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CONSTANT-QUERY TESTABILITY OF ASSIGNMENTS TO
CONSTRAINT SATISFACTION PROBLEMS\ast 

HUBIE CHEN\dagger , MATT VALERIOTE\ddagger , AND YUICHI YOSHIDA\S 

\bfA \bfb \bfs \bft \bfr \bfa \bfc \bft . For each finite relational structure \bfA , let CSP(\bfA ) denote the CSP instances whose
constraint relations are taken from \bfA . The resulting family of problems CSP(\bfA ) has been considered
heavily in a variety of computational contexts. In this article, we consider this family from the
perspective of property testing: given a CSP instance and query access to an assignment, one wants
to decide whether the assignment satisfies the instance or is far from doing so. While previous work
on this scenario studied concrete templates or restricted classes of structures, this article presents
a comprehensive classification theorem. Our main contribution is a dichotomy theorem completely
characterizing the finite structures \bfA such that CSP(\bfA ) is constant-query testable: (i) If \bfA has a
majority polymorphism and a Maltsev polymorphism, then CSP(\bfA ) is constant-query testable with
one-sided error. (ii) Otherwise, testing CSP(\bfA ) requires a superconstant number of queries.
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1. Introduction.

1.1. Background. In property testing, the goal is to design algorithms that
distinguish objects satisfying some predetermined property P from objects that are
far from satisfying P . More specifically, for \epsilon , \delta \in [0, 1], an algorithm is called an
(\epsilon , \delta )-tester for a property P if, given an input I, it accepts with probability at least
1 - \delta if the input satisfies P , and it rejects with probability at least 1 - \delta if the input
I is \epsilon -far from satisfying P . Roughly speaking, we say that I is \epsilon -far from P if we
must modify more than an \epsilon -fraction of I to make I satisfy P . When \delta = 1/3, we
simply call it an \epsilon -tester. A tester is called a one-sided error tester if it always accepts
when I satisfies P . In contrast, a standard tester is sometimes called a two-sided error
tester. As one motivation of property testing is to design algorithms that run in time
sublinear in the input size, we assume query access to the input, and we measure the
efficiency of a tester by its query complexity. We refer the reader to [19, 28, 29] for
surveys on property testing.

In constraint satisfaction problems (CSPs), one is given a set of variables and a set
of constraints imposed on the variables, and the task is to find an assignment of the
variables that satisfies all of the given constraints. By restricting the relations used
to specify constraints, it is known that certain restricted versions of the CSP coincide
with many fundamental problems such as SAT, graph coloring, and solvability of
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systems of linear equations. To formally define these restricted versions of the CSP
(and hence these problems), we consider relational structures A = (A; \Gamma ), where A is
a finite set and \Gamma consists of a finite set of finitary relations over A. In this context,
one often refers to \Gamma as a constraint language over A, and to A as a template. Then we
define CSP(A) to be those instances of the CSP whose constraint relations are taken
from \Gamma . In recent years, computational aspects of CSP(A) have been heavily studied
in the decision setting [22, 9, 2, 4], in counting complexity [10, 16], in computational
learning theory [22, 14], and in optimization and approximation [27, 31, 12, 32, 33].
See also the survey by Barto [3] for an overview of this line of research. Recently,
Bulatov [7] and Zhuk [35] announced proofs of the Feder--Vardi Dichotomy Conjecture,
a conjecture that has driven much of the research on the CSP over the past several
years.

In this paper, we consider the problem family CSP(A) from the perspective of
property testing; in particular, we consider the task of testing assignments to CSPs.
Relative to a relational structure A, an input consists of a tuple (\scrI , \epsilon , f), where \scrI is
an instance of CSP(A) with weights on the variables, \epsilon is an error parameter, and
f is an assignment to \scrI . In the studied model, the tester has full access to \scrI and
query access to f , that is, a variable x can be queried to obtain the value of f(x).
In this sense, assignment testing lies in the massively parameterized model [26]. We
say that f is \epsilon -far from satisfying \scrI if one must modify more than an \epsilon -fraction of f
(with respect to the weights) to make f a satisfying assignment of \scrI , and we say that
f is \epsilon -close otherwise. It is always assumed that \scrI has a satisfying assignment, as
otherwise we can immediately reject the input (in this context, time complexity is not
taken into account). The objective of assignment testing of CSPs is to correctly decide
whether f is a satisfying assignment of \scrI or is \epsilon -far from being so with probability at
least 2/3. When f does not satisfy \scrI but is \epsilon -close to satisfying \scrI , the algorithm can
output anything.

In assignment testing, we say that the query complexity of a tester is constant,
sublinear, or linear if it is constant, sublinear, or linear (respectively) in the number
of variables of an instance. The main problem addressed in this paper is to reveal
the relationship between a relational structure A and the number of queries needed
to test CSP(A).

1.2. Contributions. While previous work on testing assignments to the prob-
lems CSP(A) studied concrete templates A or restricted classes of structures, this
article presents a comprehensive classification of the constant query complexity tem-
plates. The results in this paper were first announced in [15]. Before describing our
characterization, we introduce the algebraic notion of a polymorphism which is key to
the description and obtainment of our results. Let R be an r-ary relation on a set A.
A k-ary operation f : Ak \rightarrow A is said to be a polymorphism of R if for any length-k
sequence of tuples

(a11, . . . , a
1
r), (a

2
1, . . . , a

2
r), . . . , (a

k
1 , . . . , a

k
r ) \in R
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r, . . . , a
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To indicate that f is a polymorphism of R, it is also said that R is preserved by f .
An operation f is a polymorphism of a relational structure A if it is a polymorphism
of each of its relations. We define the algebra of A, denoted by Alg(A), to be the pair
(A; Pol(A)), where Pol(A) is the set of all polymorphisms of A.
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Definition 1.1. Let A be a nonempty set. A majority operation on A is a
ternary operation m : A3 \rightarrow A such that m(b, a, a) = m(a, b, a) = m(a, a, b) = a
for all a, b \in A. A Maltsev operation on A is a ternary operation p : A3 \rightarrow A such
that p(b, a, a) = p(a, a, b) = b for all a, b \in A.

Theorem 1.2. Let A be a relational structure. The following dichotomy holds.
(1) If A has a majority polymorphism and a Maltsev polymorphism, then CSP(A)

is constant-query testable (with one-sided error).
(2) Otherwise, testing CSP(A) requires a superconstant number of queries.

This theorem generalizes characterizations of the constant-query testable list H-
homomorphism problems [34] and Boolean CSPs [6] to general CSPs. In section 3
we will describe the particularly nice structure of relations over templates that have
majority and Maltsev polymorphisms and use this to prove the theorem. For the
moment, let us consider a number of example templates to which this theorem applies.

Example 1. The template A over the Boolean domain \{ 0, 1\} whose only rela-
tion is \not = has both majority and Maltsev polymorphisms. In particular, it is readily
verified that this relation \not = is preserved by the Maltsev operation on \{ 0, 1\} defined
by p(x, y, z) = x \oplus y \oplus z; on the two-element set \{ 0, 1\} , there is a unique majority
operation m, and it is readily verified that \not = is preserved by m. Note that CSP(A)
coincides with the graph 2-coloring problem.

More generally, templates A over a finite domain whose relations are graphs
of bijections on A have both majority and Maltsev polymorphisms, since they are
instances of the next set of examples (Example 2). Instances of CSP(A) for such
templates A coincide with instances of the problem, which is the subject of the unique
games conjecture [25]. \blacksquare 

Example 2. Another class of finite structures that have both majority and Malt-
sev polymorphisms are those that have a discriminator operation as a polymorphism.
On a set A the discriminator operation d(x, y, z) is the operation such that if x = y,
then d(x, y, z) = z, and if x \not = y, d(x, y, z) = x. From this definition, it is immediate
that d is a Maltsev operation on A, and that d(x, d(x, y, z), z) is a majority operation
on A. Any finite product of finite fields will have a discriminator term operation [11],
and so any finite relational structure whose relations are preserved by the operations
of such a ring will have majority and Maltsev polymorphisms. \blacksquare 

Example 3. For p a prime number, let \BbbF p be the field of size p, and let \BbbR be the
ring \BbbF 2\times \BbbF 3\times \BbbF 5. Then, as noted in Example 2, \BbbR has a discriminator term operation.
Let R be the structure with domain R and set of relations \Gamma consisting of intersections
of the following binary relations on R: For p = 2, 3, or 5,

\bullet Cp = \{ ((a2, a3, a5), (b2, b3, b5)) | ap = bp\} ;
\bullet for a \in \BbbF p, Dp,a = \{ ((a2, a3, a5), (b2, b3, b5)) | ap = a\} ;
\bullet for b \in \BbbF p, Ep,b = \{ ((a2, a3, a5), (b2, b3, b5)) | bp = b\} .

