebras. An n-ary operation on the set A is a map f : An → A.
If θ is a k-ary relation on A we say that f is a polymorphism of θ (or preserves θ,
or that θ is invariant under f) if, given any k × n matrix M whose columns are
in θ, applying f to the rows of M yields a tuple in θ. By extension, if Γ is a set
of relations on A then f is a polymorphism of Γ if it is a polymorphism of every
relation in Γ, and we denote by Pol(Γ) the set of all these operations. To every
τ -structure A is naturally associated an (non-indexed) algebra AA = 〈A;Pol(Γ)〉
where A is the universe of A and Γ consists of all the basic relations of A. If
we fix some ordering of the fundamental operations of AA and view this algebra
as an indexed algebra, we can consider standard algebraic constructions such as
homomorphic images, subalgebras and products. A variety is a class of similar
algebras closed under homomorphic images, subalgebras and products; the variety
generated by the algebra A, denoted by V(A), is the smallest variety containing A;
if A is finite, then the finite members of V(A) are precisely those algebras obtained
by taking homomorphic images of subalgebras of finite powers of A.
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An n-ary operation f on a set A is idempotent if it satisfies f(x, ..., x) = x for all
x ∈ A, i.e., if it preserves all one-element subsets of A. An algebra A is idempotent
if all its basic operations are idempotent, and a variety of algebras is idempotent
if all of its members are. For an arbitrary algebra A, its full idempotent reduct,
denoted by A

⋄, is the algebra whose fundamental operations are all idempotent
term operations of A. In particular for a structure A, the full idempotent reduct of
the algebra AA is the algebra on the same universe whose fundamental operations
are the idempotent operations in Pol(Γ) where as above Γ is the set of basic relations
of A; put differently, the full idempotent reduct of AA is the algebra AA′ where
A′ is the structure obtained from A by adding all the one-element unary relations.
If the structure A is a core, then it is known that the problems CSP (A) and
CSP (A′) are equivalent under first-order reductions1, and furthermore, if one of
these CSP’s has bounded width then so does the other (see [15], Theorem 2.1.)

An operation f on A is affine if there exists an Abelian group structure G =
〈A,+,−, 0〉 on A such that f commutes with the operation x− y + z, i.e., f can be
written in the form

f(x1, . . . , xn) = a +
∑

i

aixi

for some ai ∈ End(G); if f is idempotent then a = 0 and
∑

ai = 1. An algebra is
affine if there is an abelian group structure on its base set such that (i) m(x, y, z) =
x − y + z is a term operation of the algebra and (ii) every term operation of the
algebra is an affine operation. Equivalently, an idempotent algebra is affine if and
only if it is the full idempotent reduct of a module.

Let A be an algebra. The term (polynomial) operations of A are all operations
on A that can be constructed from projections and the fundamental operations of
A (and constant operations) using composition. Two algebras are said to be term-

equivalent (polynomially equivalent) if they have the same universe and the same
term (polynomial) operations. Notice that for any structure A the term operations
of the algebra AA are precisely its fundamental operations.

Tame congruence theory, developed by Hobby and McKenzie [11], is a powerful
tool for the analysis of finite algebras. Every finite algebra has a typeset, which
describes the local behaviour of the algebra, which consists of one or more of the
following 5 types: (1) the unary type, (2) the affine type, (3) the Boolean type,
(4) the lattice type and (5) the semilattice type. The typeset of a variety is the
union of the typesets of its finite members. We say that a variety admits type i if
its typeset contains the type i; otherwise the variety is said to omit type i. There
is a very tight connection between the kind of equations that are satisfied by the
algebras in a variety and the types that are admitted (omitted) by a variety.

The next result is a special case of Lemma 3.1 in [22]; we shall need it in the
proof of our main result, and we state it here also to give the reader at least some
partial insight into the nature of algebras whose variety admits the unary or affine
types. We’ll require a few preliminary definitions and results.

A divisor of an algebra A is a homomorphic image of a subalgebra of A. An alge-
bra is strictly simple if it has no divisors other than itself or one-element algebras.
A strictly simple algebra has a unique type associated to it. A. Szendrei has char-
acterised all idempotent strictly simple algebras ([19] Theorem 6.1), in particular,

1To be precise we also have to assume that the basic relations of A are irredundant, but this

is only a minor technicality.



6 B. LAROSE, M. VALERIOTE, AND L. ZÁDORI

up to term equivalence, the only idempotent strictly simple algebra of unary type
is the 2-element set, i.e., the 2-element algebra with no basic operations 〈{0, 1}; ∅〉.
The strictly simple idempotent algebras of affine type are affine algebras. We’ll
need the following result in section 3:

Proposition 2.3 ([22]). Let A be a finite, idempotent algebra. Then V(A) admits

the unary type or the affine type if and only if A has a divisor which is either affine

or term equivalent to the 2-element set.

We may now state the bounded width conjecture:

Conjecture 1 ([16]). Let A be a core structure. Then CSP (A) has bounded width

if and only if V(AA) omits the unary and affine types.

For our purposes, it will be convenient to extend the notion of ability to count
to algebras.

Definition 2.4. Let A be a finite algebra with universe A. We say that A has the
ability to count with C and Z if C is a subuniverse of A

3 and Z is a subuniverse

of A such that the structure 〈A;C,Z〉 has the ability to count. We’ll say A has the
ability to count if there exist C and Z such that the above holds.

It is easy to verify the following:

Proposition 2.5. Let A be a finite algebra. If some divisor of A has the ability to

count then so does A.

