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Abstract

In this paper we establish the (1, 2) and (2, 1)-transfer principles for
finitely decidable locally finite varieties. A class of structures is finitely
decidable if the first order theory of its finite members is recursive.
A variety is a class of algebras which is axiomatizable by a set of
equations. The transfer principles deal with the local structure of
finite algebras and have strong global consequences.

1 Introduction

One of the key steps in obtaining a structure theorem for decidable locally
finite varieties was the identification of the transfer principles and the proof
that they must hold in decidable varieties. In this paper we prove that the
(1, 2) and (2, 1)-transfer principles must hold under the assumption that the
variety in question is finitely decidable, i.e., the class of finite members of the
variety has a recursive first order theory. We assume that the reader is famil-
iar with the basic definitions and results from the study of general algebraic
structures (see [1] for example) and we also assume a working knowledge of
tame congruence theory [2]. The reader will also need to have access to the
book [6] since we will constantly be referring to parts of it in this paper.
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The transfer principles have strong structural consequences, and the re-
sults contained in this paper should be very helpful in determining a charac-
terization of all finitely generated, finitely decidable varieties. A characteri-
zation has already been obtained in the congruence modular case by Idziak
[3] and Jeong [5].

One can regard the search for a characterization of finitely decidable va-
rieties as part of the problem of determining when the class of finite algebras
in a variety can be said to be well structured. This is because for the most
part, whenever a variety is shown to be finitely decidable it is due to there
being a very nice description of its finite members and whenever a variety is
shown to be finitely undecidable it is because its finite members form a very
complicated class of structures.

Work on finitely generated congruence modular varieties shows that if
such a variety (call it V) is finitely decidable then there is a finite collection
of finite rings and a finite algebra A from V such that every finite algebra in
V can be obtained by a special sort of product involving A and some modules
over the finite rings. On the other hand, if the finite algebras in V cannot be
so described, then it is because the class of finite graphs can be semantically
embedded into the class of finite members of V . Since the class of finite
graphs is not well-behaved (in particular it has an undecidable theory), then
this carries over to the class of finite algebras in V . For the purposes of this
paper, a graph G is a nonempty set G (called the set of vertices) equipped
with a distinguished set E of 2 element subsets of G (called the set of edges).

We will say that a class of structures K is ω-unstructured if the class of
finite graphs can be semantically embedded into the class of finite members
of K. K will be said to be ω-structured otherwise.

Definition 1.1 Let A be a finite algebra and let i, j be two distinct integers
between 1 and 5. We say that A satisfies the (i, j)-transfer principle if when-
ever α, β and γ are congruences of A with α ≺ β ≺ γ and typ(α, β) = i and
typ(β, γ) = j, then there is some congruence δ lying below γ and covering α
with typ(α, δ) = j.

We say that a class of algebras K satisfies the (i, j)-transfer principle if
every finite algebra in K does.

In [7] the (3, 1) and (3, 2)-transfer principles are established for locally
finite, finitely decidable varieties and in [3] examples are presented which
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show that the (1, 3) and (2, 3)-transfer principles need not hold in finitely
decidable varieties. Actually, the variety of rings generated by the ring of
integers modulo 4 fails the (3, 2)-transfer principle and is finitely decidable.
This was shown by Zamyatin ([8]).

Since only types 1, 2 and 3 can appear as the labels of prime quotients of
algebras in finitely decidable varieties (see [2]) then the only other transfer
principles that need to be resolved are the (1, 2) and (2, 1)-transfer principles.
In [6] these principles are established under the assumption that the variety
is decidable rather than finitely decidable. This is accomplished by first
considering the Abelian case. By following through the proof of Theorem 8.9
from [6] we see that the following is true:

THEOREM 1.2 Let V be an Abelian variety. If V is ω-structured then V
satisfies both the (1, 2) and (2, 1)-transfer principles.

COROLLARY 1.3 If V is a finitely decidable Abelian variety then all of
its finite members satisfy the (1, 2) and (2, 1)-transfer principles.

A careful reading of the proof of this theorem reveals that the assumption
that V be Abelian can be weakened considerably. All that is needed in order
to establish the transfer principles is a strong-enough local Abelian property.
In the following two sections we show that under the assumption of V being
finitely decidable (or ω-structured), we can establish strong-enough local
Abelian properties so that the proofs found in [6] will work in this more
general setting (with some small modifications).

Polynomial operations (as opposed to just term operations) play a very
important role in the present work. If A is an algebra and p(x̄) is a polyno-
mial of A, then there is some term t(x̄, y1, . . . , yk) in the language of A and
elements ā from A such that p(x̄) = tA(x̄, ā). If D is a subalgebra of AX

(for some X) which contains all of the constant elements â, for a ∈ A, then
we call D a diagonal subpower of A (â is the element of AX which takes
on the value a at all coordinates x ∈ X). The operation pD(x̄) defined by
tD(x̄, â1, . . . , âk) is thus a polynomial operation of D. If θ is a congruence of
D and B = D/θ then the operation pB(x̄) defined by tB(x̄, â1/θ, . . . , âk/θ) is
a polynomial operation of B. When the context is clear we will often omit
the superscripts and just use p(x̄) to denote the corresponding functions in
D and B.
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One more piece of notation: if D ≤ AX is a diagonal subpower of A and
U is a subset of A then D(U) will denote the set D∩UX . If θ is a congruence
of D and B = D/θ then B(U) will denote the set D(U)/θ.

2 The (1, 2)-transfer principle

In this section we will prove the following theorem:

THEOREM 2.1 Let V be an ω-structured variety. Then V satisfies the
(1, 2)-transfer principle.

COROLLARY 2.2 If V is a finitely decidable variety then it satisfies the
(1, 2)-transfer principle.

Since V is closed under homomorphic images then to prove the above
theorem it is enough to prove that whenever A is a finite member of V having
congruences α and β with 0A ≺ α ≺ β and typ(0A, α) = 1 and typ(α, β) = 2
then there is some congruence δ covering 0A and below β which is distinct
from α (it then follows that typ(0A, δ) = 2).

