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Abstract. Tame congruence theory identifies six Maltsev conditions associated with
locally finite varieties omitting certain types of local behaviour. Extending a result of
Siggers, we show that of these six Maltsev conditions only two of them are equivalent
to strong Maltsev conditions for locally finite varieties. Besides omitting the unary
type, the only other of these conditions that is strong is that of omitting the unary
and affine types.

We also provide novel presentations of some of the above Maltsev conditions.

1. Introduction

A powerful tool for classifying varieties of algebras emerged in the 1960s,

motivated by results of Maltsev [20] on congruence permutable varieties and

by Jónsson [16] on congruence distributive varieties. They show that these

congruence conditions on varieties can be expressed via what is now called a

Maltsev condition. Since then, many important properties of varieties have

been shown to be equivalent to Maltsev conditions. For background on the

material discussed in this paper, the reader is directed to one of [7], [10], and

[22].

Definition 1.1 ([13, 17]). (1) Let U and V be varieties and suppose that the

operation symbols of U are {fi : i ∈ I}. We say that U is interpretable in V,
and write U ≤ V, if for every i ∈ I there is a V-term ti of the same arity as fi
such that for all A ∈ V, the algebra 〈A, tAi (i ∈ I)〉 is a member of U .

(2) If U is a finitely presented variety, i.e., it has finitely many operation

symbols and is finitely axiomatized, then the class of all varieties V with U ≤ V
is called the strong Maltsev class defined by U , and the condition U ≤ V on V
is called the strong Maltsev condition defined by U .

(3) If Ui, for 0 ≤ i, is a decreasing sequence of finitely presented varieties,

relative to interpretability, then the class {V : Ui ≤ V for some i} is called

the Maltsev class defined by this sequence, and the associated condition on

varieties is called the Maltsev condition defined by this sequence.
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(4) An operation f(�x) on a set A is idempotent if f(x, x, . . . , x) ≈ x holds.

A term t(�x) of an algebra or variety is idempotent if the associated operation

is, and we call an algebra or variety idempotent if all of its terms are.

(5) We say that a Maltsev condition is proper if it is not equivalent to a

strong Maltsev condition. A (strong) Maltsev condition is idempotent if the

(variety) varieties used to define it (is) are.

An idempotent Maltsev condition that we will study in this paper is that

of being congruence n-permutable for some n > 1.

Definition 1.2. (1) The relational product of two binary relations R and S

on a set A is the relation R ◦ S defined to be

{(a, b) ∈ A2 : (a, c) ∈ R and (c, b) ∈ S for some c ∈ A}.
For n > 1, R ◦n S denotes the relation R ◦ S ◦R ◦ · · · (with n− 1 occurrences

of ◦).
(2) For n > 1, an algebraA is congruence n-permutable if for all congruences

α and β of A, α ◦n β = β ◦n α. A variety is congruence n-permutable if all of

its members are.

The following theorem, due to Hagemann and Mitschke [14], shows that

a variety being congruence n-permutable for some n > 1 is equivalent to an

idempotent Maltsev condition and that for a fixed n, the class of congruence

n-permutable varieties is a strong Maltsev class. In Section 3, we will show

that the collection of all varieties that are congruence n-permutable for some

n is a proper Maltsev class.

Theorem 1.3 ([14]). Let n > 0. A variety V is congruence (n+1)-permutable

if and only if it has ternary terms p1, . . . , pn that satisfy the equations

x ≈ p1(x, y, y),

pi(x, x, y) ≈ pi+1(x, y, y) for each i,

pn(x, x, y) ≈ y.

In [15] a theory of the local structure of finite algebras is developed. The

upshot of the theory is that there are exactly five types of local behaviour,

numbered 1-5, that can be associated with locally finite varieties. For each

locally finite variety V and each type 1 ≤ i ≤ 5, V either admits i or omits i.

The type will be often referred to by the following names:

• type 1 – the unary type,

• type 2 – the affine type,

• type 3 – the Boolean type,

• type 4 – the lattice type,

• type 5 – the semilattice type.

In [15, Chapter 9], six type-omitting conditions are studied and, remarkably,

are shown to be equivalent to idempotent Maltsev conditions, for locally finite
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Table 1. The six conditions

Type Omitting Class Equivalent Property

M{1} satisfies a nontrivial idempotent Maltsev condition

M{1,5} satisfies a nontrivial congruence identity (see [17])

M{1,4,5} congruence n-permutable, for some n > 1

M{1,2} congruence meet semidistributive

M{1,2,5} congruence join semidistributive (see [17])

M{1,2,4,5} congruence n-permutable for some n and congru-

ence join semidistributive

varieties. There is a natural ordering on the five types of local behaviour,

and these six conditions are associated with the downsets of types relative to

this ordering. The classes of locally finite varieties corresponding to the six

conditions are given in the following definition.

Definition 1.4. For I equal to one of the type sets {1}, {1,2}, {1,5},
{1,2,5}, {1,4,5}, or {1,2,4,5}, let MI denote the class of all locally finite

varieties V that omit the types in the set I.

Hobby and Mckenzie show that these six classes can also be defined in terms

of familiar conditions on congruence lattices. We note that in [15] none of the

presentations of the Maltsev conditions for these six classes is strong. The six

conditions are listed in Table 1. Some of these conditions have particularly nice

descriptions in terms of interpretability and term conditions. The following

definition and theorem expand on this.

Definition 1.5. Let A be an algebra, V a variety, and t(x1, . . . xn) a term for

A or V, for some n > 0.

(1) t is a Taylor term for A or V if it is idempotent and for each 1 ≤ i ≤ n,

an equation in the variables {x, y} of the form t(a1, . . . , an) ≈ t(b1, . . . , bn)

holds, where ai �= bi.

(2) t is a Hobby–McKenzie term for A or V if it is idempotent and for each

non-empty U ⊆ {1, . . . , n}, an equation in the variables {x, y} of the form

t(a1, . . . , an) ≈ t(b1, . . . , bn) holds, where {ai : i ∈ U} �= {bi : i ∈ U}.
(3) t is called a near unanimity term for A or V if these equations hold:

t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, x, . . . , x, y) ≈ x.