Proof. Suppose that B is a subalgebra of A with the ability to count, with relations
C and Z. Then C and Z are subuniverses of A

3 and A respectively, and the
structure 〈A;C,Z〉 has the ability to count: this follows easily from the fact that
if a structure C admits a homomorphism into 〈A;C,Z〉, then it admits one whose
image is contained in B. Indeed, if an element of C appears in a tuple then it must
be mapped to B, and otherwise it can be mapped to any element of B. Hence A

has the ability to count. If π is a homomorphism of A onto D where D has the
ability to count with relations C and Z, then π is a structure homomorphism from
〈A;C ′, Z ′〉 to 〈D;C,Z〉, where C ′ = π−1(C) and Z ′ = π−1(Z) are subuniverses of
A

3 and A respectively. It follows immediately that A has the ability to count. �

3. Idempotent algebras and the ability to count

The main result of this section is the following:

Theorem 3.1. Let A be a finite, idempotent algebra. Then the following are equiv-

alent:

(1) V(A) contains an algebra with the ability to count;

(2) A has the ability to count;

(3) V(A) admits the unary or affine type.

Before we prove the theorem, we require two auxiliary results, the first of which
is immediate.

Lemma 3.2. If A has the ability to count with C and Z, and C ′, Z ′ are subuniverses

of A
3 and A respectively such that

{(0, 0, 1), (0, 1, 0), (1, 0, 0)} ⊆ C ′ ⊆ C and {0} ⊆ Z ′ ⊆ Z

then A has the ability to count with C ′ and Z ′.
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Lemma 3.3. Let V be an idempotent variety that contains an algebra with the

ability to count. Then V contains an algebra A with the ability to count with C and

Z satisfying the following conditions:

(1) A is generated by {0, 1};
(2) C is symmetric, i.e., if (x1, x2, x3) ∈ C then (xπ(1), xπ(2), xπ(3)) ∈ C for

any permutation π;

(3) Z = {0};
(4) any tuple of C is uniquely determined by any two of its entries;

(5) for every x ∈ A there exists a unique x′ such that (x, x′, 0) ∈ C.

Proof. (1) Let A ∈ V be an algebra with the ability to count with some C and
Z, chosen so that its universe A has minimal size. Let A

′ be the subalgebra of A

generated by 0 and 1 and let A′ denote its universe. Let C ′ = C ∩ A′3 and let
Z ′ = Z ∩ A′. It is easy to verify that the algebra A

′ has the ability to count with
C ′ and Z ′. By minimality we conclude that A = A

′.
(2) Let C ′ be the subuniverse of A

3 generated by the tuples (1, 0, 0), (0, 1, 0)
and (0, 0, 1). It is clear that C ′ ⊆ C is symmetric and the result follows from the
lemma.

(3) The claim is immediate from the last lemma since A is idempotent and hence
Z ′ = {0} is a subuniverse of A.

(4) Define the following relations:

α0 = {(x, y) : ∃u, v (x, u, v), (y, u, v) ∈ C}

and let α be the transitive closure of α0. Clearly α0 is symmetric. It is also
reflexive: indeed, let A′ be the projection of C on its first coordinate. Then A′ is
a subuniverse of A containing 0 and 1, so by (1) A′ = A and hence α0 is reflexive.
It follows that α is a congruence of the algebra. Let π : A→ A/α be the canonical
homomorphism. Let 0′ = π(0) and let 1′ = π(1). Finally let C ′ = π(C) and
Z ′ = {0′}. Clearly C ′ and Z ′ are subuniverses of (A/α)3 and A/α respectively. We
prove that 〈A/α;C ′, Z ′〉 has the ability to count.

Clearly (0′, 0′, 1′), (0′, 1′, 0′), and (1′, 0′, 0′), are in C ′. Let 〈X;C ′′, Z ′′〉 be a
structure of the same type with sets L and R as specified in the definition of
the ability to count; we must show that it does not admit a homomorphism to
〈A/α;C ′, Z ′〉.

Create a new structure of the same type as follows. Since A is finite there exists
a positive integer k such that, for every (a, b) ∈ α there exists c0, . . . , ck+1 ∈ A such
that a = c0, b = ck+1 and (ci−1, ci) ∈ α0 for all 1 ≤ i ≤ k + 1.

The universe of our new structure is Y = X×{0, . . . , k+1, 0′, . . . , k′, 0′′, . . . , k′′}
where 0, . . . , k, k + 1, 0′, . . . , k′, 0′′, . . . , k′′ are all distinct; for ease of notation we’ll
denote the elements (x, i), (x, i′) and (x, i′′) by xi, x′

i and x′′

i respectively. We define
two sets L′ and R′ as follows: L′ is the union of the following sets:

{(x0, y0, z0) : (x, y, z) ∈ L},

{x0 : x ∈ L},

{(xi+1, x
′

i, x
′′

i ) : x ∈ X, 0 ≤ i ≤ k};

the set R′ is the union of the following sets:

{(xk+1, yk+1, zk+1) : (x, y, z) ∈ R},
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{xk+1 : x ∈ R},

{(xi, x
′

i, x
′′

i ) : x ∈ X, 0 ≤ i ≤ k}.

The relation C0 is defined as Y 3 ∩ (L′ ∪R′) and let Z0 = Y ∩ (L′ ∪R′). Notice
that by hypothesis on L and R, the sets L′ and R′ satisfy the following conditions:
every element of Y appears in exactly one tuple of each set, and one of the sets
contains one more triple than the other.