Throughout this section let A be a finite algebra having congruences α
and β as above. Let U be a 〈0A, α〉-minimal set, M a 〈0A, α〉-trace contained
in U and N an 〈α, β〉-trace.

By following through the first part of the proof of Theorem 8.9 from [6]
we see that the following is true:

THEOREM 2.3 For A as above, if V(A) is ω-structured and the follow-
ing conditions hold then there must be some congruence δ of A which lies
properly between 0A and β and which is distinct from α:

(i) β centralizes α|U , i.e., for all terms t(x, ȳ) and elements a, b, ui and vi

from A with (a, b) ∈ β and (ui, vi) ∈ α|U for all i, if t(a, ū) = t(a, v̄)
then t(b, ū) = t(b, v̄).

(ii) If p(x) is a unary polynomial of A with range contained in U and such
that p(N) ⊆ M , then p is constant on N .
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Proof. The main technical lemma used to establish the (1, 2)-transfer
principle in [6] is Lemma 8.4. In this lemma we have the following setup: the
trace N lies within the minimal set U and intersects the trace M . We let
the element 0 lie in this intersection and choose two points 1 and 0′ which
are different from 0 and which lie in N and M respectively. Using this the
class of finite graphs is semantically embedded into the class of finite sub-
powers of A. What makes this semantic embedding work is a condition that
is proved in Lemma 10.1. The condition that is needed from this lemma is
the following:

If t(x1, . . . , xn) is a polynomial of A with range contained in
U and such that for all i ≤ n, the unary polynomial pi(xi) =
t(0, 0, . . . , 0, xi, 0, . . . , 0) is nonconstant on N , then either pi is
constant on M for all i, or n = 1 and t(x) maps U bijectively
onto itself.

Rather than using the assumption that A generates an Abelian variety,
the version of Lemma 10.1 that we have quoted above can be obtained just
by assuming the two conditions from the statement of the present theorem.
We leave it to the reader to verify this.

Only a couple of small changes need to be made to the proof of Lemma
8.4 in order to arrive at a proof of the present theorem. The definition of a
collapsing function should be changed as follows:

A polynomial t(x1, . . . , xk) of A is called a collapsing function
if it has range contained in U and for all i ≤ k the polynomial
t(0, . . . , 0, xi, 0, . . . , 0) is constant on M but nonconstant on N .

Then as in the proof of Lemma 8.4 it turns out that every element µ in D(U)
is either equal to some collapsing function applied to some generators of D
or µ is equal to some permutation of U applied to one of the generators of
D. We need only use our two assumptions and the consequence of Lemma
10.1 stated above in order to prove this.

The only other point in the proof of Lemma 8.4 where a change is needed
is in the use of Lemma 0.38 from [6]. This lemma is invoked in order to
conclude that the tail of any 〈α, β〉-minimal set is empty. The assumption
used to conclude this was that A is an Abelian algebra. From a result found
in [7] we need only assume that A lies in an ω-structured variety. Since this
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is one of our assumptions on A, then we can conclude that the tails of all
type 2 minimal sets of A are empty.

With these two small changes, the semantic embedding employed in the
proof of Lemma 8.4 can be used to prove the present theorem.

So to establish the (1, 2)-transfer principle for V we need only show that
conditions (i) and (ii) from the previous theorem hold for A. The following
lemma takes care of the first condition.

LEMMA 2.4 Let B be a finite algebra which generates an ω-structured
variety. Suppose that α is a strongly Abelian congruence of B which covers
0B and that U is a 〈0B, α〉-minimal set. If β is a congruence of B which is
Abelian over α then β centralizes α|U , i.e., for all term operations t(x, ȳ) of
B and elements a, b, ui and vi from B with (a, b) ∈ β and (ui, vi) ∈ α|U for
all i, if t(a, ū) = t(a, v̄) then t(b, ū) = t(b, v̄).

Proof. We will argue by contradiction. Suppose that β fails to cen-
tralize α|U . Without loss of generality we may assume that β covers some
congruence δ which lies above α and such that δ centralizes α|U . Since β
fails to centralize α|U then we can find some polynomial t(y1, . . . , yk, x), a
pair (a, b) ∈ β \ δ and pairs (ui, vi) ∈ α|U for i ≤ k so that

t(ū, a) = t(v̄, a)

but
t(ū, b) 6= t(v̄, b).

It is possible to choose a and b from some 〈δ, β〉-trace N since δ centralizes
α|U and any two β-related elements are connected by a series of δ-overlapping
〈δ, β〉-traces. Furthermore, since t(ū, b) and t(v̄, b) are α-related then we may
assume that t has range contained in U . Let V be a 〈δ, β〉-minimal set which
contains N .

Since α is strongly Abelian then we can assume that t is a binary polyno-
mial. This is because the functions t(ȳ, b) and t(ȳ, a) when restricted to the
set u1/α×· · ·×uk/α depend on exactly 1 variable. So we have t(0, a) = t(1, a)
and t(0, b) 6= t(1, b) for some α-related elements 0 and 1 from U . 0 and 1
must lie in some 〈0B, α〉-trace M contained in U . Since t(0, b) 6= t(1, b) then
we may assume that t(M, b) = M .
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By iterating t(x, y) in the first variable we may further assume that
t(t(x, y), y) = t(x, y) holds for all x and y from B. Thus we have that
t(x, b) = x for all x ∈ U and t(x, a) collapses α|U into 0B. Actually we have
that for any c ∈ B, either t(x, c) = x for all x ∈ U or t(α|U , c) ⊆ 0B. Also,
since β is Abelian over α then we have that x and t(x, a) are α-related for
all x in U . This is because the equality t(t(x, a), a) = t(x, a) implies that
t(t(x, a), b)αt(x, b) (since x and t(x, a) are β-related) which means that t(x, a)
and x are α-related. So, t(M, a) is a one element subset of M , and we may
assume without loss of generality that t(M,a) = {0}.

From the above configuration we will be able to encode finite graphs into
finite diagonal subpowers of B.

