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Abstract

The aim of this paper is twofold. First some machinery is established to reveal the
structure of abelian congruences. Then we describe all minimal, locally finite, locally
solvable varieties. For locally solvable varieties, this solves problems 9 and 10 of Hobby
and McKenzie, [6]. We generalize part of this result by proving that all locally finite
varieties generated by nilpotent algebras that have a trivial locally strongly solvable
subvariety are congruence permutable.

1 Introduction

This paper is an outgrowth of our study of locally solvable locally finite varieties. Our
purpose is to describe tools that have been developed to better deal with finite solvable
algebras. We refer to these tools as “coordinatization theory” and “the theory of minimal sets
in subdirect powers”. Although these tools were originally developed to deal with solvable
algebras, we present them in greater generality here. After spending the early sections of
this paper building theory, we then present one of the firstfruits of coordinatization theory:
we characterize the locally finite minimal varieties generated by an abelian algebra.

In Section 2 we present all technical results on centrality and type 2 minimal sets that
we use later. There are some new observations here, too, like Theorem 2.12 and its corollary.

Our first section devoted to theory building is Section 3. In this section we describe
coordinatization results. We approach the subject in a general way, explaining how a subset
of an algebra may be coordinatizable by E–traces, but we quickly get to the most interesting
case: we consider when a subset of an algebra is coordinatizable by traces. Such a subset
might be called a “higher dimensional trace”. We analyze the algebra induced on a coordi-
natizable subset of an α–class where α is a minimal congruence on a finite algebra A and
typ(0A, α) ∈ {1 ,2 ,3 }. We now describe what this means and why it is interesting. To
minimize the prerequisites for this discussion we assume that A is a finite simple algebra.
In this setting, α = 1A and minimal sets and traces are the same thing. We will use the
word “trace” in the next few paragraphs since that is the accurate choice when looking at
algebras which are not simple.
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The fundamental concept of tame congruence theory is that an algebra can be locally ap-
proximated by induced algebras. One proceeds as follows. Choose a nonconstant idempotent
unary polynomial e of A with minimal range. Let N = e(A). Then N is a 〈0, 1〉–minimal
set of A and also a 〈0, 1〉–trace. Define A|N to be the algebra whose universe is N and
whose basic operations are the polynomials of A under which N is closed. These are the
f ∈ Pol(A) such that f(Nk) ⊆ N . What makes this a powerful approach to the study
of finite algebras can be summarized by four words: Isomorphism, Density, Separation and
Classification. The word Isomorphism refers to the fact that, up to polynomial equivalence,
the algebra A|N is independent of the choice of e. Hence, the polynomial equivalence class
of A|N is an invariant of A. The word Density refers to the fact that any two elements of A
can be connected by a chain of overlapping traces. The word Separation reflects the fact
that if a, b ∈ A are distinct, then there is a polynomial p ∈ Pol1(A) such that p(A) = N and
p(a) 6= p(b). The word Classification refers to the fact that, up to polynomial equivalence,
the structure of A|N is known. Namely, A|N is one of the following algebras:

1 . a simple G–set (for a group G),

2 . a 1–dimensional vector space,

3 . a 2–element Boolean algebra,

4 . a 2–element lattice or

5 . a 2–element semilattice.

The number 1 – 5 is called the type of A|N and also the type of A.
When a finite algebra A offers a puzzle, analysis of the puzzle often can be reduced to

the consideration of a certain “configuration” of elements and operations. We do not intend
to define “configuration” here, but roughly what we mean by this term is a set of first order
sentences in the language of AA which are either atomic or negated atomic. Now, one can
use separation to map any configuration of A into N in a way that preserves at least one
negated atomic sentence. This transforms the puzzle about A into a related puzzle about
the induced algebra A|N . Because of the isomorphism between induced algebras it doesn’t
matter which you choose. Using the classification of induced algebras, one solves the puzzle
“locally”. Then one uses density to transfer the solution back to the original algebra. Of
course, the success of this strategy depends on how closely A is approximated by its induced
algebras.

In Figure 1 we have indicated what might be called the “geometry” of an 8–element simple
algebra A. The black dots represent elements of A. These are the “points” of the geometry.
The set N = {0, 1} is one of the ten traces of A. The traces are the “lines” of the geometry.
It would be highly desirable to understand how all the operations of A compose, but tame
congruence theory won’t tell us that much; the theory only tells us what is happening “on a
line”. That is, if p ∈ Polk(A) and p(Nk) ⊆ N , then p|N ∈ Polk(A|N). If, for example, A is
of type 2 , then p|N is a vector space polynomial. This tells us that a fragment of the Cayley
table for p is described by an operation on N of the form a1x1 + · · ·+akxk. Tame congruence
theory does not tell us more about the Cayley table of p nor does it tell us anything about
other polynomials q ∈ Polm(A) unless it happens that q(Nm) ⊆ N (or at the very least one
must have q(N1 × · · · ×Nm) ⊆ N0 where all Ni are traces).
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Figure 1: The geometry of A.

In Section 3 we go a step further. We show that often there are subsets T ⊆ A larger than
a trace which share the basic properties of traces and which may be thought of as higher
dimensional traces. The sets we consider are those subsets of A of the form T = f(N, . . . , N)
where N is a trace and f ∈ Pol(A). We call these sets multitraces. In Figure 2 there are
two multitraces which are not just traces.
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Figure 2: Multitraces T and T ′.

The multitrace T might be thought of as a “hyperplane” of the geometry. A classification
of algebras of the form A|T , where T is a multitrace, would tell us what is happening on a
hyperplane rather than just what is happening on a line. The structure of A|T when A is
abelian follows fairly directly from coordinatization theory. We are also able to determine
the structure of A|T when A has type 3 . Unfortunately, the notion of a multitrace is not
well–behaved in types 4 and 5 .

The class of multitraces of our simple algebra A contains the traces, so we still have the
properties of separation and density with respect to multitraces. In Section 3, we classify
the algebra induced on a multitrace for types 1 , 2 and 3 . With respect to the isomorphism
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property which traces enjoy, it is not true that any two multitraces are polynomially isomor-
phic. However, any polynomial image of a multitrace is again a multitrace and, in types 1 , 2
and 3 , the structure A induces on a multitrace is determined up to polynomial equivalence
by the cardinality of the multitrace. These two properties may serve as substitutes for the
isomorphism property of traces.

It turns out that there is another realization of the intuitive notion of a higher dimensional
trace which works well in all types. This new notion, called a generalized trace, will be
developed in a subsequent paper. Here we will only say that the definition of a generalized
trace is a little more complicated than that of a multitrace, but in types 1 , 2 , and 3 these
concepts coincide.

Section 4 is our other section devoted to theory building. In this section we investigate
minimal sets in subdirect powers. Generally, our goal is to better understand the connection
between local and global properties in a locally finite variety. Specifically, our goal is to
analyze the relationship between minimal sets in A and minimal sets in an arbitrarily chosen
finite algebra B ∈ V(A). This seems to be a difficult problem. For example, say that a finite
algebra satisfies the empty tails condition if all of its minimal sets have empty tail. It is
known (see [11]) that a locally finite variety is congruence modular if and only if all finite
members satisfy the empty tails condition. The empty tails condition is not sufficient (nor
necessary) to prove congruence modularity for a single algebra; but the empty tails condition
for every finite subalgebra of a power of A is strong enough to prove that A is congruence
modular, and moreover it is strong enough to prove that the variety generated by A is
congruence modular. In particular, this shows that the empty tails condition holding for all
subalgebras of powers of A implies that typ{B} ⊆ {2 ,3 ,4 } whenever B is a subalgebra
of a power of A. However, this implication does not hold on the level of single algebras;
A may satisfy the empty tails condition even when typ{A} 6⊆ {2 ,3 ,4 }. What is needed,
clearly, is a better understanding of the consequences of asserting that all minimal sets of
subalgebras of powers satisfy a specified condition (like the empty tails condition). In Section
4 we consider a finite algebra A which has a type 2 prime quotient 〈α, β〉. We describe the
minimal sets corresponding to certain type 2 intervals in subdirect powers of A. In the case
where A is a simple algebra of type 2 , our description of minimal sets in subdirect powers
applies to all type 2 prime quotients in all subalgebras of powers of A.

In Section 5 we use the tools developed in the earlier part of the paper to classify the
minimal, locally finite varieties generated by abelian algebras. Any locally finite variety gen-
erated by abelian algebras is locally solvable. Any locally finite minimal variety is generated
by a strictly simple algebra; by which we mean a finite simple algebra with no nontrivial
proper subalgebras. Hence, a minimal locally finite variety generated by abelian algebras
is generated by an abelian strictly simple algebra. The main idea behind the classification
theorem is that this strictly simple abelian generating algebra must be coordinatizable by
traces. The connection between the theory of coordinatization and matrix powers allows one
to deduce that a minimal, locally finite variety generated by a simple algebra of type 1 is
term equivalent to a matrix power of the variety of sets or the variety of pointed sets. It also
allows one to deduce that a minimal, locally finite variety generated by a simple algebra of
type 2 is an affine variety. We give two proofs of the latter result in Section 5.

In Section 6 we give yet a third proof that a minimal locally finite variety generated by
a simple algebra of type 2 is affine. We then extend this result to non–minimal varieties
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generated by nilpotent algebras. The main result in this section is that a locally finite variety
generated by nilpotent algebras is either congruence permutable or else it has a nontrivial
strongly abelian subvariety. This section can be read independently of Sections 3–5.

The reader is assumed to be familiar with the book [6] on tame congruence theory, and
also with the book [2] containing the basics of universal algebra. The notation used in the
paper is mostly the same as that used in [6]. In particular, algebras are denoted by boldface
capital letters, and A is the underlying set of A. Boldface lower case letters, like b denote
sequences of elements, and bi stands for the i–th component of b. Thus b typically denotes
(b1, . . . , bn) for some integer n if these are arguments of a function, and the corresponding
column vector, if this is an element of a cartesian product. If R is a binary relation, then
by a R b we mean ai R bi for all i.

Acknowledgements. The first and second authors are greatly indebted to Matthew Vale-
riote for inviting them to Hamilton to work on the topic of this paper. The second author
would also like to thank Joel Berman for inviting him to Chicago for the same purpose.

2 Centrality

First we recall the concepts of centrality and of the commutator (defined in Chapter 3 of [6])
in a slightly more general form.

Definition 2.1 Let A be an algebra, L and R binary relations on A, and δ ∈ Con(A). We
say that L centralizes R modulo δ, or that the 〈L,R〉–term condition holds modulo δ (in
notation: C(L, R; δ)) if for all polynomials f of A and elements a L b and c R d of A,

f(a, c) δ f(a,d)
m

f(b, c) δ f(b,d) .

The commutator of L and R is defined to be the smallest congruence δ of A with C(L, R; δ)
and it is denoted [L,R]. The largest congruence α of A satisfying C(α,R; δ) is denoted
by (δ : R). We write ann(R) for (0A : R); this is the annihilator of R.

We have to make several remarks to justify this definition. First note that if R denotes
the compatible tolerance of A generated by R, then C(L,R; δ) is equivalent to C(L, R; δ).
If R itself is reflexive, then it is sufficient to assume f(a, c) δ f(a,d) ⇐⇒ f(b, c) δ f(b,d)
for all terms f (rather than polynomials).

It is easy to see that the set of all congruences δ satisfying C(L,R; δ) is closed under
intersection, so the commutator [L,R] indeed exists. However, this set of congruences is not
necessarily a filter in Con(A). The polynomials f(x, c) and f(x,d) in Definition 2.1 are
called R–twins because they are derived from the same polynomial with different parameter
sequences which are R–related componentwise. More generally and more precisely, when
S ⊆ Ak is a k–ary relation on A and t(x, y) is a polynomial, then we say that a sequence of
unary polynomials, (tA1 (x, s1), . . . , tAk (x, sk)), where the tuples (s1

i , . . . , s
k
i ) each belong to S,
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is a sequence of (simultaneous) S–twins. The statement that the 〈L,R〉–term condition
holds is simply this: any pair of R–twins which agree modulo δ at the value a also agree
modulo δ at any value L–related to a. As one can see, the relations L and R do not play
symmetric roles. We have described the 〈L,R〉–term condition in such a way that L refers
to the relation in the leftmost position in [L,R] and C(L, R; δ) while R refers to the relation
which occupies the position to the right of L.

It is not difficult to show that the set of all pairs (a, b) for which C({(a, b)}, R; δ) holds is
a congruence relation of A. This congruence is of course (δ : R), so the definition of (δ : R) is
meaningful. We should really speak of a left annihilator here, but this will cause no trouble,
since there is no natural definition for a right annihilator. Thus, if L denotes the congruence
generated by L, then C(L,R; δ) and C(L,R; δ) are also equivalent.

An important consequence of the existence of the annihilator is the fact that

C(αi, R; δ) for all i ∈ I ⇐⇒ C(
∨

i∈I

αi, R; δ),

where αi ∈ Con(A) for i ∈ I. This does not imply, however, that the commutator is left
distributive over join.

Definition 2.2 If A is an algebra and R is a compatible, reflexive, binary relation on A,
then the subalgebra of A2 with underlying set R (that is, all R–related pairs) will often
be denoted by A(R). If L is any binary relation on A, then ∆L,R denotes the congruence
on A(R) generated by

{〈(x, x), (y, y)〉
∣∣∣ x L y} .

Let πi denote the coordinate projections of A(R) onto A. If γ 6= 0 is a congruence of A, then
we denote by γi the congruence π−1

i (γ), and write ηi for π−1
i (0A). If R is a congruence β,

then β1 = β2 is denoted by β.

It is easy to check that [L,R] = 0 is equivalent to the statement that the diagonal
subuniverse of A(R) is a union of ∆L,R–classes. This observation leads to an alternative
definition of the commutator. It also shows that we can replace L with the congruence it
generates in A in the definition of ∆L,R and also in the definition of [L,R]. (We point out
that what we write as ∆L,R has unfortunately been expressed as ∆R,L in several places in
the literature. Because of the connection between ∆L,R and the commutator of L and R,
we choose to arrange our notation so that the left subscript of ∆L,R corresponds to the left
position of [−,−]. So remember: the right subscript of ∆L,R is considered as a subalgebra,
the left subscript is put on the diagonal.)

Next we recall some definitions concerning nilpotence, partially contained in Definition 3.5
of [6].

Definition 2.3 Let A be any algebra and β ∈ Con(A). We define (β]1 = [β)1 = [β]1 = β,
and inductively (β]n+1 = [β, (βn]], also [β)n+1 = [[β)n, β], and [β]n+1 = [[β]n, [β]n]. The
congruence β is called left or right nilpotent, or solvable, iff for some n we have (β]n = 0A,
or [β)n = 0A, or [β]n = 0A. The algebra A is left (right) nilpotent, or solvable, if the
congruence 1A is.
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Thus, β is left nilpotent if

[β, [β, [β, [. . . , [β, β] . . .]]]] = 0A

(for a sufficiently long expression). As proved in [7], the hypothesis of left nilpotence is weaker
than any other notion of nilpotence. E.g., if A is a finite algebra satisfying [1)k+1 = 0 (A is
k–step right nilpotent), then A is left nilpotent although possibly of higher nilpotence class.
Sometimes, when we refer just to nilpotence, we shall mean the weakest form: left nilpotence.
We will need some other results and definitions of [7], so we reproduce them here.

Definition 2.4 If A is a finite algebra, β ∈ Con(A), δ ≺ θ in Con(A) and N is a 〈δ, θ〉–
trace, then the congruence quotient 〈δ, θ〉 is said to be β–coherent if the implication

C(β, N2; δ) =⇒ C(β, θ; δ)

holds. If every prime quotient of Con(A) is β–coherent for every β, then A is said to be
coherent.

Note that, as all 〈δ, θ〉–traces are polynomially isomorphic, if we have C(β, N2; δ) for one
trace N , then C(β,N2; δ) holds for all traces N .