We claim that if there exists a homomorphism φ : 〈X;C ′′, Z ′′〉 → 〈A/α;C ′, Z ′〉
then there is a homomorphism f : 〈Y ;C0, Z0〉 → 〈A;C,Z〉. Indeed, for every triple
(a1, a2, a3) ∈ C ′′, fix a triple (a′

1, a
′

2, a
′

3) ∈ C such that a′

i ∈ φ(ai) for all 1 ≤ i ≤ 3.
Now define f as follows: for any x ∈ X, one of two cases holds: (i) there exists a
unique triple in L with x appearing in it, say (a1, a2, a3) ∈ L with x = aj ; then
define f(x0) = a′

j ; otherwise (ii) x ∈ L, and then let f(x0) = 0. Similarly, either (i)
there exists a unique triple in R with x appearing in it, say (a1, a2, a3) ∈ R with
x = aj ; then define f(xk+1) = a′

j ; otherwise (ii) x ∈ R, and then let f(xk+1) = 0.
Since f(x0) and f(xk+1) belong to the same α block, it means we can find elements
z0, . . . , zk+1 ∈ A such that f(x0) = z0, f(xk+1) = zk+1 and (zi, zi+1) ∈ α0 for all
0 ≤ i ≤ k. This in turn means there exist elements ui, vi ∈ A, 0 ≤ i ≤ k, such
that (zi, ui, vi) and (zi+1, ui, vi) belong to C for all 0 ≤ i ≤ k. Now define f in the
obvious way: let f(x′

i) = ui and f(x′′

i ) = vi for all 0 ≤ i ≤ k and let f(xi) = zi for
all 1 ≤ i ≤ k. It is clear that f is a well-defined homomorphism, contradicting the
fact that 〈A;C,Z〉 has the ability to count. It follows that φ cannot exist and this
concludes the proof.

(5) Uniqueness follows from (4) so all we need to show is existence. Define
A′ = {x : ∃y (x, y, 0) ∈ C}. Then A′ contains 0 and 1, and by (1) we conclude that
A′ = A.

�

Proof of Theorem 3.1. (3) ⇒ (2): suppose that V(A) admits the unary or affine
type. Then by Proposition 2.3 there exist a divisor D of A which is an affine
algebra or a two-element set. We define relations C and Z on the universe D of
D such that the structure 〈D;C,Z〉 has the ability to count. Indeed, in both cases
there exists an Abelian group structure on D and a non-zero element α (any will
do) such that C = {(x, y, z) : x + y + z = α} is a subuniverse of D

3 and Z = {0} is
a subuniverse of D. This is trivial in the case where D is a set since for any n every
n-ary relation is a subuniverse of D

n, and in the affine case, it is a simple exercise
to verify that idempotent operations that commute with m(x, y, z) = x − y + z
preserve C and Z as defined above. It follows that D has the ability to count, and
hence so does A by Proposition 2.5.

(2)⇒ (1): trivial.
(1) ⇒ (3): Suppose that A is an algebra in V with the ability to count with C

and Z. We may assume that C and Z satisfy all of the conditions (1)-(4) of Lemma
3.3. As we noted earlier, we have that 0 6= 1; let α be a congruence of A which is
maximal with the property that (0, 1) 6∈ α, and let β be a cover of α. By Theorem
2.8 (4) of [11], there exists a polynomial retraction r of A onto an (α, β)-minimal
set U such that (r(0), r(1)) ∈ β \ α.

Suppose for a contradiction that the (α|U , β|U )-minimal algebra A|U is of type
3, 4 or 5. By Lemmas 4.15 and 4.17 of [11], in each case there exists a pseudo-meet
operation u of A; in particular, u is a binary polynomial operation of A that acts on
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{r(0), r(1)} as a semilattice operation. Since u(r(x), r(y)) is a binary polynomial
of A, there exist an (n + 2)-ary term t of A and a fixed n-tuple a over A such that
u(r(x), r(y)) = t(x, y, a) for all x, y ∈ A. Recall from Lemma 3.3 (4) that for every
x ∈ A there exists a unique x′ ∈ A such that (x, x′, 0) ∈ C; if a = (a1, . . . , an), let
a′ = (a′

1, . . . , a
′

n).
We assume that r(1) is the absorbing element of u on the set {r(0), r(1)}; the

case when r(1) is the neutral element is similar.
By using the five conditions in the previous lemma, the properties of u and the

fact that t preserves C and Z, we deduce that t(1, 0, a′) = r(1)′ by considering the
following:

t(0, 1, a) = r(1)

t(0, 0, 0) = 0

t(1, 0, a′) = r(1)′

There exists a unique element w of A such that (r(0), r(1)′, w) ∈ C and t(0, 1, 0) = w
since

t(0, 0, a) = r(0)

t(1, 0, a′) = r(1)′

t(0, 1, 0) = w.

We can also deduce that t(0, 0, a′) = r(1)′ by considering the following:

t(1, 1, a) = r(1)

t(0, 0, 0) = 0

t(0, 0, a′) = r(1)′;

It follows that t(0, 1, 0) = 0 since

t(0, 0, a′) = r(1)′

t(1, 0, a) = r(1)

t(0, 1, 0) = 0;

Hence w = 0, which means that r(0) = r(1), a contradiction.
�

4. The general case

If the structure A is a core, then the associated algebra AA has the property
that every one of its unary term operations is a permutation of A. This observation
motivates the following definition.

Definition 4.1. An algebra A is a core algebra if all unary term operations of A

are permutations of A.