(4) t is called a weak near unanimity term for A or V if it is idempotent

and these equations hold:

t(y, x, . . . , x) ≈ t(x, y, x, . . . , x) ≈ · · · ≈ t(x, x, . . . , x, y).

Theorem 1.6. Let V be a locally finite variety.

(1) V ∈ M{1} if and only if for some n > 1, V has an n-ary Taylor term if

and only if for some n > 1, V has an n-ary weak near unanimity term.
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(2) V ∈ M{1,5} if and only if for some n > 1, V has an n-ary Hobby–

McKenzie term.

(3) V ∈ M{1,4,5} if and only if for some n > 1, V is congruence n-permutable.

(4) V ∈ M{1,2} if and only if for all n > 2, V has an n-ary weak near

unanimity term.

Proof. The first statement follows from [15, Lemma 9.4 and Theorem 9.6]

and [21, Theorem 1.1]. The second statement follows from [15, Lemma 9.5

and Theorem 9.8] and the third from [15, Theorem 9.14]. The last statement

follows from [21, Theorem 1.2] and the main result of [2] or [8]. �

A surprising result of Siggers [24], announced in 2008, and based on earlier

work with Nešetřil [23], is that the class M{1} can in fact be defined by a

strong Maltsev condition.

Theorem 1.7 ([24]). Let V be a locally finite variety. Then V omits the unary

type if and only if it has a 6-ary idempotent term t such that V satisfies the

equations

t(x, x, x, x, y, y) ≈ t(x, y, x, y, x, x) and t(y, y, x, x, x, x) ≈ t(x, x, y, x, y, x).

One direction of this theorem follows by noting that any term t that satisfies

the stated conditions is a Taylor term. In the next section, we will present a

proof of a variant of this theorem that uses a deep result of L. Barto and the

first author. We will also establish a similar result for the class M{1,2}.

2. Strong Maltsev conditions

Shortly after the announcement of Siggers’s result, it was noted by Kearnes,

Marković, and McKenzie [18] that one could replace the 6-ary term of Siggers

by one of several types of 4-ary terms. Their proof employs a deep result of

Barto, Niven, and the first author [5] on the complexity of the graph homo-

morphism problem. We make use of a different theorem of Barto and the first

author on cyclic terms to establish one version of their result.

A term t(x1, . . . , xn) of an algebra or variety is cyclic if it is idempotent and

satisfies the equation t(x1, x2, . . . , xn−1, xn) ≈ t(x2, x3, . . . , xn, x1). Note that

cyclic terms are special examples of weak near unanimity and Taylor terms.

Theorem 2.1 ([3]). Let A be a finite algebra. Then V(A) omits the unary

type if and only if for all prime numbers p > |A|, A has a p-ary cyclic term

operation.

Corollary 2.2 ([18]). A locally finite variety V omits the unary type if and

only if it has a 4-ary idempotent term operation t that satisfies the identities

t(x, y, z, y) ≈ t(y, z, x, x).
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Proof. It suffices to show that the free algebra F in V on 3 generators has such

a term. Let p be some prime number larger than |F | of the form 3k + 2 for

some k and let c(x1, . . . , xp) be a cyclic term of F. Define t(x, y, z, w) to be

the term

c(x, x, . . . , x, y, y, . . . , y, w, z, z, . . . z),

where the variables x occurs k + 1 times, the variable w occurs once, and the

variables y and z occur k times each. Using that c is cyclic, it is easy to verify

that t(x, y, z, w) satisfies the stated equations in F and hence in V.
Conversely, any term that satisfies the stated equations is a Taylor term

and so any locally finite variety having such a term operation omits the unary

type. �

Before considering the class M{1,2}, we first show that one cannot expect

a variety in M{1} to have a 3-ary Taylor term. The following is an example

of a locally finite variety V that omits the unary type but has no Taylor term

of arity less than 4, proving that the arity in Corollary 2.2 is optimal. This is

also observed in [18].

Example 2.3. Let m and p be the unique majority and minority operations,

respectively, on {0, 1}, and let p3 be the Maltsev operation on {0, 1, 2} defined

by p3(x, y, z) = x− y + z (mod 3). Let f be a ternary operation symbol, d a

binary operation symbol, and define four finite algebras A,B,C,D as follows:

A = {0, 1}, fA = m, dA(x, y) = x;

B = {0, 1}, fB = p, dB(x, y) = x;

C = {0, 1, 2}, fC = p3, dC(x, y) = y;

D = A×B×C.

Note that the term t(x, y, z, w) := d(f(x, y, z), f(y, w, z)) satisfies the iden-

tities of Corollary 2.2 in each of A,B,C and hence also in D, so D generates

a variety that omits the unary type.

Theorem 2.4. D has no Taylor term of arity less than 4.

Proof. If it did, then it would have a Taylor term of arity 2 or 3. By padding

with a dummy variable if necessary, D will have a ternary Taylor term, say

h(x, y, z). Let h1 = hA, h2 = hB, and h3 = hC. Then h1, h2, h3 are Taylor

terms for A,B,C, respectively.

The ternary terms of A,B,C are completely known:

• For A they are the projections and m. Of these, only m is a Taylor term

for A.

• For B they are the projections and p. Of these, only p is a Taylor term

for A.

• For C they are the projections, p3, q(x, y, z) := −(x + y) (mod 3), and

the variants of p3 and q obtained by permuting variables. Only the non-

projections are Taylor terms for C.
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Thus, h1 = m, h2 = p, and without loss of generality h3 is either p3 or q.

Case 1: h3 = p3.We argue that there exists no choice of a, b, c, d ∈ {x, y} such

that h(a, x, b) ≈ h(c, y, d) is an identity of D. For if there were, then the same

choice would produce identities

m(a, x, b) ≈ m(c, y, d) for A, (2.1)

p(a, x, b) ≈ p(c, y, d) for B, (2.2)

p3(a, x, b) ≈ p3(c, y, d) for C. (2.3)

If a = x, then identity (2.1) implies c = d = x. But neither p3(x, x, x) ≈
p3(x, y, x) nor p3(x, x, y) ≈ p3(x, y, x) is valid in C, so a = x is impossible.

