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MATTHEW A. VALERIOTE

Abstract. We prove that if a finite algebra A generates a con-
gruence distributive variety then the subalgebras of the powers of
A satisfy a certain kind of intersection property that fails for finite
idempotent algebras that locally exhibit affine or unary behaviour.
We demonstrate a connection between this property and the con-
straint satisfaction problem.

1. Introduction

By an algebraic structure (or just algebra) A we mean a tuple of
the form 〈A,F〉, where A is a non-empty set and F is a set (possibly
indexed) of finitary operations on A. A is called the universe of A and
the functions in F are called the basic operations of A. This definition
is broad enough to encompass most familiar algebras encountered in
mathematics but not so broad that a systematic study of these struc-
tures cannot be undertaken. Since the start of this study in the 1930’s
it has been recognized that two important invariants of any algebra
are its lattice of subuniverses and its lattice of congruences. In this pa-
per we demonstrate, for certain finite algebras, a connection between
the behaviour of their congruences and the subalgebras of their finite
powers.

The link between universal algebra and the constraint satisfaction
problem that has been developed over the past several years, starting
with the ground breaking paper by Feder and Vardi ([8]) and continuing
with the work of Jeavons, Bulatov, Krokhin and others, has brought
to light a number of questions that are of interest to algebraists, inde-
pendent of their connection with the constraint satisfaction problem.
The properties of subalgebras of finite algebras that we study in this
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paper have a direct connection with the constraint satisfaction prob-
lem. They also tie in with a classic result of Baker and Pixley ([1])
and the more recent work on the local structure of finite algebras de-
veloped by Hobby and McKenzie ([10]). In particular, the main result
of this paper, Theorem 2.9, suggests an alternate characterization of
some familiar classes of locally finite varieties in terms of intersections
of subalgebras.

To conclude this section, we recall some of the basic definitions that
will be used throughout this paper. Standard references for this mate-
rial are [6] and [16].

Definition 1.1. Let A = 〈A,F〉 be an algebra.

(1) A subuniverse of A is a subset of A that is closed under the op-
erations in F . An algebra B is a subalgebra of A if its universe
if a non-empty subuniverse B of A and its basic operations are
the restrictions of the basic operations of A to B. For K a class
of algebras, S(K) denotes the class of all subalgebras of members
of K.

(2) A congruence of A is an equivalence relation θ on A that is
compatible with the operations in F . The set of all congruences
of A, ordered by inclusion, is called the congruence lattice of A
and is denoted Con A.

If the basic operations of the members of a class K of algebras all
have similar indices, then it is possible to define the notion of a homo-
morphism from one member of K to another and of a homomorphic
image of a member of K. Cartesian products of similar algebras can
also be defined in a standard manner. H(K) will denote the class of all
homomorphic images of K while P(K) will denote the class of cartesian
products of members of K.

A fundamental theorem of universal algebra, due to G. Birkhoff,
states that a class of similar algebras is closed under the operations of
H, S and P if and only if the class can be defined via a set of equations.
Such a class of algebras is known as a variety. For K a class of similar
algebras, V(K) denotes the smallest variety that contains K. It follows
from the proof of Birkhoff’s theorem that this class coincides with the
class HSP(K).

The author would like to thank Emil Kiss, Benoit Larose, and Ross
Willard for helpful discussions during the course of this work.



A SUBALGEBRA INTERSECTION PROPERTY 3

2. An Intersection Property

Definition 2.1. Let n > 0 and Ai be sets for 1 ≤ i ≤ n. For k > 0 and
B, C ⊆

∏
1≤i≤n Ai we say that B and C are k-equal, and write B =k C

if for every subset I of {1, 2, . . . , n} of size at most k, the projection of
B and C onto the coordinates I are equal.

If B =k

∏
1≤i≤n Ai then we say that B is k-complete with respect to∏

1≤i≤n Ai.

Note that being 1-complete with respect to
∏

1≤i≤n Ai is equivalent
to being subdirect.

Definition 2.2. Let A be an algebra and k > 0.

(1) For n > 0 and B a subalgebra of An, we denote the set of all
subuniverses C of An with C =k B by [B]k.

(2) We say that A has the k-intersection property if for every
n > 0 and subalgebra B of An,

⋂
[B]k 6= ∅.

(3) We say that A has the strong k-intersection property if for
every n > 0 and subalgebra B of An,

⋂
[B]k =k B.

(4) We say that A has the k-complete intersection property if
for every n > 0,

⋂
[An]k 6= ∅.

The following proposition lists some elementary facts about the above
properties. Note that if A = 〈A,F〉 is an algebra and G is a subset of
the derived operations of A, then the algebra B = 〈A,G〉 is known as
a reduct of A.

Proposition 2.3. Let A be an algebra and k > 0.

(1) The strong k-intersection property implies the k-intersection
property, which implies the k-complete intersection property.

(2) If A fails one of these properties then any reduct of it does as
well.