So relations in \Gamma can express that pairs of elements in R are congruent modulo 2, 3, or
5 in the corresponding coordinate and/or that a certain coordinate is equal to some
fixed value. These relations are invariant under the discriminator term operation of
\BbbR , and so according to Theorem 1.2, CSP(R) has constant query complexity. \blacksquare 

Examples of structures that satisfy the first condition of Theorem 1.2 but that
do not have a discriminator operation as a polymorphism can be derived from finite
Heyting algebras.
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Example 4. Consider the five-element Heyting algebra \BbbM presented in [21, Fig-
ure 1]. (Heyting algebras are bounded distributive lattices that also have a binary
``implication"" operation; they serve as algebraic models of propositional intuitionis-
tic logic.) This algebra has universe M = \{ 0, a, b, e, 1\} ; the two equivalence rela-
tions \alpha and \beta that partition M into blocks \{ \{ 0, a\} , \{ b, e, 1\} \} and \{ \{ 0, b\} , \{ a, e, 1\} \} 
(respectively) are preserved by the operations of the algebra. Since \BbbM has ma-
jority and Maltsev term operations (the operations (x \wedge y) \vee (x \wedge z) \vee (y \wedge z) and
((x\rightarrow y)\rightarrow z) \wedge ((z \rightarrow y)\rightarrow x), respectively), then the structure M = (M ;\alpha , \beta ) has
majority and Maltsev polymorphisms. The only other nontrivial binary relation on
M that is preserved by the operations of \BbbM is \alpha \cap \beta . \blacksquare 

Example 5. Bulatov and Marx provide yet another example of a structure having
both a majority and a Maltsev polymorphism [8, Example 1.1]. Their example is
essentially the structure on the ten-element set A = \{ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9\} that has
a single ternary relation R = \{ (0, 1, 2), (0, 3, 4), (5, 6, 7), (8, 9, 7)\} . It can be readily
checked that with respect to the usual ordering on A, R is closed under the ternary
``in-between"" operation and so has a majority polymorphism. It can also be checked
that R has a ternary polymorphism p(x, y, z) that satisfies the equations p(x, x, y) =
p(x, y, x) = p(y, x, x) = y and so is a Maltsev operation. We note that R is not
preserved by the discriminator operation on A. \blacksquare 

Example 6. Consider the relational structure A over the Boolean domain \{ 0, 1\} 
whose only relation is \leq . This structure is readily verified to have a majority poly-
morphism (note that over the Boolean domain, there is indeed a unique majority
operation) and does not have a Maltsev polymorphism: for any Maltsev operation p,
it holds that applying p to the tuples (1, 1), (0, 1), (0, 0), which are in the relation \leq ,
yields (1, 0), which is not in the relation \leq . Thus, Theorem 1.2 implies that CSP(A)
is not constant-query testable. From [6] we know that it is sublinear-query testable
with one-sided error. \blacksquare 

To conclude this subsection we present a theorem that addresses the complexity
of deciding, for a given relational structure A, if CSP(A) is constant-query testable.

Theorem 1.3. The problem of deciding, for a relational structure A, if CSP(A)
is constant-query testable is solvable in polynomial time.

Proof. According to Theorem 1.2, deciding if CSP(A) is constant-query testable
amounts to deciding if A has majority and Maltsev polymorphisms. From [23] it
follows that if B is any structure that has both of these types of polymorphisms,
then CSP(B) has bounded width. In the terminology of [13], the condition of having
majority and Maltsev polymorphisms is a strong linear Maltsev condition. Since it
is the case that a structure will satisfy this condition if and only if the structure
obtained from it by expanding it by all one-element unary relations does, then we can
apply Lemma 3.8 of [13] to produce a polynomial time algorithm that decides, given
a structure A, if it has both majority and Maltsev polymorphisms.

1.3. Proof outline. We now present an outline of our proof of Theorem 1.2.

A has majority and Maltsev polymorphisms \Rightarrow CSP(A) is constant-
query testable. We first look at (1) of Theorem 1.2. Let (\scrI , \epsilon , f) be an input to
assignment testing of CSP(A). First, we preprocess \scrI so that it becomes 2-consistent
and reject if \scrI has no solution (see section 3 for the formal definition). Using the
2-consistency of \scrI and the majority polymorphism of A we can assume that for
each variable x of \scrI , the set of allowed values for x forms a domain Ax that is the



1026 HUBIE CHEN, MATT VALERIOTE, AND YUICHI YOSHIDA

universe of an algebra \BbbA x that is a factor (i.e., a homomorphic image of a subalgebra)
of Alg(A), the algebra of polymorphisms of A. Also, we can assume that for each
pair of variables x, y of \scrI there is a unique binary constraint of \scrI with scope (x, y)
and constraint relation Rxy, with Rxy the universe of some subalgebra of \BbbA x \times \BbbA y.
Furthermore these are the only constraints of \scrI .

In order to test whether f satisfies \scrI , we use three types of reductions: a factor-
ing reduction, a splitting reduction, and an isomorphism reduction. Each reduction
produces an instance \scrI \prime and an assignment f \prime such that f \prime satisfies \scrI \prime if f satisfies \scrI ,
and f \prime is \Omega (\epsilon )-far from satisfying \scrI \prime if f is \epsilon -far from satisfying \scrI . For simplicity, we
focus on how we create a new instance \scrI \prime here.

The objective of the factoring reduction is to factor, for each variable x of \scrI ,
the domain Ax by any congruence \theta of \BbbA x (i.e., an equivalence relation on Ax that
is preserved by the operations of \BbbA x) for which none of the constraint relations of \scrI 
distinguish between \theta -related values of Ax.

After ensuring that all of the domains Ax of \scrI cannot be factored, we then
employ a splitting reduction to ensure that for each variable x of \scrI the algebra \BbbA x is
subdirectly irreducible, i.e., cannot be represented as a subdirect product of nontrivial
algebras. For any variable x for which \BbbA x can be represented as a subdirect product
of nontrivial algebras \BbbA 1

x and \BbbA 2
x we replace the variable x by the new variables x1

and x2 and the domain Ax by the domains A1
x and A2

x. For any other variable y of
\scrI , we ``split"" the constraint relation Ryx (and its inverse Rxy) into two relations Ryx1

and Ryx2 that are together equivalent to the original one. We then add these two new
relations (and their inverses) to \scrI , along with Ax, now regarded as a binary relation
from the variable x1 to x2.

After performing the splitting reduction and the factoring reduction, we next
define a binary relation \sim on the set of variables of \scrI such that x \sim y if and only
if the constraint relation Rxy is the graph of an isomorphism from \BbbA x to \BbbA y. Using
2-consistency and the fact that the domains of \scrI are subdirectly irreducible and
cannot be factored, it follows that, unless \scrI is trivial, the relation \sim will be a non-
trivial equivalence relation. Within each \sim -class, the domains are isomorphic via the
corresponding constraint relations of \scrI , and this allows us to produce an isomorphism-
reduced instance \scrI \prime by restricting \scrI to a set of variables representing each of the
\sim -classes.

After performing this isomorphism reduction, the resulting instance may have
domains which can be further factored, allowing us to apply the factoring reduction
to produce a smaller instance. We show that if we reach a point at which none of
the three reductions can be applied, the instance must be trivial, either having just a
single variable, or for which | Ax| = 1 for all variables x. We also show that this point
will be reached after applying the reductions at most | A| -times.

In section 3, we will see how these reductions work on the template in Example 3.

CSP(A) is constant-query testable \Rightarrow A has majority and Maltsev poly-
morphisms. Now we look at (2) of Theorem 1.2. We show that if A does not have
these two types of polymorphisms, then we cannot test CSP(A) with a constant
number of queries. We use the fact that having these two types of polymorphisms
is equivalent to A having a Maltsev polymorphism and that the variety of algebras
generated by Alg(A) is congruence meet semidistributive [20]. When the variety gen-
erated by Alg(A) is not congruence meet semidistributive, then it can be easily shown
from [6, 34] that testing CSP(A) requires a linear number of queries. When A does
not have a Maltsev polymorphism, we show that there exists a structure A\prime having a
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binary nonrectangular relation such that we can reduce CSP(A\prime ) to CSP(A). Then,
by replacing the 2-SAT relations with this binary nonrectangular relation, we can
reuse the argument for showing a superconstant lower bound for 2-SAT in [17] to
obtain a superconstant lower bound for CSP(A).

1.4. Related work. Assignment testing of CSPs was implicitly initiated by [17].
There it was shown that 2-CSPs are testable with O(

\surd 
n) queries and require \Omega (log n/

log log n) queries for any fixed \epsilon > 0. On the other hand, 3-SAT [5], 3-LIN [5], and
Horn SAT [6] require \Omega (n) queries to test.