A similar argument rules out b = x or c = y or d = y. Thus, we must have

a = b = y and c = d = x. But this contradicts identity (2.1), proving that

a, b, c, d cannot be chosen as above, thus contradicting the fact that h is a

Taylor term for D.

Case 2: h3 = q. We argue that there exists no choice of a, b, c, d ∈ {x, y} such

that h(a, b, x) ≈ h(c, d, y) is an identity of D. For if there were, then the same

choice would produce identities

m(a, b, x) ≈ m(c, d, y) for A, (2.4)

p(a, b, x) ≈ p(c, d, y) for B, (2.5)

−(a+ b) ≈ −(c+ d) for C. (2.6)

If a = x, then identity (2.4) implies c = d = x, which with identity (2.6) then

implies b = x. But then identity (2.5) is not satisfied. A similar argument

works if b = x or c = y or d = y. Thus, we must have a = b = y and

c = d = x, which contradicts identity (2.4), proving that a, b, c, d cannot be

chosen as above, thus contradicting the fact that h is a Taylor term for D. �

In order to prove that the class M{1,2} can be defined by a strong Maltsev

condition, we must first take a detour into ideas and results on the constraint

satisfaction problem (CSP). For some background on the CSP, the reader is

encouraged to consult [9] and more generally [11].

We present some standard definitions related to the CSP that have been

suitably modified to meet our needs in this paper.

Definition 2.5. Let A be a finite algebra. An instance of the constraint

satisfaction problem over A is a triple P = (V,A, C) where
• V is a non-empty, finite set of variables and

• C is a set of constraints {C1, . . . , Cq} where each Ci is a pair (Si, Ri) with

– Si a non-empty subset of V called the scope of Ci, and

– Ri is a subuniverse of the algebra ASi , called the constraint relation

of Ci.

We denote by CSP(A) the class of all instances of the CSP over A.
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A solution of P is a member �s of AV such that for all i ≤ q, restrSi
(�s), the

restriction of �s onto the coordinates Si, is a member of Ri.

Definition 2.6. Let A be a finite algebra and P = (V,A, C) ∈ CSP(A).

(1) For k > 0, P is k-minimal if

• For each subset I of V of size at most k, there is some constraint (S,R)

in C such that I ⊆ S, and

• if (S1, R1) and (S2, R2) are constraints in C and I ⊆ S1 ∩ S2 has size at

most k, then restrI(R1) = restrI(R2).

For I ⊆ V with |I| ≤ k, these conditions allow us to define PI to be the

restriction of R onto I for some (or any) (S,R) ∈ C with I ⊆ S.

(2) P is (2, 3)-minimal if it is 2-minimal and every three-element subset of

V is included in the scope of some constraint.

(3) A is said to be of relational width k (or width (2, 3)) if every k-minimal

((2, 3)-minimal) instance of CSP(A) whose constraint relations are all non-

empty has a solution.

We invoke a key result from the theory of the CSP in order to prove the

main result of this section.

Theorem 2.7 ([1, 4, 8]). Let A be a finite idempotent algebra.

(1) ([4, 8]) A is of relational width k for some k > 1 if and only if V(A)

omits the unary and affine types.

(2) ([1]) A is of width (2, 3) if and only if V(A) omits the unary and affine

types.

Theorem 2.8. A locally finite variety omits the unary and affine types if

and only if it has 3-ary and 4-ary weak near unanimity terms v(x, y, z) and

w(x, y, z, w) that satisfy the equation v(y, x, x) ≈ w(y, x, x, x).

Proof. We observe that no nontrivial variety of vector spaces can have a pair of

weak near unanimity terms v(x, y, z) and w(x, y, z, w) that satisfy the equation

v(y, x, x) ≈ w(y, x, x, x) and so by [15, Theorem 9.10] we conclude that any

locally finite variety that has such a pair of terms must omit the unary and

affine types.

Conversely, if V omits the unary and affine types, then we will build a (2, 3)-

minimal instance of the CSP over some finite algebra in V that, by Theorem 2.7,

is guaranteed to have a solution. We may assume that V is idempotent since

omitting the unary and affine types is determined by the idempotent terms of

the variety.

Our construction is a variation of one found by E. Kiss to show that finite

algebras of relational width k must have k-ary weak near unanimity terms.

Let F be the V-free algebra generated by {x, y}, let R be the subuniverse

of F3 generated by {(y, x, x), (x, y, x), (x, x, y)}, and S the subuniverse of F4

generated by {(y, x, x, x), (x, y, x, x), (x, x, y, x), (x, x, x, y)}.
Let n > (3|F |) and let P = (V, F, C) be the following instance of the CSP:
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• V = {x1, . . . , xn},
• C consists of constraints CI for all I ⊆ V with |I| = 3 or 4, where CI =

(I, R) if |I| = 3 and (I, S) if |I| = 4.

More formally, in our definition of CI for 3-element I, we choose any bijection,

f : {1, 2, 3} → I, and define the constraint relation to contain all g’s such that

(g(f(1)), g(f(2)), g(f(3))) ∈ R and similarly for 4-element I.

Since the subuniverses R and S are totally symmetric (i.e., closed under

every permutation of their coordinates), and their restrictions onto any pair

of coordinates are the same, it follows that P is a (2, 3)-minimal instance over

F. Since F generates a variety that omits the unary and affine types, then by

Theorem 2.7, we conclude that P has a solution �s ∈ FV . Since n > (3|F |),
then by the Pigeon-Hole Principle, it follows that �s is constant on some I ⊆ V

with |I| = 4, say over the coordinates in I, �s takes on the value x ◦ y ∈ F , for

some binary term ◦.
It follows that since �s is a solution of P and P contains the constraints

(J,R) and (I, S) (where J is any 3 element subset of I), (x◦ y, x◦ y, x◦ y) ∈ R

and (x ◦ y, x ◦ y, x ◦ y, x ◦ y) ∈ S

Since R is generated by {(y, x, x), (x, y, x), (x, x, y)}, and S is generated

by {(y, x, x, x), (x, y, x, x), (x, x, y, x), (x, x, x, y)}, we conclude there are terms

v(x, y, z) and w(x, y, z, u) of V such that the following equations hold in F:

v(y, x, x) ≈ v(x, y, x) ≈ v(x, x, y) ≈ x ◦ y,
w(y, x, x, x) ≈ w(x, y, x, x) ≈ w(x, x, y, x) ≈ w(x, x, x, y) ≈ x ◦ y.