Recall that a group is said to act regularly on a set if whenever a group element stabilizes
a point, it acts as the identity map. (Sometimes this concept is called semiregularity.)

Definition 2.5 Assume that A is a finite algebra, β ∈ Con(A), δ ≺ θ in Con(A), N is a
〈δ, θ〉–trace and H is the group of polynomial permutations of A|N which are β–twins of idN .
We say that the congruence quotient 〈δ, θ〉 is β–regular if typ(δ, θ) 6= 1 , or typ(δ, θ) = 1 and
H acts regularly on N modulo δ. When typ(δ, θ) = 1 this states that 〈δ, θ〉 is β–regular iff
for all p ∈ H the implication

(∀u, x ∈ N) (p(u) δ u =⇒ p(x) δ x)

holds.

We record in the following theorem and corollary the facts from [7] that we will need
concerning β–coherent and β–regular prime quotients.

THEOREM 2.6 Let A be a finite algebra, with β ∈ Con(A) and δ ≺ θ in Con(A).
Choose U ∈ MA(δ, θ) and denote by B and T the body and tail of U respectively. The
following are true.

(1) If [β, β] ∧ θ ≤ δ, then 〈δ, θ〉 is β–regular.

(2) If 〈δ, θ〉 is β–regular, then it is β–coherent.

(3) Every homomorphic image of A is left nilpotent iff A is left nilpotent and coherent.

(4) If 〈δ, θ〉 is β–regular, then for the conditions listed below (i) =⇒ (ii) =⇒ (iii) ⇐⇒ (iv)
holds.
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(i) C(β, θ; δ).

(ii) [β, θ] ≤ δ.

(iii) C(θ, β; δ).

(iv) [θ, β] ≤ δ.

If (β]k|U ⊆ B2 ∪ T 2 for some k, then all conditions are equivalent. If [β]k|U ⊆ B2 ∪ T 2

for some k and typ(δ, θ) 6= 1 , then all conditions are equivalent.

Proof. For the case when typ(δ, θ) = 1 , statement (2) follows from Lemma 4.13 of [7].
In all other cases we always have β–coherence by Lemma 4.2 of [7], and also β–regularity
by the definition (so β–regularity and β–coherence are only interesting when typ(δ, θ) = 1 ).
Statement (1) is Theorem 4.20 of [7], (3) is Corollary 4.4 of [7], finally (4) is a combination
of Lemmas 3.1, 3.2, and 4.14 of [7], depending on the type of 〈δ, θ〉.

COROLLARY 2.7 Any locally finite variety generated by abelian algebras is locally left
nilpotent.

The concept of an E–trace plays an important role in [6] (see Lemma 2.4 or the second
part of Chapter 6). The name E–trace was coined later.

Definition 2.8 Let A be an algebra, e an idempotent unary polynomial, α a congruence,
and a an element of A. We say that a subset S of A is an E–trace of A with respect to e
(or with respect to α, or a/α), if S = e(A) ∩ a/α.

The following notation and easy–to–check observation is from [1], see Sections 5 and 7 of
that paper for a more detailed analysis.

Definition 2.9 Let α < β ∈ Con(A) for some algebra A. Set

Sep(α, β) = {f ∈ Pol1(A)
∣∣∣ f(β) 6⊆ α} .

LEMMA 2.10 Let 〈α, β〉 be a tame quotient of a finite algebra A. Then for all γ ∈ Con(A)
with α < γ < β we have

(1) Sep(α, γ) = Sep(α, β), and

(2) Sep(γ, β) = Sep(α, β).

Next we summarize some basic facts on type 2 minimal sets.

LEMMA 2.11 Let A be a finite algebra, 〈δ, θ〉 a type 2 prime quotient of A and γ =
(δ : θ). Choose any 〈δ, θ〉–minimal set U . Let B be the body and T the tail of U , and N a
〈δ, θ〉–trace in B. Then the following hold.

(1) The induced algebra on N/δ (in the algebra A/δ) is polynomially equivalent to a vector
space of dimension one over a finite field K.
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(2) The induced algebra A|B is Mal’cev, nilpotent, and is an E–minimal algebra of type 2 .

(3) If β ∈ Con(A) and β
s∼ β ∧ γ, then β|U ⊆ B2 ∪ T 2.

(4) C(θ, γ; δ) holds in A.

(5) We have γ = (δ : S2) for every subset S of A contained in a θ–block, and containing
a 〈δ, θ〉–trace. Such subsets include, in particular, the E–traces of A with respect to θ
that are not contained in δ.

(6) The set B is the intersection of a γ–class of A with U , and is therefore an E–trace
of A.

(7) If U is a minimal set for some other tame quotient, then the type of this quotient is 2
and B is the body of U with respect to this quotient.

Proof. Statement (1) is the definition of a type 2 quotient, (2) follows from Theo-
rem 4.31 and Lemma 4.36 of [6]. Theorem 2.6 shows that 〈δ, θ〉 is γ–regular and γ–coherent.
By the definition of γ we have C(γ, θ; δ), so (4) follows from Theorem 2.6 (4).

To prove (5) let β ∈ Con(A). Clearly, C(β, S2; δ) is equivalent to C(β, θ; δ) by coherence.
This proves the first statement in (5). Now let S = e(A) ∩ a/θ for some idempotent poly-
nomial e of A, and elements a, b ∈ S such that (a, b) /∈ δ. Connect a and b by a sequence
of 〈δ, θ〉–traces Ni. Then one of the sets e(Ni) is not contained in a δ–block, so it is also a
〈δ, θ〉–trace, which is contained in S. Thus, (5) is proved.

Let N be a 〈δ, θ〉–trace contained in B. From (1) we get that θ|N covers δ|N . As all
〈δ, θ〉–traces of U are polynomially isomorphic by Lemma 4.20 (5) of [6], we have that θ|B
covers δ|B. Combining this with the fact that modulo δ|B, A|B is nilpotent (by applying (2)
to the algebra A/δ and the prime quotient 〈0A/δ, θ/δ〉), we have that C(B2, θ|B, δ). Then
we have C(B2, N2; δ), so B2 ⊆ (δ : N2) = γ. On the other hand, γ|U is clearly contained
in the congruence β defined in Lemma 4.27 (1) of [6], implying that γ|U ⊆ B2 ∪ T 2. This
proves (6). Also, in view of Lemma 4.27 (4) (ii) of [6], γ|U ⊆ B2 ∪ T 2 and β

s∼ β ∧ γ implies
that β|U ⊆ B2 ∪ T 2. This proves (3).

Finally (7) is proved in Section 5 of [10].

We conclude this section by proving one more statement. In the following theorem,
C2 denotes the binary centrality relation. Its definition is similar to Definition 2.1, but here
c and d must be elements, and not vectors (hence f is a binary polynomial). Clearly, binary
centrality is weaker than centrality.

THEOREM 2.12 Let A be a finite algebra, σ0, σ, τ, ρ congruences, and L a binary relation
of A. Suppose that

(i) σ0 ≤ σ < ρ, and σ can be connected to ρ by a chain of prime quotients of type 2 .

(ii) τ ∨ ρ
s∼ ρ.

Then we have
C(τ, L; ρ) & C2(L, τ ; σ0) =⇒ C(τ, L; σ) .
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Proof. Suppose that C(τ, L; σ) fails. As C(τ, L; ρ) holds, there is a prime quotient
〈δ, θ〉 of type 2 between σ and ρ such that C(τ, L; δ) fails, but C(τ, L; θ) holds. Thus, there
exists a polynomial f , and elements and vectors a τ b and c L d of A such that

s = f(a, c) δ t = f(a,d)
u = f(b, c) θ − δ v = f(b,d)

(u θ v follows from C(τ, L; θ)). By tame congruence theory, there exists a unary polynomial
h such that (h(u), h(v)) ∈ θ − δ, and U = h(A) is a 〈δ, θ〉–minimal set. Then h(u) and h(v)
are contained in the body B of U . We show that h(s) and h(t) are also in B.

Indeed, we show that the conditions of Lemma 2.11 (3) are satisfied with β = τ ∨ ρ.
By our assumptions, β

s∼ ρ
s∼ δ. On the other hand, γ = (δ : θ) ≥ δ obviously holds, so

δ ≤ β ∧ γ ≤ β and therefore β
s∼ β ∧ γ. Thus Lemma 2.11 (3) implies that β|U ⊆ B2 ∪ T 2.

On the other hand, h(s) β h(u) and h(t) β h(v), since a τ b, so we have proved that h(s)
and h(t) are in B.

Now let d be a pseudo–Mal’cev operation on U . Then Lemma 2.9 of [10] shows that
h(s) δ h(t) implies h(u) δ h(v), and this contradiction proves the theorem.

COROLLARY 2.13 Let α and β be congruences of a finite algebra A. Suppose that
typ{β, α∨β} = {2 }. Then [α, α] ≤ β implies that (α∨β)/β is an abelian congruence, hence
[α ∨ β, α ∨ β] ≤ β.

Proof. Apply Theorem 2.12 with σ = β and ρ = α ∨ β. Then (i), (ii), and C(τ, L; ρ)
are satisfied for every congruence τ ≤ α ∨ β and for every binary relation L. So for every
congruence σ0 ≤ β we have that

C(L, τ ; σ0) =⇒ C(τ, L; β) .

We apply this observation twice. First let L = τ = α and σ0 = [α, α]. Then C(L, τ ; σ0) =
C(α, α; [α, α]) obviously holds, so we get C(α, α; β). Together with C(β, α; β) this implies
C(α∨ β, α; β) by the properties of the centrality relation mentioned at the beginning of this
section. Now apply the above implication again with L = α∨ β, τ = α, and σ0 = β. We get
that C(α, α∨ β; β) holds. But C(β, α∨ β; β) also holds, so finally we get C(α∨ β, α∨ β; β),
as desired.

3 Coordinatization

Let α be a minimal abelian congruence of a finite algebra A. As shown by tame congruence
theory, the induced algebras on the 〈0A, α〉–traces have a very tight structure. In this section
we show the same for subsets of the form T = f(N, . . . , N), where N is a 〈0A, α〉–trace, and
f is a polynomial of A. We call such a set T a 〈0A, α〉–multitrace. Similar terminology will be
used when 〈0A, α〉 is replaced with an arbitrary tame quotient. We shall learn that T is an
E–trace of A with respect to α, and A|T is term equivalent (or more precisely, isomorphic to
an algebra which is term equivalent) to a matrix power of A|N (see Theorem 3.10). We shall
say that T is a coordinatizable subset of A (or, more specifically, that T is coordinatizable
by traces). Thus, before starting our discussion, we have to summarize some facts on non–
indexed products and matrix powers. The two main references are [13] and [20].
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Definition 3.1 Let A1, . . . ,Ak be algebras, and fi an n–ary function on Ai for 1 ≤ i ≤ k.
Define the n–ary function f1 × · · · × fk on A1 × · · · ×Ak to act as fi in the i–th component
for 1 ≤ i ≤ k, that is,

(f1 × · · · × fk)(x
1, . . . ,xn) =




f1(x
1
1, . . . , x

n
1 )

...
fk(x

1
k, . . . , x

n
k)


 ,

where xj ∈ A1 × · · · × Ak for 1 ≤ j ≤ n, thought of as column vectors. We sometimes
call this function the product of f1, . . . , fn. If fi is the i–th projection for 1 ≤ i ≤ k, then
the resulting product is called the diagonal operation on A1 × · · · × An. The non–indexed
product A1⊗ · · · ⊗Ak is defined to have underlying set A1× · · · ×Ak, and basic operations,
for each non–negative integer n, of the form f1×· · ·× fk, where fi runs over all n–ary terms
of Ai for 1 ≤ i ≤ k.

Definition 3.2 Let A be an algebra and k ≥ 0 an integer. The k–th matrix power of A,
denoted by A[k], is defined to have underlying set Ak, and basic operations, for each non–
negative integer n, of the form

f(x1, . . . ,xn) =




f1(x
1
1, . . . , x

k
1, . . . , x

n
k)

...
fk(x

1
1, . . . , x

k
1, . . . , x

n
k)


 ,

where xj ∈ Ak for 1 ≤ j ≤ n, thought of as column vectors, and fi runs over all nk–ary term
operations of A for 1 ≤ i ≤ k.

The non–indexed product and the matrix power are considered non–indexed algebras,
although we will see in the next theorem how to regard them as indexed algebras. The
difference between the two types of operations is that, although both take as input a matrix
of n columns and k rows, the component maps in the case of a matrix power can depend on all
elements of this matrix, while in the case of a non–indexed product the i–th component map
depends only on the i–th row. To get the clone (all terms) of the direct product A1×· · ·×Ak

(this makes sense only if these algebras are of the same similarity type), one has to consider
the reduct of A1 ⊗ · · · ⊗Ak consisting of the functions fA1 × · · · × fAk , where f is a term
in the language of the algebras Ai. We shall need one more special type of operation of a
matrix power.

Definition 3.3 Let S be any set. The unary shift operation on Sk is defined by

s




x1

x2
...

xn−1

xn




=




xn

x1

x2
...

xn−1




.

The following, easy–to–verify theorem collects some well–known facts concerning the
concepts just defined. Statement (5) explains the name ‘matrix power’.
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THEOREM 3.4 Let A and A1, . . . ,Ak be algebras and B = A1 ⊗ · · · ⊗Ak. Let V be a
variety with similarity type τ . Then the following hold.

(1) Every congruence of B is a product congruence (see [2], Definition 11.4), so Con(B)
is isomorphic to the direct product Con(A1)× · · · ×Con(Ak).

(2) Every congruence of A[k] is a product congruence of the form θ× · · · × θ, where θ is a
congruence of A, so Con(A[k]) is isomorphic to Con(A). This isomorphism preserves
the notions defined in tame congruence theory (like centrality, type labeling, tameness).

(3) If the algebras A1, . . . ,Ak are of the same similarity type, τ , then the clone of B is
generated by the clone of A1 × · · · ×Ak, together with the diagonal operation. Thus
we can regard B as an indexed algebra over the similarity type obtained by expanding
τ by a new k-ary operation symbol.

(4) The clone of A[k] is generated by all the operations in the (k–fold) non–indexed prod-
uct A⊗ · · · ⊗A, together with the shift operation. Thus, if A has similarity type τ ,
then we may regard A[k] as an indexed algebra over the similarity type τ [k], obtained
by expanding τ by a new k-ary and a new unary operation symbol.

(5) Let R be an associative ring and M an R–module. Then M[k] is term equivalent to
the module Mk considered over the n× n matrix ring over R in the usual way.

(6) The collection of all algebras of similarity type τ [k] isomorphic to k–th matrix powers of
algebras in V is a variety. It is denoted by V [k] and called the k–th matrix power of V .
Every subvariety of V [k] is of the form U [k] for some subvariety U ⊆ V . In particular,
V(A[k]) = (V(A))[k].

Now let us see what a coordinatizable subset is.

Definition 3.5 Let A be an algebra, n a positive integer, f an n–ary polynomial of A,
and S1, . . . , Sn non–empty subsets of A. We say that the set T = f(S1, . . . , Sn) can be
coordinatized (with respect to f and S1×· · ·×Sn), if there exist unary polynomials g1, . . . , gn

of A satisfying

gi(f(x1, . . . , xn)) = xi (x1 ∈ S1, . . . , xn ∈ Sn, 1 ≤ i ≤ n).

The gi are called the coordinate maps (with respect to f and T ).

First we investigate a weaker form of this condition.

LEMMA 3.6 Let A be a finite algebra, S1, . . . , Sn and T non–empty subsets of A, and
g1, . . . , gn ∈ Pol1(A), f ∈ Poln(A) such that

(i) f(S1, . . . , Sn) ⊆ T ;

(ii) gi(T ) ⊆ Si for 1 ≤ i ≤ n;
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(iii) f(g1(x), . . . , gn(x)) = x for all x ∈ T .