The universal algebraic approach was first used in [34] to study the assignment
testing of the list H-homomorphism problem. For graphs G, H and list constraints
Lv \subseteq V (H) (v \in V (G)), we say that a mapping f : V (G) \rightarrow V (H) is a list ho-
momorphism from G to H with respect to the list constraints Lv (v \in V (G)) if
f(v) \in Lv for any v \in V (G) and (f(u), f(v)) \in E(H) for any (u, v) \in E(G). Then
the corresponding assignment testing problem, parameterized by a graph H, is the
following: The input is a tuple (G, \{ Lv\} v\in V (G), \epsilon , f), where G is a (weighted) graph,
Lv \subseteq V (H) (v \in V (G)) are list constraints, f : V (G)\rightarrow V (H) is a mapping given as
a query access, and \epsilon is an error parameter. The goal is testing whether f is a list H-
homomorphism from G or \epsilon -far from being so, where \epsilon -farness is defined analogously
to testing assignments of CSPs. It was shown in [34] that the algebra (or the va-
riety) associated with the list H-homomorphism characterizes the query complexity,
and that list H-homomorphism is constant-query (resp., sublinear-query) testable if
and only if H is a reflexive complete graph or an irreflexive complete bipartite graph
(resp., a bi-arc graph).

Testing assignments of Boolean CSPs was studied in [6], and in that paper re-
lational structures were classified into three categories: (i) structures A for which
CSP(A) is constant-query testable, (ii) structuresA for which CSP(A) is not constant-
query testable but sublinear-query testable, and (iii) structures A for which CSP(A)
is not sublinear-query testable. They also relied on the fact that algebras (or varieties)
can be used to characterize query complexity.

1.5. Organization. Section 2 introduces the basic notions used throughout this
paper. We show the constant-query testability of CSPs with majority and Maltsev
polymorphisms in section 3. Superconstant lower bounds of CSPs without majority
or Maltsev polymorphisms are discussed in section 4.

2. Preliminaries. For an integer k, let [k] denote the set \{ 1, . . . , k\} .

Constraint satisfaction problems. For an integer k \geq 1, a k-ary relation
on a domain A is a subset of Ak. A constraint language on a domain A is a finite
set of relations on A. A (finite) relational structure, or simply a (finite) structure,
A = (A; \Gamma ) consists of a (finite) nonempty set A and a constraint language \Gamma on A.

For the remainder of this paper we will assume that all relational structures that
are mentioned are finite. For a structure A = (A; \Gamma ), we define the problem CSP(A)
as follows. An instance \scrI = (V,A, \scrC ,\bfitw ) consists of a set of variables V , a set of
constraints \scrC , and a nonnegative weight function \bfitw with

\sum 
x\in V \bfitw (x) = 1. Here, each

constraint C \in \scrC is of the form \langle (x1, . . . , xk), R\rangle , where x1, . . . , xk \in V are variables,
R is a relation in \Gamma , and k is the arity of R. The tuple (x1, . . . , xk) is called the scope of
the constraint C, and R is called the constraint relation of C. An assignment for \scrI is
a mapping f : V \rightarrow A, and we say that f is a satisfying assignment if f satisfies all the
constraints, that is, (f(x1), . . . , f(xk)) \in R for every constraint \langle (x1, . . . , xk), R\rangle \in \scrC .
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Algebras and varieties. Let \BbbA = (A;F ) be an algebra. A set B \subseteq A is a
subuniverse of \BbbA if every operation f \in F restricted to B has image contained in B.
For a nonempty subuniverse B of an algebra \BbbA , f | B is the restriction of f to B. The
algebra \BbbB = (B,F | B), where F | B = \{ f | B | f \in F\} is a subalgebra of \BbbA . Algebras \BbbA ,\BbbB 
are of the same type if they have the same number of operations and corresponding
operations have the same arities. Given algebras \BbbA ,\BbbB of the same type, the product
\BbbA \times \BbbB is the algebra with the same type as \BbbA and \BbbB with universe A\times B and operations
computed coordinatewise. A subalgebra \BbbC of \BbbA \times \BbbB is a subdirect product of \BbbA and \BbbB 
if the projections of C to A and C to B are both onto.

An equivalence relation \theta on A is called a congruence of an algebra \BbbA if \theta is the
universe of a subalgebra of \BbbA \times \BbbA . The collection of congruences of an algebra naturally
forms a lattice under the inclusion ordering, and this lattice is called the congruence
lattice of the algebra. Given a congruence \theta of \BbbA , we can form the homomorphic
image \BbbA /\theta , whose elements are the equivalence classes of \theta and the operations are
defined so that the natural mapping from \BbbA to \BbbA /\theta is a homomorphism. An operation
f(x1, . . . xn) on a set A is idempotent if f(a, a, . . . , a) = a for all a \in A, an algebra \BbbA 
is idempotent if each of its operations is, and a class of algebras is idempotent if each
of its members is. We note that if \BbbA is idempotent, then for any congruence \theta of \BbbA ,
the \theta -classes are all subuniverses of \BbbA .

A variety is a class of algebras of the same type closed under the formation
of homomorphic images, subalgebras, and products. For any algebra \BbbA , there is a
smallest variety containing \BbbA , denoted by \scrV (\BbbA ) and called the variety generated by
\BbbA . It is well known that any variety is generated by an algebra and that any member
of \scrV (\BbbA ) is a homomorphic image of a subalgebra of a power of \BbbA .

Many important properties of the algebras in a variety can be correlated with
properties of the congruence lattices of its member algebras. In this work we consider
several congruence lattice conditions for varieties, including congruence distributivity,
congruence meet semidistributivity, and congruence permutability. Details of these
conditions can be found in [20], and more details on the basics of algebras and varieties
can be found in [11].

2.1. Assignment problems. An assignment problem consists of a set of in-
stances, where each instance \scrI has associated with it a set of variables V , a domain
Av for each variable v \in V , and a weight function \bfitw : V \rightarrow [0, 1] with

\sum 
v\in V \bfitw (v) = 1.

An assignment of \scrI is a mapping f defined on V with f(x) \in Ax for each variable
x \in V . Each instance \scrI of an assignment problem has associated with it a notion of
a satisfying assignment. For two assignments f and g for \scrI , we define their distance
as dist\scrI (f, g) :=

\sum 
x\in V :f(x) \not =g(x) \bfitw (x). We define dist\scrI (f) = ming dist\scrI (f, g), where g

is over all satisfying assignments of \scrI . Then, for \epsilon \in [0, 1], we say that an assignment
f for \scrI is \epsilon -far from satisfying \scrI if dist\scrI (f) > \epsilon . In the assignment testing problem
corresponding to an assignment problem, we are given an instance \scrI of the assign-
ment problem, \epsilon \in [0, 1], and a query access to an assignment f for \scrI , that is, we
can obtain the value of f(x) by querying x \in V . Then we say that an algorithm is a
tester for the assignment problem if it accepts with probability at least 2/3 when f is
a satisfying assignment of \scrI , and rejects with probability at least 2/3 when f is \epsilon -far
from satisfying \scrI . The query complexity of a tester is the number of queries to f .

We can naturally view CSP(A) as an assignment problem: for each instance on
a set of variables V , the associated assignments are the mappings from V to A, and
the notion of satisfying assignments is as described above. Note that an input to the
assignment testing problem corresponding to CSP(A) is a tuple (\scrI , \epsilon , f), where \scrI is
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an instance of CSP(A), \epsilon is an error parameter, and f is an assignment to \scrI . In order
to distinguish \scrI from the tuple (\scrI , \epsilon , f), we always call the former instance and the
latter input.

2.1.1. Gap-preserving local reductions. We will frequently use the following
reduction when constructing algorithms as well as showing lower bounds.

Definition 2.1 (gap-preserving local reduction). Given assignment problems \scrP 
and \scrP \prime , there is a (randomized) gap-preserving local reduction from \scrP to \scrP \prime if there
exist a function t(n) and constants c1, c2 satisfying the following: Given a \scrP -instance
\scrI of with variable set V and an assignment f for \scrI , there exist a \scrP \prime -instance \scrI \prime with
variable set V \prime and an assignment f \prime for \scrI \prime such that the following hold:

1. | V \prime | \leq t(| V | ).
2. If f is a satisfying assignment of \scrI , then f \prime is a satisfying assignment of \scrI \prime .
3. For any \epsilon \in (0, 1), if dist\scrI (f) \geq \epsilon , then Pr[dist\scrI \prime (f \prime ) \geq c1\epsilon ] \geq 9/10 holds,

where the probability is over internal randomness.
4. Any query to f \prime can be answered by making at most c2 queries to f .

A linear reduction is defined to be a gap-preserving local reduction for which the
function t(n) is O(n).