Thus, v and w are the desired terms of V. �

If one would rather deal with k-minimality instead of (2, 3)-minimality, then

the above proof can easily be modified to show that algebras of relational

width 3 must have 4-ary and 5-ary weak near unanimity terms r and s with

r(y, x, x, x) ≈ s(y, x, x, x, x). This, of course, provides another strong Maltsev

condition for omitting the unary and affine types.

Corollary 2.9. The class M{1,2} is defined by an idempotent strong Maltsev

condition.

Proof. Let U be the finitely presented variety with a 3-ary operation symbol

v and a 4-ary operation symbol w defined by the equations that assert that v

and w are weak near unanimity terms and that v(y, x, x) ≈ w(y, x, x, x). By

the previous theorem, we have that a locally finite variety V is in M{1,2} if

and only if U ≤ V. �

3. Proper Maltsev conditions

In this section, we present a construction that we use to show that any

strong Maltsev condition satisfied by all finitely generated varieties that are n-

permutable for some n > 1 and that have a near unanimity term (and hence are
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congruence distributive and thus join semidistributive) is also satisfied by the

variety of semilattices. Hence, the “omitting types” classes M{1,5}, M{1,4,5},
M{1,2,5}, and M{1,2,4,5} cannot be defined by strong Maltsev conditions,

nor can the classes of locally finite varieties that are respectively congruence

modular, congruence distributive, or that have a near unanimity term.

Put 2 = {0, 1}. For N > 2 and 1 ≤ r ≤ N − 2, define ϕN,r : 2
N → 2 by

ϕN,r(x) =

{
1 if |{i : xi = 1}| > r,

0 otherwise.

Observe that ϕN,r is a near unanimity operation on 2. Also define the following

ternary operations on 2:

α<(x, y, z) = x

α=(x, y, z) = x ∨ (y ∧ z)

α>(x, y, z) = x ∨ z.

Definition 3.1. Fix n ≥ 2. Define N = n(n − 1)n−1 + 1 and, for 0 ≤ i < n,

define ri = (n − 1)i. Let Ln denote the language consisting of n ternary

operation symbols h0, . . . , hn−1 and one N -ary symbol q. For each i < n,

define the algebraD[n, i] of type Ln byD[n, i] = (2, h
D[n,i]
0 , . . . , h

D[n,i]
n−1 , qD[n,i]),

where

h
D[n,i]
j =

⎧⎪⎪⎨
⎪⎪⎩
α< if j < i,

α= if j = i,

α> if j > i.

qD[n,i] = ϕN,ri .

Finally, define En = D[n, 0]×D[n, 1]×· · ·×D[n, n− 1] and put Vn = HSP(En).

Lemma 3.2. For n ≥ 2, Vn is (2n+1)-permutable and has an N -ary near

unanimity term. Vn belongs to the class MI , for all six of the type sets I from

Definition 1.4.

Proof. It suffices to observe that the terms

pi+1(x, y, z) = hi(x, y, z) for i < n,

p2n−i(x, y, z) = hi(z, y, x) for i < n,

satisfy the conditions from Theorem 1.3 and that q(x1, . . . , xN ) is a near una-

nimity term for each D[n, i]. �

We will eventually show that every at-most-n-ary term in Ln interprets in

some D[n, i] as a join of variables. Before doing that, we prove some prelimi-

nary facts about operations on 2.

Fix m ≥ 1. We let Fm denote the set of all functions 2m → 2, and let

≤ denote the usual (pointwise) order on Fm. We write pr1, . . . , prm for the
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m-ary projection functions on 2. If f ∈ Fm, then we say that f dominates a

projection if there exists 1 ≤ k ≤ m such that f ≥ prk. For S ⊆ {1, . . . ,m},
we let χS denote the element of 2m given by

χS(k) =

{
1 if k ∈ S,

0 otherwise.

Definition 3.3. For f, g ∈ Fm, define f � g iff for all S ⊆ {1, 2, . . . ,m}, if
g(χS) = 1, then there exists k ∈ S such that f ≥ prk.

Lemma 3.4.

(1) prk � prk for all 1 ≤ k ≤ m.

(2) If fi � gi for i = 0, 1, then (f0 ∨ f1)� (g0 ∨ g1).

(3) If f � g, then f ≥ g.

(4) If f1 ≥ f0 � g0 ≥ g1 then f1 � g1.

(5) f ∈ Fm is a term operation of (2,∨) iff f is idempotent and f � f .

Proof. We leave the proofs of the first four parts of this Lemma to the reader.

For (5), suppose that f ∈ Fm is a term operation of (2,∨). Then f =
∨

j∈J prj
for some subset J of {1, 2, . . . ,m}. Clearly, f is idempotent. To show that

f � f , let S ⊆ {1, 2, . . . ,m} with f(χS) = 1. This can only happen when

S ∩ J �= ∅, and so there is some k ∈ S ∩ J . But then f ≥ prk, as required.

Conversely, suppose that f is idempotent and f � f . Let J be the set

of all j ∈ {1, 2, . . . ,m} with f(χ{j}) = 1, and let g =
∨

j∈J prj . Since f is

idempotent, then f(χ{1,2,...m}) = 1, and so f�f implies that f ≥ pri for some

i. Thus, J is nonempty, and so g is well defined. We claim that f = g. That

f ≥ g follows from the definition of J and f�f . To establish equality, suppose

that S ⊆ {1, 2, . . . ,m} and f(χS) = 1. Then for some k, f ≥ prk, and from

this we get that k ∈ J . It follows that g(χS) = 1, and so we conclude that

f = g. �

Lemma 3.5. Fix n ≥ 1 and suppose 1 ≤ r ≤ N − 2 with r < N/n. Then

for all 1 ≤ m ≤ n, if f1, . . . , fN ∈ Fm are such that each fi dominates a

projection, then ϕN,r ◦ (f1, . . . , fN ) also dominates a projection.