(3) If A has a constant term then A satisfies the k-intersection
property.

(4) If A satisfies the (strong) k-intersection property then so does
every algebra in HSP(A). If A satisfies the k-complete intersec-
tion property then so does every quotient and cartesian power
of A.

Proof. The proofs of these claims are elementary and are left to the
reader. �

Example 2.4 (E. Kiss). Define A to be the algebra on {0, 1, 2} with
a single ternary basic operation p(x, y, z) defined by: p(x, y, y) = x · y
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and p(x, y, z) = z otherwise, where x · y is the operation:

· 0 1 2
0 0 1 0
1 0 1 1
2 2 2 2

It can be shown directly, or by using results from [14] that A satis-
fies the 2-complete intersection property. Since A has a two element
subalgebra (with universe {0, 1}) that is term equivalent to a set, then
this example demonstrates that the class of algebras that satisfy the
k-complete intersection property for some k ≥ 2 is not closed under
taking subalgebras.

The following Proposition exhibits some relevant examples.

Definition 2.5. (1) For k > 2, a k-ary function f on a set A is
a near unanimity function if for all x, y ∈ A, the following
equalities hold:

f(x, x, . . . , x, y) = f(x, x, . . . , x, y, x) = · · · = f(y, x, . . . , x) = x.

A k-ary term t of an algebra A is a near unanimity term of A
if the function tA is a near unanimity function on A.

(2) A function f on a set A is idempotent if for all x ∈ A,

f(x, x, . . . , x) = x.

An algebra A is idempotent if all of its term operations are
idempotent. The idempotent reduct of an algebra A is the al-
gebra with universe A and with basic operations the set of all
idempotent term operations of A.

Note that if A is an idempotent algebra and α is a congruence of
A then every α-class is a subuniverse of A. In fact, this property
characterizes the idempotent algebras (just apply it to the congruence
0A).

Proposition 2.6. (1) If A has a k-ary near unanimity term (for
k > 2) then it satisfies the strong (k − 1)-intersection property.

(2) If A is the idempotent reduct of a module or is term equivalent
to a set then A fails the k-complete intersection property for
every k > 0.

(3) If A is the 2 element meet semi-lattice then it fails the strong
k-intersection property for all k > 0.

Proof. The first claim is a direct consequence of a result of Baker and
Pixley. From Theorem 2.1 of [1] it follows that if A has a k-ary near
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unanimity term and B is a subalgebra of An then the only subuniverse
of An that is (k − 1)-equal to B is B.

Suppose that A is the idempotent reduct of the module M over the
ring R and let k > 0. Consider the submodule E of Mk+1 with universe
{(m1, . . . mk+1) :

∑
1≤i≤k+1 mi = 0}. Let c ∈ M with c 6= 0 and define

O to be the set {(m1, . . . mk+1) :
∑

1≤i≤k+1 mi = c}. Then O is a coset

of E in Mk+1 that is disjoint from E. It is not hard to see that as
subsets of Mk+1, E =k O and that in fact they are both k-complete. It
is also straightforward to show that E and O are subuniverses of Ak+1

since A is the idempotent reduct of M. From this it follows that A
fails the k-complete intersection property. Since any reduct of A also
fails this property then it follows that any algebra term equivalent to
a set also fails this property.

Let S be the 2 element meet semi-lattice on {0, 1} and k > 1. Let
S1 = Sk \ {σ : σ is a co-atom of Sk} and S2 = Sk \ {〈1〉} (〈1〉 is
the top element of Sk). It is not hard to show that both S1 and S2 are
subuniverses of Sk and that both are (k−1)-complete. The intersection
of S1 and S2 is not (k− 1)-complete since it contains no co-atom of Sk

nor the element 〈1〉. �

In this paper we will correlate, for finite idempotent algebras, these
intersection properties with some more familiar properties of finite al-
gebras.

Definition 2.7. An algebra A is said to be congruence distributive
if its congruence lattice satisfies the distributive law. A class of algebras
is congruence distributive if all of its members are.

For k > 0, A is in the class CD(k) if it has a sequence of ternary
terms pi(x, y, x), 0 ≤ i ≤ k that satisfies the identities:

p0(x, y, z) = x

pk(x, y, z) = z

pi(x, y, x) = x for all i

pi(x, x, y) = pi+1(x, x, y) for all i even

pi(x, y, y) = pi+1(x, y, y) for all i odd

Note that an algebra is in CD(1) if and only if it has size 1 and is in
CD(2) if and only if it has a ternary near unanimity term (a majority
term). A sequence of terms of an algebra A that satisfies the above
equations will be referred to as Jónsson terms of A. The following
celebrated theorem of Jónsson relates congruence distributivity to the
existence of Jónsson terms.
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Theorem 2.8 (Jónsson). An algebra A generates a congruence dis-
tributive variety if and only if A is in CD(k) for some k > 0.