Notice that the notion of core algebra is a varietal property, i.e., if A is a core
algebra then so is every finite algebra in the variety generated by A. Clearly, any
idempotent algebra is a core algebra since the identity map is the only unary term
operation of such algebras. Recall that for an arbitrary algebra A, we denote its
full idempotent reduct by A

⋄. We gather some elementary features of finite core
algebras in the following proposition.
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Proposition 4.2. Let A be a finite core algebra. Let G be the set of unary term

operations of A and let C the set of all idempotent term operations of A. Then

(1) G forms a group under composition,

(2) for all term operations t(x1, . . . , xn) of A, there is some g ∈ G and t⋄(x1 . . . , xn)
of C such that t(x1, . . . , xn) = gt⋄(x1, . . . , xn) for all xi ∈ A,

(3) if t(x1, . . . , xn) is an idempotent term operation of A and gi ∈ G, 1 ≤ i ≤ n,

then there is some g ∈ G and t⋄ ∈ C with

t(g1(x1), g2(x2), . . . , gn(xn)) = gt⋄(x1, . . . , xn).

If gi = g1 for all i then we can take g = g1.

(4) If B is a subalgebra of A
⋄ then SgA(B) =

⋃
g∈G g(B).

(5) If a ∈ A, then SgA({a}) = {g(a) : g ∈ G}.
(6) If B is a subalgebra of A

⋄ such that SgA(B) = A and δ is a congruence of

B then δ′ = CgA(δ) is equal to the transitive closure of
⋃

g∈G g(δ).

In this section we will extend our results for idempotent algebras to core algebras.
In order to do so, we first extend Proposition 3.1 of [22] (see also Proposition 2.3
above). It is observed in [11] that the set of tame congruence theoretic types is
naturally ordered according to the ordering in Figure 1. In Chapter 9 of [11] it is
shown that if T is any order ideal of types then the class of locally finite varieties
that omit the types in T can be characterized in a number of ways, and in particular
by an idempotent Maltsev condition. Thus omitting an order ideal of types is a
feature of the full idempotent reduct of a finite algebra.

5

4

3

1

2

Figure 1. The Pentagon of Types

Lemma 4.3. Let A be a finite core algebra and A
⋄ its full idempotent reduct. If

j ∈ typ{S(A⋄)} then i is admitted by some 2-generated subalgebra of A for some

type i ≤ j.

Proof. We will argue by contradiction. Choose a finite core algebra A of mini-
mal cardinality such that for some type j, j ∈ typ{S(A⋄)} but i is omitted by all
2-generated subalgebras of A for all types i ≤ j. Arguing directly, or using Propo-
sition 3.1 of [22], it follows that there is 2-generated subalgebra B of A

⋄ and some
congruence δ of B such that B/δ is a strictly simple algebra of type j′ for some type
j′ ≤ j. We choose B with this property with |B| as small as possible. Note that we
may assume that j′ = j since our assumptions about A will still hold.

Let {0, 1} be a generating set for B and let δ′ be the congruence of A generated
by δ. Since any pair of elements from B that are not δ-related generate B, we may
select 0 and 1 so that they belong to some (δ, 1B)-trace. By the minimality of |A|
it follows that {0, 1} is a generating set for the algebra A as well.
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We observe that in B the congruence generated by {(0, 1)} is 1B since B is an
idempotent algebra and {0, 1} is a generating set. Thus the congruence generated
by {(0, 1)} in A contains δ, and hence δ′. Our proof breaks into two cases depending
on whether or not (0, 1) ∈ δ′.

Case 1: (0, 1) /∈ δ′:

Choose some congruence α of A maximal with δ′ ≤ α and (0, 1) /∈ α. We argue
that α = 0A. Considered as a congruence of A

⋄ we have that the restriction of α to
B is equal to δ since α|B ⊇ δ and B/δ is a simple algebra. From this we conclude
that the algebra A

⋄/α has a 2-generated subalgebra that admits type j, since the
subalgebra of this quotient generated by {0/α, 1/α} is isomorphic to B/δ.

Unless α = 0A it follows, by the minimality of |A|, that some 2-generated sub-
algebra of the core algebra A/α admits some type i ≤ j since its full idempotent
reduct has a 2-generated subalgebra that admits type j. But then A also has this
property, contrary to our choice of A. Thus α = 0A and hence 0A ≺ β = CgA((0, 1)).
Furthermore, since δ ≤ α, it follows that B is a strictly simple idempotent algebra
of type j.

We will show that the type of (0A, β) = j, and so conclude that no such algebra
A can exist. Let U be a (0A, β)-minimal set and let p(x) be a unary polynomial of
A with range U and such that p(0) 6= p(1). Since A is a core algebra then we can
select U and p so that p is also a polynomial of A

⋄ and so can be written in the form
p(x) = t(x, 0, 1) for some term t ∈ C (we use here that {0, 1} generates A). Thus
the elements 0′ = p(0) and 1′ = p(1) belong to B and also to some (0A, β)-trace.
Since {0, 1} and {0′, 1′} are polynomially isomorphic in B (and A) then we may
assume that in fact 0 = 0′ and 1 = 1′.

To show that typ(0A, β) = j, we make use of the characterization of strictly
simple idempotent algebras found in [19]. If j = 1 then B = {0, 1} and B is
essentially unary. If typ(0A, β) 6= 1 then there is a binary polynomial of A whose
restriction to B is not essentially unary. Indeed, we consider two cases: if typ(0A, β)
is not affine, then the entire trace is {0, 1}, and the result is immediate; if the
type is affine, the whole trace supports a Mal’tsev polynomial p(x, y, z): if we let
g(x, y) = p(x, 0, 1), then g(0, 0) = 0 and g(1, 0) = g(0, 1) = 1 and so g is not
essentially unary on {0, 1}. Given a binary polynomial h(x, y) of A that is not
essentially unary on {0, 1}, then we can write h(x, y) = gt(x, y, 0, 1) for some unary
term g of A and idempotent term t (since {0, 1} generates A). Since h is not
essentially unary on {0, 1}, then neither is t(x, y, 0, 1) and hence neither is the 4-
ary term t(x, y, z, w). This leads to a term operation of B that is not essentially
unary and so in this case we conclude that typ(0A, β) = 1.