Let G : T → S1 × · · · × Sn be defined by

G(x) = (g1(x), . . . , gn(x)) ,

and let S = G(T ). Then the following hold.

(1) The induced algebra (A|S1 ⊗ · · · ⊗A|Sn) |S is term equivalent to a reduct of A|T .

(2) If the sets S1, . . . , Sn are all equal, then S is the range of an idempotent unary polyno-
mial of the algebra P = (A|S1)

[n], and A|T is term equivalent to P|S.
(3) If α is an arbitrary congruence of A, and all the Si are E–traces with respect to α,

then T is an E–trace with respect to α.

Proof. Let F = f |S : S → T . Then F and G are inverse bijections between S and T
by (iii). For a function t : T k → T define G(t) : (S1 × · · · × Sn)k → S by

G(t)(x1, . . . ,xk) = G(t(f(x1), . . . , f(xk))) .

Similarly, to any h : Sk → S we can assign F (h) by composing it with G inside and F outside.
This way we have set up inverse bijections between the set of all finitary functions on T , and
the set of all finitary functions on S. Let

C = {(G(t))|S
∣∣∣ t ∈ Pol(A|T )} .

Clearly, G and F establish an isomorphism between the algebras A|T and (S, C).
To prove (1) let h be a k–ary polynomial of A|S1 ⊗· · ·⊗A|Sn that can be restricted to S.

Then h = h1|S1×· · ·×hn|Sn , where the hi are k–ary polynomials of A that can be restricted
to Si for 1 ≤ i ≤ n. Define

t(x1, . . . , xk) = f(h1(g1(x1), . . . , g1(xk)), . . . , hn(gn(x1), . . . , gn(xk))) .

Then t is a k–ary polynomial of A that can be restricted to T , and an easy calculation shows
that (G(t|T ))|S = h|S, proving (1).

To prove (2) assume that S1 = · · · = Sn. To show that C is the clone of P|S let s
be the unary shift operation of P. Define s′(x) = f(gn(x), g1(x), g2(x), . . . , gn−1(x)). It is
easy to check that (G(s′|T ))|S = s|S (in particular, the set S is closed under s). Thus, (1)
and Theorem 3.4 (4) show that C ⊇ Clo(P|S). For the converse inclusion, assume that
t ∈ Polk(A) can be restricted to T . Then the definition of h = G(t|T ) clearly implies that
its component maps are nk–ary polynomials of A that can be restricted to Si, and that
h preserves S, so indeed h|S ∈ Clo(P|S). Finally, e = G(idT ) is clearly an idempotent
polynomial of P with range S. Thus (2) is proved.

To prove (3), let Si = ei(A)∩ ai/α for some idempotent polynomials ei of A and ai ∈ Si.
Let

h(x) = f(e1g1(x), . . . , engn(x)) ,
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and let hk be an idempotent power of h. We prove that T = hk(A)∩a/α for any a ∈ T . First
we show that h(a/α) ⊆ T . Indeed, if b ∈ a/α, then eigi(b) α eigi(a) ∈ Si by condition (ii),
so eigi(b) ∈ ei(A) ∩ ai/α = Si, hence h(b) ∈ T by condition (i). Thus, h(a/α) ⊆ T . On the
other hand, h acts on T as the identity map by condition (iii), and by the same condition,
T is contained in a single α–block. Hence, h is already idempotent on a/α, with range T .
Therefore e = hk still has range T on a/α, but e is idempotent on A. If e(c) ∈ a/α, then
e(c) = e(e(c)) ∈ T , so indeed T = e(A) ∩ a/α as stated.

When we have a coordinatizable subset, we get a full matrix power, and not just an
induced algebra on an E–trace.

COROLLARY 3.7 Let A be a finite algebra, f an n–ary polynomial, and S1, . . . , Sn non–
empty subsets of A such that T = f(S1, . . . , Sn) is coordinatizable with respect to f and
S1 × · · · × Sn, with coordinate maps g1, . . . , gn. Then the following hold.

(1) If α is an arbitrary congruence of A, then T is an E–trace with respect to α if and
only if all the Si are E–traces with respect to α.

(2) If the sets S1, . . . , Sn are polynomially isomorphic, then A|T is term equivalent to the
full matrix power (A|Si

)[n] for all 1 ≤ i ≤ n.

Proof. First note that coordinatizable subsets satisfy conditions (i)–(iii) of Lemma 3.6
(to verify condition (iii), substitute a general element x = f(x1, . . . , xn) of T , where xi ∈ Si).
In this case, however, we get that S = S1 × . . .× Sn.

To show (2) let hi : Si → S1 be a polynomial isomorphism with polynomial inverse
ki : S1 → Si. Set g′i = hi ◦ gi and

f ′(x1, . . . , xn) = f(k1(x1), . . . , kn(xn)) .

Clearly, T satisfies (i)–(iii) of Lemma 3.6 with respect to f ′, Sn
1 , and g′i. Thus, statement (2)

of this lemma immediately implies (2).
To prove (1) first assume that the sets Si are E–traces of A for 1 ≤ i ≤ n. Then

Lemma 3.6 (3) clearly implies that T is an E–trace with respect to α. For the converse
we apply the same lemma, but with a different selection of subsets and polynomials. So
assuming that T is an E–trace with respect to α, we want to show that Si is also an E–trace.
Let n′ = 1, T ′ = Si, S ′1 = T , f ′ = gi and g′1(x) = f(c1, . . . , ci−1, x, ci+1, . . . , cn), where
cj ∈ Sj are arbitrary, but fixed elements. It is straightforward to check that the conditions
of Lemma 3.6 (3) are satisfied. Thus, the corollary is proved.

LEMMA 3.8 Let A be a finite algebra, S a subset of A, and T = f(S, . . . , S) for some
n–ary polynomial f of A. Suppose that T has more than one element and

(i) The induced algebra A|S is polynomially equivalent to a vector space over a finite
field K with addition + and zero element 0.

(ii) For any two elements a 6= b ∈ T there exists a unary polynomial g of A that separates
a and b, and maps T into S.
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Then T is a coordinatizable subset of A with respect to Sk and a k–ary polynomial f ′ for
some integer k ≤ n.

Proof. Let 0′ = f(0, . . . , 0) ∈ T and

G = {g|T
∣∣∣ g ∈ Pol1(A), g(T ) ⊆ S, g(0′) = 0} .

This is a finite dimensional vector space over K under pointwise operations. Let g1, . . . , gk

be a basis. Since gi ◦ f can be restricted to S, and maps 0 to 0, we can write

gi(f(x1, . . . , xn)) = λi
1x1 + · · ·+ λi

nxn (xj ∈ S, λi
j ∈ K, 1 ≤ i ≤ k, 1 ≤ j ≤ n).

As the mappings g1, . . . , gk are linearly independent, so are the rows of the matrix

M =




λ1
1 . . . λ1

n
...

...
λk

1 . . . λk
n


 .

This matrix induces a linear map L : Kn → Kk, which is therefore onto. Thus k ≤ n, and
there exists a linear map L′ : Kk → Kn satisfying LL′(v) = v for all v ∈ Kk. Thus, the
matrix M ′ of L′ satisfies that MM ′ is the k × k identity matrix. Let

M ′ =




µ1
1 . . . µ1

k
...

...
µn

1 . . . µn
k


 ,

and choose k–ary polynomials `j ∈ Polk(A) satisfying

`j(x1, . . . , xk) = µj
1x1 + · · ·+ µj

kxk (xi ∈ S, 1 ≤ i ≤ k, 1 ≤ j ≤ n).

Finally let
f ′(x1, . . . , xk) = f(`1(x1, . . . , xk), . . . , `n(x1, . . . , xk)) .

Then we have
gi(f

′(x1, . . . , xk)) = xi (x1, . . . , xk ∈ S, 1 ≤ i ≤ k).

This is a simple calculation based on MM ′ being the identity matrix. So to finish the proof
it is sufficient to show that T = f ′(S, . . . , S).

Clearly, T ⊇ f ′(S, . . . , S). To prove the converse inclusion, we first show that if a 6= b ∈ T ,
then there exists an i such that gi(a) 6= gi(b). By condition (2), there is a g ∈ Pol1(A)
with g(T ) ⊆ S and g(a) 6= g(b). Then g(x) − g(0′) still separates a and b, and this new
function is an element of the vector space G. As g1, . . . , gk is a basis for this vector space,
g(x) − g(0′) can be written as a linear combination of the maps gi. Therefore gi(a) = gi(b)
indeed cannot happen for all i.

Now let a ∈ T and b = f ′(g1(a), . . . , gk(a)). It is sufficient to show that a = b, since
b ∈ f ′(S, . . . , S). By the result of the previous paragraph, we have to show that gi(a) = gi(b)
for all 1 ≤ i ≤ k. But this is clear, since the gi are coordinate maps for f ′.
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LEMMA 3.9 Let A be a finite algebra, S a subset of A, and T = f(S, . . . , S) for some
n–ary polynomial f of A. Suppose that T has more than one element and

(i) The induced algebra A|S is permutational (that is, it is essentially unary, and every
unary polynomial is either a permutation or constant).

(ii) For any two elements a 6= b ∈ T there exists a unary polynomial g of A that separates
a and b, and maps T into S.

Then T is a coordinatizable subset of A with respect to Sk and a k–ary polynomial f ′ for
some integer k ≤ n.

Proof. If f does not depend on, say, its n–th variable on S, then let f ′(x1, . . . , xn−1) =
f(x1, . . . , xn−1, c), where c is an arbitrary, but fixed element of S. Clearly, T = f ′(S, . . . , S).
Hence, we may assume that f depends on all of its variables on S. We shall prove in this
case that T is coordinatizable with respect to f . (Note that having f depend on several
variables does not contradict condition (i). Condition (i) only asserts that if h ∈ Polk(A)
has the property that h(Sk) ⊆ S, then h|S depends on at most one variable.)

To simplify notation, we shall construct the coordinate map g1. As f depends on its first
variable, there exist elements a, b ∈ S and c ∈ Sn−1 such that f(a, c) 6= f(b, c). Choose,
by condition (ii), a unary polynomial g that maps T to S and separates f(a, c) and f(b, c).
Hence, the polynomial

gf(x1, . . . , xn)

depends on its first variable on S. This polynomial can be restricted to S. As the induced
algebra A|S is permutational, this polynomial does not depend on any other variable on S,
and is a permutation in its first variable on S. Denote by m the order of this permutation,
and let h(x) = gf(x, . . . , x). Then h(x1) = gf(x1, x2, . . . , xn), hence

hm−1gf(x1, . . . , xn) = hm(x1) = x1 (x1, . . . , xn ∈ S).

Thus, g1 = hm−1 ◦ g is the required coordinate map.

THEOREM 3.10 Let α be an abelian congruence on a finite algebra A such that 〈0A, α〉
is tame and let T be a 〈0A, α〉–multitrace. Then T is an E–trace with respect to α, it is
coordinatizable by traces, and A|T is term equivalent to (A|N)[k] where N is a 〈0A, α〉–trace.

Proof. Depending on the type of 〈0, α〉, apply Lemma 3.8 or Lemma 3.9. Note that
if T = f(N, . . . , N) for some n–ary polynomial f , then the resulting number k is at most n,
but it is not necessarily equal to n.

The conclusion of Theorem 3.10 (that T is an E–trace which is coordinatizable with
respect to Nk) is false when α is nonabelian. However, in the type 3 case we still have the
weaker conditions assumed in Lemma 3.6. Recall that an algebra is primal if every finitary
operation on the universe of the algebra is a term operation of the algebra.

LEMMA 3.11 Let A be a finite algebra, S a subset of A, and T = f(S, . . . , S) for some
n–ary polynomial f of A. Suppose that T has more than one element and
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(i) The induced algebra A|S is primal.

(ii) For any two elements a 6= b ∈ T there exists a unary polynomial g of A that separates
a and b, and maps T into S.

Then there exist g1, . . . , gn ∈ Pol1(A) satisfying conditions (i)–(iii) of Lemma 3.6 (with
Si=S).

Proof. By the second hypothesis, we can choose unary polynomials pi(x) of A, where
1 ≤ i ≤ k for some k, which map T into S and which separate the elements of T . For every
y ∈ T pick a vector (xy

1, . . . , x
y
n) in Sn such that f(xy

1, . . . , x
y
n) = y. For 1 ≤ i ≤ n let hi be

a k–ary polynomial of A mapping Sk to S, and satisfying, for every y ∈ T , that

hi(p1(y), . . . , pk(y)) = xy
i .

Why do we have such polynomials? As the mapping that sends every y ∈ T to the k–tuple
(p1(y), . . . , pk(y)) ∈ Sk is one to one, there certainly exists a function hi satisfying the above
equation. But A|S is primal, so the desired polynomials indeed exist. Now set

gi(x) = hi(p1(x), . . . , pk(x)) .

Then the polynomials gi clearly satisfy the conditions.

THEOREM 3.12 Let 0 ≺ α be a type 3 minimal congruence on a finite algebra A and
let T be a 〈0, α〉–multitrace. Then T is an E–trace with respect to α and A|T is a primal
algebra.

Proof. The statement follows from Lemma 3.6 (2) and from Lemma 3.11, since a
matrix power of a primal algebra is clearly primal and the algebra induced on any subset of
a primal algebra is again primal.

A second proof of the fact that A|T is primal when the type is 3 can be obtained from
Rosenberg’s primal algebra classification. One can arrange things so that T is a maximal set
of the form f(N, . . . , N) where N ⊆ T is a 〈0A, α〉–trace. These conditions imply that T is
closed under f and therefore f is an operation of A|T . One can also arrange it so that A|T
has operations which restrict to give all Boolean operations on N . These Boolean operations
together with f are incompatible with all Rosenberg–type relations.

It is not true in general that we can get coordinatization in the type 3 case. Indeed,
consider any three–element primal algebra A and any two–element subset N of A. Then
there is a binary polynomial of A satisfying f(N, N) = A, but A is not coordinatizable,
because its cardinality is not a power of 2.

Multitraces in the type 4 and 5 cases are even less well–behaved. Their behavior with
respect to coordinatization will be discussed in a subsequent paper.
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4 Minimal sets in subdirect powers

In this section, A will be a finite algebra and C will be a finite subdirect power of A. We shall
compare the structure of certain minimal sets in C to minimal sets in A. We fix the following
notation concerning A: α, β, γ ∈ Con(A), α ≺ β, typ(α, β) = 2 and β ≤ γ ≤ (α : β). If N
is an 〈α, β〉–trace, then A|N/α|N is polynomially equivalent to a 1–dimensional vector space
over a finite field. Let K denote that field. We assume that C is a subdirect subalgebra of Ak,
k < ω, which satisfies C ⊆ γ(k). The condition C ⊆ γ(k) means that if (c1, . . . , ck) ∈ C, then
(ci, cj) ∈ γ for all 1 ≤ i, j ≤ k. We fix the following notation for C: α′ = (αk)|C, β′ = (βk)|C,
and γ′ = (γk)|C.

It can happen that the algebra C is very ‘thin’. The results below are empty if α′ = β′.
Let us call a coordinate i (with 1 ≤ i ≤ k) bad, if a β′ b implies ai α bi for all elements a,b
of C, otherwise i is called a good coordinate. In other words, the good coordinates are those
for which α′ and β′ map to different congruences under the i–th projection. We have α′ < β′

if and only if there exists at least one good coordinate. In ‘normal’ subalgebras of Ak, for
example when C contains the diagonal, we automatically have that every coordinate is good.
Throughout this section, we assume that there is at least one good coordinate.

The minimal sets in C that will concern us correspond to prime quotients which we call
“centralized”. We define 〈δ, θ〉 to be centralized if

(1) α′ ≤ δ ≺ θ ≤ β′,

(2) typ(δ, θ) = 2 , and

(3) C(γ′, θ; δ) holds.