The proof of this theorem can be found in any standard reference
on universal algebra, for example in [6]. Some of the results contained
in this paper deal with local invariants of finite algebras developed
by Hobby and McKenzie that form part of Tame Congruence Theory.
Details of this theory may be found in [10] or [7]. In this paper we will
only introduce some of the basic terminology of the theory and will
omit most details.

In Tame Congruence Theory, five local types of behaviour of finite
algebras are identified and studied. The five types are, in order:

(1) the unary type,
(2) the affine or vector-space type,
(3) the 2 element Boolean type,
(4) the 2 element lattice type,
(5) the 2 element semi-lattice type.

For 1 ≤ i ≤ 5, we say that an algebra A omits type i if, locally,
the corresponding type of behaviour does not occur in A. A class of
algebras C is said to omit type i if all finite members of C omit that
type. typ(A) denotes the set of types that occur in A and typ(C)
denotes the union of typ(A) over all finite A ∈ C.

If A is a finite simple algebra then one can speak of its type since
(rather than its type set), since it is shown by Hobby and McKenzie
that the local behaviour of a finite simple algebra is uniform. So, for
A finite and simple, typ(A) = {i} for some i and we say that A has
type i.

The following theorem is the main result of this paper and will be
proved over the next two sections.

Theorem 2.9. Let A be a finite algebra.

(1) If A generates a congruence distributive variety then it satisfies
the 2-complete intersection property.

(2) If A is idempotent and satisfies the k-intersection property for
some k > 0 then HSP(A) omits types 1 and 2.

(3) If A is idempotent and satisfies the strong k-intersection prop-
erty for some k > 0 then HSP(A) omits types 1, 2 and 5.

3. Omitting Types

Consider the usual ordering on the set of possible types of a finite
algebra, i.e., 1 < 2 < 3 > 4 > 5 > 1. This order corresponds to
the relative strength of the set of operations on the algebras associated
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with each of the five different local types. For example the 2 element
Boolean algebra has a lattice reduct and a vector space reduct, hence
2,4 < 3.

The following proposition is a generalization of Proposition 4.14 from
[4] in the type 1 case. It also generalizes the corresponding type 1,2
result worked out with B. Larose. An algebra is strictly simple if it is
simple and has no proper subuniverse with more than 1 element.

Proposition 3.1. Let A be a finite idempotent algebra. If i is in
typ(HSP(A)) then for some j ≤ i there is a finite strictly simple algebra
of type j in HS(A).

Proof. Suppose that i ∈ typ(HSP(A)). If i = 3 then there is nothing
to prove since HS(A) contains a strictly simple algebra. If i 6= 3 we
first show that the variety generated by A contains a strictly simple
algebra of type j for some j ≤ i. Since i ∈ typ(HSP(A)) then we can
find a finite B ∈ HSP(A) of minimal size whose type set contains j
for some j ≤ i. By the minimality of |B|, it follows that there is some
congruence 0B ≺ β of B with typ(〈0B, β〉) = j.

Let C ⊆ B be a nontrivial β-class. Since A, and hence B, is idempo-
tent then C is a subuniverse of B. If j = 2 (or 1) then β is an abelian
(or strongly abelian) congruence and so the algebra C is abelian (or
strongly abelian). Unless C = B we obtain a contradiction to the min-
imality of |B| and so we have that β = 1B and hence that B is a finite
simple abelian (or strongly abelian) algebra. It is now elementary to
show that HS(B) contains a strictly simple algebra of type 2 or 1, but
it follows by the main result of [18] that B itself is strictly simple.

The remaining cases are when j = 4 or 5. Let N = {0, 1} be
a 〈0B, β〉-trace of B contained in C, let ν be the congruence of C
generated by N2 and let µ be a congruence of C that is covered by ν.
We claim that typ(〈µ, ν〉) ≤ j. Let M be a 〈µ, ν〉-trace. Then there is a
unary polynomial p(x) of C that maps N into M with (p(0), p(1)) /∈ µ.
As p is the restriction to C of some unary polynomial p′(x) of B then
it follows that N ′ = {p(0), p(1)} is a 〈0B, β〉-trace contained in M .

As C is a subuniverse of B then the polynomial clone of C|N ′ is con-
tained in the polynomial clone of B|N ′ . We can rule out typ(〈µ, ν〉) = 2
or 3 since in either case, M supports a polynomial that maps p(0) to
p(1) and p(1) to p(0). In the type 3 case, the trace M consists of exactly
two elements (and so is equal to N ′) and has a unary polynomial that
acts as boolean complementation. If typ(〈µ, ν〉) = 2 then C|M has a
Mal’cev polynomial d(x, y, z) and the unary polynomial d(p(0), x, p(1))
has the desired property. In either case, the restriction of this poly-
nomial to N ′ belongs to the polynomial clone of C|N ′ but cannot be
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contained in the polynomial clone of B|N ′ since typ(〈0B, β〉) = 4 or 5.
So, if j = 4 then typ(〈µ, ν〉) ≤ j.