Proof. Each fi dominates at least one projection (out ofm possible); therefore,

there is a projection dominated by at least �N/m� many fi’s. Since we have

r < N/n ≤ �N/m�, the function ϕN,r ◦ (f1, . . . , fN ) dominates this projection

as well. �

Lemma 3.6. Fix n ≥ 2 and suppose 1 ≤ s ≤ r ≤ N − 2 with r < N/n and

s ≤ r/(n − 1). Then for all 1 ≤ m ≤ n, if f1, . . . , fN , g1, . . . , gN ∈ Fm are

such that (i) each gi dominates a projection, and (ii) fi � gi for all i, then

ϕN,s ◦ (f1, . . . , fN )� ϕN,r ◦ (g1, . . . , gN ).

Proof. Let f̂ = ϕN,s ◦ (f1, . . . , fN ), ĝ = ϕN,r ◦ (g1, . . . , gN ) and let S be such

that ĝ(χS) = 1. By Lemma 3.5, ĝ dominates a projection. Since f̂ ≥ ĝ, the
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function f̂ dominates the same projection and the case of |S| = m is solved.

From now on, assume that |S| ≤ m− 1.

As ĝ(χS) = 1, there are at least (r+1)-many gi’s such that gi(χS) = 1, and

for each such gi, a corresponding fi dominates a projection on a coordinate in

S. Therefore, we have at least �(r + 1)/|S|�-many fi’s dominating a common

projection in S. Since s ≤ r/(n − 1) ≤ r/|S| < �(r + 1)/|S|�, the function f̂

dominates this projection as well. �

Lemma 3.7. For any n ≥ 2 and 1 ≤ m ≤ n, if t is an m-ary term in Ln and

fi = tD[n,i] for i < n, then:

(1) Each fi is idempotent.

(2) fn−1 dominates a projection.

(3) f0 � f1 � · · ·� fn−1.

Proof. The items are proved by induction on t. Note that all three items are

clearly true if t is a variable (for item (3) use Lemma 3.4(1)).

(1): This is easily seen to be true for all t.

(2) and (3): Consider two cases.

In the first case, t = hj(r, s, u) (for some j < n) and r, s, u are m-ary terms

for which the claims of the lemma are true. Let ri = rD[n,i], si = sD[n,i] and

ui = uD[n,i] for all i. Since fn−1 ≥ rn−1 and rn−1 dominates a projection,

fn−1 dominates the same projection, proving (2). To prove (3), fix i such that

0 < i < n. If i < j, then (fi−1, fi) = (ri−1 ∨ ui−1, ri ∨ ui) and so fi−1 � fi
using Lemma 3.4(2) and the fact that r, u satisfy item (3). If i = j, then

(fi−1, fi) = (ri−1 ∨ ui−1, ri ∨ (si ∨ ui)) and, by the same argument as above,

fi−1�ri∨ui. Finally, ri∨ui ≥ fi by Lemma 3.4(4). If i = j+1, the reasoning

is very similar. If i > j + 1, then (fi−1, fi) = (ri−1, ri) and so fi−1 � fi since

r satisfies item (3). Thus, fi−1 � fi for all 0 < i < n, proving (3) in this case.

In the remaining case, assume that u1, . . . , uN are m-ary terms in Ln for

which the claims of the lemma are true, and t = q(u1, . . . , uN ). Then we

can deduce items (2) and (3) from Lemmas 3.5 and 3.6 respectively, carefully

noting the interpretation of q in each D[n, i]. �

We are now ready to prove the promised result about at-most-n-ary terms

in Ln.

Lemma 3.8. Let n ≥ 2 and suppose t is an m-ary term in Ln. If m ≤ n,

then there exists i < n such that tD[n,i] is a term operation of (2,∨).
Proof. Let t be an m-ary term in Ln and define fi = tD[n,i] for i < n. We

will assume that fi is not a term operation of (2,∨) for any i < n, and prove

that m > n. For each i < n, define Ti = {k : prk ≤ fi} and note that

T0 ⊇ T1 ⊇ · · · ⊇ Tn−1 �= ∅ by Lemmas 3.4(3) and 3.7(2,3).

For each i < n, we have fi � fi by Lemma 3.4(5), so we may pick Si ⊆
{1, 2, . . . ,m} such that fi(χSi

) = 1 and yet Si ∩ Ti = ∅. We have that each

Si �= ∅ because fi is idempotent, and if 0 < i < n, then Si∩Ti−1 �= ∅ because
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fi−1 � fi. Hence, Ti−1 � Ti for all 0 < i < n, proving |T0| ≥ n, and thus

m ≥ |T0 ∪ S0| = |T0|+ |S0| ≥ n+ 1. �

Theorem 3.9. Any strong Maltsev condition satisfied by Vn for all n ≥ 2 is

also satisfied by the variety of semilattices.

Proof. Since the variety of semilattices and Vn are idempotent for all n ≥ 2,

then we need only consider idempotent strong Maltsev conditions U in this

proof. By making use of the idempotency of U , we may assume that it can be

presented in the form 〈h(x1, . . . , xm),Σ〉 for some m > 0 and some finite set

of equations Σ in the operation h. For example, if some idempotent finitely

presented variety has operations s(x1, x2, x3) and t(x1, x2), then an equivalent

variety (with respect to interpretability) can be obtained by replacing s and t

by a 6-ary operation r(x1, . . . , x6) and replacing all occurrences of s(x1, x2, x3)

and t(x1, x2) in the equations defining the variety by r(x1, x1, x2, x2, x3, x3)

and r(x1, x2, x1, x2, x1, x2), respectively. In establishing one direction of this

equivalence, r is set to be the term s(t(x1, x2), t(x3, x4), t(x5, x6)). Further

details of this reduction can be found in the proof of [15, Lemma 9.4] and also

in [17].