Of course, it is condition (3) which suggests the name “centralized”. We want to describe the
minimal sets corresponding to centralized quotients in C. For this purpose, we let M denote
the collection of all subsets of C which are minimal with respect to at least one centralized
quotient.

THEOREM 4.1 If A, α, β, γ, K, k, C, α′, β′, γ′ and M are as above, then the following
hold.

(1) There exists a centralized quotient.

(2) If γ
s∼ β in Con(A), then all type 2 prime quotients in the interval I[α′, β′] are

centralized.

(3) Every member U of M is a minimal set with respect to each centralized quotient. The
body and the tail of U are the same with respect to all centralized quotients.

(4) If U ∈ M and f is a unary polynomial of C satisfying f(β′|U) 6⊆ α′, then f(U) ∈ M
and f is a polynomial isomorphism of U onto f(U).

(5) Let U ∈M, M be the intersection of the body of U with a class of β′, C = C/α′, and
M the image of M in this factor. Then C|M is polynomially equivalent to a vector
space over K of dimension at most k. For every n–ary polynomial f of C, the set

f(M, . . . , M) is a coordinatizable E–trace of C with respect to M
`

for some ` ≤ n.
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(6) The elements of M are exactly the sets of the form U = C ∩ (e1(A) × · · · × ek(A)),
where (e1, . . . , ek) is a sequence of simultaneous C–twins and each ei is an idempotent
polynomial of A with ei(A) ∈ MA(α, β). The body and tail of U are of the form
C ∩ (B1 × · · · × Bk) and C ∩ (T1 × · · · × Tk), respectively, where Bi and Ti are the
〈α, β〉–body and tail of ei(A).

The six parts of Theorem 4.1 are proved in Lemmas 4.3, 4.6, 4.8, and 4.10. These lemmas
depend on intermediate results.

We introduce the following notation for certain congruences of C. For 1 ≤ i ≤ k, let ηi

be the i–th projection kernel restricted to C, and

αi = (1A × · · · × 1A × α× 1A × · · · × 1A)|C
βi = (1A × · · · × 1A × β × 1A × · · · × 1A)|C
ρi = (β × · · · × β × α× β × · · · × β)|C ,

where α, β, and α occur in the i–th component of αi, βi, and ρi, respectively.

LEMMA 4.2 The following are true.

(1) αi ≺ βi and typ(αi, βi) = 2 for all i.

(2) αi ∧ β′ = ρi for all i.

(3) i is a good coordinate if and only if β′ 6≤ αi if and only if αi ∨ β′ = βi if and only
if ρi < β′ if and only if βi/αi and β′/ρi are perspective quotients. If i is bad, then
ρi = β′.

(4) The intersection of all ρi for 1 ≤ i ≤ k is α′.

Proof. (1) follows from the fact that C/ηi is isomorphic to A, and βi/ηi corresponds
to β and αi/ηi corresponds to α under this isomorphism. We get (2), (3), and (4) as
straightforward consequences of the definitions and of (1).

We prove Theorem 4.1 (1) and (2) immediately so that it is clear that the rest of the
results in this section have content.

LEMMA 4.3 Assume the hypotheses of Theorem 4.1.

(1) There exists a centralized quotient. In fact, if α′ = δ ≺ θ ≤ β′, then 〈δ, θ〉 is centralized.

(2) If γ
s∼ β in Con(A), then all type 2 prime quotients in the interval I[α′, β′] are

centralized.

Proof. For part (1), choose 〈δ, θ〉 so that α′ = δ ≺ θ ≤ β′. The quotient 〈δ, θ〉 is prime
by choice. Since γ ≤ (α : β) in A we get

γ′ ≤ (α′ : β′) ≤ (α′ : θ) = (δ : θ)

in C. Hence, C(γ′, θ; δ). What remains to be shown is that typ(δ, θ) = 2 .
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Choose (a,b) ∈ θ − δ. We have (a,b) ∈ β′ − α′, so we have (ai, bi) ∈ β − α for some i.
For this i we have (a,b) ∈ βi − αi. Thus, we have

αi = αi ∨ δ < αi ∨ θ ≤ βi.

By Lemma 4.2, αi ≺ βi, so we conclude that 〈δ, θ〉 and 〈αi, βi〉 are perspective. Hence,
typ(δ, θ) = typ(αi, βi) = 2 .

To prove (2), first observe that [γ, β] ≤ α, so [γ′, β′] ≤ α′. Now let 〈δ, θ〉 be an arbitrary
type 2 prime quotient in I[α′, β′]. We have

[γ′, θ] ≤ [γ′, β′] ≤ α′ ≤ δ.

Since γ
s∼ β in Con(A), we get that γ′ s∼ β′ in Con(C). This means that there is a k

such that [γ′]k ≤ β′. But [β, β] ≤ α, so [β′, β′] ≤ α′ and therefore [γ′]k+1 ≤ α′ ≤ θ. Now
Theorem 2.6 (4) applies to show that [γ′, θ] ≤ δ (which holds) is equivalent to C(γ′, θ; δ).
Hence 〈δ, θ〉 is centralized.

LEMMA 4.4 For every congruence ρ of C with α′ < ρ ≤ β′ and for each good i we have
that

Sep(α′, ρ) = Sep(α′, β′) = Sep(αi, βi).

Proof. We first show that Sep(α′, ρ) = Sep(α′, β′). Let f ∈ Pol1(C). Since Sep(α′, ρ) ⊆
Sep(α′, β′), clearly, we have to show that if f(ρ) ⊆ α′, then f(β′) ⊆ α′. Assume that
f(ρ) ⊆ α′ and let the components of f be f1, . . . , fk. Set

ψi = {(x, y) ∈ β
∣∣∣ (∀g ∈ Pol1(A)) (fig(x) α fig(y))} .

It is easy to see that this is a congruence of A for every i, and α ≤ ψi ≤ β. As C is a
subdirect power of A, for every g ∈ Pol1(A) and any given 1 ≤ i ≤ k there exists a unary
polynomial ĝ of C that acts as g in the i–th component. This implies that if

a = (a1, . . . , an) ρ (b1, . . . , bn) = b,

then ai ψi bi for all i (as f collapses ρ to α′). Now ρ 6= α′, so we can choose a, b, and i
so that (ai, bi) /∈ α. Then ai ψi bi implies that ψi 6= α, so by α ≺ β we have that ψi = β.
Setting g to be the identity map of A we see that fi(x) α fi(y) holds for all x β y, that is, fi

collapses β into α. Now we use the fact that C ⊆ γ(k). As the polynomials fi are C–twins,
they are (α : β)–twins also. If one collapses β to α, then so do all the others. Thus, we
indeed have f(β′) ⊆ α′.

The argument that Sep(α′, β′) ⊆ Sep(αi, βi) is not very different from the above. Using
the fact that C is a subdirect power of A one gets that any polynomial f for which f(βi) ⊆ αi

has i–th component fi such that fi(β) ⊆ α. As argued above, every component of f collapses
β into α and so f(β′) ⊆ α′.

Now we argue that Sep(αi, βi) ⊆ Sep(α′, β′). Since i is good, Lemma 4.2 (3) proves that
β′/ρi is perspective with βi/αi. Hence, Sep(αi, βi) = Sep(ρi, β

′). Since α′ ≤ ρi < β′, we get
Sep(ρi, β

′) ⊆ Sep(α′, β′). These last two sentences give the desired conclusion.
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LEMMA 4.5 Let 〈δ, θ〉 be a centralized quotient, choose U ∈ MC(δ, θ) and denote the
body of U by B.

(1) βi ≤ (δ : θ) for each i.

(2) The lattice interval between α′|B and β′|B in Con(C|B) is a complemented modular
lattice.

(3) Sep(δ, θ) = Sep(α′, β′).

Proof. Since C ⊆ γ(k) and β ≤ γ we get that βi ≤ γ′ for all i. Since 〈δ, θ〉 is centralized,
we get that βi ≤ γ′ ≤ (δ : θ). This proves (1).

Since B is an E–trace with respect to (δ : θ), the restriction map is a homomorphism from
the interval I[0, (δ : θ)] of Con(C) onto Con(C|B). Since βi ≤ (δ : θ), by (1), and αi ≺ βi,
by Lemma 4.2 (1), we get that αi|B = βi|B or αi|B ≺ βi|B in Con(C|B). The induced algebra
C|B is Mal’cev, so the lattice Con(C|B) is modular. Using Lemma 4.2 and the modularity
of Con(C|B), we get that ρi|B = β′|B or ρi|B ≺ β′|B for all i. Since α′ = ∩k

i=1ρi, then by
restriction to B we find that α′|B is a meet of lower covers of β′|B. This is enough to force
the lattice interval I[α′|B, β′|B] to be a complemented modular lattice. This proves (2).

By Lemma 4.4, we have Sep(α′, β′) = Sep(αi, βi) for any good i. To prove (3), we will
show that Sep(αi, βi) = Sep(δ, θ) for some good i. Since I[α′|B, β′|B] is a complemented
modular lattice for which ρi|B = β′|B or ρi|B ≺ β′|B for each i and α′|B = ∩k

i=1ρi|B, then the
prime quotient 〈δ|B, θ|B〉 is projective to some prime quotient 〈ρi|B, β′|B〉. Since I[α′|B, β′|B]
is complemented and modular, we can project in two steps from θ|B/δ|B to β′|B/ρi|B:

θ|B/δ|B ↘ µ/ν ↗ β′|B/ρi|B
for some congruences µ, ν ∈ Con(C|B). Necessarily i is good, so Lemma 4.2 (3) proves that
β′/ρi ↗ βi/αi. Therefore, we even have that

θ|B/δ|B ↘ µ/ν ↗ βi|B/αi|B.

Set µ̂ = CgC(µ) and let ν̂ be the largest congruence on C for which ν̂ ≤ µ̂ and ν̂|B = ν.
Then, since δ ≺ θ, αi ≺ βi and restriction to B is a lattice homomorphism, we get that

θ/δ ↘ µ̂/ν̂ ↗ βi/αi

in Con(C). This forces
Sep(δ, θ) = Sep(ν̂, µ̂) = Sep(αi, βi)

and finishes the proof of (3).

Now we prove part (3) of Theorem 4.1.

LEMMA 4.6 Assume the hypotheses of Theorem 4.1.

(3) Every member U of M is a minimal set with respect to each centralized quotient. The
body and the tail of U are the same with respect to all centralized quotients.
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Proof. We proved in Lemma 4.5 that Sep(δ, θ) = Sep(α′, β′) when 〈δ, θ〉 is centralized.
It follows that MC(δ, θ) = MC(α′, β′); therefore, a set is a minimal set for one centralized
quotient if and only if it is a minimal set for all centralized quotients. It follows that
MC(δ, θ) = M. The second part of this lemma follows from Lemma 2.11 (7).

We are at a point where it is possible to identify exactly which quotients are centralized
and which are not. In the next lemma, let ρ′ be the congruence on C which is the join of all
congruences ρ such that α′ ≺ ρ ≤ β′.

LEMMA 4.7 The following are true of ρ′.

(1) 〈α′, ρ′〉 is tame of type 2 .

(2) MC(α′, ρ′) = M.

(3) The 〈α′, ρ′〉–body of any U ∈ M is the same as the 〈δ, θ〉–body for any centralized
quotient 〈δ, θ〉.

(4) ρ′|U = β′|U for all U ∈M.

(5) Every type 2 prime quotient in the interval I[α′, ρ′] is centralized. Every centralized
quotient is perspective with one in the interval I[α′, ρ′]. No centralized quotient is
contained in I[ρ′, β′].

Proof. The following observation will be useful in this proof.

Claim 1. For any U ∈M, the mappings ρ 7→ ρ|U and σ 7→ CgC(α′∪σ) are inverse bijections

between {ρ ∈ Con(C)
∣∣∣ α′ ≺ ρ ≤ β′} and {σ ∈ Con(C|U)

∣∣∣ α′|U ≺ σ ≤ β′|U}.
Proof of Claim 1. Choose a congruence ρ such that α′ ≺ ρ ≤ β′ and a U ∈ M. By

Lemma 4.3 (1), the quotient 〈α′, ρ〉 is centralized. Hence, U ∈ MC(α′, ρ) and so α′|U < ρ|U .
This implies that α′|U ≺ ρ|U . Since restriction to U is a lattice homomorphism of I[α′, β′]
onto I[α′|U , β′|U ], we must have that distinct covers of α′ restrict to distinct covers of α′|U .
It is clear that α′ < CgC(α′ ∪ ρ|U) ≤ ρ, so CgC(α′ ∪ ρ|U) = ρ since α′ ≺ ρ.

To finish, we must show that any cover of α′|U in I[α′|U , β′|U ] is the restriction of a cover
of α′ in I[α′, β′]. Choose σ so that α′|U ≺ σ ≤ β′|U . For τ = CgC(α′ ∪ σ), we clearly have
α′ < τ ≤ β′. Choose some congruence λ with α′ ≺ λ ≤ τ . Then

α′|U ≺ λ|U ≤ τ |U = σ,

since we have shown that covers of α′ restrict to covers of α′|U . But then λ|U = σ, since σ
covers α′|U . Claim 1 is proven.

Lemmas 4.4 and 4.5 (3) prove that

Sep(α′, ρ′) = Sep(α′, β′) = Sep(δ, θ)

for any centralized 〈δ, θ〉. Hence, MC(α′, ρ′) = MC(δ, θ) = M, proving (2). It now follows
that any member of MC(α′, ρ′) is the image of an idempotent polynomial. To prove that
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〈α′, ρ′〉 is tame we must verify that the restriction map from I[α′, ρ′] to I[α′|U , ρ′|U ] is 0,1–
separating for any U ∈M.

If restriction was not 0–separating, then we would have α′|U = ρ|U for some ρ satisfying
α′ ≺ ρ ≤ β′. Claim 1 shows that this does not happen, so restriction is 0–separating.
Choose σ such that α′ ≤ σ ≺ ρ′. From the definition of ρ′, there is a congruence ρ such
that α ≺ ρ ≤ ρ′ where ρ 6≤ σ. We get that ρ/α′ ↗ ρ′/σ. Hence, if σ|U = ρ′|U we also have
α′|U = ρ|U which is false. Thus, σ|U 6= ρ′|U for any lower cover of ρ′ in I[α′, ρ′]. This proves
that restriction is 1–separating. We get that 〈α′, ρ′〉 is tame. Since I[α′, β′] is a solvable
interval containing ρ′, it must be that typ(α′, ρ′) ∈ {1 ,2 }. But, we showed in Lemma 4.3
that for any ρ such that α′ ≺ ρ ≤ ρ′ we have typ(α′, ρ) = 2 . Hence, I[α′, ρ′] is not strongly
solvable. We infer that typ(α′, ρ′) = 2 . This proves (1).

Parts (1) and (2) of this lemma combine with part (7) of 2.11 to establish (3).
We now prove (5). Let 〈δ, θ〉 be an arbitrary centralized quotient, choose U ∈M and let

B be the body of U . By Lemma 4.5 (2), the interval I[α′|B, β′|B] is a complemented modular
lattice. We have δ|B < θ|B, since U ∈ MC(δ, θ). Hence, there is a congruence σ ∈ Con(C|B)
which is a complement to δ|B in I[α′|B, θ|B]. By Claim 1, σ is the restriction to B of some
ρ ∈ Con(C) with α′ ≺ ρ ≤ β′. It follows that ρ/α′ ↗ θ/δ. This proves the part of (5) which
asserts that every centralized quotient is perspective with one in the interval I[α′, ρ′]. It also
proves that no centralized quotient is contained in I[ρ′, β′]; since no prime quotient in this
interval is perspective with any ρ/α′ when α′ ≺ ρ ≤ β′. To finish the proof of (5) we must
explain why every type 2 prime quotient in the interval I[α′, ρ′] is centralized.