Let G = 〈G,E〉 be a finite graph with G and E disjoint and let ∞ be an
element not in G∪E. Let X = G∪E∪{∞}. For v ∈ G, let fv : X → {a, b}
be defined by

fv(x) =





b if x = v
b if v ∈ x ∈ E
a otherwise

and let D be the diagonal subalgebra of BX generated by all of the fv’s and
the functions χG and χ∞ defined by:

χG(x) =

{
1 if x ∈ G
0 otherwise

and

χ∞(x) =

{
1 if x = ∞
0 otherwise

.

We will describe a way to recover G from D in a uniform way. The first
step will be to find a formula to recover the set

D[G] = {t(1̂, fv) : v ∈ G}.
This set is obviously in one-to-one correspondence with the vertices of G.

Suppose that we have a first order formula Un(x) which defines the above
set in D. Then we can recover the edge relation on G by the formula
Edge(x, y) as follows:

Un(x) ∧Un(y) ∧ x 6= y ∧ ∃z
(
t(1̂, z) = y ∧ t(x, z) 6= 0̂

)
.
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We claim that for v, w ∈ G, (v, w) ∈ E iff D |= Edge(t(1̂, fv), t(1̂, fw)) and
so G is isomorphic to the graph 〈D[G],EdgeD〉. One direction of this claim
is clearly true, for if (v, w) ∈ E, then t(t(1̂, fv), fw) 6= 0̂.

For the converse, suppose that h = t(1̂, fv), k = t(1̂, fw) and Edge(h, k)
is true. Then there is some f ∈ D with t(1̂, f) = k and t(h, f) 6= 0̂. If v
and w are not E-related then the two functions fv and fw are “disjoint”, i.e.,
they never take on the value b at the same coordinate. This implies that
t(h, fw) = 0̂ and with a little bit of work, that t(h, f) = 0̂ too, and so we
must have that v and w are E-related.

Our quest for the formula Un takes one of two paths depending on the
type of the quotient 〈δ, β〉. There are two possibilities for this type, it is
either 1 or 2. The more challenging case is when this quotient is of type 2
and so we will present that case in complete detail and leave the other for
the reader to work out.

Let Γ be the following set of polynomials of B:

{h(x) : t(0, h(a))) = t(1, h(a)), t(0, h(b))) = t(1, h(b)) and h(V ) ⊆ V }.

Then clearly, for v ∈ G and h ∈ Γ we have t(0̂, h(fv)) = t(1̂, h(fv)).
Let us call an element f in D admissible if the following conditions hold:

• f ∈ D(V ),

• t(0̂, f) = 0̂

• t(χG, f) 6= 0̂

• t(χ∞, f) = 0̂,

• for each h(x) ∈ Γ, t(0̂, h(f)) = t(1̂, h(f)).

Let Adm(f) be any first order formula (with parameters) which is equivalent
to the conjunction of the above conditions. Then by our choice of a and b it
is easy to see that for any v ∈ G, Adm(fv) holds in D.

We claim that if, conversely, f ∈ D satisfies Adm then for all c and d
in the range of f , if t(1, c) = t(1, d) = 0 then c and d are δ-related. To see
this, suppose that for some x and y ∈ X we have c = f(x), d = f(y) and
t(1, c) = t(1, d) = 0. If c and d are not δ-related then choose some polynomial
h(x) of B with h(a)δc, h(b)δd and h(V ) ⊆ V . Such an h exists since c and d
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are β-related (all elements of D are β-constant) and typ(δ, β) = 2. Further,
since V is a 〈δ, β〉-minimal set then h(V ) = V .

Since Adm(f) holds then 0 = t(0, c) = t(1, c) = t(0, d) = t(1, d). Now, by
our choice of β we know that δ centralizes α|U and so t(0, h(a)) = t(1, h(a))
and t(0, h(b)) = t(1, h(b)). Thus, h ∈ Γ. Choose some number k so that for
all j ≤ k, hj ∈ Γ but hk+1 /∈ Γ. Such a k exists, since some iteration of h is
the identity map on V and clearly, the identity map does not belong to Γ.
We claim that t(0̂, hk(f)) 6= t(1̂, hk(f)) thereby showing that Adm must fail
for f , a contradiction. To prove this just use that δ centralizes α|U and that
hk(c)δhk+1(a) and hk(d)δhk+1(b). So, we must have that for all x, y ∈ X, if
t(1, f(x)) = t(1, f(y)) = 0, then f(x)δf(y).

We can now define Un(x) to be the formula

∃y(Adm(y) ∧ t(1̂, y) = x∧
∀z[Adm(z) → {t(t(χG, y), z) = 0̂ ∨ t(t(χG, y), z) = t(χG, y)}]).

Claim 1 For h in D, D |= Un(h) if and only if h = t(1̂, fv) for some v ∈ G.

One direction of this claim follows by construction. For the converse,
suppose that Un is true for some element h from D. Choose some k ∈ D
which satisfies Adm such that t(1̂, k) = h and is a witness to Un holding
for h. It follows that there is some unique v ∈ G with h(v) = 1. Certainly
there is at least one such element since t(χG, k) 6= 0̂. If w is some other
element of G with h(w) = 1 then both of the equalities t(t(χG, k), fw) = 0̂
and t(t(χG, k), fw) = t(χG, k) fail, contradicting our assumption that Un(h)
is true.

Since k belongs to D then there is some polynomial p(x1, . . . , xn) of B
with range contained in V and distinct elements v1, . . . , vn of G so that
k = p(fv1 , . . . , fvn). Note that we do not need to consider the possibility that
the generators χG and χ∞ are used to obtain k, since k belongs to D(V ) and
α is trivial on V (since A|V is Mal’cev).

We claim that for some i ≤ n, vi = v. If not then

0 = t(1, k(∞)) = t(1, p(a, . . . , a)) = t(1, k(v)),

contradicting our choice of v. So we may assume that k = p(fv, fv2 , . . . , fvn).
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Now for each i ≥ 2, 0 = t(1, k(vi)) = t(1, p(a, . . . , a, b, a, . . . , a)), where
the b occurs in the ith variable of p. So by the properties of Adm es-
tablished earlier these equalities imply that the elements p(a, b, a, . . . , a),
p(a, a, b, a, . . . , a), . . . , p(a, . . . , a, b) are all δ-related to p(a, . . . , a). Using
the fact that β is Abelian over δ it follows that component-wise, k is δ-
related to p(fv, â, . . . , â). But then it follows that h = t(1̂, k) = t(1̂, fv), as
required.