If j = 2 then B is an affine algebra. Suppose that typ(0, β) 6= 2; this type cannot
be unary because otherwise β is strongly abelian, but since B is affine it has a
polynomial (and hence so does A) that fails the strong term condition. In all other
cases β is non-abelian and in particular there is a binary polynomial of A that acts
as meet on the trace {0, 1}. So there is a polynomial h(x, y) with h(0, 1) = h(0, 0)
but h(1, 1) 6= h(1, 0). Arguing as above, it follows that there is a term of B that,
when restricted to {0, 1} fails the term condition, implying that B can’t be abelian,
and so can’t be affine.

If j = 4 then B = {0, 1} and we may assume that B has x∧y as a term operation,
since all of its term operations are lattice operations and B is not essentially unary.
The type of (0A, β) is at least that of the type of B and so is either 3 or 4. If it is



12 B. LAROSE, M. VALERIOTE, AND L. ZÁDORI

of type 3 then there is a unary polynomial e(x) of A with e(0) = 1 and e(1) = 0.
This polynomial can be written in the form hs(x, 0, 1) for some h ∈ G and s ∈ C.
Since the restriction of s to B is a lattice term it follows that s(0, 0, 1) = 0 and
s(1, 0, 1) = 1 and so h(0) = 1 and h(1) = 0. Since A is a core algebra, no such
unary term can exist, because the unary term h(x) ∧ x is not a permutation of A.
Thus typ(0A, β) = 4.

If j = 5 then B is term equivalent to a 2 element (meet) semilattice. As in the
previous paragraph, we can rule out that typ(0A, β) = 3 since there can be no
polynomial of A that maps 0 to 1 and 1 to 0. If typ(0A, β) = 4 then A will have
a binary polynomial whose restriction to {0, 1} defines the lattice join operation.
From this it follows that the clone of B cannot be that of a semilattice, contrary to
j = 5. Finally, if j = 3 then typ(0A, β) = 3 since this type is at least as rich as the
type of B.

Case 2: (0, 1) ∈ δ′:

In this case, it follows that δ′ = CgA((0, 1)). Let α be a congruence of A with
α ≺ δ′. Since (0, 1) /∈ α then α|B ≤ δ and so, as in Case 1, we conclude that α = 0A

(or else A/α provides a smaller counter example to the lemma). As in Proposition
4.2 we let G denote the set of unary term operations of A and let C the set of all
idempotent term operations of A.

Claim 1. The action of G on A is transitive and so for some g ∈ G, g(0) = 1.
Furthermore, A has no proper subuniverses.

Using part 6 of Proposition 4.2 it follows that since (0, 1) ∈ δ′ \ δ there is a
chain of overlapping sets of the form h(D), where h ∈ G and D is a δ-class, that
connects 0 to 1. From this it follows that there is some c, d ∈ B and h ∈ G with
(0, c) ∈ δ, (0, d) /∈ δ and h(c) = d. As remarked earlier, any pair of elements from
B that are not δ-related generate both B and A. In particular, {c, d} is such a
generating set. But since d = h(c), we have that in fact {c} generates A. From
part 5 of Proposition 4.2 it follows that the action of G on A is transitive and so
there must be some g ∈ G with g(0) = 1. It also follows that A can have no proper
subuniverse.

Claim 2. δ′ = 1A and so A is a strictly simple core algebra.

Let C be the δ′-class that contains B. Since δ′ is also a congruence of the
idempotent algebra A

⋄, it follows that C is closed under the set of idempotent term
operations of A. Let H be the set of unary term operations of A under which C is
closed. Clearly H is closed under composition and so is a subgroup of G, the group
of all unary term operations of A. Let C be the algebra with universe C and whose
basic operations are the restrictions of the operations in H and C to C. It is not
hard to see that C is a core algebra, since it is a subalgebra of a reduct of a core
algebra.

Let p(x1, . . . , xn) be a polynomial of A under which C is closed. We can write
p(x1, . . . , xn) as gt(x1, . . . , xn, 0, 1) for some g ∈ G and t ∈ C, since {0, 1} generates
A. Since C is closed under p then p(0, 0, . . . , 0) ∈ C and so gt(0, . . . , 0, 0, 1) ∈ C.
As t(0, . . . , 0, 0, 1) ∈ B it follows that g maps C onto C and so g ∈ H. Thus
the restriction to C of any polynomial of A under which C is closed, is actually
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a polynomial of C. In other words, A|C is polynomially equivalent to C. It also
follows that since 0A ≺ δ′ then C is a simple algebra.

From Claim 1 we conclude that C has no proper subuniverses, since the action
of G on A is transitive. Thus C is a strictly simple core algebra. Using Lemma 6.16
of [11] and our observation from the previous paragraph it follows that the type of
the simple algebra C is equal to typ(0A, δ′). We note that since B is a subalgebra
of C

⋄ then, by the minimality of |A| it follows that if C is a proper subset of A,
then for some type i ≤ j, some subalgebra of C admits i. Since C is strictly simple,
then C must have type i. But then i = typ(0A, δ′), contrary to our assumptions on
A. Thus C = A and so δ′ = 1A.