Theorem 7.7 (4) of [6] shows that I[α′, ρ′]/ ss∼ is a modular lattice. Since the atoms of
this lattice join to the top element, then every element of this lattice is a join of atoms.
This implies that every prime quotient in I[α′, ρ′]/ ss∼ is perspective with one of the form
(ρ/

ss∼)/(α′/ ss∼) for some ρ satisfying α′ ≺ ρ ≤ β′. It then follows from Lemma 6.5 of
[6] that any type 2 prime quotient in the interval I[α′, ρ′] is perspective with a centralized
quotient of the form 〈α′, ρ〉. If 〈δ, θ〉 is a type 2 prime quotient in the interval 〈α′, ρ′〉 and
U ∈ MC(δ, θ) = M, then as noted earlier the 〈δ, θ〉–body and tail of U are the same as they
would be for any centralized quotient. It follows from Lemma 2.11 (6) that γ′|U ⊆ B2 ∪ T 2

for this body and tail and so to prove that C(γ′, θ; δ) it suffices, by Lemma 2.6, to observe
that

[γ′, θ] ≤ [γ′, β′] ≤ α′ ≤ δ.

This finishes the proof of (5).

Claim 2. Whenever α′ ≤ δ ≺ θ ≤ β′ and δ|U < θ|U for some U ∈ M, then 〈δ, θ〉 is
centralized.

Proof of Claim 2. To see this, we argue first that U ∈ MC(δ, θ). Since δ|U < θ|U ,
it is clear that U contains a 〈δ, θ〉–minimal set. (In more detail, if e ∈ E(C) is such that
e(C) = U , then e(θ) 6⊆ δ, so U = e(C) contains a 〈δ, θ〉–minimal set.) However, if V ⊂ U
is a 〈δ, θ〉–minimal set properly contained in U and f ∈ E(C) is such that f(C) = V , then
f 6∈ Sep(α′, ρ′) = Sep(α′, β′). Hence f 6∈ Sep(δ, θ). But this is impossible since f(θ|V ) 6⊆ δ.
We conclude that U ∈ MC(δ, θ). Since U is already known to be minimal with respect to
some centralized quotient, it follows that typ(δ, θ) = 2 and that the 〈δ, θ〉–body and tail is
the same as it would be for any centralized quotient. Hence, γ′|U ⊆ B2 ∪ T 2 for this body
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and tail. The proof that C(γ′, θ; δ) holds is the same as in the paragraph preceding the
statement of Claim 2.

Now (4) follows from Claim 2 and the part of (5) which states that no centralized quotient
is contained in I[ρ′, β′]. This finishes the proof of the lemma.

Parts (4) and (5) of Theorem 4.1 are now easy to prove.

LEMMA 4.8 Assume the hypotheses of Theorem 4.1.

(4) If U ∈ M and f is a unary polynomial of C satisfying f(β′|U) 6⊆ α′, then f(U) ∈ M,
and f is a polynomial isomorphism of U onto f(U).

(5) Let U ∈ M, M be the intersection of the body of U with a class of β′, C = C/α′,
and M the image of M in this factor. Then C|M is polynomially equivalent to a
vector space over K of dimension at most k. For every n–ary polynomial f of C, the

set f(M, . . . , M) is a coordinatizable E–trace of C with respect to M
`
for some ` ≤ n.

Proof. By Lemma 4.7, β′|U = ρ′|U ; so (4) is simply a restatement of Theorem 2.8 (3)
of [6] for the tame quotient 〈α′, ρ′〉.

Now we prove (5). Since β′|U = ρ′|U , the set M is simply an 〈α′, ρ′〉–trace of U . Clearly,
C|M is isomorphic to (C|M)/(α′|M) which is polynomially equivalent to a vector space since
〈α′, ρ′〉 is tame of type 2 . The dimension of this vector space is the same as the height of
the lattice I[α′|M , ρ′|M ] = I[α′|M , β′|M ]. But the latter lattice is a homomorphic image of
I[α′|B, β′|B] by Lemma 2.4 of [6]. We proved in Lemma 4.5 that I[α′|B, β′|B] is a comple-
mented modular lattice where α′|B = ∩k

i=1ρi|B. Since each ρi|B is either equal to β′|B or a
coatom in I[α′|B, β′|B], we get that α′|B is a meet of at most k coatoms in I[α′|B, β′|B]. This
proves that the height of I[α′|B, β′|B] (and therefore of I[α′|M , β′|M ]) is at most k.

Let K′ denote the field over which (C|M)/(α′|M) is a vector space. If i is good, then
ρi|B ≺ β′|B = ρ′|B. Since M is an 〈α′, ρ′〉–trace, and all traces are polynomially isomorphic,
ρi|M ≺ ρ′|M in Con(C|M). Let M ′ denote the βi|U–class containing M and let e be an
idempotent polynomial of C with range U . Clearly, M ′/αi is an E–trace of C/αi with
respect to (βi/αi) and e(x)/αi, since M ′ is an E–trace of C with respect to βi (> αi) and
e(x). Since βi ≤ γ′, we get βi|U ⊆ B2 ∪ T 2, and so M ′ ⊆ B. The fact that C|B is Mal’cev
implies that

β′|B ◦ αi|B = β′|B ∨ αi|B = (β′ ∨ αi)|B = βi|B,

so M ⊆ M ′ and each element of M ′ is αi–related to an element of M . We conclude that
M/αi = M ′/αi. In particular, M/αi is an E–trace of C/αi with respect to (βi/αi) and
e(x)/αi.

Now, (C|M)/(α′|M) is a K′–space and ρi|M = αi|M is a maximal congruence of C|M
above α′|M and so it follows that the algebra (C|M)/(αi|M) is polynomially equivalent to a 1–
dimensional K′–space. At the same time M/αi is an E–trace with respect to (βi/αi) in C/αi

which forces it to be a 〈0C/αi
, (βi/αi)〉–trace. But C/αi

∼= A/α and (βi/αi) corresponds
to (β/α) under this isomorphism. The field associated with any 〈α, β〉–trace is K, so we
have K′ = K.

The coordinatizability of sets of the form f(M, . . . , M) follows directly from Lemma 3.8.
This finishes the proof of (5).
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Centralized quotients will play almost no role in the rest of this section, so now seems a
good time to present an example to justify the amount of attention we have paid them.

The structure of minimal sets of type 2 in subdirect powers would be easier to describe
if all type 2 prime quotients in the interval I[α′, β′] were centralized. Unfortunately, as the
next example witnesses, that is not always the case (however, recall Lemma 4.3 (2)).

Example. (Some quotients may not be centralized.) Our example has universe {0, 1, 2}
and a single basic operation, which is binary, and has the table

◦ 0 1 2

0 0 1 1
1 1 0 0
2 1 0 2

A is the algebra 〈{0, 1, 2}; ◦〉. The only congruences of A are α = 0A, β = Cg(0, 1), and
γ = 1A. It is not hard to check by hand or computer that C(γ, β; α) holds. Furthermore,
typ(α, β) = 2 and the unique member of MA(α, β) is the set N = {0, 1}. We choose C to
equal A2. In this example, α′ = 0C, β′ = β×β and γ′ = 1C. C has twenty four congruences,
so we will not try to display them all. What interests us are the ten congruences in the
interval I[α′, β′]. Their relative positions are shown in Figure 3. All prime quotients shown
in this picture are of type 2 . In Figure 3, ρ′ = δ ≺ θ ≺ β′.

u

u

u

u

u

u

u

u

u

u

α′

β′

ρ′ δ

θ

Figure 3: I[α′, β′].

From Lemma 4.7 (5) we see that neither 〈δ, θ〉 nor 〈θ, β′〉 is centralized even though they
both are prime quotients of type 2 which lie between α′ and β′. To see that the minimal
sets corresponding to non–centralized quotients must be handled in a different way, we note
that MC(α′, ρ′) = M = {N ×N}, MC(δ, θ) = {N × A}, and MC(θ, β′) = {A×N}.

Now we resume the main line of our argument. Fix an element U ∈ M and let B and
T be the 〈α′, ρ′〉–body and tail, respectively. B is an E–trace of C and C|B is Mal’cev
and E–minimal. Choose an idempotent polynomial e of C such that e(C) = U , denote the
components of e by e1, . . . , ek and let Ui = ei(A). Clearly, (e1, . . . , ek) is a sequence of simul-
taneous C–twins where each component is an idempotent polynomial of A. Furthermore,
the idempotence of each ei implies that

U = C ∩ (U1 × · · · × Uk).
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Denote by Bi and Ti the image of B and T under the i–th projection. Since C|B/ηi|B is
isomorphic to A|Bi

, it follows that A|Bi
is Mal’cev and E–minimal.

LEMMA 4.9 We have Ui ∈ MA(α, β) for all i. The body and tail of Ui are Bi and Ti,
respectively.

Proof. Since e ∈ Sep(α′, β′), we get that ei ∈ Sep(α, β) for at least one i. This implies
that ei ∈ Sep(α, β) for all i, since the ei are simultaneous C–twins, C ⊆ γ(k) and γ ≤ (α : β).
From this it follows that each Ui = ei(A) contains an 〈α, β〉–minimal set. Assume that,
say, U1 properly contains the 〈α, β〉–minimal set V . Choose an idempotent polynomial f1

of A such that f1(A) = V . Since C is a subdirect power of A, it is possible to choose a
polynomial f of C which has f1 as its first component. Now ef(x) is a unary polynomial
of C whose first component is e1f1(x) = f1(x) ∈ Sep(α, β). It follows that all components
of ef belong to Sep(α, β), since they are simultaneous C–twins. Choose a good i and then
pick (a,b) ∈ β′−αi. Since (ai, bi) ∈ β −α and eifi(β) 6⊆ α, there exists a unary polynomial
gi of A such that (eifigi(ai), eifigi(bi)) ∈ β−α. We can lift gi(x) to a unary polynomial g(x)
of C whose i–th component is gi, since C ≤ Ak is subdirect. For this g we have

(efg(a), efg(b)) ∈ β′|U − αi ⊆ ρ′|U − α′ = ρ′|B − α′.

It follows that efg(C) contains an 〈α′, ρ′〉–minimal set. But efg(C) is properly contained
in the minimal set e(C) = U , since e1f1g1(A) ⊆ V ⊂ U1. This contradicts the minimality
of e(C) = U . The conclusion is that each Ui is a member of MA(α, β).

We now prove that αi|B < βi|B for each coordinate i. Select a coordinate j at random.
Since Uj ∈ MA(α, β), it follows from the definition of Uj that there exist c,d ∈ U such
that (cj, dj) ∈ β|Uj

− α. This means that (c,d) ∈ βj|U − αj. In particular, it means that
αj|U < βj|U and so U contains an 〈αj, βj〉–minimal set. We claim that U ∈ MC(αj, βj). To
see this, choose an idempotent unary polynomial f such that

f(C) = ef(C) = V ⊆ U

and V ∈ MC(αj, βj). Since f = ef ∈ Sep(αj, βj), we must have ejfj ∈ Sep(α, β). This
implies that all coordinates of ef are in Sep(α, β). Thus, each eifi(A) contains an 〈α, β〉–
minimal set and is at the same time contained in Ui. We conclude that fi(A) = eifi(A) =
Ui = ei(A) for all i. Hence,

U = e(C) = C ∩ (e1(A)× · · · × ek(A)) = C ∩ (f1(A)× · · · × fk(A)) = f(C) = V.

This proves that U ∈ MC(αj, βj). By Lemma 4.2 (1), the quotient 〈αj, βj〉 is of type 2 .
From Lemma 2.11 (7) we get that the 〈αi, βi〉–body and tail of U are B and T , respectively;
which implies that αi|B < βi|B.

We now show that Bi and Ti are the body and tail of Ui, respectively. If c is in the body
of Ui, then there is some element d also in the body with (c, d) ∈ β − α. Since Ui is the
projection of U onto its i–th component, there are elements a and b ∈ U with ai = c and
bi = d. Then (a,b) ∈ βi|U − αi|U and so both of these elements lie in B, the body of U .
This shows that ai = c is in Bi.
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For the converse, suppose that c is a member of Bi. Then there is some a in B with
ai = c. Being a member of B means that there is some b also in B with (a,b) ∈ βi − αi.
Then bi belongs to Ui and (ai, bi) ∈ β − α. This shows that ai = c is a member of the body
of Ui.

We have shown that the body of Ui equals Bi. To prove that the tail of Ui is Ti, it will
suffice to show that {Bi, Ti} is a partition of Ui. The fact that Ui = Bi ∪ Ti follows from the
way Bi and Ti were defined. Assume that Bi ∩ Ti 6= ∅. Then we can find b ∈ B and t ∈ T
such that bi = ti. This implies that (b, t) ∈ B × T and that

(b, t) ∈ ηi|U ≤ γ′|U ≤ (δ : θ)|U
where 〈δ, θ〉 is an arbitrarily chosen centralized quotient. But U ∈ MA(δ, θ), therefore (by
Lemma 2.11 (6)) B is a (δ : θ)|U–class. Now the last displayed line implies that b ∈ B ⇔
t ∈ B. Thus, we cannot have (b, t) ∈ B × T , after all. This completes the proof.

One consequence of Lemma 4.9 is that B = C∩(B1×· · ·×Bk) and T = C∩(T1×· · ·×Tk).
To see this, notice that C ∩ (B1× · · · ×Bk) and C ∩ (T1× · · ·×Tk) are disjoint, in the range
of e, and that the first set contains B while the second contains T .

Now we prove the last part of Theorem 4.1.

LEMMA 4.10 Assume the hypotheses of Theorem 4.1.

(6) The elements of M are exactly the sets of the form U = C ∩ (e1(A) × · · · × ek(A)),
where (e1, . . . , ek) is a sequence of simultaneous C–twins and each ei is an idempotent
polynomial of A with ei(A) ∈ MA(α, β). The body and tail of U are of the form
C ∩ (B1 × · · · × Bk) and C ∩ (T1 × · · · × Tk), respectively, where Bi and Ti are the
〈α, β〉–body and tail of ei(A).

Proof. The element U ∈ M which we fixed prior to Lemma 4.9 has the prescribed
structure. Since U was chosen arbitrarily, all elements of M are of this form. Furthermore,
as we remarked just before this lemma, the body and tail of U are as claimed. What is left
to show is that if (e1, . . . , ek) is a sequence of simultaneous C–twins and ei(A) ∈ MA(α, β)
for each i, then C ∩ (e1(A)× · · · × ek(A)) ∈M.

The function e(x) is a unary polynomial of C, since (e1, . . . , ek) is a sequence of si-
multaneous C–twins. Furthermore, each ei belongs to Sep(α, β). This is enough to force
e ∈ Sep(α′, β′). To see this, choose (a,b) ∈ β′−α′. Assume that, say, (ai, bi) ∈ β−α. There
is a unary polynomial gi such that (eigi(ai), eigi(bi)) ∈ β − α. Let g be a unary polynomial
of C which has gi as its i–th component. Then (c,d) = (eg(a), eg(b)) ∈ β′ − α′. Since
(e(c), e(d)) = (c,d), we get e ∈ Sep(α′, β′).

Let U be a member of M which is contained in e(C). Let f be an idempotent unary
polynomial of C for which f(C) = U . By the first part of this proof, fi(A) ∈ MA(α, β)
for all i. But fi(A) ⊆ ei(A) = Ui ∈ MA(α, β) for all i, since f(x) = ef(x). We must have
fi(A) = ei(A) = Ui for all i. Hence,

U = f(C) = C ∩ (U1 × · · · × Uk) = e(C)

which proves that e(C) ∈ MC(α′, ρ′).
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To conclude we summarize the results from this section in the case we are dealing with
a finite simple abelian algebra. In this case, we obtain a precise description of all type 2
minimal sets in subpowers of A.

COROLLARY 4.11 Let A be a finite simple abelian algebra and let C be a finite subdirect
power of A. Let M be the collection of all subsets of C which are minimal with respect to
at least one prime quotient of C of type 2 . Let K denote the finite field such that A induces
a 1-dimensional K-vector space structure on each of its minimal sets. The following hold:

(1) M is nonempty and every member of M is minimal with respect to every prime
quotient of C of type 2 .