We would like to mention that it does not follow that since β centralizes
α|U then β must centralize all of α. It is not too difficult to construct a finite
solvable algebra B with congruences 0B ≺ α ≺ β such that β centralizes α
restricted to some 〈0B, α〉-minimal set but does not centralize all of α.

To prove that the second condition of Theorem 2.3 holds under the as-
sumption that A generates an ω-structured (or finitely decidable) variety, we
find it necessary to first prove the following lemma:

LEMMA 2.5 Let t(x, ȳ) be an n + 1-ary polynomial of A with range con-
tained in U and let ā be an n-tuple of elements from A such that the func-
tion t(x, ā) is injective on U . If b̄ is any other n-tuple of elements of A with
(ai, bi) ∈ β for all i ≤ n then t(x, b̄) must agree with t(x, ā) on the body of
U .

Proof. We will suppose that t(x, b̄) differs from t(x, ā) on the body
of U and show that the variety generated by A is ω-unstructured. We may
assume that these two polynomials differ on the trace M (since all (0, α)-
traces are polynomially isomorphic). By the previous lemma we know that
for all i ≤ n the polynomial pi(x) = t(x, b1, b2, . . . , bi, ai+1, . . . , an) is also
injective on U . Since t(x, ā) and t(x, b̄) differ on M then there is some
i < n such that pi(x) and pi+1(x) also differ on M . So, we may assume
that the polynomial t that we started with is binary (just use the polynomial
t(x, b1, . . . , bi, y, ai+2, . . . , an) in place of t).

From our hypotheses we have arrived at the following situation: there is
a polynomial t(x, y) of A with range contained in U and there are β-related
elements a and b such that t(x, a) and t(x, b) differ on the trace M and both
are injective on U . We may further assume that a and b lie in some 〈α, β〉-
trace N since we can connect a and b by a series of overlapping 〈α, β〉-traces
module α. Let V be an 〈α, β〉-minimal set which contains N . One other
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simplifying assumption that we may make is that t(x, a) = x for all x ∈ U ,
since we t(x, a)|U is a permutation whose inverse is also the restriction (to
U) of some polynomial of A.

We next show that for all c in the body of U , t(c, a) and t(c, b) are α-
related (and hence lie in the same (0, α)-trace in U). If for some element c
in the body of U we have that t(c, a) (= c) and t(c, b) are not α-related then
it follows that there is some 〈α, β〉-trace N ′ contained in U which contains
the element c. We may in fact assume that N = N ′ since N and N ′ are
polynomially isomorphic. Using the proof of Lemma 10.1 from [6] we see
that this contradicts the 〈0, α〉-minimality of U . Thus t(c, a) and t(c, b) must
be α-related. In addition, this implies that t(c, β|V ) ⊆ α.

We will describe a way to semantically embed the class of finite graphs
having the property that every vertex is edge related to at least two other ver-
tices into the class of finite algebras in the variety generated by A. Since this
class of graphs is ω-unstructured then this will suffice to proof this lemma.
Let G = 〈G,E〉 be a finite graph with every v ∈ G related (by E) to two
other vertices and let

X = G∪E.

We may assume that G and E are disjoint. Choose distinct elements 0 and 1
from M so that t(0, a) = 0 and t(0, b) = 1. For v ∈ G define fv : X → {a, b}
by:

fv(x) =

{
b if x = v
a otherwise

.

and for e = {u, v} ∈ E define ge by

ge(x) =

{
1 if x = e
0 otherwise

.

Let G = {fv : v ∈ G} and E = {ge : e ∈ E}. We let D be the diagonal
subalgebra of AX generated by

G∪E .

It is not possible to recover the graph G uniformly from D using first
order formulas (in general), but after taking a suitable quotient of D we will
be able to accomplish this. First we will establish some properties of the
elements of D.
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If h ∈ D(U) then either h|E is constant or h|E has the same shape as one
of the generators g ∈ E . To see this, choose some polynomial s(x̄, ȳ) of A
with range contained in U , some generators gi ∈ E and some fj ∈ G such
that h = s(ḡ, f̄). If h|E is constant, then using the fact that α is strongly
Abelian it follows that h = s(0̂, . . . , 0̂, f̄).

On the other hand, using the same property of α we see that if h|E is
nonconstant, then h = s(0̂, . . . , 0̂, gi, 0̂, . . . , 0̂, f̄) for some i. Since the fj’s are
constant on E then it follows that h|E is equal to p(gi|E) for some polynomial
p of A which maps U onto U . When this happens, we write h ∼ gi. So we
have the following:

Claim 1 If h ∈ D(U) then either h|E is constant or h ∼ g for some unique
g ∈ E.

We extend ∼ to an equivalence relation (also denoted by ∼) on the set
of elements h which are elements of D with range contained in U and which
are not constant on E. So, two elements h and k of D are ∼-related if and
only if they are both ∼-related to some ge.

We now define a generating set for a congruence θ on D which will be
used to build an algebra from which we can recover the graph G. In essence,
this congruence codes the edge relation E of the graph G on the set G. Let
PV be the set of all polynomials p(x) of A with p(V ) = V and let us use
x + y to denote the operation t(x, y). Let SE be the following subset of D2:

SE = {(h + p(â), h + p(fv)) : v ∈ e ∈ E, h ∼ ge and p ∈ PV }

and let θ be the congruence of D generated by SE.
The next claim provides a partial description of θ. Note that the projec-

tion of θ onto any coordinate of D is contained in α since we have verified
that for all c in the body of U , c + β|V ⊆ α. This implies, among other
things, that no elements of D(V ) are θ-related (since α is trivial on V ).

Claim 2 Let h and k ∈ D(U). If (h, k) ∈ θ then either h = k or there is
some e ∈ E such that h ∼ k ∼ ge and h and k agree everywhere except on
some subset of e.

To prove this claim it will suffice to show that if h and k are distinct
members of D(U) and if {h, k} = r({l1, l2}) for some pair (l1, l2) ∈ SE and
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some polynomial r(x) of D with range contained in D(U) then h and k are
both ∼-related to some ge and differ only on some subset of e.