To prove the theorem, it will suffice to show that if U ≤ Vn for some n ≥ m,

then U ≤ Semilattices, the variety of semilattices. This follows from the

previous Lemma, since if n ≥ m and the Vn-term t(x1, . . . , xm) gives rise to

an interpretation of U in Vn, then for some i < n, tD[n,i] is a term operation of

(2,∨). Thus, the 2-element semilattice (2,∨) has a term that also satisfies the

equations in Σ, and so the variety of semilattices interprets the variety U . �

Corollary 3.10. Of the six classes of locally finite varieties MI from Defini-

tion 1.4, only M{1} and M{1,2} can be defined by strong Maltsev conditions.

Proof. That M{1} and M{1,2} can be defined by strong Maltsev conditions

is proved in Corollaries 2.2 and 2.9. Note that for all other type sets I from

Definition 1.4, Semilattices /∈ MI . If U is a strong Maltsev condition that is

satisfied by all of the varieties in MI , then by Lemma 3.2, it is satisfied by Vn

for all n ≥ 2. Then by Theorem 3.9, the variety of semilattices also satisfies

U , and hence the strong Maltsev condition U cannot define the class MI . �

4. Matrix presentations of some Maltsev conditions

It has been noted, see for example [19], that term conditions similar to those

listed in Definition 1.5 can sometimes be conveniently described using matrices

over the variables x and y. If t is an n-ary term and A = (aij) is an m × n

matrix of variables, then the expression t[A] can be interpreted as the column

vector whose ith entry is the term t(ai1, ai2, . . . , ain), for 1 ≤ i ≤ m. Given

two such expressions, t[A], and s[B], where the arities of t and s are n and k

respectively, the expression t[A] = s[B] can be interpreted as the system of m

equations t(ai1, ai2, . . . , ain) = s(bi1, bi2, . . . , bik), for 1 ≤ i ≤ m.
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Using this scheme, we see that an idempotent term t(x1, x2, . . . , xn) will be

a Taylor term for an algebra C (or variety V) if and only if there are n × n

matrices A and B over the variables x and y such that A has x’s down its

diagonal, B has y’s down its diagonal and the system t[A] = t[B] holds. In

other words, t will be a Taylor term if a system of equations of the following

form holds:

t

⎡
⎢⎢⎢⎣
x

x
. . .

x

⎤
⎥⎥⎥⎦ ≈ t

⎡
⎢⎢⎢⎣
y

y
. . .

y

⎤
⎥⎥⎥⎦ ,

where the non-diagonal entries of the two matrices can be filled in arbitrarily

with x’s and y’s. The term t will be a near unanimity term if and only if it

satisfies the equations given by the system t[D] = X where D is the n × n

matrix with y’s down the diagonal and x’s elsewhere and X is the n×1 matrix

whose entries are all equal to x.

The following theorem provides matrix presentations for three of the classes

found in Table 1. In the statement of the theorem, A and B are n×n matrices

over the variables x and y and t is an n-ary idempotent term, for some n > 0.

Theorem 4.1 ([15], [6]). Let V be a locally finite variety.

(1) V is in M{1} if and only if it satisfies a system of the form t[A] = t[B],

where A has x’s on its diagonal and B has y’s on its diagonal.

(2) V is in M{1,5} if and only if it satisfies a system of the form t[A] = t[B],

where all of the entries of A on or below its diagonal are equal to x and

the diagonal entries of B are all equal to y.

(3) V is in M{1,2} if and only if it satisfies a system of the form t[A] = t[B],

where A has x’s on its diagonal and B has y’s on its diagonal and all of

the entries of A below its diagonal are equal to the corresponding entries

of B below its diagonal.

Proof. The first and second parts follow from [15, Lemmas 9.4 and 9.5, and

Theorems 9.6 and 9.8]. The third part can be found in [6]. �

In fact, the first two matrix conditions from the theorem define, respectively,

the class of all varieties (not necessarily locally finite) that satisfy a nontrivial

idempotent Maltsev condition and the class of all varieties that satisfy an

idempotent Maltsev condition that fails in the variety of semilattices (see [15,

Chapter 9]).

We next show that the class M{1,4,5}, or more generally, the class of con-

gruence n-permutable varieties for some n > 1, also has a matrix presentation.

We wish to thank Benoit Larose for his contributions to the proof of this the-

orem.

Theorem 4.2. For n > 0, let V be a variety. If V is congruence (n + 1)-

permutable, then V has an idempotent term t of arity 3n that satisfies a system
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of equations t[A] = t[B] where A and B are 3n × 3n matrices such that all of

the entries of A on or below its diagonal are equal to x and all of the entries

of B on or above its diagonal are equal to y. If V satisfies such a system for

some m-ary idempotent term t, then V is congruence (2m− 1)-permutable.

Proof. Assume that V is congruence (n+ 1)-permutable and let p1, . . . , pn be

a sequence of terms for V that satisfies the equations from Theorem 1.3.

Let 3n = {0, 1, 2}n and 3≤n =
⋃

k≤n 3
k. For 0 ≤ k ≤ n, define a term

tk(xσ)σ∈3k recursively as follows:

t0(x〈〉) = x〈〉
tk+1 = pk+1(tk(xσ0)σ∈3k , tk(xσ1)σ∈3k , tk(xσ2)σ∈3k) for 0 ≤ k < n.

For each k ≤ n, let ≤ denote the lexicographic ordering of 3k. For example,

for k = 2,

00 < 01 < 02 < 10 < 11 < 12 < 20 < 21 < 22.

We will construct suitable matrices A and B that witness, using the term tn,

the condition of the first part of this theorem.