Lemma 2.2 (see [34]). Let \scrP and \scrP \prime be assignment problems. Suppose that there
exists an \epsilon -tester for \scrP \prime with query complexity q(n, \epsilon ) for any \epsilon \in (0, 1), where n is the
number of variables in the given instance of \scrP \prime , and that there exists a gap-preserving
local reduction from \scrP to \scrP \prime with function t. Then there exists an \epsilon -tester for \scrP with
query complexity O(q(t(n), O(\epsilon ))) for any \epsilon > 0, where n is the number of variables
in the given instance of \scrP . In particular, linear reductions preserve constant-query
and sublinear-query testability.

As another application of gap-preserving local reductions, the following fact is
known.

Lemma 2.3 (Lemmas 6.4 and 6.5 of [34]). Let A,A\prime be relational structures. If
the relations of A are preserved by the operations of some finite algebra in \scrV (Alg(A\prime )),
and CSP(A\prime ) is constant-query testable, then CSP(A) is constant-query testable.

3. Constant-query testability. In this section, assume that A = (A; \Gamma ) is a
structure that has a majority polymorphism m(x, y, z) and a Maltsev polymorphism
p(x, y, z). It is known [11] that this is equivalent to the variety \scrA generated by the
algebra Alg(A) being congruence distributive and congruence permutable. This means
that for each algebra \BbbB \in \scrA , the lattice of congruences of \BbbB satisfies the distributive
law, and that for each pair of congruences \alpha and \beta of \BbbB , the relations \alpha \circ \beta and \beta \circ \alpha 
are equal. Such varieties are also said to be arithmetic.

An important feature of \scrA (and in fact of any congruence distributive variety
generated by a finite algebra) is that every subdirectly irreducible member of \scrA has
size bounded by | A| (see [11]). We will make use of the fact that an algebra is sub-
directly irreducible if and only if the intersection of all of its nontrivial congruences is
nontrivial. This is equivalent to the algebra having a smallest nontrivial congruence.

In this section, we will show that CSP(A) is constant-query testable. Some of
the ideas found in this section were inspired by the paper [8].

For our analysis, it is useful to introduce the problem CSP(\scrV ) for each variety
\scrV . An instance of CSP(\scrV ) is of the form (V, \{ Ax\} x\in V , \scrC ,\bfitw ). Each Ax is the domain
of a finite algebra, denoted by \BbbA x, in \scrV , and each constraint in \scrC is of the form
\langle (x1, . . . , xk), R\rangle , where R is the domain of a subalgebra \BbbR of \BbbA x1 \times \cdot \cdot \cdot \times \BbbA xk

. In
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particular, R is also the domain of an algebra in \scrV . The definition of an assignment
testing problem naturally carries over to instances of CSP(\scrV ).

Let \scrI = (V, \{ Ax\} x\in V , \scrC ,\bfitw ) be an instance of CSP(\scrA ). Since \scrA has a majority
term, we can assume that each constraint in \scrC is binary [1]. Furthermore, we may
assume that \scrI has a solution and is 2-consistent:

\bullet for every x, y \in V , there is a unique constraint Cxy = \langle (x, y), Rxy\rangle of \scrI 
with scope (x, y), and the constraint relation Rxy is a subdirect product of
Ax and Ay;

\bullet for x \in V , Rxx is the equality relation 0Ax
on the set Ax; and

\bullet if x, y, z \in V and (a, b) \in Rxy, then there is an element c \in Az such that
(a, c) \in Rxz and (b, c) \in Ryz.

Note that from 2-consistency it follows that for all x, y \in V , Ryx = R - 1
xy = \{ (b, a) | 

(a, b) \in Rxy\} for any x, y \in V . Under these assumptions, we may write \scrI as

(V, \{ Ax\} x\in V , \{ Rxy\} (x,y)\in V 2 ,\bfitw )

or simply \scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ). It is well known that any CSP instance over
a template having a majority polymorphism can be transformed to a 2-consistent
instance of the form just described in polynomial time without changing the set of
satisfying assignments; see [23] or [8] for more details. So, there is no loss in generality
in assuming throughout the rest of this section that any instance of CSP(\scrA ) considered
will be 2-consistent and have only binary constraints.

Since \scrA is assumed to be congruence permutable, then for any x \not = y \in V , the
binary relation Rxy is rectangular, that is, (a, c), (a, d), (b, d) \in Rxy implies (b, c) \in Rxy

(in Lemma 4.9 we show the converse, i.e., a failure of congruence permutability implies
a failure of rectangularity). As noted in Lemma 2.10 of [8], this is equivalent to Rxy

being a thick mapping. This means that there are congruences \theta xy of \BbbA x and \theta yx of
\BbbA y such that modulo the congruence \theta xy\times \theta yx on \BbbR xy, the relation Rxy is the graph of
an isomorphism \phi xy from \BbbA x/\theta xy to \BbbA y/\theta yx and such that for all a \in Ax and b \in Ay,
(a, b) \in Rxy if and only if \phi xy(a/\theta xy) = b/\theta yx. In this situation, we say that Rxy is a
thick mapping with respect to \theta xy, \theta yx, and \phi xy. For future reference, we note that
if for some variables x \not = y the congruence \theta xy = 0Ax

, then the relation Ryx is the
graph of a surjective homomorphism from \BbbA y to \BbbA x.

3.1. A factoring reduction. Let \scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ) be a 2-consistent
instance of CSP(\scrA ), and for each x \in V let \mu x =

\bigwedge 
y \not =x \theta xy, a congruence of \BbbA x. We

say that Ax is prime if \mu x is the equality congruence 0Ax
and factorable otherwise.

Roughly speaking, if Ax is not prime, then we can factor Ax by \mu x without changing
the problem, because no constraint of \scrI distinguishes values within any \mu x-class.
Formally, we define the factoring reduction as in Algorithm 3.1.

Algorithm 3.1

1: procedure Factor(\scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ), \epsilon , f)
2: for x \in V do
3: Ax \leftarrow Ax/\mu x.
4: f(x)\leftarrow f(x)/\mu x.

5: for (x, y) \in V \times V do
6: Rxy \leftarrow \{ (a/\mu x, b/\mu y) | (a, b) \in Rxy\} .
7: return (\scrI , \epsilon , f).
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Let (\scrI , \epsilon , f) be an input of CSP(\scrA ) and let (\scrI \prime , \epsilon \prime , f \prime ) = Factor(\scrI , \epsilon , f). It is
clear that since the instance \scrI of CSP(\scrA ) is assumed to be 2-consistent, then the
instance \scrI \prime will also be 2-consistent. Furthermore, the sizes of the domains of \scrI \prime are
no larger than the sizes of the domains of \scrI . Now we show that the factoring reduction
is a linear reduction.

Lemma 3.1. Let (\scrI , \epsilon , f) be an input of CSP(\scrA ) and let (\scrI \prime , \epsilon \prime , f \prime ) = Factor(\scrI ,
\epsilon , f). If (\scrI \prime , \epsilon \prime , f \prime ) is testable with q(\epsilon \prime ) queries, then (\scrI , \epsilon , f) is testable with q(O(\epsilon ))
queries.

Proof. We show that the factoring reduction is a linear reduction. Let the original
and reduced instances be

\scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ) and \scrI \prime = (V \prime , \{ A\prime 
x\} x\in V , \{ R\prime 

xy\} ,\bfitw \prime ),

respectively.
Note that | V \prime | = | V | and we can determine the value of f \prime (x) by querying f(x)

once.
If f satisfies \scrI , then f \prime also satisfies \scrI \prime . Suppose that f \prime is \epsilon -close to satisfying \scrI \prime ,

and let g\prime be a satisfying assignment of \scrI \prime with dist\scrI \prime (f \prime , g\prime ) \leq \epsilon . Then we define g to
be any assignment for \scrI such that for x \in V , if f \prime (x) = g\prime (x), then g(x) = f(x), and
if f \prime (x) \not = g\prime (x), then g(x) is taken to be an arbitrary element in the \mu x-class g\prime (x).
Then g satisfies \scrI and dist\scrI (f, g) = dist\scrI \prime (f \prime , g\prime ) \leq \epsilon .

To summarize, the factoring reduction is a gap-preserving local reduction with
t(n) = n, c1 = 1, and c2 = 1.

Example 7 (Example 3, continued). Let (\scrI , \epsilon , f) be an input of CSP(R), where

\scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw )

is a 2-consistent instance. So each Ax is equal to A2 \times A3 \times A5, where each Ap is
either Fp or \{ a\} for some a \in Fp. For any x \in V , \mu x will be a congruence on Ax and
will be equal to the kernel of a projection map onto some of the factors of Ax. So,
after applying Factor, the resulting instance will have domains that are isomorphic
to a product of one, two, or three of the sets F2, F3, and F5, with the corresponding
constraints reduced accordingly. \blacksquare 

3.2. Reduction to instances with subdirectly irreducible domains. In
this section, we provide a reduction that produces instances whose domains are all
subdirectly irreducible. Suppose that \BbbA is a subdirect product of two algebras \BbbA 1, \BbbA 2

from \scrA and that \BbbR is a subdirect product of \BbbA and \BbbB for some \BbbB \in \scrA . We can project
the relation R onto the factors of \BbbA to obtain two new binary relations from A1 to B
and from A2 to B, respectively:

R1 = \{ (a1, b) | there is some (a1, c2) \in A with ((a1, c2), b) \in R\} ,
R2 = \{ (a2, b) | there is some (c1, a2) \in A with ((c1, a2), b) \in R\} .