If (l1, l2) = (g + p(â), g + p(fv)) for some g ∼ ge, e = {v, w} ∈ E and
p ∈ PV then r(l1) and r(l2) differ only on v since this is true of l1 and l2 and
since h 6= k. Also, r(l1)(v) and r(l2)(v) are α-related since l1 and l2 satisfy
this. We next need to show that both h and k are ∼-related to ge. Since
r(x) is a polynomial of D with range contained in D(U) then there is some
polynomial s(x, ȳ, z̄) of A with range contained in U and elements f̄ from G
and j̄ from E such that r(x) = s(x, f̄ , j̄) for all x ∈ D. Since α is strongly
Abelian and β centralizes α|U then we can replace the elements of j̄ with
the constant element 0̂ to obtain {h, k} = s({l1, l2}, f̄ , 0̂, . . . , 0̂). From this it
follows that h, k and g must all be ∼-related to the same element, namely,
ge.

Let B = D/θ. We want to show that the relation ∼ on B defined by:

f ∼ g if and only if there are h, k ∈ D with h ∼ k and h/θ = f ,
k/θ = g

is first order definable in B. To do this we first select two finite subsets C
and P of the set of polynomials of A with range contained in U such that:

• if s(x1, . . . , xk) is a polynomial of A with range contained in U then
there is some s′(y1, . . . , yl) in C with s({a, b}k) = s′({a, b}l); and

• if r(x, y1, . . . , yk) is a polynomial of A with range contained in U such
that r(x, a, . . . , a)|U is a permutation, then there is some r′(x, z1, . . . , zl)
in P such that for j = 0 or 1, r(j, a, . . . , a) = r′(j, a, . . . , a) and
r(j, {a, b}k) = r′(j, {a, b}l). We also require that for every r′(x, z̄) ∈ P ,
r′(x, a, . . . , a)|U is a permutation.

Since A is finite, then clearly we can find sets C and P which satisfy the
above conditions.

By Claim 1, an element h from D(U) is constant on E iff h = s(f̄) for
some polynomial s of A with range contained in U and some elements f̄
from G. By our choice of the set C it follows that h is constant on E iff
h = s(f̄) for some s ∈ C and some f̄ from D(V ). This is because D(V )
contains enough {a, b}-valued functions. In B we then have that an element
h/θ in B(U) is equal to s(f̄/θ) for some s ∈ C and f̄/θ from B(V ) if and
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only if h is θ-related to some element h′ from D(U) which is constant on E.
Since B(U) and B(V ) are first order definable and C is finite, this condition
is also first order definable and hence so is the subset of B(U) consisting of
all elements h/θ with h ∈ D(U) and with h|E nonconstant. Let E(x) be a
formula that defines this subset of B(U) in the algebra B.

In a similar fashion we can, using the set P and Claim 1, come up with
a first order formula that is equivalent to the relation ∼ on B. Namely,
B |= f ∼ g if and only if

E(f), E(g) and for some h with E(h) and some f̄ and ḡ in B(V ),
there are s and t in P with f = s(h, f̄) and g = t(h, ḡ).

We also have that if h ∈ B and B |= E(h) then B |= h ∼ g/θ for a unique
g ∈ E . So the set EB/ ∼ is in bijective correspondence with the set of edges
E.

We now show how we can recover the generators fv, v ∈ G, up to some
permutation, within B using a first order formula. We first define a rela-
tionship between the nonconstant elements of B(V ) (i.e., those elements h
of B(V ) which are equal to k/θ for some nonconstant k in D(V )) and EB.
We say that a nonconstant element f from B(V ) is connected to an element
h satisfying E if the following holds:

For all h′ ∼ h and for all polynomials p ∈ PV , h′ + p(f) =
h′ + p(â/θ).

When f and h are connected in this way we write f ./ h. Since A is finite
then ./ is first order definable. We see that by construction, fv/θ ./ ge/θ for
all v ∈ e ∈ E. The following claim establishes a converse to this:

Claim 3 If f/θ ∈ B(V ) is ./-related to two elements ge/θ and gc/θ for
distinct edges e and c, then f = p(fv) for some v ∈ G and some p ∈ PV .
Furthermore, when this occurs we must have v ∈ e ∩ c.

Suppose that B |= f/θ ./ ge/θ for some nonconstant f ∈ D(V ) and e ∈ E.
Then for all polynomials p(x) ∈ PV we have ge/θ + p(f/θ) = ge/θ + p(â/θ).
So, in D we have that ge + p(f) and ge + p(â) are θ-related for all p ∈ PV .
Clearly the element ge + p(â) is ∼-related to ge and so by Claim 2 we must
have that ge + p(f) ∼ ge for all p ∈ PV .
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What we will show is that for all x ∈ X \ e, f(x) = f(e). We already
know that if x ∈ E then f(x) = f(e), since elements in D(V ) are constant on
E. For x ∈ G\e, if f(x) 6= f(e) then choose some p ∈ PV so that p(f(x)) = b
and p(f(e)) = a. By our assumptions, ge + p(f) and ge + p(â) are θ-related
and so can differ only on the set e (by Claim 2). Since ge(x) = ge(c) = 0
then ge + p(â) takes on the same value at x and c. On the other hand,
ge +p(f) takes on the value 0+ b = 1 at x and the value 0+a = 0 at c (since
f(e) = f(c)) and so ge + p(f) and ge + p(â) differ at either x or c. This can’t
happen and so we conclude that f(x) = f(e) if x /∈ e.

Now if f/θ ./ ge/θ and f/θ ./ gc/θ for distinct e, c ∈ E then the preceding
argument shows that f must be constant on X \ (e ∩ c). Thus, either f is
constant (if e and c are disjoint) or f is equal to p(fv) for some p ∈ PV , where
v ∈ e ∩ c. This establishes the claim.

Let Un(x) be a formula that holds for all nonconstant elements f of B(V )
satisfying f ./ h and f ./ k for two elements h and k which satisfy E and
which are not ∼-related. Modulo the equivalence relation f ≡ g iff f = p(g)
for some p ∈ PV on B(V ) the previous claim shows that the set of elements
of B satisfying Un is in bijective correspondence with the set of vertices G.
Note that we are using the assumption that every vertex of G is edge related
to at least 2 distinct vertices at this point.