(2) Each U in M has an empty tail with respect to every type 2 prime quotient and C|U
is polynomially equivalent to a vector space over K.

(3) If U ∈M and f is a unary polynomial of C which is nonconstant on U , then f(U) ∈M
and f is a polynomial isomorphism of U onto f(U). If f is an n-ary polynomial of C
then f(U, . . . , U) is a coordinatizable E–trace of C with respect to U l for some l ≤ n.

(4) The elements of M are exactly the sets of the form U = C ∩ (e1(A) × · · · × ek(A)),
where (e1, . . . , ek) is a sequence of simultaneous C–twins and each ei is an idempotent
polynomial of A with ei(A) a minimal set of A.

(5) If ρ′ is the join of all of the atoms in Con C then the interval I[0C , ρ′] is tame of type
2 and the interval I[ρ′, 1C ] is strongly solvable.

5 Minimal locally solvable varieties

A variety is called minimal (or equationally complete) if it is nontrivial, but its only proper
subvariety is trivial. Every nontrivial variety contains a nontrivial simple algebra, so every
minimal variety is generated by a simple algebra. A minimal locally finite variety is generated
by a strictly simple algebra. We recommend [18] to the reader interested in a survey of strictly
simple algebras and minimal locally finite varieties.

If a strictly simple generator of a minimal variety is nonabelian, then every member of
the variety is nonabelian; in fact, nonsolvable. If the generator is abelian, every member of
the variety is guaranteed to be locally solvable. Thus, minimal locally finite varieties are
either locally solvable or they contain no solvable algebras. In this section we describe all
minimal, locally finite, locally solvable varieties. Here is our result.

THEOREM 5.1 Let V be a locally finite, locally solvable variety. Then V is minimal if
and only if one of the following possibilities holds.

(1) V is term equivalent to a matrix power of the variety of sets with no operations, or to
the variety of sets with one constant operation. In this case V is strongly abelian.

(2) V is affine (in particular, it is congruence permutable), and is generated by a finite,
simple algebra that is polynomially equivalent to a module over a finite ring, and has
a 1–element subalgebra.
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The structure of the varieties described in (2) is well–known (see Freese–McKenzie [3],
Theorem 12.4), and it is proved there that such varieties are indeed minimal (all subdirectly
irreducible algebras are isomorphic to the generator). In view of Theorem 3.4 (6), the
varieties given in (1) are also minimal, since the variety of sets and the variety of pointed
sets are obviously minimal. By the same theorem, the statement in (1) is equivalent to saying
that V is generated by a finite simple algebra that is term equivalent to a matrix power of
the 2–element set or of the 2–element pointed set.

As promised in the Introduction, we give three different proofs of case (2) in this paper
(and one proof of case (1)). Still more proofs of Theorem 5.1 are known. For instance,
Ágnes Szendrei discovered a different proof independently and at about the same time that
we discovered ours. Her results appear in [19] and [16] for the type 1 and type 2 cases,
respectively. Three years later, Szendrei and the first author discovered two more proofs of
this theorem. (One proof and the outline of the second can be found in [9].) The reader
will find one proof of the type 2 case in the next section, two in this one. The difference
between the two arguments here is that one uses the theory of minimal sets in subdirect
powers, the other one does not. This difference occurs only in the proof of the following key
lemma (which also applies in the type 1 case, but we only have one proof of that).

LEMMA 5.2 Let A be a finite, simple, abelian algebra generating a minimal variety V .
Then for each nonconstant, idempotent polynomial e of A there exists a binary polynomial
s(x, y) of A and a trace N ⊆ T = e(A) of A satisfying the following conditions.

(i) s(A,A) ⊆ T .

(ii) s(N, T ) = T .

(iii) |s(t, T )| < |T | for a suitable (that is, all) t ∈ T .

Proof. First we explain statement (iii) of the lemma. Suppose that |s(t, T )| < |T | for
a suitable t ∈ T . Then the mapping x 7→ s(t, x) is not a bijection on T , so we have s(t, t1) =
s(t, t2) for some t1, t2 ∈ T . As A satisfies the term condition, we have s(t′, t1) = s(t′, t2) for
every t′ ∈ T . As T is finite, this indeed implies |s(t′, T )| < |T |.

Our first argument works only for the case when typ{A} = {2 }. We shall use the theory
of minimal sets in subdirect powers. Consider a listing t = (t1, . . . , tk) of the elements of T
and let C be the subalgebra of Ak generated by the diagonal and the element t. As A is
simple and abelian, Corollary 4.11 applies for A and C. From Corollary 4.11 (5) we know
that if ρ′ is the join of all of the atoms in Con C then the interval I[ρ′, 1C ] is strongly solvable
and the interval I[0c, ρ

′] is tame of type 2 . It follows that C/ρ′ is strongly solvable. But the
locally strongly solvable algebras of V form a subvariety W by Corollary 7.6 of [6]. A is not
in W , since its type is 2 , and so W must be trivial. Therefore C/ρ′ is the trivial algebra and
we must have ρ′ = 1C. We conclude that the algebra C is tame of type 2 . In particular, any
two elements of C are connected by a chain of minimal sets. The collection of these minimal
sets is called M in Section 4 and their structure is described in Corollary 4.11 (4).

For c ∈ A, let ĉ denote the element (c, . . . , c) of C. Fix some element t from T . Since
|T | > 1, t and t̂ are two different elements. Connect t to t̂ with a chain of members of M.
Let ê denote the (idempotent) unary polynomial of C that acts as e in every component.
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Apply ê to the elements of this chain. Since every element of the chain is a minimal set of
the tame algebra C, then on any given element of the chain, e is either constant or it maps
that element onto another member of M. We get another chain of elements of M running
entirely in T k which connects ê(t) = t to ê(t̂) = t̂. In particular, there exists a V ∈M such
that t ∈ V ⊆ T k.

Since V is a minimal set, we obtain that there exists an idempotent unary polynomial f
of C satisfying f(C) = V . Since C is generated by the diagonal and the element t, we may
express f as

f(x) = gC(x, t, ĉ1, . . . , ĉm)

for some term g and elements ci from A. Let s(x, y) = egA(x, y, c1, . . . , cm). Clearly, s is a
binary polynomial of A. The construction of s ensures that for every x ∈ C we have

fi(xi) = s(xi, ti) ,

where fi is the i–th component function of f . As f is idempotent and C contains the
diagonal, we have s(s(x, ti), ti) = s(x, ti) for each x ∈ A. From the abelian property of A we
get that s(s(x, ti), z) = s(x, z) holds for all z, ti ∈ T .

Corollary 4.11 (4) states that we have ê(C) ⊇ V = C ∩ (N1× . . .×Nk) for some minimal
sets Ni ⊆ e(A) = T of A. We show that s satisfies the conditions of the lemma with N = N1.
Condition (i) holds, since g is prefixed by e in the definition of s. From f(C) = V and t ∈ V
we see that ti ∈ Ni = s(A, ti). By the equality above,

s(N1, tj) = s(s(A, t1), tj) = s(A, tj) = Nj

for every 1 ≤ i, j ≤ k. In particular, s(N1, T ) = T , implying (ii). To prove (iii) assume that
s(t, T ) = T for some t ∈ T . Then

N1 = s(N1, t1) ⊆ s(T, t1) = s(s(t, T ), t1) = {s(t, t1)},

which is our final contradiction.
This was the proof of the lemma for the type 2 case using the theory of minimal sets in

subdirect powers. We included this argument to demonstrate the usefulness of this theory.
Now we present our “elementary” proof. Note that in the above argument we used only that
the locally strongly solvable subvariety of V is trivial. Here we shall use the minimality of V
in a different way. We do not distinguish between type 1 and type 2 until the end of the
argument.

First note that T = e(A) contains a trace N of A. Indeed, e is not constant, and therefore
its range contains a minimal set, that is, a trace.

Let N = p(A), where p(x) = rA(x, d1, . . . , d`) is an idempotent polynomial and r is a
term of A. Then A does not satisfy the identity r(x, z1, . . . , z`) = r(y, z1, . . . , z`), since we
can choose x, y ∈ N to be different, and zi = di. Hence, the subvariety of V defined by
this identity is trivial. Now, assume that C ∈ V is any finite algebra, having a congruence
θ 6= 1C, and elements s1, . . . , s` such that rC(x, s1, . . . , s`) θ rC(y, s1, . . . , s`) for all x, y ∈ C.
Taking a maximal congruence ψ of C containing θ, the simple algebra S = C/ψ is abelian
and satisfies

∀x, y(rS(x, s̄1, . . . , s̄`) = rS(y, s̄1, . . . , s̄`)).
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Using the term condition we get that S is a nontrivial algebra satisfying the equation
r(x, z1, . . . , z`) = r(y, z1, . . . , z`). This is impossible, since this equation together with the
equations of V define the trivial variety. We conclude that there is no finite C ∈ V having a
congruence θ 6= 1C, and elements s1, . . . , s` such that rC(x, s1, . . . , s`) θ rC(y, s1, . . . , s`) for
all x, y ∈ C.

Again let t = (t1, . . . , tk) be a listing of the elements of T , and C the subalgebra of Ak

generated by the diagonal and the element t. Let U = Nk ∩ C, and denote by θ the
smallest congruence of C collapsing U . Since p(x) = rA(x, d1, . . . , d`) and p(A) = N , then
we have rC(x, d̂1, . . . , d̂`) θ rC(y, d̂1, . . . , d̂`) for all x, y ∈ C. By the remarks in the previous
paragraph, the minimality of V implies that θ = 1C. Thus, the images of U under the unary
polynomials of C connect the elements of C.

Notice that we had a similar statement in the previous proof. We now have it for type 1
as well. The next few steps of the proof are the same as above, but we now know less about
the polynomial images of U (in particular, we do not know if they can be obtained as the
range of an idempotent polynomial), so we have to do more calculations.

Connect the element t to t̂ = (t, . . . , t), where t is some fixed element of T , with a chain
of polynomial images of U . These are two different elements, since |T | > 1. Let ê denote
the (idempotent) unary polynomial of C that acts as e in every component. Apply ê to the
elements of this chain. We get another chain of polynomial images of U contained entirely
in T k. In particular, there exists a unary polynomial f of C such that V = f(U) has at least
two elements and satisfies t ∈ V ⊆ T k.

Since C is generated by the diagonal and the element t we may express f as

f(x) = gC(x, t, â1, . . . , âm)

for some term g and elements ai from A. Let s(x, y) = egA(x, y, a1, . . . , am). Clearly, s is a
binary polynomial of A. The construction of s ensures that for every x ∈ C we have

fi(xi) = s(xi, ti) ,

where fi is the i–th component function of f .
We have an element u ∈ U such that f(u) = t, that is, s(ui, ti) = ti for every 1 ≤ i ≤ k.

Since ui ∈ N , this implies that t ∈ s(N, t) for every t ∈ T , hence s(N, T ) ⊇ T . On the other
hand, g is prefixed by e in the definition of s, so we have s(A,A) ⊆ T . Thus s satisfies (i)
and (ii).

Now we have to split the proof into two cases according to the type of A. First suppose
that this type is 1 . As f is not constant on U , there exist elements n1, n2 ∈ N and x ∈ T such
that s(n1, x) 6= s(n2, x). But A is strongly abelian, so this implies that s(n1, x) 6= s(n2, y)
for every y ∈ T . That is, s(n1, T ) is contained in T − s(n2, T ), and therefore we have
condition (iii) with t = n2.

In the type 2 case we transform s in three steps to get a new binary polynomial that
still satisfies conditions (i) and (ii), but satisfies (iii) as well. As f is not constant on U ,
there exist elements n1, n2 ∈ N and 0 ∈ T such that s(n1, 0) 6= s(n2, 0). Hence, M = s(N, 0)
is a trace of A, which contains 0 (since t ∈ s(N, t) for every t ∈ T ). Let q be a polynomial
inverse of s(x, 0) mapping M to N and satisfying q(A) = q(M) = N . Set

s1(x, y) = s(q(x), y) .
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Then s1(x, 0) = x for all x ∈ M , so s1(M, 0) = s1(A, 0) = M . We also have t ∈ s1(M, t)
for every t ∈ T . Thus, s1 satisfies conditions (i) and (ii) with respect to M instead of N .
Thus, if s1(0, y) is not a permutation of T , then we are done because (iii) will be satisfied
with t = 0. Otherwise, consider a power h(y) of this permutation, which is its inverse on the
set T . Set

s2(x, y) = s1(x, h(y)) .

By the definition of h we have s2(0, y) = y for all y ∈ T . As h is a permutation of T , it maps
T onto T , so s2(M, T ) = s1(M,h(T )) = s1(M, T ) = T . From 0 ∈ M we get that s1(0, 0) = 0,
so the element 0 is a fixed point of s1(0, y), hence h(0) = 0. Therefore s2(x, 0) = x holds for
all x ∈ M , and we have s2(A, 0) = s2(M, 0) = M .

Let + denote the (polynomial) addition on M with zero element 0. We show that for each
x, y ∈ M we have s2(x, y) = x + y. (This follows easily from the fact that A is quasi–affine,
but the following argument is simpler and more elementary.) We apply the term condition.
From

s2(0 + 0, y) = y = s2(0 + y, 0)

we obtain, by changing the first zero to x, that

s2(x + 0, y) = s2(x + y, 0) = x + y ,

since x + y ∈ M .
Finally, let e0(x) = s2(x, 0), this is an idempotent polynomial of A with range M . Set

s3(x, y) = s2(e0(x)− e0(y), y) .

We show that s3 satisfies all three conditions. Obviously, s3(A,A) ⊆ T . If t ∈ T , then
t = s2(m, t′) for some m ∈ M and t′ ∈ T . Let m′ = e0(t

′) + m, then s3(m
′, t′) = s2(e0(t

′) +
m − e0(t

′), t′) = s2(m, t′) = t, so we have s3(M,T ) = T . Finally if x, y ∈ M , then we have
s3(x, y) = s2(x− y, y) = (x− y) + y = x, showing that s3(0,M) = {0}. Therefore s3(0, x) is
not a permutation of T and so s3(0, T ) 6= T , as T is finite. Thus, all proofs of Lemma 5.2
are complete.

LEMMA 5.3 Let A be a finite, simple, abelian algebra generating a minimal variety V .
Then A is coordinatizable by traces.

Proof. Let T be minimal among all E–traces of A that are not coordinatizable by
traces, and let T = e(A) for an idempotent polynomial e of A. Consider the trace N and
binary polynomial s provided by Lemma 5.2 for this T . Iterate s in its second variable so
that it becomes idempotent. If this happens in m steps, then let

g(x1, . . . , xm, y) = s(x1, s(x2, . . . s(xm, y) . . .)) ,

and h(x, y) = g(x, . . . , x, y). Pick t ∈ T arbitrarily. Then f(x) = h(t, x) is an idempotent
polynomial of A. Let R = f(A). As s(A,A) ⊆ T we have R ⊆ T . As s(t, T ) is a proper
subset of T , by the properties of s, the definitions of g and h show that R is a proper subset
of T . On the other hand, s(N, T ) = T implies that g(N, . . . , N, T ) = T .

32



We show that g(N, . . . , N, R) = T . Indeed, from h(x, h(x, y)) = h(x, y) we get that

g(x, . . . , x, g(x, . . . , x, y)) = g(x, . . . , x, y) ,

so by applying the term condition we obtain that

g(x1, . . . , xm, g(x, . . . , x, y)) = g(x1, . . . , xm, y) .

Thus g(N, . . . , N, T ) = g(N, . . . , N, h(t, T )) as stated.
By the minimality of T we know that R is coordinatizable by traces. This means that

R = p(M, . . . , M) for some polynomial p and trace M of A. As M and N are polyno-
mially isomorphic, we may assume that M = N (by changing p appropriately). Hence
T = g(N, . . . , N, p(N, . . . , N)), so by Lemmas 3.8 and 3.9, the set T is coordinatizable by
traces. This contradiction proves the lemma.