Finally, if j = 5 then typ(〈µ, ν〉) cannot equal 4 since then both
traces M and N ′ consist of exactly two elements (and so are equal)
and hence B|N ′ would support both lattice meet and join operations,
contrary to j = 5. Note that the essential fact used in this part of the
argument is that C is a subuniverse of B that contains a 〈0B, β〉-trace.

We have established that typ(〈µ, ν〉) ≤ j and so by the minimality
of B we conclude that C = B, implying that B is a simple algebra of
type j.

By the previous argument and the minimality of B we can conclude
that no proper subuniverse of B contains a B-minimal set and so the
subuniverse generated by any B-minimal set is B. From this it follows
that every two element subset of B is a B-minimal set. To see this, let
a 6= b in B. Since B is simple of type 4 or 5 then there is a B-minimal
set {0, a} for some element 0 ∈ B. We have just concluded that {0, a}
generates all of B and so there is a term t(x, y) of B with t(0, a) = b.
Since B is idempotent, we have that t(a, a) = a and so the polynomial
t(x, a) maps the minimal set {0, a} to the set {a, b}, establishing that
{a, b} is a B-minimal set. Thus, B is strictly simple.

So, we have established that for some j ≤ i, HSP(A) contains a
strictly simple algebra of type j. If j = 3 or 4 then we can use Lemma
14.4 of [10] to conclude that HS(A) contains a strictly simple algebra of
type j. The following, elementary argument, handles all cases including
these two but makes use of the idempotency of A. It is essentially the
argument found in the proof of Proposition 4.14 of [4]. To show that
HS(A) contains a strictly simple algebra of type j for some j ≤ i, let
n > 0 be minimal with the property that HS(An) contains such an
algebra. We wish to show that n = 1. Assume that n > 1 and let
B ⊆ An be a subuniverse of An and θ a congruence of B with S = B/θ
a strictly simple algebra of type j ≤ i.

By the minimality of n it follows that the projection of B onto its
first coordinate is a subalgebra A′ of A that contains more than one
element. For each a ∈ A′, let Ba be the subset of B consisting of all
elements whose first coordinate is equal to a. Since B is idempotent,
it follows that Ba is a subuniverse of B. If for some a ∈ A′, Ba is
not contained in a θ-block, then modulo the restriction of θ to Ba, we
obtain a nontrivial subuniverse of S. Since S is strictly simple, we have
that S must be a quotient of Ba, contradicting the minimality of n.

So, each Ba is contained in some θ-block. Thus, the kernel of the
projection of B onto A′ is a congruence contained in θ. From this it
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follows that A′ has a quotient isomorphic to S. This final contradiction
conclude the proof of this proposition. �

Theorem 3.2 of [2] provides examples that show the necessity of
idempotency in the previous proposition. Another example due to
McKenzie can be found described in [13]. In [13] E. Kiss observes that
if A is a finite algebra that generates a congruence modular variety
then the type set of the variety coincides with the set of types that
appear in the subalgebras of A.

Corollary 3.2. Let A be a finite idempotent algebra and let T be some
set of types closed downwards with respect the ordering on types. Then
HSP(A) omits the types in T if and only if HS(A) does. In particular,
HSP(A) omits types 1 and 2 if and only if HS(A) does.

If HSP(A) fails to omit the types in T then for some j ∈ T there is
a strictly simple algebra in HS(A) of type j.

Corollary 3.3. Let T be a set of types closed downwards with respect to
the ordering on types. The problem of determining which finite idem-
potent algebras generate varieties that omit the types in T can be solved
in polynomial time as a function of the size of the algebra.

Proof. Given T and a finite idempotent algebra A, to determine if
HSP(A) omits the types in T it suffices to determine whether HS(A)
contains a strictly simple algebra of type j for some j ∈ T . If this
occurs then there is some 2-generated subalgebra of A whose type set
includes j since every strictly simple algebra is 2-generated. The paper
[2] provides a polynomial time algorithm to determine the type set of
a given finite algebra and so to test whether HSP(A) omits the types
in T we need only apply this algorithm to all 2-generated subalgebras
of A. �

This result is used in a forthcoming paper with Ralph Freese [9]
that, among other things, establishes that there is a polynomial time
algorithm to determine if a finite idempotent algebra generates a con-
gruence modular, distributive, or permutable variety.

Theorem 3.4. Let A be a finite idempotent algebra. If 1 or 2 ∈
typ{HSP(A)} then for every k > 0, A fails the k-intersection property.
In fact, some subalgebra of A fails the k-complete intersection property
for all k > 0.

Proof. If 1 or 2 appear in the type set of the variety generated by A
then by Corollary 3.2, there is a finite strictly simple abelian algebra
S in HS(A). By a result of A. Szendrei ([17]), if S is of type 1 then
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S is term equivalent to a set. On the other hand, she shows that if S
is of type 2 then S is term equivalent to the idempotent reduct of a
module M, over some finite ring R. Part 2) of Proposition 2.6 can be
used to conclude that in either case, S fails the k-complete intersection
property for all k > 0.