Denote the least element of 3k, i.e., 00 · · · 0, by 0. For k ≤ n, define

λk, μk : 3
k → {x, y} so that for all σ ∈ 3k:

λk(σ) = x ↔ σ = 0

μk(σ) = x ↔ σ ∈ {0, 1}k.
(In particular, λ0, μ0 : 〈〉 �→ x.) Let x̂, ŷ denote the constant maps 3k → {x, y}
whenever k is understood.

Claim: For all 0 ≤ k < n, V |= tk+1(λk+1) ≈ tk(μk).

Clearly, t1(λ1) = p1(x, y, y) ≈ x ≈ t0(x) = t0(μ0). Inductively, for k > 1,

tk+1(λk+1) = pk+1(tk(λk), tk(ŷ), tk(ŷ))

≈ pk+1(tk−1(μk−1), y, y) (induction)

≈ pk(tk−1(μk−1), tk−1(μk−1), y)

≈ pk(tk−1(μk−1), tk−1(μk−1), tk−1(ŷ))

= tk(μk).

We now define the rows of the two 3n × 3n matrices A and B needed for

this direction of the theorem. The assignments defined in the following claim,

with k = n, will form all but the first rows of A and B.

Claim: For all 1 ≤ k ≤ n and all σ ∈ 3k \ {0}, there exist assignments

f, g : 3k → {x, y} so that

(1) f(τ) = x for all τ ≤ σ,

(2) g(τ) = y for all τ ≥ σ, and

(3) V |= tk(f) ≈ tk(g).
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For k = 0, the claim is vacuously true. Inductively assume that k > 0 and

σ ∈ 3k \ {0}. Write σ = σ0c with σ0 ∈ 3k−1 and c ∈ {0, 1, 2}.
Case 1: σ0 �= 0 (note that k �= 1).

Then inductively there exist f0, g0 : 3
k−1 → {x, y} such that f0(τ0) = x for

all τ0 ≤ σ0, g0(τ0) = y for all τ0 ≥ σ0, and V |= tk−1(f0) ≈ tk−1(g0). Now

define f, g : 3k → {x, y} by putting f(τ0d) = f0(τ0) and similarly for g. One

can check that f and g satisfy (1), (2), and (3) in the statement of the claim.

Case 2: σ0 = 0.

Define f : 3k → {x, y} so that for all σ = σ1σ2 · · ·σk ∈ 3k,

f(σ) = x ↔ σi ∈ {0, 1} for all 1 ≤ i < k.

Note that f(0d) = x for all d ∈ {0, 1, 2}. Furthermore,

tk(f) = pk(tk−1(μk−1), tk−1(μk−1), tk−1(μk−1))

≈ tk−1(μk−1) ≈ tk(λk) by the previous claim.

Thus f and g, with g = λk satisfy the claim in this case.

To complete the proof of the first part of this theorem, we need to define

the first rows of the two matrices. We note that the condition on the matrices

forces the first row of B to consist entirely of y’s and that the first entry of the

first row of A to be equal to x. Setting the first row of A to be the assignment

h : 3n → {x, y} defined by h(σ1σ2 · · ·σn) = y iff σn = 2, we see that

tn(h) = pn(tn−1(x̂), tn−1(x̂), tn−1(ŷ))

≈ pn(x, x, y) ≈ y ≈ tn(y, y, . . . , y).

Thus, V satisfies the system tn[A] = tn[B], and A and B have the required

form.

For the second part of this theorem, let V satisfy the system t[A] = t[B]

for some idempotent m-ary term t and m×m matrices A and B of the stated

form. To show V is congruence (2m − 1)-permutable, we define a sequence

of ternary terms pi(x, y, z), for 1 ≤ i < 2m − 1, that satisfy the equations in

Theorem 1.3. For 1 ≤ i ≤ m, define fi, gi : {1, 2, . . . ,m} → {x, y, z} by

fi(j) =

⎧⎪⎪⎨
⎪⎪⎩
x if j ≤ i,

y if j > i and Aij = x,

z otherwise,

and

gi(j) =

{
Bij if j < i,

z otherwise.

Let p1(x, y, z) = t(gm) and for 1 ≤ i < m, let

p2i(x, y, z) = t(fm−i) and p2i+1(x, y, z) = t(gm−i).

Using the system of equations t[A] = t[B], it is a routine exercise to show that

the sequence of terms p1, . . . , p2m−2 satisfies the equations of Theorem 1.3. �
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We now consider the two remaining classes from Table 1. The next theorem

provides three equivalent conditions for membership in the class M{1,2,5}. A
variety is congruence join semidistributive (or satisfies SD(∨)) provided that

for all A ∈ V and all α, β, γ ∈ Con(A), if α∨β = α∨γ, then α∨β = α∨(β∧γ).
Theorem 4.3 ([15, 17]). Let V be a variety. The following are equivalent:

(1) V is congruence join semidistributive.

(2) V satisfies an idempotent Maltsev condition that fails in any nontrivial

variety of modules and in the variety of meet semilattices.

(3) For some n > 0, V has terms pi(x, y, z) for 0 ≤ i ≤ n that satisfy the

identities:

p0(x, y, z) ≈ x,

pn(x, y, z) ≈ z,

pi(x, y, y) ≈ pi+1(x, y, y) and pi(x, y, x) ≈ pi+1(x, y, x) for all i even,

pi(x, x, y) ≈ pi+1(x, x, y) for all i odd.

If V is locally finite, then these conditions are equivalent to V omitting the

unary, affine, and semilattice types.

Definition 4.4. An idempotent term t(x1, . . . , xn) of a variety V is called an

SD(∨)-term for V if there are two n× n matrices A and B over the variables

x and y such that the entries of A and B below their diagonals are all equal

to x, the diagonal entries of A are all equal to x and the diagonal entries of B

are all equal to y.

We note that the SD(∨)-term condition is the conjunction of the conditions

from Parts 2 and 3 of Theorem 4.1, and so it follows that any locally finite

variety that has an SD(∨)-term must belong to the class M{1,2,5} and is

congruence join semidistributive. In the general case, we have the following.

Theorem 4.5. Let V be a variety that has an SD(∨)-term. Then

(1) V is congruence join semidistributive, and

(2) if V is locally finite then it belongs to the class M{1,2,5}.