Finally two elements f and g which satisfy Un and which are not ≡-
related correspond to edge related vertices of G iff f ./ h and g ./ h for some
element h satisfying E. So, we have recovered the graph G from B using
first order formulas (independent of the graph we started with).

LEMMA 2.6 For A, U , M and N as in the statement of Theorem 2.3, if
V(A) is ω-structured and if p(x) is a polynomial of A with p(N) ⊆ M then
p is constant on N .

Proof. We will argue by contradiction. Assume that there is a poly-
nomial p of A with p(N) ⊆ M and |p(N)| > 1. Without loss of generality
we may assume that p has range contained in U . Choose distinct points a
and b from N such that p(a) 6= p(b). We will semantically embed the class
of all finite graphs having at least 5 vertices into HSPfin(A) to produce a
contradiction.
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Let G = 〈G,E〉 be a finite graph and let X = G∪{∞1,∞2} for two new
points ∞1 and ∞2. We let D be the diagonal subalgebra of AX generated
by NX .

For v ∈ G define the function fv : X → {a, b} by:

fv(x) =

{
b if x = v
a otherwise

.

For e ∈ E define fe : X → {a, b} by:

fe(x) =

{
b if x ∈ e
a otherwise

.

For c ∈ N , and i = 1, 2 let χi
c be the following element of NX :

χi
c(x) =

{
c if x = ∞i

a otherwise
.

We need to define a congruence on D in order to recover the graph G.
Let V be an 〈α, β〉-minimal set which contains N and fix a binary polynomial
+ of A with range contained in V which acts as vector-space addition on
N with additive identity a (we could define x + y to be d(x, a, y) where d is
some Mal’cev polynomial on V ).

Let

SG = {(p(fv + χ1
c), p(fv + χ1

d)) : v ∈ G and c, d ∈ N}
and

SE = {(p(fe + χ2
c), p(fe + χ2

d)) : e ∈ E and c, d ∈ N}.
Let θ be the congruence of D generated by SG and SE and let B = D/θ.
Since all of the generators of θ are α-related coordinate-wise then it follows
that no elements of D(V ) are identified under θ. It is also true that if two
elements of D are θ-related then they must agree on G since the generators
of θ satisfy this. The following claim provides a description of the restriction
of the θ classes to D(U). Let Σ = {g(x) ∈ Pol A : g(U) = U}.

Claim 1 θ|D(U) is equal to the reflexive, transitive closure of the relation

Θ = {(s(h), s(k)) : s ∈ Σ and (h, k) ∈ SG∪SE}.
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This claim follows from the previous lemma, in fact the whole point of
establishing the previous lemma was so that we could prove this claim. We
need to show that Θ∪0|D(U) is closed under the application of unary polyno-
mials of D with range contained in D(U).

To show this, let q(x) be a polynomial of D with range contained in
D(U). Then there is some polynomial t(x, ȳ) of A with range contained in
U and some elements fi from NX such that q(x) = t(x, f̄) for all x ∈ D.
Let (h, k) ∈ Θ and assume that q(h) 6= q(k), say q(h)(i) 6= q(k)(i). Then
the polynomial t(x, f̄(i)) of A separates the points h(i) and k(i) and so must
be injective on M (and hence on U). From the previous lemma it follows
that for all tuples c̄ and d̄ from N , the two polynomials t(x, c̄) and t(x, d̄) are
identical on M . So if we define g(x) = t(x, â, . . . , â) then g(U) = U (and so
g ∈ Σ) and (q(h), q(k)) = (g(h), g(k)).

We now set out to recover the sets {fv/θ : v ∈ G} and {fe/θ : e ∈ E}
as best we can. Not surprisingly we can only do so up to some first order
definable equivalence relation. Define h ∼ k by:

h, k ∈ B(V ) and p(h) = gp(k) for some g ∈ Σ.

With a little work one can show that ∼ defines an equivalence relation on
B(V ) and that for r, s ∈ G∪E, fr/θ ∼ fs/θ iff r = s. Up to ∼ we can
recognize the fv/θ’s by using the formula Vert(h) defined by:

h ∈ B(V ), p(h) is not constant (in B(U)) and for some h′ with
h ∼ h′, p(h′) = p(h′ + χ1

c/θ) for every c ∈ N .

Let Edge(h) be the formula obtained by replacing χ1
c by χ2

c in the above
definition. We have the following claim:

Claim 2 Let h ∈ B(V ). Then B |= Vert(h) if and only if h ∼ fv/θ for some
v ∈ G and B |= Edge(h) if and only if h ∼ fe/θ for some e ∈ E.

We will only present a proof for the vertex case since the edge case can
be handled in an almost identical manner. By construction of θ, Vert(fv/θ)
can easily be seen to hold for any v ∈ G.

For the converse, suppose that B |= Vert(h) and choose some h′ ∼ h
which witnesses this. So, for all c ∈ N , p(h′) = p(h′ + χ1

c/θ). Choose some
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k ∈ D(V ) with k/θ = h′. Then we have that (p(k), p(k + χ1
c)) ∈ θ for

every c ∈ N . Since p(h) is not constant then there is some c ∈ N with
p(k)(∞1) 6= p(k + χ1

c)(∞1). By our characterization of θ on D(U) it follows
that p(k) is θ-related to gp(fv) for some v ∈ G and g ∈ Σ. Thus in B,
p(h′) = gp(fv/θ) and so h ∼ fv/θ as required.

From the previous claim we know that modulo ∼, {h : B |= Vert(h) } is
in bijective correspondence with G. By using the additive structure on N
we will be able to recover the edge relation of G in B, but in order to do so
we will have to refine the formula Vert somewhat. Let Γ = {q(x) ∈ Pol A :
q(V ) = V and pq(a) = pq(b)}. Then clearly in B we have that pq(fr/θ) is
constant for every vertex or edge r. We define Un(h) to be:

Vert(h) and pq(h) is constant for every q ∈ Γ.