The following shows that the relation R can be recovered from the relations R1, R2,
and A (considered as a relation from A1 to A2).

Lemma 3.2. For all a1 \in A1, a2 \in A2, and b \in B, the following are equivalent:
\bullet ((a1, a2), b) \in R;
\bullet (a1, b) \in R1, (a2, b) \in R2, and (a1, a2) \in A.
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Proof. One direction of this claim follows by construction. For the other, suppose
that (a1, b) \in R1, (a2, b) \in R2, and (a1, a2) \in A. Then there are elements ci \in Ai,
for i = 1, 2, with (a1, c2), (c1, a2) \in A, ((a1, c2), b), ((c1, a2), b) \in R. Since R is
subdirect in A\times B and (a1, a2) \in A, then there is some d \in B with ((a1, a2), d) \in R.
Applying the majority term of \scrA coordinatewise to the tuples ((a1, c2), b), ((c1, a2), b),
and ((a1, a2), d) from R we produce the tuple ((a1, a2), b) \in R, as required.

Lemma 3.2 allows us to split a domain of an instance of CSP(\scrA ) into subdirectly
irreducible domains. Formally, we define the splitting reduction as in Algorithm 3.2.

Algorithm 3.2

1: procedure Split(\scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ), \epsilon , f)
2: while there exists x \in V such that \BbbA x is not subdirectly irreducible or trivial

do
3: Replace \BbbA x in \scrI with an isomorphic nontrivial subdirect product of \BbbA x1

\times 
\BbbA x2 for some quotients \BbbA x1 , \BbbA x2 of \BbbA x such that \BbbA x1 is subdirectly irreducible.

4: V \leftarrow (V \setminus \{ x\} )\cup \{ x1, x2\} , where x1 and x2 are newly introduced variables.
5: Remove the domainAx and add the domainsAx1

andAx2
over the variables

x1 and x2, respectively.
6: \scrC \leftarrow \scrC \setminus \{ \langle (x, x), Rxx\rangle , \langle (x, y), Rxy\rangle , \langle (y, x), Ryx\rangle \} y\in V \setminus \{ x\} .
7: \scrC \leftarrow \scrC \cup \{ \langle (x1, x1), 0Ax1

\rangle , \langle (x2, x2), 0Ax2
\rangle , \langle (x1, x2), Ax\rangle , \langle (x2, x1), A

 - 1
x \rangle \} .

8: \scrC \leftarrow \scrC \cup \{ \langle (x1, y), (Rxy)1\rangle , \langle (x2, y), (Rxy)2\rangle , \langle (y, x1), (Rxy)
 - 1
1 \rangle ,

\langle (y, x2), (Rxy)
 - 1
2 \rangle \} y\in V \setminus \{ x\} .

9: Remove x from the domain of \bfitw and add x1 and x2.
10: Set \bfitw (x1) = \bfitw (x)/2 and \bfitw (x2) = \bfitw (x)/2.
11: Remove x from the domain of f and add x1 and x2.
12: Set f(x1) \in Ax1 and f(x2) \in Ax2 so that (f(x1), f(x2)) = f(x).

13: return (\scrI , \epsilon /2| A| , f).

Let (\scrI , \epsilon , f) be an input of CSP(\scrA ) and let (\scrI \prime , \epsilon \prime , f \prime ) = Split(\scrI , \epsilon , f). It is clear
that since \scrI is assumed to be a 2-consistent instance of CSP(\scrA ), then the splitting
reduction constructs another 2-consistent instance \scrI \prime of CSP(\scrA ) whose domains are
all subdirectly irreducible and so have size bounded by | A| (and are no bigger than
the domains of \scrI ). The next lemma shows that splitting domains of an instance does
not affect the primeness of the instance's domains.

Lemma 3.3. Let \scrI \prime be the instance of CSP(\scrA ) obtained by splitting a domain \BbbA x

of another instance \scrI into two subdirect factors \BbbA x1
and \BbbA x2

as in the Split procedure.
If the domain \BbbA x is prime in \scrI , then the domains \BbbA x1 and \BbbA x2 are prime in \scrI \prime . If
\BbbA y is some other domain of \scrI , then \theta yx = \theta yx1 \cap \theta yx2 , and so if \BbbA y is prime in \scrI ,
then it remains prime in \scrI \prime .

Proof. Let \scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ) be given and suppose that the domain \BbbA x is
a subdirect product of the algebras \BbbA x1

and \BbbA x2
. To produce \scrI \prime from \scrI by splitting

\BbbA x, we replace the variable x and the domain Ax with the variables x1 and x2 and
the corresponding domains Ax1 and Ax2 . For each y \in V with x \not = y, we replace the
constraint \langle (x, y), Rxy\rangle with the constraints \langle (x1, y), (Rxy)1\rangle and \langle (x2, y), (Rxy)2\rangle and
add the constraint \langle (x1, x2), Ax\rangle .

If the domain \BbbA x is prime in \scrI , then there are k \geq 1 and variables yi \in V \setminus \{ x\} ,
for 1 \leq i \leq k, such that

\bigwedge 
1\leq i\leq k \theta xyi

= 0Ax
. To show that \BbbA x1

is prime in \scrI \prime it will
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suffice to show that \left(  \bigwedge 
1\leq i\leq k

\theta x1yi

\right)  \wedge \theta x1x2
= 0Ax1

.

To establish this, suppose that (a1, a
\prime 
1) belongs to the left-hand side of this equality.

We will show that a1 = a\prime 1. We have that (a1, a
\prime 
1) \in \theta x1yi

for 1 \leq i \leq k and
(a1, a

\prime 
1) \in \theta x1x2 . From the latter membership it follows that there is some c \in Ax2

such that (a1, c), (a
\prime 
1, c) \in Ax. From (a1, a

\prime 
1) \in \theta x1yi it follows that there is some

u \in Ayi
with (a1, u), (a

\prime 
1, u) \in (Rxyi

)1. We can conclude that there are d, d\prime \in Ayi

with ((a1, d), u), ((a\prime 1, d
\prime ), u) \in Rxyi

. We then have that ((a1, d), (a
\prime 
1, d

\prime )) \in \theta xyi
.

We can now apply the majority term of \scrA coordinatewise to the following three
pairs of members of \theta xyi

to establish that ((a1, c), (a
\prime 
1, c)) \in \theta xyi

: ((a1, d), (a
\prime 
1, d

\prime )),
((a1, c), (a1, c)), and ((a\prime 1, c), (a

\prime 
1, c)). We've shown that (a1, c) and (a\prime 1, c) are \theta xyi-

related for all i \leq k, and so we have that (a1, c) = (a\prime 1, c), which implies that a1 = a\prime 1,
as required. Thus \BbbA x1

is prime in \scrI \prime , and by symmetry \BbbA x2
is also prime.

A similar use of the majority polymorphism can establish the last part of this
lemma.

Now we show that the splitting reduction is a gap-preserving local reduction.

Lemma 3.4. Let (\scrI , \epsilon , f) be an input of CSP(\scrA ) and let (\scrI \prime , \epsilon \prime , f \prime ) = Split(\scrI , \epsilon , f).
If (\scrI \prime , \epsilon \prime , f \prime ) is testable with q(\epsilon \prime ) queries, then (\scrI , \epsilon , f) is testable with q(O(\epsilon )) queries.

Proof. We show that the splitting reduction is a linear reduction.
Let \scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ) and \scrI \prime = (V \prime , \{ A\prime 

x\} , \{ R\prime 
xy\} ,\bfitw \prime ) be the original in-

stance and the reduced instance, respectively.
In the reduction, every variable x of V is ultimately split into variables x1, . . . , xkx

from V \prime , and the domain \BbbA x is replaced by subdirectly irreducible domains \BbbA 1
x, . . . ,\BbbA kx

x

corresponding to these variables such that \BbbA x is isomorphic to a subdirect product of
these new domains. Since each of the domains has size bounded by | A| , then kx \leq | A| 
for all x \in V , and so after completely splitting \BbbA x into the kx factors, we have that
\bfitw (x) \leq 2| A| \bfitw \prime (xi) for each i \in [kx]. We also have that

\sum 
i\in [kx]

\bfitw \prime (xi) = \bfitw (x) for
each x \in V .

We can determine the value of f \prime (xi), where xi is added when splitting the variable
x; we only need to know the value of f(x).