Since S is in HS(A) then S is isomorphic to a quotient of some
subalgebra B of A. From Proposition 2.3 it follows that for all k > 0, B
fails the k-complete intersection property and A fails the k-intersection
property. �

Theorem 3.5. If A is a finite idempotent algebra with 1, 2 or 5 ∈
typ{HSP(A)} then for all k > 0, A fails the strong k-intersection
property. In fact, there is some subalgebra of B of A such that for all
k > 0, the intersection of all k-complete subuniverses of Bk+1 fails to
be k-complete.

Proof. The previous theorem handles the case when 1 or 2 appear in
the type set of the variety generated by A. If HSP(A) omits types 1
and 2 but 5 appears then by Proposition 3.1 HS(A) contains a strictly
simple idempotent algebra S of type 5. According to A. Szendrei’s
characterization of idempotent strictly simple algebras found in [17]
it follows that S is term equivalent to the 2 element meet-semilattice
〈{0, 1},∧ 〉. Using Proposition 2.3 (4), the result then follows from part
(3) of Proposition 2.6. �

4. Congruence Distributive Varieties

In order to prove part 1) of Theorem 2.9 it suffices to consider finite
algebras whose basic operations consist of a sequence of Jónsson terms.
This follows from part 2) of Proposition 2.3. So, for this section, let
A be a finite algebra whose only basic operations consist of: pi(x, y, z)
for 0 ≤ i ≤ n and which satisfy the Jónsson identities:

p0(x, y, z) = x

pn(x, y, z) = z

pi(x, y, x) = x for all i

pi(x, x, y) = pi+1(x, x, y) for all i even

pi(x, y, y) = pi+1(x, y, y) for all i odd

Definition 4.1. For 1 ≤ j ≤ n, and X ⊆ A, define Jj(X) to be the
smallest subuniverse Y of A containing X and satisfying:

for all u ∈ A and c ∈ Y , pj(u, u, c) ∈ Y , if j is odd and
pj(u, c, c) ∈ Y if j is even.
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Call Jj(X) the jth Jónsson ideal of A generated by X.

A subset of the form Jj(X) is called a j-Jónsson ideal. Call the
algebra A j-minimal if it contains no proper, non-empty j-Jónsson
ideal.

Proposition 4.2. For each a ∈ A, J1({a}) = A and hence A is 1-
minimal. For every X ⊆ A, Jn(X) is the subuniverse of A generated
by X. In particular, for a ∈ A, Jn({a}) = {a}.

We prove something more general than is needed to establish part
1) of Theorem 2.9. Let V be the variety generated by A.

Lemma 4.3. Let m > 0 and Ai be finite members of V for 1 ≤ i ≤ m.
Let 1 ≤ j < n and assume that for each i, Ai is j-minimal. Let B be
a 2-complete subalgebra of

∏
1≤i≤m Ai. If for each i, Ji is a (j + 1)-

Jónsson ideal of Ai, then B ∩
∏

1≤i≤m Ji is a 2-complete subuniverse
of

∏
1≤i≤m Ji. In fact, for every 1 ≤ u < v ≤ m and a ∈ Au, b ∈ Av

there is σ ∈ B with σ(u) = a, σ(v) = b and σ(i) ∈ Ji for all i /∈ {u, v}.

Proof. We prove this by induction on m. By 2-completeness, the prop-
erty holds for m = 2. Assume the property holds for m and let B be
a 2-complete subalgebra of

∏
1≤i≤m+1 Ai. By symmetry it suffices to

show that if a ∈ A1 and b ∈ A2 then there is some σ ∈ B with σ(1) = a,
σ(2) = b and σ(i) ∈ Ji for all i > 2.

Define Ba to be the set of σ ∈ B with σ(1) = a, and σ(i) ∈ Ji for
2 < i ≤ m + 1. Note that Ba is a subuniverse of B and is nonempty
since, if c ∈ Jm+1 then by induction there is some µ ∈ B with µ(1) = a,
µ(m + 1) = c and µ(i) ∈ Ji for 2 < i ≤ m.

Let I be the projection of Ba onto the coordinate 2. We claim that
I is a j-Jónsson ideal of A2. Since I is nonempty and A2 is assumed
to be j-minimal it follows that I = A2. Our result follows from this.
To prove the claim we need to show that if c ∈ I and u ∈ A2 then
pj(u, u, c) ∈ I if j is odd and pj(u, c, c) ∈ I if j is even.

Let σ ∈ Ba with σ(2) = c. By induction there is an element µ ∈ B
with µ(1) = a, µ(2) = u and µ(i) ∈ Ji for all 2 < i < m + 1. Let
σ(m + 1) = v ∈ Jm+1 and µ(m + 1) = z ∈ Am+1. Let ν ∈ B be any
element with ν(i) ∈ Ji for 2 < i < m + 1 and with ν(2) = u and
ν(m + 1) = v if j is odd and ν(2) = c and ν(m + 1) = z if j is even.
By induction, such an element exists.