We then have:

Claim 3 Let h ∈ D(V ) and suppose that B |= Un(h/θ). Then there is a
unique v ∈ G such that h(v) 6= h(∞2). For this v we have h/θ ∼ fv/θ.

Since Vert holds for h/θ then there is a unique v ∈ G with p(h)(v) 6=
p(h)(∞2), namely the v ∈ G with h/θ ∼ fv/θ. So, if there is some other
vertex w, with k(w) 6= k(∞2) then at least we know that p(k)(w) = p(k)(∞2).
Since the action of the unary polynomials of A|N is doubly transitive then
we can find some q ∈ Γ with q(a) = k(w) and q(b) = k(∞2). Some finite
iterate of q will serve to show that Un must fail for h/θ.

Finally, define E(h, k) by:

Vert(h) and Vert(k) and for some h′ ∼ h and k′ ∼ k with Un(h′)
and Un(k′), Edge(h′ + k′).

Then:

Claim 4 For h, k ∈ D, B |= E(h/θ, k/θ) iff h/θ ∼ fv/θ and k/θ ∼ fw/θ for
some v and w with {v, w} ∈ E.

18



As is usual, one direction of this claim is easily seen to be true. For
the other direction, suppose that h, k belong to D(V ) and that E(h/θ, k/θ)
holds in B. We may assume that Un holds for both h/θ and k/θ and that
Edge(h/θ + k/θ) also holds. There are v and w ∈ G with h/θ ∼ fv/θ and
k/θ ∼ fw/θ and since Un holds for both h/θ and k/θ then by the previous
claim the sum h + k is constant on G \ {v, w}. From this we conclude that
since h/θ + k/θ satisfies Edge then it must be ∼-related to f{v,w}/θ which
forces {v, w} ∈ E as required.

Putting the above claims together shows that by using the formulas Vert,
∼ and E we can recover the graph G from the algebra B.

3 The (2, 1)-transfer principle

As in the case of the (1, 2)-transfer principle, we rely on proofs found in
[6] to establish the (2, 1)-transfer principle. The biggest difference between
this case and the (1, 2) case is that we require no new semantic embeddings,
with some modifications the two constructions found in Chapter 10 of [6] will
suffice. We will ultimately prove the following:

THEOREM 3.1 If V is an ω-structured variety then it must satisfy the
(2, 1)-transfer principle.

COROLLARY 3.2 If V is a finitely decidable variety then it must satisfy
the (2, 1)-transfer principle.

In this section we will be dealing with the following situation: A is a
finite algebra with congruences α and β such that α is a type 2 cover of 0A,
β is a type 1 cover of α and there are no other congruences between 0A and
β. We will show that under these circumstances the algebra A generates an
ω-unstructured variety.

The sequence of lemmas 8.6, 8.7 and 8.8 from [6] are used to establish this
result under the additional assumption that A is in an Abelian variety. It is
really only in the proof of Lemma 8.6 that the Abelian assumption is used.
What we will now do is show that we can do away with this assumption and
still obtain the desired conclusion.

19



As in the proof of Lemma 8.6 we take an 〈α, β〉-trace N , contained in
an 〈α, β〉-minimal set V , a 〈0A, α〉-trace M contained in a 〈0A, α〉-minimal
set U and a unary polynomial f(x) of A with range contained in U and
which is nonconstant on N and maps N into M . The proof of 8.6 is in two
parts (Lemmas 10.2 and 10.4), the first handles the case where we can find
a polynomial f as above with the additional property that f(α|V ) ⊆ 0A.

A careful reading of the proof of Lemma 10.2 should convince the reader
that we do not need to assume that the algebra A is Abelian in order to
obtain finite undecidability. At two places in the proof the assumption that
A is Abelian is used to conclude that the type 2 minimal set U has no tail
and is thus Mal’cev. As was noted earlier, the author and R. Willard ([7])
have shown that one need only assume that the algebra generates a finitely
decidable (or ω-structured) variety in order to conclude that type 2 minimal
sets have empty tails. At one point in the proof the fact that A/α is Abelian
is used. Actually, all that is needed here is that the congruence β is strongly
Abelian over α. In fact the following is true:

LEMMA 3.3 Let C be a union of α|V -classes which contains N and which
is uniformly definable in all finite diagonal β-constant subpowers of A by
some first order formula (with parameters). If there is a polynomial f which
maps N into M , is nonconstant on N and satisfies f(α|C) ⊆ 0A then A
generates an ω-unstructured variety.

We call a subalgebra B of AX β-constant if for every b ∈ B and x, y ∈ X,
(b(x), b(y)) ∈ β. A subset C of A is uniformly definable by a first order
formula (with parameters) Γ(x) in all finite diagonal β-constant subpowers
of A if for every such subpower D of A, the set D(C) is defined by Γ in D
(using suitable parameters).

Our first corollary to the previous lemma shows that β|V is an Abelian
congruence of A|V .

COROLLARY 3.4 If the algebra A generates an ω-structured variety then
β|V is an Abelian congruence of A|V .

Proof. We apply the previous lemma with C = V . Thus for every
unary polynomial f(x) of A with range contained in U , we have that f(β|V ) ⊆
0A if and only if f(α|V ) ⊆ 0A.
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Of course if α|V is trivial then there is nothing to prove, since we already
know that β is Abelian over α. So, assume that α is nontrivial on V and,
without loss of generality, that U is contained in V . We may also assume
that A = V , i.e., that A is 〈α, β〉-minimal. Our proof that β (= β|V now)
is Abelian proceeds in two very similar steps. The first step shows that β
centralizes α.

Suppose that t(x, y1, . . . , yn) is a polynomial of A, (a, b) ∈ β and (ui, vi) ∈
α for i ≤ n and that t(a, ū) = t(a, v̄). We need to show that t(b, ū) = t(b, v̄).
It follows that t(b, ū) and t(b, v̄) are α-related (since β is Abelian over α) and
so we may assume that t has range contained in U .

Since U is a type 2 minimal set then there is a polynomial p(x, y, z) of A
with range contained in U and which is a Mal’cev operation U (since U has
an empty tail by [7]). Let c be any member of U and define

f(x) = p(t(x, ū), t(x, v̄), c).