If f satisfies \scrI , then f \prime satisfies \scrI \prime by Lemma 3.2. Suppose that f \prime is \epsilon /(2| A| )-
close to satisfying \scrI \prime , and let g\prime be a satisfying assignment for \scrI \prime with dist\scrI \prime (f \prime , g\prime ) \leq 
\epsilon /(2| A| ). Because the tuple (g\prime (x1), . . . , g

\prime (xkx
)) is in Ax, we can naturally define an

assignment g for \scrI by setting g(x) = (g\prime (x1), . . . , g
\prime (xkx

)) \in Ax. Then g is a satisfying
assignment from Lemma 3.2. Moreover,

dist\scrI (f, g) =
\sum 

x\in V :\exists i\in [kx],g\prime (xi)\not =f \prime (xi)

\bfitw (x)

\leq 
\sum 
x\in V

\sum 
i\in [kx]:g\prime (xi) \not =f \prime (xi)

2| A| \bfitw \prime (xi)

= 2| A| dist\scrI \prime (f \prime , g\prime ) \leq \epsilon .

To summarize, the splitting reduction is a gap-preserving local reduction with
t(n) = | A| , c1 = 1/2| A| , and c2 = 1.

Example 8 (Example 3, continued). After applying the procedure Split, each of
the domains of the resulting instance will be trivial or isomorphic to Fp for some
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p = 2, 3, or 5. For variables x \not = y, the binary constraint from Ax to Ay will either
be trivial (i.e., equal to Ax \times Ay) or equal to the graph of an isomorphism from Ax

to Ay. Since this new instance will be reduced, then for any nontrivial Ay there will
be at least one x, with the latter holding. \blacksquare 

3.3. Isomorphism reduction. By applying the factoring reduction and then
the splitting reduction to an instance of CSP(\scrA ) we end up with an instance whose
domains are either trivial or subdirectly irreducible and prime. For such an instance,
we have the following property.

Lemma 3.5. Let \scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ) be an instance of CSP(\scrA ) such that
| V | > 1 and such that every domain is either trivial or is subdirectly irreducible and
prime. Then, for each variable x \in V , there is at least one variable y \not = x so that
\theta xy = 0Ax

and for such variables y, the relation Ryx is the graph of a surjective
homomorphism from \BbbA y to \BbbA x.

Proof. If | Ax| = 1, then the result follows trivially. Otherwise, we have that the
congruence \mu x =

\bigwedge 
y \not =x \theta xy of \BbbA x is equal to 0Ax

, since \BbbA x is prime. But, since this
algebra is subdirectly irreducible, it follows that for some y \not = x, \theta xy = 0Ax . Since
Ryx is a thick mapping with \theta xy = 0Ax it follows that Ryx is the graph of a surjective
homomorphism from \BbbA y to \BbbA x.

Let \scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ) be an instance of CSP(\scrA ) with | V | > 1 and with the
property that every domain is either trivial or is subdirectly irreducible and prime.
Define the relation \sim on V by x \sim y if and only if the relation Rxy is the graph of an
isomorphism from \BbbA x to \BbbA y. Using the 2-consistency of \scrI , the relation \sim is naturally
an equivalence relation on V . The following corollary to Lemma 3.5 establishes that
unless all of the domains of \scrI are trivial, the relation \sim is nontrivial.

Corollary 3.6. For \scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ) an instance of CSP(\scrA ) as in Lem-
ma 3.5, if x \in V is such that the domain Ax has maximal size and has at least two
elements, then there is some y \in V with x \not = y and x \sim y.

Proof. If Ax has maximal size and has at least two elements, then let y \in V be
a variable such that x \not = y and Ryx is the graph of a surjective homomorphism from
\BbbA y to \BbbA x. Since Ax has maximal size, it follows that | Ay| = | Ax| , and so Ryx is the
graph of an isomorphism from \BbbA y to \BbbA x.

For a variable x \in V , let [x] := x/\sim denote the \sim -class of V that x belongs to.
Let S \subseteq V be an arbitrary complete system of representatives of this equivalence
relation, and for any \sim -class u, let s(u) \in V be the unique element x \in S such that
x \in u. In particular [s(u)] = u holds.

Given an assignment f for \scrI , we can test the input (\scrI , \epsilon , f) in two steps. First, we
test whether the values of f in the \sim -classes of V are consistent using a consistency
algorithm (Algorithm 3.3) and then we test the input obtained by contracting the
\sim -classes using Algorithm 3.4. Explanations of these two steps are contained in the
next two subsections.

3.3.1. Testing \sim -consistency. We say that the input (\scrI , \epsilon , f) is \sim -consistent
if, for each x, y \in V with x \sim y, (f(x), f(y)) \in Rxy.



CONSTANT-QUERY TESTABILITY OF ASSIGNMENTS TO CSPs 1035

Algorithm 3.3

1: procedure Consistency(\scrI , \epsilon , f)
2: Sample a set U of \Theta (1/\epsilon ) \sim -classes of \scrI . In each sampling, u is chosen with

probability \bfitw (u).
3: for each u \in U do
4: Let S be the set obtained by sampling \Theta (1/\epsilon ) variables in u with replace-

ment. In each sampling, a variable x \in u is chosen with probability \bfitw (x)/\bfitw (u).
5: if there are two variables x, y \in S with f(y) \not = Rxy(f(x)) then
6: Reject.

7: Accept.

For a \sim -class u \subseteq V and b \in As(u), we define

\bfitw (u, b) =
\sum 

y\in u:f(y)=Rs(u)y(b)

\bfitw (y),

\bfitw (u) =
\sum 

b\in As(u)

\bfitw (u, b), and

\bfitw maj(u) = max
b\in As(u)

\bfitw (u, b).

Note that \bfitw (u) is also equal to
\sum 

x\in u \bfitw (x), the sum of the weights of the variables
in u. In addition, we define \epsilon u to be (\bfitw (u)  - \bfitw maj(u))/\bfitw (u) and observe that \epsilon u \leq 
(| A|  - 1)/| A| since | As(x)| \leq | A| , and so \bfitw (u) is the sum of at most | A| terms, each of
which is at most\bfitw maj(u). The quantity \epsilon u represents the fraction of values, by weight,
of f | u that need to be altered in order to establish \sim -consistency of the assignment
over the class u. Let fmaj be the assignment obtained from f in this way. That is, for
x \in V , fmaj(x) = Rs([x])x

\bigl( 
argmaxb\in As([x])

\bfitw ([x], b)
\bigr) 
.

We need the following simple proposition to analyze our algorithm.

Proposition 3.7. Let X be a random variable taking values in [0, 1] such that

E [X] \geq \epsilon for some \epsilon \geq 0. Then Pr[X \geq \epsilon /2] \geq \epsilon /2 holds.

Proof. Let p = Pr[X \geq \epsilon /2]. Then

\epsilon \leq E[X] \leq 1 \cdot p+ \epsilon 

2
(1 - p) \leq p+

\epsilon 

2
.

Hence, p \geq \epsilon /2 holds.

In order to test \sim -consistency, we run Algorithm 3.3.

Lemma 3.8. Algorithm 3.3 tests \sim -consistency with query complexity O(1/\epsilon 2).

Proof. It is clear that Algorithm 3.3 accepts if f is \sim -consistent and the query
complexity is O(1/\epsilon 2). Suppose that f is \epsilon -far from \sim -consistency, which means
that dist\scrI (f, fmaj) \geq \epsilon . Then we have E[\epsilon u] =

\sum 
u:\sim -class \bfitw (u)\epsilon u \geq \epsilon , where in the

calculation of the expectation, a \sim -class u is chosen with probability \bfitw (u). Note that
\epsilon u \in [0, 1] for every \sim -class u, and so we can apply Lemma 3.7, to conclude that we
sample a \sim -class u with \epsilon u \geq \epsilon /2 with probability at least \epsilon /2. Hence, the probability

that U contains a \sim -class u with \epsilon u \geq \epsilon /2 is at least 1  - (1 - \epsilon /2)
\Theta (1/\epsilon ) \geq 5/6

by choosing the hidden constant large enough. For a \sim -class u with \epsilon u \geq \epsilon /2, the
probability that we find two vertices x, y \in u with f(y) \not = Rxy(f(x)) in S is at least

1 - (1 - \epsilon u)
\Theta (1/\epsilon )  - (\epsilon u)

\Theta (1/\epsilon ) \geq 1 - (1 - \epsilon /2)
\Theta (1/\epsilon )  - ((| A|  - 1)/| A| )\Theta (1/\epsilon )

(3.1)
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Algorithm 3.4

1: procedure Isomorphism(\scrI , \epsilon , f)
2: for each \sim -class u do
3: Sample a variable x \in u with probability \bfitw (x)/\bfitw (u), and let xu be the

sampled variable.
4: V \prime \leftarrow V \prime \cup \{ u\} .
5: A\prime 

u \leftarrow As(u).
6: \bfitw \prime (u)\leftarrow \bfitw (u).
7: f \prime (u)\leftarrow Rxus(u)(f(xu)).