Proof. The second part of this theorem has already been noted. To establish

the first part, we need only show, by Theorem 4.3, that no nontrivial variety

of modules or the variety of semilattices can have an SD(∨)-term. Since an

SD(∨)-term is also a Hobby–McKenzie term, then by [15, Lemma 9.5], the

variety of meet semilattices does not have such a term. Let M be a nontrivial

variety of modules and, to obtain a contradiction, assume that t(x1, . . . , xn)

is an SD(∨)-term of M. We may assume, without loss of generality, that

t depends on all of its variables in M. It follows from the SD(∨)-condition
that the equation x ≈ t(x, x, . . . , x) ≈ t(x, x, . . . , x, y) holds in M. Since t is

assumed to depend on the variable xn, this equation cannot hold in a nontrivial

module, and thus M cannot have an SD(∨)-term. �
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We present a partial converse to Theorem 4.5 by establishing it for con-

gruence distributive varieties and point the reader to [12] for a proof of the

full converse. We make use of the following characterization of congruence

distributive varieties due to Jónsson.

Theorem 4.6 ([16]). A variety is congruence distributive if and only if for

some n > 0 it has terms pi(x, y, z), 0 ≤ i ≤ n that satisfy the equations

p0(x, y, z) ≈ x,

pn(x, y, z) ≈ z,

pi(x, y, x) ≈ x for all i,

pi(x, x, y) ≈ pi+1(x, x, y) for all i even,

pi(x, y, y) ≈ pi+1(x, y, y) for all i odd.

Theorem 4.7. If V is a congruence distributive variety, then it has an SD(∨)-
term.

Proof. Our proof closely parallels the proof of Theorem 4.2 and the definition

of the SD(∨)-term that we will build is almost identical to the one from the

proof of that theorem, using the Jónsson terms from the previous theorem in

place of the ternary terms for (n + 1)-permutability. Instead, for 0 ≤ k < n,

we set

tk+1 = pk+1(tk(xσ0)σ∈3k , tk(xσ2)σ∈3k , tk(xσ1)σ∈3k).

We now set out to show that the 3n-ary term tn is an SD(∨)-term for V.
Actually, since the equation pn(x, y, z) = z holds in V, the term tn−1 also will

work.

For k ≤ n, define λk, μk : 3
k → {x, y} so that for all σ = σ1σ2 · · ·σk ∈ 3k,

we have λk(σ) = y if and only if σk = 1 and μk(σ) = x if and only if σk = 0.

The following claim has a straightforward proof, using the idempotency of the

terms involved.

Claim: For all 0 ≤ k < n, V |= tk(λk) ≈ pk(x, x, y) and tk(μk) ≈ pk(x, y, y).

We now define the rows of the two 3n × 3n matrices A and B needed for

this direction of the theorem. The assignments defined in the following claim,

with k = n, will form all but the first rows of A and B.

Claim: For all 1 ≤ k ≤ n and all σ ∈ 3k \ {0}, there exist assignments

f, g : 3k → {x, y} so that

(1) f(τ) = x for all τ ≤ σ,

(2) g(τ) = x for all τ < σ,

(3) g(σ) = y, and

(4) V |= tk(f) ≈ tk(g).

For k = 0, the claim is vacuously true. Inductively assume that k > 0 and

σ ∈ 3k \ {0}. Write σ = σ0c with σ0 ∈ 3k−1 and c ∈ {0, 1, 2}.
Case 1: σ0 �= 0.
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Then inductively there exist f0, g0 : 3
k−1 → {x, y} such that f0(τ0) = x for

all τ0 ≤ σ0, g0(τ0) = x for all τ0 < σ0, g0(σ0) = y, and V |= tk−1(f0) ≈
tk−1(g0). Now define f, g : 3k → {x, y} by

f(τ0d) =

{
f0(τ0) if d = c,

x if d �= c,

and similarly for g. One can check that f and g satisfy the claim.

Case 2: σ0 = 0.

If c = 2, then using the equation pk(x, y, x) ≈ x, it follows that the assign-

ments f(τ) = x for all τ , and g(τ) = x for all τ , except when τ = σ, work. We

get that tk(f) ≈ x ≈ tk(g) in this case.

The remaining case is when c = 1, or σ = 000 · · · 01, and our argu-

ment breaks into two further cases, depending on whether k is even or odd.

For k odd, let g = λk and define f : 3k → {x, y} so that f(τ1τ2 · · · τk) =

λk−1(τ1τ2 · · · τk−1). It follows, using the previous claim, that

tk(f) = pk(tk−1(λk−1), tk−1(λk−1), tk−1(λk−1))

≈ pk−1(x, x, y) ≈ pk(x, x, y) ≈ tk(g).

Since f(0) = f(σ) = g(0) = x and g(σ) = y, then f and g work in this case,

when k is odd. The even case can be handled similarly, using μk in place of λk.

To complete the proof of this theorem, we need to define the first rows of

the two matrices. Setting all entries of the first row of the matrix A to y,

except in the first place, and all entries of the first row of B to y works, since

the equation tn(x, y, y, . . . , y) ≈ y ≈ tn(y, y, . . . , y) holds in V.
Thus, V satisfies the system tn[A] ≈ tn[B] and A and B have the required

form. �

The following theorem combines the SD(∨) and n-permutability matrix

term conditions to yield one that implies membership in the class M{1,2,4,5}.

Theorem 4.8. If a variety V satisfies a system of equations of the form t[A] ≈
t[B] for some idempotent n-ary term t and two n×n-matrices A and B over the

variables x and y such that the entries of A on or below its diagonal are equal

to x and the entries of B below its diagonal are equal to x and are equal to y

elsewhere, then V is congruence join semidistributive and congruence (2n−1)-

permutable. If V is locally finite, then it belongs to the class M{1,2,4,5}.

We conclude with the following conjecture.

Conjecture 4.9. If V is a variety that is congruence join semidistributive

and is congruence m-permutable for some m > 1, then it satisfies a system of

equations as described in Theorem 4.8.
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