Finally we show that Theorem 5.1 follows from this lemma.

Proof of Theorem 5.1:
Let V be a locally finite, locally solvable, minimal variety. Then V is generated by a finite

simple solvable (and hence abelian) algebra A. If we put together Lemma 5.3 and Theorem
3.7 (2) we find that A|A is term equivalent to (U|U)[k] where U is either a finite simple vector
space or a finite simple algebra whose basic operations are all unary and permutations of U
and k is some natural number. Thus, we can assume that A is polynomially equivalent
to U[k]. This means that the universe of A will be assumed to be Uk and it further entails
that the clone of A is contained in the clone of (U|U)[k].

In the case where U is a vector space we have that A is an abelian algebra which has a
Mal’cev polynomial. This says that A is polynomially equivalent to an affine algebra. But
an algebra polynomially equivalent to an affine algebra is affine itself as we now explain. Let
p(x, y, z) be a polynomial of A that interprets as x−y+z. If p(x, y, z) = tA(x, y, z, a1, . . . , ak)
for some term t, then in fact

p(x, y, z) = tA(x, tA(y, y, y, y, . . . , y), z, y, . . . , y).

That is, the term t(x, t(y, y, y, y, . . . , y), z, y, . . . , y) interprets as x− y + z. One can see this
most easily by first representing t(x, y, z, ū) as a module polynomial for which tA(x, y, z, ā) =
x− y + z and then showing that the operation tA(x, tA(y, y, y, ū), z, ū) is independent of ū.
Now that we see that A is affine we can then rely on Theorem 12.4 of [3] to obtain part (2)
of our theorem.

In the case where U is unary it follows from the definition of the matrix power of an
algebra that all term operations of U[k] (and hence of A) depend on at most k variables.
This implies that any polynomial of A which depends on exactly k variables must in fact
be a term operation of A. In particular, since the clone of U[k] can be generated by k–ary
operations which depend on all of their variables it follows that the clone of A contains the
clone of U[k]. (Here it is essential that the basic operations of U are permutations.)

If the unary term operations of U act transitively on U , then the unary term operations
of U[k] will act transitively on Uk. In this case, the clone of (U|U)[k] covers the clone of U[k]

in the lattice of clones on Uk. The clone A must equal one or the other of these clones
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since it contains one clone and is contained in the other. Thus, when the terms of U act
transitively, then A is term equivalent to either U[k] or to (U|U)[k].

The algebras U and U|U do not generate minimal varieties when the unary term oper-
ations of U act transitively on U (the subvariety defined by the equations t(x) ≈ x for all
nonconstant unary terms t is nontrivial); hence their matrix powers cannot either. Thus, in
this case, A can’t generate a minimal variety since term equivalence preserves this property.

We are reduced to considering the case where U is a 2–element algebra with no basic op-
erations and the clone of A contains the clone of U[k] but is contained in the clone of (U|U)[k].
However, there are only four clones on the set Uk which contain the clone of U[k] and are
contained in the clone of (U|U)[k]. If we let U = {0, 1}, then the four clones are the clones of

• 〈{0, 1}; ∅〉[k],

• 〈{0, 1}; 0〉[k],

• 〈{0, 1}; 1〉[k], and

• 〈{0, 1}; 0, 1〉[k].

(It takes a small calculation to see that there are no other clones in this interval.) A is term
equivalent to one of these four algebras. The second and third are term equivalent to each
other. The fourth algebra on the list does not generate a minimal variety (since the equation
0̄ ≈ 1̄ defines a nontrivial proper subvariety). Hence, A must be term equivalent to either
〈{0, 1}; ∅〉[k] or 〈{0, 1}; 0〉[k].

To summarize, we have shown that the algebra A must either generate an affine variety
or must be term equivalent to a matrix power of a 2–element set or to a matrix power of a
2–element set with a single constant operation.

To conclude this section, we give a more detailed description of the minimal locally finite
varieties of type 2 . We have shown that a minimal locally finite variety of type 2 is affine
and has a 1–element subalgebra. This is already a good description of minimal varieties of
type 2 , but it is not as good a description as the one we have given for minimal varieties
of type 1 . In particular, Theorem 5.1 does not tell us what the clone of a minimal type 2
variety is.

Let A be a strictly simple algebra which generates a minimal variety of type 2 . Let S
denote the set of trivial subalgebras of A and choose some 0 ∈ S. If we expand A by adding
in all polynomials which preserve 0 as new basic operations, we obtain an affine algebra with
exactly one trivial subalgebra. Such an algebra is term equivalent to a finite simple module,
B, with the same universe as A. The endomorphism ring End(B) is a finite field which we
denote by F. If V is the universe of B, then V is a finite–dimensional F–space and B is
isomorphic to the R–module structure on V where R = EndF(V ). The algebras A and B
are polynomially equivalent, so the following theorem serves to describe the clone of A. The
proof of this theorem can be derived from Propositions 2.6 and 2.10 from [17].

THEOREM 5.4 Let V be a finite–dimensional vector space over the field F and let B
equal V considered as an R–module where R = EndF(V ). Let A be any reduct of B which
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is polynomially equivalent to B. Let S be the set of trivial subalgebras of A. The following
are true.

(1) S is a subspace of V .

(2) The clone of A consists precisely of those linear operations on V which preserve the
members of S.

(3) There is a left ideal J of R such that the clone of A consists precisely of those linear
operations on V , m1(x1) + · · ·+ mr(xr), which satisfy

m1 + · · ·+ mr ≡ 1 (mod J).

(Here 1 denotes the identity element of R.)

By a reduct of an algebra C we mean any algebra with universe C whose clone of term
operations is a subset of the clone of term operations of C. In the following corollary an
affine module is an idempotent reduct of a module.

COROLLARY 5.5 A minimal, locally finite affine variety is categorically equivalent to a
variety of vector spaces or a variety of affine modules.

Proof. A unary term σ(x) for the variety V is said to be invertible in V if there
exists some n > 0, an n–ary term p(x̄) and n unary terms q1, . . . , qn such that V satisfies
p(σ(q1(x)), . . . , σ(qn(x))) = x. If σ is an idempotent term of V , then for A ∈ V we write
A(σ) for the algebra with universe σ(A) and whose basic operations are the operations
of the form σ ◦ f |σ(A) where f is a term of A. We write V(σ) for the variety of algebras

{A(σ)
∣∣∣ A ∈ V}. It is shown in [12] that if σ is an idempotent term which is invertible in V ,

then V is categorically equivalent to V(σ).
If V is a minimal, locally finite affine variety, then using Theorem 5.4 it is fairly easy to

show that any nonconstant idempotent term is invertible. (Just follow these steps:

(i) Let A be a strictly simple generator of V and choose q1, . . . , qm ∈ Clo1(A) such that
{σq1, . . . , σqm} separates the points of A.

(ii) Show that the left ideal of R generated by {σq1, . . . , σqm} is R. In this step use the
fact, which we established in the proof of Theorem 5.4, that left ideals of R are just
the annihilators of subspaces of V .

(iii) If 1 = Σmiσqi, then p(x̄) = Σmi(xi) ∈ Clom(A) by Theorem 5.4 (3) and so p and
q1, . . . , qm are terms which witness that σ is invertible.)

Now if A, the strictly simple generator of V , has more than one trivial subalgebra, then
the description of the clone of A given in Theorem 5.4 implies that A has a nonconstant
idempotent term whose range is the space of trivial subalgebras. If σ is such a term, then
V(σ) is an idempotent affine variety. That is, it is term equivalent to a variety of affine
modules. Since term equivalence is a categorical equivalence, we get that V is categorically
equivalent to a variety of affine modules in this case. In the other case A has exactly one

35



trivial subalgebra. We choose σ to be any idempotent, invertible term whose range has
vector space dimension 1. The term operations of A(σ) contain the vector space operations
and are all linear with respect to these operations. Hence, A(σ) is term equivalent to a
1–dimensional vector space. But A(σ) generates V(σ), so the latter is term equivalent to a
variety of vector spaces. This finishes the argument.

Since the matrix power construction viewed as a functor V 7→ V [k] is a categorical equiva-
lence, the results of this section show that any minimal, locally finite, locally solvable variety
is categorically equivalent to one of the following varieties:

• the variety of sets,

• the variety of pointed sets,

• a variety of vector spaces or

• a variety of affine modules over a finite simple ring.

No two varieties on the list are categorically equivalent to each other; they can be categor-
ically distinguished by comparing the endomorphism monoids of A2 where A is the unique
simple algebra in each variety.

We would like to point out that from the results from this section it is not hard to
see that every locally finite minimal abelian variety is ω-categorical. A class of algebras is
ω-categorical if up to isomorphism there is a single countably infinite algebra in the class.
What is perhaps more interesting is that our results can be used to provide another proof
of the classification of ω-categorical varieties [4, 5, 8, 14, 15], since it is not difficult to show
that such a variety must be locally finite, abelian and minimal (see Theorem 4.1 of [8]).

6 TSSS varieties

We will call a locally finite variety with trivial locally strongly solvable subvariety a TSSS
variety. Examples of TSSS varieties include all locally finite varieties which satisfy a non-
trivial special Mal’cev condition as well as all minimal locally finite varieties which are not
of type 1 . We are going to analyze the commutator properties of algebras in TSSS varieties.
We give a short argument which establishes that a TSSS variety generated by an abelian
algebra is congruence permutable. This is a quick proof of the fact that a minimal variety of
type 2 is affine. We further show that a TSSS variety generated by a left nilpotent algebra
is congruence permutable.

LEMMA 6.1 Let V be a locally finite variety. The following conditions are equivalent.

(i) V is a TSSS variety.

(ii) V contains no finite simple algebra of type 1 .

(iii) Whenever A ∈ V is finite, α ≺ β in Con(A) and typ(α, β) = 1 , then ¬C(1, β; α).
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Proof. We shall prove that ¬(i) =⇒ ¬(ii) =⇒ ¬(iii) =⇒ ¬(i). If V is not a TSSS
variety, then it has a nontrivial locally strongly solvable subvariety which contains a finite
simple algebra of type 1 . Hence, ¬(i) =⇒ ¬(ii). Next, if V contains a finite simple algebra
S of type 1 , then by choosing A = S and setting α = 0 and β = 1 we get that C(1, β; α)
since S is abelian. Hence, ¬(ii) =⇒ ¬(iii). To finish we need to show that if V contains a
finite algebra A with congruences α ≺ β in Con(A) such that typ(α, β) = 1 and C(1, β; α),
then V contains a nontrivial strongly solvable algebra. Without loss of generality we may
assume that α = 0.

Let β be the congruence β × β restricted to the subalgebra A(β) of A × A (as in
Definition 2.2). Clearly, β is strongly Abelian, so we have β

ss∼ 0. It is easy to check that
β ∨∆1,β = 1. Hence

1 = β ∨∆1,β
ss∼ 0 ∨∆1,β = ∆1,β.

Therefore, B = A(β)/∆1,β is a strongly solvable member of V . To finish our proof that V
is not a TSSS variety, we will show that B is not a 1–element algebra. (This will show that
V contains a nontrivial strongly solvable member.) To see this, note that our hypothesis
C(1, β; 0) is equivalent to [1, β] = 0 which in turn is equivalent to the condition that the
diagonal of A(β) is a union of ∆1,β–classes. But not every element of A(β) is on the diagonal
since β > 0. It follows that ∆1,β has at least one class contained in the diagonal of A(β) and
at least one class disjoint from the diagonal of A(β). Hence, B = A(β)/∆1,β has at least 2
elements.

THEOREM 6.2 If V is a TSSS variety generated by an abelian algebra, then V is affine.

Proof. Since V is generated by an abelian algebra then we know from [6] that V
is locally solvable, or equivalently, that typ{V} ⊆ {1 ,2 }. Corollary 2.7 tells us that in
fact every finite member of V is left nilpotent. Now, if 1 ∈ typ{V}, then V contains a
finite subdirectly irreducible algebra A with monolith µ where typ(0, µ) = 1 . As A is left
nilpotent, [1, µ] = 0, that is, C(1, µ; 0). But now the equivalence (i) ⇐⇒ (iii) of Lemma
6.1 proves that V is not TSSS. Hence 1 6∈ typ{V}. The conclusion is that typ{V} = {2 }
and therefore that V is congruence permutable by Theorem 7.11 (3) of [6]. Any congruence
permutable variety generated by an abelian algebra is affine and so the theorem is proved.

COROLLARY 6.3 Every minimal variety of type 2 is affine.

The following lemma generalizes the result, found in [7], that every homomorphic image
of a finite abelian algebra is left nilpotent. (To see that it generalizes the result in [7], take
α = 1 and β = 0.)

LEMMA 6.4 If A is a finite algebra with congruences α, β, then

[α, α] ≤ β =⇒ C(α ∨ β, θ; δ)

whenever β ≤ δ ≺ θ ≤ α ∨ β.
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Proof. If the statement of the lemma is false for A, then it is false for A/[α, α], so we
need only to prove the lemma in the case where [α, α] = 0. Assume throughout the proof
that [α, α] = 0 and β ≤ δ ≺ θ ≤ α ∨ β. We will argue that C(α ∨ β, θ; δ).

Since β ≤ δ ≤ α ∨ β, we get α ∨ δ = α ∨ β. Hence, we need to show that C(α ∨ δ, θ; δ).
But

C(α ∨ δ, θ; δ) ⇐⇒ C(α, θ; δ) & C(δ, θ; δ).

Since C(δ, θ; δ) holds for any two congruences δ and θ, we can establish the lemma by showing
that C(α, θ; δ). We will use the fact that 〈δ, θ〉 is α–regular which follows from Theorem 2.6
(1). Theorem 2.6 (4) applies since [α, α] = 0 ≤ θ and 〈δ, θ〉 is α–regular. This guarantees
that the conditions C(α; θ; δ), C(θ; α; δ), [θ, α] ≤ δ and [α, θ] ≤ δ are equivalent, so it suffices
to establish any one of these conditions.

Case 1. α ∧ θ ≤ δ.
In this case, [α, θ] ≤ α ∧ θ ≤ δ, so C(α, θ; δ) and we are done.

Case 2. α ∧ θ 6≤ δ.
Let λ = α ∧ δ and choose ν such that λ ≺ ν ≤ α ∧ θ. The prime quotients 〈λ, ν〉 and

〈δ, θ〉 are perspective prime quotients which are both α–regular (since [α, α] = 0). Now,

[ν, α] ≤ [α, α] = 0 ≤ λ,

so C(ν, α; λ) by Theorem 2.6 (4). But λ = α ∧ δ, so C(ν, α; λ) implies C(ν, α; δ). Together
with C(δ, α; δ) we get C(δ ∨ ν, α; δ). But δ ∨ ν = θ, so we have C(θ, α; δ). By Theorem 2.6
(4), we have C(α, θ; δ). This finishes the proof of Case 2 and therefore it finishes the proof
of the lemma.

LEMMA 6.5 Assume that A is a finite algebra and that Con(A) has congruences α, β such
that [α, α] ≤ β and α ∨ β = 1. Then for the conditions listed below, (i) =⇒ (ii) =⇒ (iii).

(i) V(A) is a TSSS variety.

(ii) typ{β, 1} = {2 }.
(iii) C(1, 1; β) holds.

Proof. The implication (ii) =⇒ (iii) clearly follows from Corollary 2.13. So assume
that (i) holds. From the previous lemma we know that C(1, θ; δ) whenever β ≤ δ ≺ θ ≤ 1.
This tells us two things. First, the interval I[β, 1] is solvable, so typ{β, 1} ⊆ {1 ,2 }. Second,
referring to Lemma 6.1 (i) ⇐⇒ (iii), we find that 1 6∈ typ{β, 1} since we are in a TSSS
variety. Hence, typ{β, 1} = {2 } and (ii) holds.