To conclude the proof of this lemma we make use of the characterization of finite
strictly simple surjective algebras having no trivial subuniverses given by Theorem
6.3 in [19]. It is shown that such an algebra is either quasi-primal, affine, or a matrix
power of a G-set (and so is strongly abelian). From this it is almost immediate that
the type of A is equal to typ(δ, 1B) = j since being quasi-primal, affine, or strongly
abelian is preserved under taking full idempotent reducts and subalgebras. �

Proposition 4.4. Let A be a finite core algebra and T an order ideal of types.

Then V(A) omits the types in T if and only if every 2-generated subalgebra of A

omits the types in T .

Proof. As noted earlier, omitting (or failing to omit) the types in T is a feature of
the idempotent term operations of an algebra and so, with A

⋄ the full idempotent
reduct of A, we conclude that V(A⋄) admits some type in T if V(A) does. In
this case, we have from Proposition 3.1 of [22] that there is some (2-generated)
subalgebra of A

⋄ that admits some type j ∈ T . So by the previous lemma we
conclude that some 2-generated subalgebra of A admits some type i ≤ j ∈ T , as
required. �

Corollary 4.5. There is a polynomial time algorithm to decide whether the variety

generated by a given finite core algebra omits the types in a given order ideal of

types.

Proof. By the previous proposition, testing whether the variety generated by a
finite core algebra A

⋄ omits the types in some order ideal T amounts to computing
the typesets of all 2-generated subalgebras of A. According to [3], this calculation
can be performed in time bounded by a polynomial in the size of A. �

Theorem 4.6. Let A be a finite core algebra. The variety generated by A admits

the unary or affine type if and only if A
2 has the ability to count.

Proof. Suppose that A
2 has the ability to count. Then so does (A⋄)2. By Theorem

3.1, it follows that V(A⋄) admits the unary or affine type, and hence V(A) admits
the unary or affine type.

For the converse we proceed by contradiction. Choose a finite core algebra A

of smallest size such that V(A) admits the unary or affine type but A
2 does not

have the ability to count. Let G be the set of unary term operations of A. By
Propositions 2.5 and 4.4 we may assume that A is subdirectly irreducible with least
non-zero congruence µ such that typ(0A, µ) is 1 or 2. Furthermore, A is generated
by any set {u, v} with (u, v) ∈ µ \ 0A. We aim to show that µ = 1A, and hence
that A is a strictly simple algebra.
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Let D be a non-trivial µ-class and suppose that µ has k classes. Then by Propo-
sition 4.2 (4), since D is a subuniverse of A

⋄ and SgA(D) = A, there are gi ∈ G,
1 ≤ i ≤ k such that each µ-class is of the form gi(D). We may assume that g1 is the
identity map. Note that since the g in G are permutations and D is a congruence
class, it follows that for any g ∈ G, either g(D) = D or g(D) is a µ-class that is
disjoint from D. Thus G acts transitively on the µ-classes by the natural action.
Let N be the stabilizer subgroup of D in G. Then for every g ∈ G there is a unique
i ≤ k such that g = gi ◦ n for some n ∈ N .

Let D be the algebra obtained from the subalgebra of A
⋄ with universe D by

adding, for each n ∈ N , the restriction n|D as a basic operation. We claim that D

is an abelian core algebra. To show that D is a core algebra it suffices to note that
for all idempotent term operations t(x1, . . . , xk) of A and ni(x) ∈ N for 1 ≤ i ≤ k,
the map g(x) = t(n1(x), . . . , nk(x)) maps D into D and so belongs to N . Since µ
is an abelian congruence, then it readily follows that D is abelian. If µ < 1A then
D is a proper subset of A and so, by our choice of A, D

2 has the ability to count.
We next show that since D

2 has the ability to count, then so does A
2, and from

this conclude that D = A and hence that A is a strictly simple core algebra. Let
〈D2;C,Z〉 be a structure that has the ability to count with C and Z subuniverses
of (D2)3 and D

2 respectively. Let C ′ be the subuniverse of (A2)3 generated by C
and Z ′ the subuniverse of A

2 generated by Z.
We claim that there is a morphism from 〈A2;C ′, Z ′〉 onto 〈D2;C,Z〉 and so the

algebra A
2 will have the ability to count. Define the function f from A2 to D2

as follows: given an element (a1, a2) ∈ A2, there will be unique 1 ≤ i, j ≤ k with
a1 ∈ gi(D) and a2 ∈ gj(D). Define f(a1, a2) to be (g−1

i (a1), g
−1
j (a2)). To see that

f preserves Z ′, let (a1, a2) ∈ Z ′. Since Z ′ is the subuniverse of A
2 generated by Z

then there is some term t(x1, . . . , xm) of A and pairs (ci, di) ∈ Z, for 1 ≤ i ≤ m
such that (a1, a2) = t((c1, d1), . . . , (cm, dm)).

By Proposition 4.2 (2) there is some idempotent term operation t⋄ of A and
some g ∈ G with t(x̄) = gt⋄(x̄) for all x̄ from A. As noted earlier, there is a unique
i with g = gin for some n ∈ N , and so

t(x̄) = gi(nt⋄(x̄))

for all x̄ from A. It follows that (a1, a2) is equal to (gi(c), gi(d)), where (c, d) =
nt⋄((c1, d1), . . . , (cm, dm)) and so f(a1, a2) = (c, d). The restriction of the operation
nt⋄ to D is a term operation of D and so the subuniverse Z of D

2 is closed under
this operation, applied component-wise. Thus the pair (c, d) ∈ Z and so f preserves
Z ′. Similarly one can show that f maps C ′ into C, and so f is a homomorphism
from 〈A2;C ′, Z ′〉 to 〈D2;C,Z〉. From this we conclude that A

2 has the ability to
count, contrary to our assumption.