We claim that the element τ = pj(µ, ν, σ) ∈ Ba. This will complete
the proof, since then τ(2) ∈ I and by design τ(2) = pj(u, u, c) if j is
odd and τ(2) = pj(u, c, c) if j is even. Using the identity pj(x, y, x) = x
it follows that τ(1) = a. For 2 < i < m + 1, τ(i) = pj(x, w, y)
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for some elements x, w, and y ∈ Ji and so belongs to Ji. τ(m + 1) =
pj(z, v, v) = pj+1(z, v, v) ∈ Jm+1 if j is odd and τ(m+1) = pj(z, z, v) =
pj+1(z, z, v) ∈ Jm+1 if j is even. So, in either case we have established
that τ ∈ Ba. �

Theorem 4.4. Let m > 0 and Ai be finite members of V. Then the
intersection of all 2-complete subuniverses of

∏
1≤i≤m Ai is non-empty.

Proof. We prove this by induction on the sum s of the cardinalities of
the Ai’s . For s = m the result holds trivially since then each Ai has
size 1. Assume that s > m and that we have established the result for
all smaller sums. As noted earlier, each Ai is 1-minimal and so we can
choose j ≤ n maximal with the property that each Ai is j-minimal.
Since all n-minimal algebras in V have cardinality 1 we have that j < n.

For each 1 ≤ i ≤ m, let Ji be a (j + 1)-Jónsson ideal of Ai so
that at least one of the Ji is proper, say |J1| < |A1|. By induction,
the intersection, C, of all 2-complete subuniverses of

∏
1≤i≤m Ji is non-

empty. If D is a 2-complete subalgebra of
∏

1≤i≤m Ai then by the
previous lemma D∩

∏
1≤i≤m Ji is a 2-complete subuniverse of

∏
1≤i≤m Ji

since each Ai is j-minimal. Then C ⊆ D ∩
∏

1≤i≤m Ji ⊆ D. This
completes the proof. �

Corollary 4.5. If A is a finite algebra that generates a congruence
distributive variety then A satisfies the 2-complete intersection prop-
erty.

Corollary 4.6. Let m > 0 and Ai be (n−1)-minimal finite members of
V for 1 ≤ i ≤ m. Then

∏
1≤i≤m Ai is the only 2-complete subuniverse

of
∏

1≤i≤m Ai.

Proof. For each 1 ≤ i ≤ m, choose an element ai ∈ Ai. Since each
Ai is (n − 1)-minimal and each {ai} is a n-Jónsson ideal then by the
Lemma we conclude that every 2-complete subuniverse of

∏
1≤i≤m Ai

contains the element (a1, . . . , am). Since the ai were chosen arbitrarily,
the result follows. �

5. Connections with the Constraint Satisfaction Problem

The class of constraint satisfaction problems provides a framework
in which a wide number of familiar complexity classes can be specified.
There are a number of excellent surveys of this class, in particular [4].
Starting with the paper by Feder and Vardi ([8]) and continuing with
the work of Jeavons, Bulatov, Krokhin and others ([5] for example)
an interesting connection between the constraint satisfaction problem
(CSP) and universal algebra has been developed. In this section we
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will give a brief overview of the constraint satisfaction problem and
then tie in the results from the previous sections with the CSP.

Definition 5.1. An instance of the constraint satisfaction problem is
a triple P = (V, A, C) with

• V a nonempty, finite set of variables,
• A a nonempty, finite domain,
• C a set of constraints {C1, . . . , Cq} where each Ci is a pair

(~si, Ri) with
– ~si a tuple of variables of length mi, called the scope of Ci,

and
– Ri a subset of Ami, called the constraint relation of Ci.

Given an instance P of the CSP we wish to answer the following
question:

Is there a solution to P , i.e., does there exist a function
f : V → A such that for each i ≤ q, the mi-tuple
f(~si) ∈ Ri?

In general, the class of CSPs is NP-complete, but by restricting the
nature of the constraint relations that are allowed to appear in an
instance of the CSP, it is possible to find natural subclasses of the CSP
that are tractable.

Definition 5.2. Let A be a domain and Γ a set of finitary relations
over A. CSP(Γ) is the collection of all instances of CSP with domain A
and with constraint relations coming from Γ. Γ is called the constraint
language of the class CSP(Γ).

Definition 5.3. Call a constraint language Γ globally tractable if the
class of problems CSP(Γ) is tractable, i.e., there is a polynomial time
algorithm that solves all instances of CSP(Γ). If each finite subset Γ′

of Γ is globally tractable then we say that Γ is tractable.
Γ is said to be NP-complete if the class of problems CSP(Γ) is NP-

complete.