LEMMA 6.6 Assume that A belongs to a TSSS variety and A has a congruence α such
that [1, α] = 0. Then B = A(α)/∆1,α generates an affine variety. If α > 0, then B is
nontrivial.
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Proof. Since C(1, α; 0) in Con(A) we get C(1, α; ηi), i = 1, 2, in Con(A(α)) and
therefore C(1, α; 0) as well. Thus, [1, α] = 0 and so [α, α] = 0 ≤ ∆1,α. We also have
α ∨∆1,α = 1. Lemma 6.5 proves that C(1, 1; ∆1,α) holds, so, by Theorem 6.2, B generates
an affine variety.

If α > 0, then the universe of A(α) properly contains the diagonal, but the diagonal is a
union of ∆1,α–classes. Hence, there are at least two distinct ∆1,α–classes. It follows that B
contains at least two elements.

LEMMA 6.7 Assume that A is an algebra with a congruence α such that [1, α] = 0. If
d(x, y, z) is a term which interprets as a Mal’cev operation on A/α and on A(α)/∆1,α, then
a term M(x, y, z) which interprets as a Mal’cev operation on A may be constructed by
composition from d(x, y, z).

Proof. Write ∆ for ∆1,α. The statement that d(x, y, z) interprets as a Mal’cev oper-
ation on each of A/α and A(α)/∆ is equivalent to the statement that for all u, v ∈ A and
(a, b), (c, e), (f, g) ∈ α we have that

dA(u, u, v) α v α dA(v, u, u)

and that

(
a
b

)
∆

(
c
e

)
implies

dA(α)

((
a
b

) (
c
e

) (
f
g

))
∆

(
f
g

)
∆ dA(α)

((
f
g

) (
c
e

) (
a
b

))
.

Claim 1. For any a ∈ A the polynomials dA(x, a, a), dA(a, a, x) and dA(x, x, x) are one–
to–one functions. Furthermore, if (a, b) ∈ α, then dA(x, a, a) = dA(x, b, b) and dA(a, a, x) =
dA(b, b, x).

Proof of Claim 1. Assume that for u, v ∈ A we have that dA(u, a, a) = w =
dA(v, a, a). Since dA(x, a, a) α x, then

u α dA(u, a, a) = dA(v, a, a) α v

hence (u, v) ∈ α. But now, (u, v), (a, a) ∈ α and

(
a
a

)
∆

(
a
a

)
. Hence, from above we

see that (
w
w

)
= dA(α)

((
u
v

) (
a
a

) (
a
a

))
∆

(
u
v

)
.

Since the diagonal of A(α) is a union of ∆–classes then we conclude that u = v and hence
that dA(x, a, a) is one–to–one. A similar proof works for dA(a, a, x).

Now, assume that (a, b) ∈ α and that r ∈ A. Since

(
a
b

)
∆

(
a
b

)
, then

(
r
r

)
∆ dA(α)

((
r
r

) (
a
b

) (
a
b

))
=

(
dA(r, a, a)
dA(r, b, b)

)
.
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Again using the fact that the diagonal of A(α) is a union of ∆–classes we see that dA(r, a, a) =
dA(r, b, b). A similar proof shows that dA(a, a, x) = dA(b, b, x) for all x ∈ A.

Finally we must show that dA(x, x, x) is one–to–one. Assume that dA(u, u, u) = w =
dA(v, v, v) for some u, v ∈ A. Since d is Mal’cev on A/α we get that dA(x, x, x) α x, so we
must have (u,w), (w, v) ∈ α. From what we have already proved, dA(x, u, u) = dA(x, v, v),
so dA(u, v, v) = dA(u, u, u) = w. Since dA(x, v, v) is one–to–one and dA(u, v, v) = w =
dA(v, v, v) we get u = v. Claim 1 is proved.

Claim 2. For ηi equal to the i–th projection kernel of A(α) we have ηi ∧∆ = 0A.

Proof of Claim 2. We prove the claim for η1 only. Assume that

(
a
b

)
η1∧∆

(
a
c

)
.

Necessarily we have (a, b), (a, c) ∈ α. Using Claim 1 we get the first equality in
(

dA(c, c, c)
dA(b, b, b)

)
=

(
dA(a, a, c)
dA(b, c, c)

)
= dA(α)

((
a
b

) (
a
c

) (
c
c

))
∆

(
c
c

)
.

Hence dA(b, b, b) = dA(c, c, c). By Claim 1 we have that b = c. This completes the argument
for Claim 2.

We define a first approximation to a Mal’cev term on A:

p(x, y, z) = d(d(z, z, x), d(d(x, x, z), z, y), z).

Claim 3. The algebras A/α and A(α)/∆ satisfy the equation d(x, y, z) = p(x, y, z). Fur-
thermore, A satisfies the equation p(x, x, z) = z.

Proof of Claim 3. The fact that A/α and A(α)/∆ satisfy the equation d(x, y, z) =
p(x, y, z) follows from the definition of p and the fact that d interprets as a Mal’cev operation
on these algebras.

We must show that A satisfies the equation p(x, x, z) = z which may be written as
d(d(z, z, x), d(d(x, x, z), z, x), z) = z. To show that this holds, choose a, b ∈ A arbitrarily.
We will show that dA(dA(b, b, a), dA(dA(a, a, b), b, a), b) = b. Set u = dA(dA(a, a, b), b, a).

Since dA(a, a, b) α b, we get that u α dA(b, b, a) α a. Hence the pairs

(
dA(b, b, a)

u

)
,

(
u
u

)

and

(
b
b

)
belong to A(α) and the latter two are ∆–related. This means that

(
dA(dA(b, b, a), u, b)

dA(u, u, b)

)
= dA(α)

((
dA(b, b, a)

u

) (
u
u

) (
b
b

))
∆

(
dA(b, b, a)

u

)
.

We can modify the left side of this displayed line by noticing that dA(dA(b, b, a), u, b) =
pA(a, a, b) and that (since u α a) dA(u, u, b) = dA(a, a, b). Hence the left side equals(

pA(a, a, b)
dA(a, a, b)

)
. We can modify the right side by replacing u with dA(dA(a, a, b), b, a). Start-

ing with this and continuing yields:
(

dA(b, b, a)
dA(dA(a, a, b), b, a)

)
= dA(α)

((
b

dA(a, a, b)

) (
b
b

) (
a
a

))
∆

(
b

dA(a, a, b)

)
.
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Putting the left and right modifications together we get that
(

pA(a, a, b)
dA(a, a, b)

)
η2 ∧∆

(
b

dA(a, a, b)

)
.

From Claim 2 we deduce that pA(a, a, b) = b as desired. This completes the proof of Claim 3.

Our Mal’cev operation M must be constructed from p in a different way than p was
constructed from d. The definition of M is

M(x, y, z) = p(p(x, p(x, z, z), x), p(y, p(y, z, z), y), z).

Claim 4. The algebras A/α and A(α)/∆ satisfy the equation p(x, y, z) = M(x, y, z).
Furthermore, MA(x, y, z) is a Mal’cev operation.

Proof of Claim 4. The first part of Claim 4 is handled just like the first part of
Claim 3. From the definition of M and the fact that A |= p(x, x, z) = z we get that
A |= M(x, x, z) = z. We must prove that for any a, b ∈ A we have

a = MA(a, b, b)
= pA(pA(a, pA(a, b, b), a), pA(b, pA(b, b, b), b), b)
= pA(pA(a, pA(a, b, b), a), b, b).

In the upcoming calculations, when moving from the first line to the second, we will use the
fact that pA(a, pA(a, b, b), pA(a, b, b)) = pA(a, a, a) = a, which follows from pA(a, b, b) α a
and Claim 1.

pA(α)

((
pA(a, pA(a, b, b), a)

a

) (
b
b

) (
b
b

))
∆

(
pA(a, pA(a, b, b), a)

a

)

= pA(α)

((
a
a

) (
pA(a, b, b)
pA(a, b, b)

) (
a

pA(a, b, b)

))
∆

(
a

pA(a, b, b)

)
.

Replacing the first expression in the above sequence with an equal value yields:
(

MA(a, b, b)
pA(a, b, b)

)
η2 ∧∆

(
a

pA(a, b, b)

)
.

From Claim 2 we deduce that MA(a, b, b) = a. This finishes the proof of Claim 4 and
therefore of the theorem.

There is a simpler proof of the previous lemma if one assumes that A is finite. After
proving Claim 1 one knows that for all a ∈ A the polynomials dA(x, a, a) and dA(a, a, x) are
one–to–one. When A is finite this implies that these polynomials are permutations. From
this one can construct a Mal’cev term from d by iteration. Unlike the argument given above,
in this argument the complexity of the term M constructed depends on |A|.

THEOREM 6.8 If V is a TSSS variety generated by a left nilpotent algebra, then V is
congruence permutable.
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Proof. We may assume that V is generated by a finite, left nilpotent algebra. For
if V is a TSSS variety generated by a left nilpotent algebra, then FV(2) is a finite, left
nilpotent algebra. If the theorem holds for finitely generated varieties, then V ′ = V(FV(2))
is congruence permutable. But V ′ = V(FV(2)) is congruence permutable iff V is congruence
permutable. (The reason for this is that any Mal’cev term for V ′ is also a Mal’cev term for V
since the defining equations for a Mal’cev term involve only two variables.) Thus, we only
need to prove the theorem in the case when V is generated by a finite, left nilpotent algebra.

Let A denote the class of finite, left nilpotent algebras that generate TSSS varieties. We
will use induction on the nilpotence class to prove that for any A ∈ A the variety V(A) is
congruence permutable. As we explained in the last paragraph, this will finish the proof.

If A ∈ A is abelian, then Theorem 6.2 proves that V(A) is affine and therefore congruence
permutable. The base case for our inductive proof has been established. For the inductive
step of our argument, choose A ∈ A of nilpotence class k > 1 and assume that the theorem
is true for all A′ ∈ A of smaller nilpotence class. Since A is of nilpotence class k, we
have (1]k+1 = 0 < (1]k. Let α = (1]k; Note that A/α has nilpotence class k − 1. Let
∆ = ∆1,α ∈ Con(A(α)). We have [1, α] = 0, so by Lemma 6.6 we have that A(α)/∆ is
affine. Let β = α∧∆ in Con(A(α)). Notice that A(α)/α ∼= A/α is of nilpotence class k−1
and A(α)/∆ is abelian since it is affine. B = A(α)/β is of nilpotence class ≤ k−1 since it is
a subdirect product of algebras of nilpotence class ≤ k−1. Since B ∈ V(A) we get that V(B)
is TSSS. This means that B ∈ A and, from our inductive hypothesis, V(B) is congruence
permutable. Let d(x, y, z) be a term which interprets as a Mal’cev operation on B. Then
d(x, y, z) interprets as a Mal’cev operation on both A(α)/α ∼= A/α and on A(α)/∆. Hence,
by Lemma 6.7, there is a term M(x, y, z) constructible from d(x, y, z) which interprets as a
Mal’cev operation on A. This proves that V(A) is congruence permutable and the argument
for the inductive step is complete.

COROLLARY 6.9 If V is a TSSS variety, then V has a congruence permutable subvariety
containing all left nilpotent members of V .

Proof. We need to prove that if V is a TSSS variety, then there is a term which
interprets as a Mal’cev operation on every left nilpotent algebra in V . For then the equations
which state that this term is a Mal’cev operation define a congruence permutable subvariety
of V containing all the left nilpotent members of V .

Let {t1(x, y, z), . . . , tn(x, y, z)} be a set of representatives of the V–inequivalent ternary
terms. If, for each i, there is a left nilpotent Ai ∈ V such that ti does not interpret as a
Mal’cev operation on Ai, then no ternary term interprets as a Mal’cev operation on the left
nilpotent algebra Πi≤nAi. We proved this to be impossible in Theorem 6.8. The conclusion
is that some ti interprets as a Mal’cev operation on every left nilpotent member of V .

Example. (We cannot replace left nilpotence with solvability) To see that the nilpotence
hypothesis in Theorem 6.8 cannot be weakened to solvability, we exhibit a TSSS variety
which is generated by a finite solvable algebra but is not congruence permutable.

Let V be the variety with one binary operation, denoted by juxtaposition, and one nullary
operation, 1, which is defined by the equations V |= 1x = x1 = x. If A ∈ V and a ∈ A−{1},
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then 〈a, 1〉 is a 1–snag of A. Hence there does not exist a nontrivial, finite, strongly solvable
algebra in V . It follows that every locally finite subvariety of V is a TSSS variety. So let A
be the member of V presented by

〈a, b
∣∣∣ a2 = b2 = ab = ba = 1〉.

A = {1, a, b} and Con A is a 3–element chain with α = Cg(a, b) the unique nontrivial, proper
congruence. It is easy to see that typ(0, α) = 1 and typ(α, 1) = 2 , so A is solvable and
V(A) is a TSSS variety, but V(A) is not congruence permutable.

We pointed out in Section 5 that an abelian algebra with a Mal’cev polynomial has a
Mal’cev term. This can be taken as the basis step in a proof by induction, modeled on the
proof of Theorem 6.8, of the following result (which becomes false if the word “nilpotent” is
replaced by “solvable”).

THEOREM 6.10 Any nilpotent algebra with a Mal’cev polynomial has a Mal’cev term.

In this section we have focused on left nilpotent algebras in TSSS varieties. The results
extend to other types of nilpotent algebras in TSSS varieties since [7] proves that the hy-
pothesis of left nilpotence is weaker than any other notion of nilpotence. E. g., if A is a finite
algebra satisfying [1, 1)k+1 = 0 (A is k–step right nilpotent), then A is left nilpotent although
possibly of higher nilpotence class. Similarly, if a mixed expression like [1, [[1, [1, 1]], 1]] = 0
holds, then A is left nilpotent. We know very little about which non–nilpotent algebras
generate TSSS varieties except that some of the arguments in this section may be localized.

We conclude this section with a peculiar application of Theorem 6.8.

COROLLARY 6.11 Let V be an idempotent variety generated by nilpotent algebras. If
FV(2) has odd cardinality, then V is congruence permutable.

Proof. As we pointed out in the proof of Theorem 6.8, to show that V is congruence
permutable it suffices to prove that the subvariety V ′ = V(FV(2)) is congruence permutable.
We shall prove this with the aid of Theorem 6.8. If FV(2) has odd cardinality, then V ′ is
generated by the finite, left nilpotent algebra FV(2). We need only to prove that the locally
strongly solvable subvariety of V ′ is trivial to complete the argument.

Let α be the automorphism of FV(2) determined by switching the generators. This
automorphism has order two and, since |FV(2)| is odd, this implies that there is an ele-
ment w ∈ FV(2) such that α(w) = w. If w(x, y) is any binary term representing w, then
w(x, y) = w(y, x) is an equation of V ′.

If V ′ has a nontrivial locally strongly solvable subvariety, then it has a strongly abelian,
minimal subvariety, M. The strictly simple generator of M is term equivalent to a matrix
power of a 2–element set or a 2–element pointed set as we have proved. But since we are
working with idempotent algebras, M must in fact be equivalent to the variety of sets. The
term w(x, y) must interpret as a projection in M; either w(x, y) = x or w(x, y) = y is
an equation of M. But now we have a contradiction: M satisfies w(x, y) = w(y, x) and
either w(x, y) = x or w(x, y) = y, but it does not satisfy x = y. This is clearly impossible.
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The conclusion is that V ′ is TSSS and so is congruence permutable. It follows that V is
congruence permutable as well.

We called this corollary ‘peculiar’ because the odd cardinality hypothesis results in such
a strong conclusion. If, for example, we start with a finite nilpotent group G and take the
reduct 〈G; xry1−r〉 for some r, then we get a nilpotent algebra which generates an idempotent
variety. The cardinality |FV(2)| can turn out to be either odd or even. Often, but only when
|FV(2)| is even, this type of variety is not congruence permutable.
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