8: for each pair (u, u\prime ) of \sim -classes do
9: R\prime 

uu\prime \leftarrow Rxuxu\prime .

10: return ((V \prime , \{ A\prime 
x\} , \{ R\prime 

xy\} ,\bfitw \prime ), \epsilon /2, f \prime ).

since \epsilon u \geq \epsilon /2 for this class u and, as noted earlier, \epsilon u \leq (| A|  - 1)/| A| for every class
u. By choosing the hidden constant large enough we can ensure that (3.1) is at least
5/6. By combining these bounds, we obtain two vertices x, y with f(y) \not = Rxy(f(x))
with probability at least 2/3.

3.3.2. Isomorphism reduction. Using Algorithm 3.3, we can reject an input
(\scrI , \epsilon , f) if it is far from satisfying \sim -consistency. In this subsection we will consider
a reduction from (\scrI , \epsilon , f) to another input (\scrI \prime , \epsilon \prime , f \prime ) assuming that it has not been
rejected by Algorithm 3.3.

Our reduction, as described in Algorithm 3.4, contracts the variables in each \sim -
class to a single variable from that class. It should be clear that since the instance \scrI of
CSP(\scrA ) is assumed to be 2-consistent, the reduction will produce another 2-consistent
instance \scrI \prime of CSP(\scrA ). As the next lemma shows, unless the domains of \scrI all have
size one, some of the domains of \scrI \prime will no longer be prime.

Lemma 3.9. Let (\scrI , \epsilon , f) be an input of CSP(\scrA ) for which domains of \scrI are either
trivial or prime and subdirectly irreducible, and let (\scrI \prime , \epsilon \prime , f \prime ) = Isomorphism(\scrI , \epsilon , f).
If some domain of \scrI has more than one element, then any domain of \scrI \prime of maximal
size will not be prime, unless \scrI \prime has only one variable.

Proof. Suppose that \scrI \prime has more than one variable. This is equivalent to there
being more than one \sim -class for \scrI . Let x be a variable of \scrI \prime with | Ax| of maximal
size, and let y be any other variable of \scrI \prime . Note that according to the construction
of \scrI \prime from \scrI , both x and y are also variables of \scrI with x \not \sim y. Furthermore, | Ax| has
maximal size among all of the domains of \scrI , and so the relation Ryx cannot be the
graph of a surjective homomorphism from \BbbA y to \BbbA x. If it were, then it would be the
graph of an isomorphism, contradicting that x \not \sim y. Thus the congruence \theta xy \not = 0Ax

.
Since \BbbA x is subdirectly irreducible it follows that \mu x =

\bigwedge 
y \not =x \theta xy is also not equal to

0Ax and so Ax is not prime in \scrI \prime .
Lemma 3.10. Let (\scrI , \epsilon , f) be an input of CSP(\scrA ), and suppose that f is \epsilon /20-close

to satisfying \sim -consistency. Let (\scrI \prime , \epsilon \prime , f \prime ) = Isomorphism(\scrI , \epsilon , f). If (\scrI \prime , \epsilon \prime , f \prime ) is
testable with q(\epsilon \prime ) queries, then (\scrI , \epsilon , f) is testable with q(O(\epsilon )) queries.

Proof. We show that the reduction in Algorithm 3.4 is a linear reduction. Let
\scrI = (V, \{ Ax\} , \{ Rxy\} ,\bfitw ) and \scrI \prime = (V \prime , \{ A\prime 

x\} , \{ R\prime 
xy\} ,\bfitw \prime ) be the original instance and

the reduced instance, respectively.
Note that | V \prime | \leq | V | and we can determine the value of f \prime (u) by querying f(xu).
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Also, if f satisfies \scrI , then it is clear that f \prime satisfies \scrI \prime .
We want to show that if f is far from satisfying \scrI , then f \prime is also far from satisfying

\scrI \prime with high probability. To this end, we first show that the following quantity is small
with high probability:

dist(f, f \prime ) :=
\sum 

u:\sim -class

\sum 
x\in u:

f \prime (u)\not =Rxs(u)(f(x))

\bfitw (x).

For a \sim -class u, we define

distu(f, f
\prime ) := 1 - \bfitw (u, f \prime (u))

\bfitw (u)
=

\sum 
x\in u:

f \prime (u)\not =Rxs(u)(f(x))

\bfitw (x)

\bfitw (u)
.

Note that we have dist(f, f \prime ) =
\sum 

u:\sim -class \bfitw (u)distu(f, f
\prime ).

Then for any \sim -class u,

E
xu

[distu(f, f
\prime )] =

\sum 
b\in As(u)

\bfitw (u, b)

\bfitw (u)

\biggl( 
1 - \bfitw (u, b)

\bfitw (u)

\biggr) 

\leq \bfitw maj(u)

\bfitw (u)

\biggl( 
1 - \bfitw maj(u)

\bfitw (u)

\biggr) 
+

\biggl( 
1 - \bfitw maj(u)

\bfitw (u)

\biggr) 
\cdot 1

\leq 2

\biggl( 
1 - \bfitw maj(u)

\bfitw (u)

\biggr) 
= 2\epsilon u.

Thus, E\{ xu\} u:\sim -class
[dist(f, f \prime )] is equal to

E
\{ xu\} 

\biggl[ \sum 
u:\sim -class

\bfitw (u)distu(f, f
\prime )

\biggr] 
\leq 

\sum 
u:\sim -class

2\bfitw (u)\epsilon u \leq 
\epsilon 

10
.

From Markov's inequality, we have Pr\{ xu\} [dist(f, f
\prime ) \geq \epsilon /2] \leq 1/20.

Let g\prime be a satisfying assignment for \scrI \prime closest to f \prime . We define an assignment g
for \scrI as g(x) = Rs([x])x(g

\prime ([x])). It is clear that g is a satisfying assignment. Since
we have dist(f, f \prime ) + dist(f \prime , g\prime ) \geq dist(f, g) \geq \epsilon , it follows that Pr\{ xu\} [dist(f

\prime , g\prime ) \geq 
\epsilon /2] \geq 19/20.

To summarize, the isomorphism reduction is a gap-preserving local reduction with
t(n) \leq n, c1 = 1/2, and c2 = 1.

Example 9 (Example 3, continued). The \sim -classes of the current version of our
instance will consist of domains that are pairwise isomorphic to each other via the
corresponding constraint relations. After performing the Isomorphism reduction on
this instance, we will end up with an instance whose constraint relations are trivial,
i.e., for variables x \not = y, Rxy = Ax \times Ay. After further reducing this instance via the
Factor reduction, we will end up with an instance whose domains all have size equal
to one. \blacksquare 

Finally, we combine Algorithms 3.3 and 3.4 to produce Algorithm 3.5 and make
use of it in the following.

Lemma 3.11. Let (\scrI , \epsilon , f) be an input of CSP(\scrA ), and suppose that Isomor-
phism\prime (\scrI , \epsilon , f) returned another instance (\scrI \prime , \epsilon \prime , f \prime ). If (\scrI \prime , \epsilon \prime , f \prime ) is testable with q(\epsilon \prime )
queries, then (\scrI , \epsilon , f) is testable with q(O(\epsilon )) queries.
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Algorithm 3.5

1: procedure Isomorphism\prime (\scrI , \epsilon , f)
2: if Consistency(\scrI , \epsilon /20, f) rejects then
3: Reject.
4: else
5: return Isomorphism(\scrI , \epsilon , f)

Proof. Consider Algorithm 3.5. If f satisfies \scrI , then the \sim -consistency test always
accepts, and hence we always accept with probability 2/3 from Lemma 3.10. Suppose
that f is \epsilon -far from satisfying \scrI . If f is \epsilon /20-far from satisfying \sim -consistency, then the
\sim -consistency test rejects with probability at least 2/3. If f is \epsilon /20-close to satisfying
\sim -consistency, then we reject with probability at least 2/3 by Lemma 3.10.

3.4. Putting things together. Combining the reductions introduced so far we
can design a shrinking reduction, which shrinks the maximum size of the domains of
an instance of CSP(\scrA ).

Algorithm 3.6

1: procedure Shrink(\scrI , \epsilon , f)
2: (\scrI , \epsilon , f)\leftarrow Factor(\scrI , \epsilon , f).
3: (\scrI , \epsilon , f)\leftarrow Split(\scrI , \epsilon , f).
4: if Isomorphism\prime (\scrI , \epsilon , f) rejects then
5: Reject.
6: else
7: (\scrI , \epsilon , f)\leftarrow the input returned by Isomorphism\prime .

8: (\scrI , \epsilon , f)\leftarrow Factor(\scrI , \epsilon , f).
9: return (\scrI , \epsilon , f).