Thus the algebra A is a finite strictly simple abelian core algebra. If A happens
to be idempotent, then by Theorem 3.1 we conclude that A, and hence A

2 has the
ability to count. On the other hand, if A is not idempotent, then, depending on
whether the type of A is unary or affine, one can use Corollary 3.10 and Lemma
4.1 of [20] or Theorem 12.4 of [10] to show that A

2 has an idempotent abelian
homomorphic image, and hence that A

2 has the ability to count. This is contrary
to our assumptions on A and so we conclude that no such algebra can exist. �
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Theorem 4.7. Let A be a finite core algebra. The following are equivalent:

(1) V(A) contains an algebra with the ability to count;

(2) A
2 has the ability to count;

(3) V(A) admits the unary or affine type;

(4) S(A) admits the unary or affine type.

5. Monotone Circuits and Typesets

We have seen how the ability to count, a combinatorial condition on CSP’s intro-
duced by Feder and Vardi, is related to the typeset of the variety of the associated
algebra. Boolean circuit size is another facet of the ability to count that Feder and
Vardi exploited to show that certain CSP’s do not have bounded width. Every
CSP can be viewed naturally as a Boolean query and hence as a family of Boolean
functions (see below for a precise description.) Obviously if a structure B belongs
to ¬CSP (A) then so does every structure obtained from B by adding tuples to its
basic relations, i.e., the query ¬CSP (A) is monotone. If {Cn} is a family of mono-
tone Boolean circuits computing the family of functions representing our query, one
may ask about the size S(n) of the smallest such circuits. Afrati, Cosmadakis and
Yannakakis ([1], Theorem 3.1) prove that if ¬CSP (A) is expressible in Datalog,
then it can be computed by polynomial size monotone circuits. On the other hand,
Feder and Vardi show that if CSP (A) has the ability to count then ¬CSP (A)
cannot be computed by polynomial size monotone circuits ([9], Theorem 30). The
next result extends the Feder Vardi result to all core CSP’s whose algebra generates
a variety admitting the unary or affine type.

Before stating and proving the result, we require a few definitions.
We first describe how we view relational structures as words on {0, 1} (see [17] p.

88 and [1] for details.) Let τ = (R1, . . . , Rs) be a signature. We consider structures
with universe of size n to be over the fixed universe {0, 1, . . . , n−1}. Encode a k-ary
relation θ over this set as a word of length nk as follows: the j-th bit of this word
is 1 if and only if the j-th tuple in the lexicographic ordering of the nk k-tuples
belongs to θ. Then a structure B is encoded as the word 0n1 (to indicate the size
of its universe) followed by the concatenation of the encodings of its basic relations
R1(B), R2(B), etc.

For the formal definition of Boolean circuits we refer the reader to Chapter 6 of
[17].

Next we describe the reductions that we use (for details see [15]). Let σ and τ =
(R1, . . . , Rs) be two signatures. A k-ary first-order interpretation with p parameters

of τ in σ is an (s + 1)-tuple I = (φU , φR1
, . . . , φRs

) of first-order formulas over the
vocabulary σ, where φU = φU (x, y) has k + p free variables x = (x1, . . . , xk) and
y = (y1, . . . , yp) and φRi

= φRi
(x1, . . . , xr, y) has kr + p free variables where r is

the arity of Ri and each xj = (x1
j , . . . , x

k
j ) and y = (y1, . . . , yp).

Let G be a σ-structure. A tuple c = (c1, . . . , cp) of elements of G is said to be
proper if ci 6= cj when i 6= j. Let c = (c1, . . . , cp) be proper. The interpretation

of G through I with parameters c, denoted by I(G, c), is the τ -structure whose
universe is

{a ∈ Gk : φU (a, c)}

and whose interpretation for Ri is

{(a1, . . . , ar) ∈ (Gk)r : φU (a1, c) ∧ · · · ∧ φU (ar, c) ∧ φRi
(a1, . . . , ar, c)}.
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Let σ and τ be finite relational vocabularies, let C be a class of σ-structures and
let D be a class of τ -structures closed under isomorphisms. We say that a first-order
interpretation I with p parameters of τ in σ is a first-order reduction of C to D if
for every σ-structure G with at least p points the following two equivalences hold:

(A) G ∈ C ⇔ I(G, c) ∈ D for every proper c,
(B) G ∈ C ⇔ I(G, c) ∈ D for some proper c.

A first-order reduction is positive if it satisfies the following conditions: the
formula φU is quantifier-free and for every θ in τ , φθ is built from atomic formulas
and equalities using only the existential quantifier, disjunction and conjunction.

We can now prove the main result of this section:

Proposition 5.1. Let A be a core structure such that V(AA) admits the unary

or affine type. Then ¬CSP (A) cannot be computed by polynomial size monotone

circuits.

Proof. Let A
⋄ denote the full idempotent reduct of AA. Since V(AA) admits the

unary or affine type, so does V(A⋄). By Theorem 3.1 the algebra A
⋄ has the ability

to count; hence there exist a subuniverse C of (A⋄)3 and a subuniverse Z of A
⋄

such that the structure B = 〈A;C,Z〉 has the ability to count. By Theorem 30
of [9] ¬CSP (B) cannot be computed by polynomial size monotone circuits. We
require the following three observations:

(1) according to the proof of Theorem 2.1 of [15], there exists a sequence of
structures B = G1,G2,. . . ,Gm = A such that for each i = 1, . . . ,m − 1,
there is a positive first-order reduction with parameters of ¬CSP (Gi) to
¬CSP (Gi+1).