A key problem in this area is to classify the (globally) tractable
constraint languages. One approach to this problem is to consider
constraint languages that arise from finite algebras in the following
manner:

Definition 5.4. For A a finite algebra, define ΓA to be the constraint
language over the domain A consisting of all subuniverses of finite
cartesian powers of A.

We call an algebra A (globally) tractable if the language ΓA is.
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The work of Jeavons and others ([11]) provides a reduction of the
tractability problem for constraint languages to the problem of deter-
mining those finite idempotent algebras A for which ΓA is (globally)
tractable and much work has been done on the CSP in this algebraic
setting.

One particular method for establishing the tractability of a con-
straint language is via local consistency properties. While a number
of useful notions of local consistency have been studied, in this paper
we will deal with one proposed by Bulatov and Jeavons ([4]) known as
finite relational width.

Definition 5.5. For k > 0, an instance P = (V, A, C) of the CSP is
k-minimal if:

• Every k-element subset of variables is within the scope of some
constraint in C,

• For every set I of at most k variables and every pair of con-
straints Ci = (si, Ri) and Cj = (sj, Rj) from C whose scopes
contain I, the projections of the constraint relations Ri and Rj

onto I are the same.

While the following definition and theorem apply to a wider class
of constraint languages, to avoid some technical matters we will only
present them in the algebraic setting.

Definition 5.6. An algebra A has relational width k if whenever P is
a k-minimal instance of CSP(ΓA) whose constraint relations are all
non-empty then P has a solution. A has bounded relational width if it
has relational width k for some k.

We note that if A is a finite algebra of relational width k then this
property is preserved by taking cartesian powers, subalgebras and ho-
momorphic images and so every finite member of HSP(A) has relational
width k.

We say that two instances of the CSP are equivalent if they have the
same set of solutions.

Theorem 5.7 (see [4]). Let A be a finite algebra.

(1) For a fixed k, any instance of CSP(ΓA) can be converted into
an equivalent, k-minimal instance of CSP(ΓA) in polynomial
time.

(2) If A is of bounded relational width then it is globally tractable.

A problem closely related to the problem of classifying the glob-
ally tractable constraint languages or idempotent algebras is that of
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classifying the constraint languages or idempotent algebras of finite
relational width.

Using a different notion of width, Larose and Zádori ([15]) show that
if a finite idempotent algebra has finite width then the variety that it
generates omits types 1 and 2. For this notion of width they conjecture
that the converse is true. In [3], Bulatov establishes something similar
for constraint languages having finite relational width and also conjec-
tures that the converse is true. He does not make explicit mention of
the tame congruence theoretic types, but rather makes use of a related
local analysis of finite algebras.

We can use Theorem 2.9 to prove something similar to (but implied
by) the Larose-Zádori result.

Lemma 5.8. Let A be a finite idempotent algebra. If A has relational
width k for some k > 0 then A satisfies the k-intersection property.

Proof. Let n > 0 and B a subalgebra of An. Let PB be the instance
of CSP(ΓA) with variables xi, 1 ≤ i ≤ n, domain A and, for each
subuniverse S of An with B =k S, the constraint CS having scope
(x1, x2, . . . , xn) and constraint relation S. Since each constraint relation
of PB is a non-empty subalgebra of An then it is in CSP(ΓA). It is not
hard to check that PB is also k-minimal and so has a solution, since A
is assumed to have relational width k.

A solution of PB is an n-tuple in An that lies in each subuniverse S
of An that is k-equal to B and so is in

⋂
[B]k. This establishes that A

satisfies the k-intersection property. �

Theorem 5.9. Let A be a finite idempotent algebra. If A is of finite
relational width then HSP(A) omits types 1 and 2.

Using results from [10] we present an alternate proof of part 2) of
Theorem 2.9 and of Theorem 5.9 that avoids using the material from
Section 3.

Let A be a finite idempotent algebra that has relational width k
for some k > 0. Then by Lemma 5.8 A satisfies the k-intersection
property. We will use Lemma 9.2 of [10] to show that V = HSP(A)
omits types 1 and 2. Suppose not, and assume that 2 appears in the
typeset of V . Then we can find a finite algebra C in V that has a
congruence β with 0C ≺ β and typ(〈0C , β〉) = 2. If we select some
〈0C , β〉-trace S, then it follows that the algebra C|S is polynomially
equivalent to a one-dimensional vector space over some finite field F.

We now construct a special Mal’cev condition (see Definition 9.1 of
[10]) WF that is interpretable in V but not in the variety of all F-vector
spaces and hence not interpretable in HSP(CIS), the variety generated
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by C|S with normal indexing (see Definition 6.12 of [10]). This will
contradict Lemma 9.2 of [10].

Let W = Fk+1 be the k + 1 dimension vector space over F and let
E be the subspace of W consisting of all tuples whose entries sum to
0. Let D be some disjoint coset of E in W . Note that E and D are
both k-equal to F k+1.