If we can show that f(a) = f(b) then we will be able to conclude that
t(b, ū) = t(b, v̄), since for any d from U the polynomial p(d, x, c) is injective
on U .

The polynomial f has range contained in U and so must collapse β into
α. So, by our assumptions, if we can prove that f also collapses α into 0A

then we will be able to conclude that f collapses β into 0A too, and thus
f(a) = f(b). Let (d, e) ∈ α. Since p(t(d, ū), t(d, ū), c) = p(t(e, ū), t(e, ū), c)
and since α is Abelian, we get that p(t(d, ū), t(d, v̄), c) = p(t(e, ū), t(e, v̄), c),
i.e., f(d) = f(e). So, f collapses α and thus collapses β.

To show that β is Abelian, we proceed as in the first part of this proof,
the only differences being that we take the ui and vi to be β-related and at
the end, we use that β centralizes α rather than that α is Abelian.

The idea for the above proof came while reading a manuscript by Jeong [5]
on subdirectly irreducible algebras with type 2 monoliths in finitely decidable
varieties. Part of his proof that centralizers in subdirectly irreducible algebras
with type 2 monoliths have a nice first order definition can be found in the
above proof and one can also prove the following by his techniques. Let γ be
the centralizer of β|V in A|V .

LEMMA 3.5 γ is definable by a finite conjunction of polynomial equations
in the algebra A.
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We will also need to consider the following relation on AV :

ρ = {(u, v) ∈ V 2 : for all polynomials t(x, y) of AV , t(x, u) is a

permutation if and only if t(x, v) is}.

It is not hard to show that ρ defines a congruence on AV which contains β
(actually, ρ is the centralizer of β|V modulo α|V ). It is also true that ρ is
uniformly definable by a first order formula in all finite diagonal β-constant
subpowers D of A. The following formula accomplishes this. Let R(u, v) be
defined by:

• u, v ∈ D(V ); and

• for every binary polynomial t(x, y) of A with range contained in V ,
t(x, u)|D(V ) is injective if and only if t(x, v)|D(V ) is.

Using the facts that β is Abelian over α and that a unary polynomial of
A is injective on V if and only if it does not collapse β|V into α it is a
straightforward exercise to check that R works.

If we let C be the γ ∧ ρ class of a then it is a union of α|V -classes which
contains N and which is uniformly definable in all finite diagonal β-constant
subpowers of A and thus:

COROLLARY 3.6 If there is a polynomial f(x) of A with range contained
in U which is nonconstant on N and which collapses α|C into 0A then A
generates an ω-unstructured variety.

Proof. We use Lemma 3.3 and the previous lemma to obtain this
corollary.

So we are left with considering the case where whenever f is a unary
polynomial of A with range contained in U then f is constant on N if
f(α|C) ⊆ 0A. Fortunately, this condition is strong enough to finish off the
proof of the (2, 1)-transfer principle.

LEMMA 3.7 The algebra A generates an ω-unstructured variety if for all
unary polynomials f(x) with range contained in U , f is constant on N if
f(α|C) ⊆ 0A.
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Proof. We will point out how the proof of Lemma 10.4 from [6] can
be modified in order to prove this lemma. By our assumptions on A, we
know that there is a unary polynomial f with range contained in U which is
nonconstant on N and which maps it into M . As in the proof of 10.4 we can
assume that V ⊆ U and that f is idempotent. We choose two points a and
b from N which are not α-related but such that (f(a), f(b)) ∈ α \ 0A.

The first thing to note is that by following through the proof of Lemma
10.3 we can conclude that:

if t(x1, . . . , xk) is a polynomial of A with range contained in V
such that for all i ≤ k, pi(xi) = t(a, a, . . . , a, xi, a, . . . , a) does not
collapse α|C into 0A then either k = 1 and t(V ) = V or for all i,
pi(a)αpi(b).

If the latter holds then we call the polynomial t(x1, . . . , xk) a collapsing func-
tion. Using the above result, it follows that an element of D(V ) is either in
the range of some collapsing function (and hence is α-constant) or is equal
to a permutation of V applied to one of the generators of D. Thus Claim 1
of 10.4 holds under the current hypotheses.

Once Claim 2 of 10.4 is established, the rest of the proof is rather routine
and requires only that A|U is a Mal’cev algebra (but not necessarily Abelian).
To show that Claim 2 holds under the current hypotheses, that is, to show
that there is a first order formula Alpha(x) which selects the α-constant
elements of D(V ), we need to alter the formula from 10.4. We define Alpha
to be:

x ∈ D(V ) ∧
(
“x is constant”

∨ ∨

p∈I

∃ȳ
(
[
∧

i

(yi ∈ D(V ) ∧ “p(y1, . . . , yi−1, xi, yi+1, . . .)|D(V )

is not a permutation of D(V )”)] ∧ x ≈ p(ȳ)
))

.

Certainly, if any element of D satisfies Alpha then it will be α-constant
since it is equal to some polynomial p applied to elements ȳ of D(V ) so
that for all i, the function p(y1, . . . , yi−1, xi, yi+1, . . .)|D(V ) collapses β|V into
α coordinate-wise.

Conversely, if µ of D(V ) is α-constant then by Lemma 10.5 (which holds
under the weaker assumption that β|V is Abelian) and Claim 1 of 10.4 it

23



follows that µ is equal to some collapsing function p with fewer than 6|A||A|
variables applied to some nonconstant generators of D.

4 Conclusion

The results from the previous sections can be used to give a fairly complete
description of the finite subdirectly irreducible algebras with type 2 monoliths
which generate ω-structured varieties. Let A be such an algebra. Then from
the (2, 1)-transfer principle and results from [4, 5] it follows that only types
2 and 3 can occur in the labeled congruence lattice of A and that modulo
the solvable radical of A, the resulting algebra is either trivial or has type
set 3 and a congruence lattice isomorphic to a finite chain.

We do not have quite as much information in the type 1 case although we
expect that similar properties will hold for finite subdirectly irreducibles with
type 1 monoliths. At least we now know that in this case, only type 1 labels
can occur below the solvable radical (this follows from the (1, 2)-transfer
principle).
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