(2) it is easy to see, inspecting Lemmas 2.2 to 2.11 of [15], that in each case
we may assume that the formula φU is simply set to TRUE, i.e. that
the universe of I(G, c) consists of Gk (indeed, this must hold since we are
dealing with homomorphism closed classes.)

(3) the problem CSP (B) is Modp L-hard by Theorem 4.1 of [15], and in partic-
ular L-hard, hence CSP (B) is not first-order definable (see the discussion
preceding Theorem 3.3 in [15]). In particular, for each i there exists at
least one structure of the same signature as Gi which does not belong to
CSP (Gi), and obviously one may take this to be the one-element “loop”
structure of the given signature, i.e. it has universe {0} and each k-ary
basic relation is equal to {(0, . . . , 0)}.

So to prove the result it now suffices to show that each of the positive first-order
reductions with parameters in (1) above can be computed by a family of monotone
circuits of polynomial size. Let I denote our interpretation with p parameters.
Let c be some fixed proper p-tuple on {0, . . . , n− 1}. First assume that our input
structures have universe of size n ≥ p. We construct a monotone circuit (i.e.
involving only OR and AND gates) which, given as input the encoding of a structure
G, will output the encoding of the structure I(G, c). Since the universe of I(G, c)
is Gk, the prefix which encodes the size of the universe is easy to output, it is simply

the sequence 0nk

by observation (2). Next we must output the encodings of the
basic relations: this in fact is a straightforward encoding of the formulas describing
the output relations of our interpretation, see for instance Theorem 6.4 of [17]; in
particular, in is not hard to see that the size of the circuit is polynomial in n. Since
our reduction is positive, we use no negations and our circuit is monotone. The fact
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that the output of the circuit belongs to ¬CSP (Gi+1) precisely when the input is
in ¬CSP (Gi) follows from the defining property (A) of reductions with parameters
that guarantees any proper tuple will work.

Next we must deal with structures with universe of size n < p. Intuitively, our
circuit outputs the one-element loop structure if G is in ¬CSP (Gi) and outputs the
one-element structure with empty relations otherwise. More precisely: the prefix
of our output is 01; if G is a structure with universe {0, . . . , n− 1} in ¬CSP (Gi),
let φG be an AND gate with inputs all the tuples in all the relations of G; then
every output bit is an OR of all the φG with G in ¬CSP (Gi) and |G| < p. By
observation (3) our circuit outputs a structure in CSP (Gi+1) if and only if the
input is in CSP (Gi).

�

6. Concluding Remarks

We have shown that for a core structure A, the variety V(AA) admits the unary
type or the affine type precisely if it contains an algebra with the ability to count;
in fact if this is the case then (AA)2 has the ability to count, and furthermore if AA

is idempotent then the algebra AA itself has the ability to count. The next example
shows that we cannot expect this to happen if the algebra is not idempotent:

Example. Consider the 2-element structure A = 〈{0, 1}; θ〉 where θ consists of
all triples (x, y, z) such that x, y, z are not all equal. It is not hard to see that the
algebra AA is a core algebra that generates a variety admitting the unary type; how-
ever it does not have the ability to count, in fact, it has no one-element subalgebras.

The following example shows that we cannot expect our results to extend to
non-core algebras either:

Example. Consider the structure A on {0, 1, 2, 3, 4, 5}, with a single binary relation
θ which is the symmetric, irreflexive 6-cycle, i.e., θ = {(i, j) : |i− j| = 1} where the
difference is taken modulo 6. The algebra AA generates a variety which admits the
unary type (the 6-cycle admits no Taylor operation, see [13], Theorem 4.4.) How-
ever, the core A′ of this graph is the 2-element edge, so CSP (A) = CSP (A′) has
bounded width (the edge admits a majority operation, see e.g. [5]). Let C ∈ V(AA)
and let C be a relational structure whose basic relations are subuniverses of powers
of C; by Theorem 2.1 of [15], CSP (C) reduces to CSP (A) via Datalog-preserving
reductions, and hence has bounded width. In particular, CSP (C) cannot have the
ability to count, and consequently no algebra in V(AA) has the ability to count.

As a consequence of Corollary 4.5 and Theorem 4.7, the problem of determining
whether an idempotent algebra has the ability to count is decidable. However, the
analogous question remains open for core algebras, general algebras and also for
relational structures.
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Let A be a core structure, and consider the following conditions:

(1) CSP (A) has bounded width;
(2) ¬CSP (A) is computable by polynomial-size monotone circuits;
(3) V(AA) omits the unary and affine types;
(4) V(AA) contains no algebra with the ability to count;
(5) (AA)2 does not have the ability to count.

Our results, combined with Theorem 3.1 of [1], show that the following implica-
tions hold: (1) implies (2), and (2) implies the equivalent conditions (3), (4) and
(5). Furthermore, the bounded width conjectures of [16] and [8] are equivalent, and
predict that the 5 conditions should all be equivalent.
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and suggestions.

References

[1] F. Afrati, S. S. Cosmadakis, and M. Yannakakis. On Datalog vs. polynomial time. Proc. 10th
ACM SIGACT-SIGMOD-SIGART Symp. on Principles of Database Systems (1991), 13–25.

[2] A. Atserias, A. Bulatov, A. Dawar. Affine systems of equations and counting infinitary logic.

In ICALP’07, volume 4596 of LNCS, pages 558–570, 2007.
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