Let B be the free algebra in V generated by F (so we think of the
elements of F as free generators in B). Let E′ be the subpower of Bk+1

generated by the set E and let D′ be the subpower of Bk+1 generated
by D. The subuniverses E ′ and D′ are k-equal since their generators
have this property.

Since A satisfies the k-intersection property then B does and so the
intersection of E ′ and D′ is non-empty. Since E′ and D′ are generated
by E and D respectively then there are two terms s and t of V that
witness this, i.e., when s is applied to E and t is applied to D we
obtain the same element in Bk+1. Since the components of the tuples
in E and D are free generators of B this equality of tuples in Bk+1

translates as a set of k + 1 equations involving the terms s and t that
hold in V . This system can be viewed as a special Mal’cev condition
WF that is interpretable in V . WF cannot be interpreted into the
variety of F-vector spaces since by applying the interpretation of s and
t as idempotent F-vector space terms to the elements of E and D in
W would lead to an element in the intersection of the disjoint sets E
and D.

That V omits type 1 follows from Lemma 9.4 of [10] and the fact that
for any finite field F, the special Mal’cev condition WF is interpretable
in V but not in Sets, the variety of all sets. What this argument
actually establishes is that V satisfies the condition:

for every finite field F there is a special Mal’cev condi-
tion WF that is interpretable into V but not into the
variety of all F-vector spaces.

and that this condition implies that V omits types 1 and 2. Note that
this condition is implied by (2) in Theorem 9.10 of [10] and hence is
equivalent to it.

6. Conclusion

Part 1) of Theorem 2.9 provides a partial converse to part 2) of the
theorem. In light of the conjectures of Larose-Zádori and Bulatov and
the connection between the k-intersection property and the constraint
satisfaction problem we propose the following two conjectures:
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Conjecture 1: Let A be a finite idempotent algebra such that HSP(A)
omits types 1 and 2. Then for some k > 0, A satisfies the k-intersection
property.

Conjecture 2: Let A be a finite idempotent algebra such that HSP(A)
omits types 1, 2, and 5. Then for some k > 0, A satisfies the strong
k-intersection property.

Note that Theorems 3.4 and 3.5 provide converses to these conjec-
tures.

Question 3: Assuming that A is finite, idempotent and generates a
congruence distributive variety, is there any relationship between the
least k for which A is in CD(k) and the least m for which A has
relational width m, assuming that such an m exists?

In connection with this question, we note that E. Kiss and the author
have shown that if a finite idempotent algebra is in CD(3) (and so
has a sequence of four Jónsson terms) then A satisfies the strong 2-
intersection property. We also show (in [14]) that such an algebra has
relational width |A|2 and hence is globally tractable.

It is not the case that every finite algebra with Jónsson terms satisfies
the strong 2-intersection property. It is possible to construct a four
element algebra having a 5-ary near unanimity term for which the
strong 2-intersection property fails. Nevertheless, by the Baker-Pixley
Theorem it follows that the algebra satisfies the strong 4-intersection
property and in fact, by the main result of [12] we know that the algebra
has relational width 4.
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types of a finitely generated variety. Discrete Math., 112(1-3):1–20, 1993.

[3] Andrei Bulatov. A graph of a relational structure and constraint satisfaction
problems. In Proceedings of the 19th Annual IEEE Symposium on Logic in
Computer Science, 2004, pages 448–457. IEEE, 2004.

[4] Andrei Bulatov and Peter Jeavons. Algebraic structures in combinatorial prob-
lems. submitted for publication.

[5] Andrei Bulatov, Peter Jeavons, and Andrei Krokhin. Classifying the complex-
ity of constraints using finite algebras. SIAM J. Comput., 34(3):720–742 (elec-
tronic), 2005.

[6] Stanley Burris and H. P. Sankappanavar. A course in universal algebra, vol-
ume 78 of Graduate Texts in Mathematics. Springer-Verlag, New York, 1981.



18 MATTHEW A. VALERIOTE

[7] Matthias Clasen and Matthew Valeriote. Tame congruence theory. In Lectures
on algebraic model theory, volume 15 of Fields Inst. Monogr., pages 67–111.
Amer. Math. Soc., Providence, RI, 2002.

[8] Tomás Feder and Moshe Y. Vardi. The computational structure of monotone
monadic SNP and constraint satisfaction: a study through Datalog and group
theory. SIAM J. Comput., 28(1):57–104 (electronic), 1999.

[9] Ralph S. Freese and Matthew A. Valeriote. Mal’cev conditions and idempotent
algebras. preprint, 2006.

[10] David Hobby and Ralph McKenzie. The structure of finite algebras, volume 76
of Contemporary Mathematics. American Mathematical Society, Providence,
RI, 1988.

[11] Peter Jeavons. On the algebraic structure of combinatorial problems. Theoret.
Comput. Sci., 200(1-2):185–204, 1998.

[12] Peter Jeavons, David Cohen, and Martin C. Cooper. Constraints, consistency
and closure. Artificial Intelligence, 101(1-2):251–265, 1998.
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