Lemma 3.12. Let (\scrI , \epsilon , f) be an input of CSP(\scrA ), and suppose that Shrink(\scrI , \epsilon , f)
returned another instance (\scrI \prime , \epsilon \prime , f \prime ). If we can test (\scrI \prime , \epsilon \prime , f \prime ) with q(\epsilon \prime ) queries, then
we can test (\scrI , \epsilon , f) with q(O(\epsilon )) queries. Moreover, the reduction reduces the maxi-
mum size of a domain of the given input if this maximum is greater than one and the
reduced instance has more than one variable.

Proof. We note that at each step of the algorithm, the domains of the instances
that are produced are no larger than the domains of the original instance. Further-
more, if any of the domains of the original instance has size greater than one, then it
follows from Lemma 3.9 that the maximal size of the domains of the output instance
will be smaller than that of the original instance, as long as the output instance has
more than one variable.

Theorem 3.13. Let A be a structure that has majority and Maltsev polymor-
phisms. Then CSP(A) is constant-query testable with one-sided error.

Proof. By applying the shrinking reduction at most | A| times, we get an instance
for which every variable has a domain of size one or which has only one variable. In
either case, the testing becomes trivial.

4. Non-constant-query testability. In this section we consider structures A
that do not have a majority polymorphism or do not have a Maltsev polymorphism.
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As noted in the previous section, this is the same as the variety \scrV (Alg(A)) failing to
be arithmetic. For such structures we will show that CSP(A) is not constant-query
testable.

Theorem 4.1. If the relational structure A does not have a majority polymor-
phism or does not have a Maltsev polymorphism, then CSP(A) is not constant-query
testable.

Proof. From [20] we know that for a structure A, having both majority and
Maltsev polymorphisms is equivalent to \scrV (Alg(A)) being congruence meet semidis-
tributive and congruence permutable. The (negations of the) former and latter cases
are handled by Theorems 4.8 (section 4.1) and 4.12 (section 4.2), respectively.

4.1. Hardness for the non-congruence-meet-semidistributive case. Sup-
pose that \scrV (Alg(A)) is not congruence meet semidistributive. We define the singleton-
expansion of A to be A\prime = (A,\Gamma \cup \{ \{ a\} | a \in A\} ). We first observe that CSP(A\prime ) will
be sublinear-query testable if CSP(A) is. Although this observation for the Boolean
case was already given in Lemma 5 of [6], its proof was not published yet, and hence
we provide the proof for the general case here for completeness.

Lemma 4.2. Let A\prime be the singleton-expansion of A. Assume that \epsilon \ll 1
2| A| . If

CSP(A) is testable with q(n, \epsilon ) queries, then CSP(A\prime ) is testable with q(O(n), O(\epsilon ))+
\Theta (1/\epsilon ) queries.

Proof. Suppose we can test CSP(A) with q(n, \epsilon ) queries. Given an instance \scrI \prime =
(V \prime , A, \scrC \prime ,\bfitw \prime ) of CSP(A\prime ), \epsilon \ll 1

2| A| , and a query access to an assignment f \prime : V \prime \rightarrow A,

we want to test whether f \prime is a satisfying assignment or is \epsilon -far from being so. For
a \in A, define Va \subseteq V \prime to be the set of all variables v for which there is a unary
constraint ((v), \{ a\} ) in \scrC \prime . We assume\sum 

\{ \bfitw (v) | a \in A, v \in Va, f
\prime (v) \not = a\} \leq \epsilon ,(4.1)

as otherwise we can reject f \prime with high probability by sampling \Theta (1/\epsilon ) variables
uniformly at random.

Now, we define a set of variables V = (V \prime \setminus 
\bigcup 

a\in A Va) \cup \{ xa\} a\in A and define a
set of constraints \scrC by removing from \scrC \prime all unary constraints and by identifying all
variables in Va with a new variable xa for each a \in A. Next, we define \bfitw : V \rightarrow [0, 1]
by \bfitw (v) = \bfitw \prime (v)/(1 + 2\epsilon | A| ) for each v \in V \prime \setminus 

\bigcup 
a\in A Va and \bfitw (xa) = 2\epsilon for each

a \in A. Let \scrI = (V,A, \scrC ,\bfitw ) be an instance of CSP(A).
Now given an assignment f \prime : V \prime \rightarrow A to the variables of \scrI \prime , define an assignment

f : V \rightarrow A to the variables of \scrI by setting f(v) = f \prime (v) for each v \in V \prime \setminus 
\bigcup 

a\in A Va

and f(xa) = a for each a \in A. Clearly, if f \prime satisfies \scrI \prime , then f satisfies \scrI . On the
other hand, suppose f is \epsilon -close to a satisfying assignment \~f for \scrI . Then we must
have \~f(xa) = a for every a \in A from our choice of \bfitw (xa). Define \~f \prime : V \prime \rightarrow A by
setting \~f \prime (v) = \~f(v) for every v \in V \prime \setminus 

\bigcup 
a\in A Va and \~f \prime (v) = a for each a \in A and

v \in Va. Then \~f \prime satisfies \scrI \prime . From the assumption (4.1), the distance between f \prime and
\~f \prime is at most \epsilon (1 + 2\epsilon | A| ) + \epsilon \leq 3\epsilon . Thus, we have a gap-preserving local reduction
from CSP(A\prime ) to CSP(A), and so Lemma 2.2 finishes the proof.

By adding all of the unary singleton relations to A to produce A\prime it follows
that the variety \scrV (Alg(A\prime )) is idempotent and will also not be congruence meet
semidistributive. This is because whether or not an algebra generates a congruence-
meet-semidistributive variety depends solely on its idempotent term operations (see
Theorem 8.1 of [24]). For such a structure, the following is known.
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Lemma 4.3. Let A\prime be the structure as above. Then there are some finite algebra
\BbbB in \scrV (Alg(A\prime )) and some subuniverse \gamma of \BbbB 3 whose domain can be identified with
\BbbF \ell 
pk for some prime p and integers k, \ell \geq 1 such that \gamma = \{ a+b+c = 0 | a, b, c \in \BbbF \ell 

pk\} .

Proof. A combination of Theorem 4.3 and Proposition 2.1 from [18] implies that
there is some finite algebra \BbbB in \scrV (Alg(A\prime )) (in fact \BbbB will be isomorphic to a quotient
of a subalgebra of Alg(A\prime )) that is either term equivalent to the algebra with universe
\{ 0, 1\} having no basic operations or is term equivalent to the idempotent reduct
of a module over a finite ring. Theorem 2.1 of [30] provides more detail on this
module: it can be taken to be the module \BbbF \ell 

pk over the ring of \ell \times \ell matrices over
the finite field \BbbF pk for some prime number p and some integers k, \ell \geq 1. In this case,
\gamma = \{ a+ b+ c = 0 | a, b, c \in \BbbF \ell 

pk\} is a subuniverse of \BbbB 3.

In the first case where \BbbB is term equivalent to the algebra with universe \{ 0, 1\} 
having no basic operations, \gamma = \{ a + b + c = 0 | a, b, c \in \BbbF 2\} is a subuniverse of \BbbB 3

since every subset of B3 will be a subuniverse.

We now establish a linear lower bound for CSP ((B; \gamma )) for B and \gamma as in
Lemma 4.3.

We first show a linear lower bound for the case that p is an arbitrary prime and
k = \ell = 1 by extending the argument for p = 2 and k = \ell = 1 due to Ben-Sasson,
Harsha, and Raskhodnikova [5]. To this end, we introduce some definitions. For a
vertex set S in a graph, let N1(S) be the set of its unique neighbors, that is, vertices
with exactly one neighbor in S. For \lambda , \gamma > 0, we say that a bipartite graph (L,R;E)
is a (\lambda , \gamma )-right unique neighbor expander if | N1(S)| > \lambda | S| holds for any S \subseteq R with
| S| \leq \gamma | L| . For a vertex set S and an integer p \geq 2, let Np(S) be the set of neighbors
of S whose numbers of neighbors in S are nonzero modulo p. For \lambda , \gamma > 0, we say
that a bipartite graph (L,R;E) is a (\lambda , \gamma )-right p-expander if | Np(S)| > \lambda | S| for any
S \subseteq R with | S| \geq \gamma | L| . Note that the definitions of a unique neighbor expander deal
with subsets of size at most \gamma | L| , whereas the definition of a p-expander deals with
subsets of size at least \gamma | L| .

We say that a bipartite graph G = (L,R;E) is (dL, dR)-regular if every vertex
in L has degree dL and every vertex in R has degree dR. Ben-Sasson, Harsha, and
Raskhodnikova [5, Proof of Theorem 3.6] showed that a random bipartite regular
graph is both a right unique neighbor expander and a right 2-expander with high
probability. The same analysis goes through for general p, and we obtain the following.

Lemma 4.4. For any prime p, sufficiently large n, odd dL \geq 7, and constants
\gamma , \lambda , dR satisfying

\gamma \leq 1

100d2L
, \lambda < \gamma dL , dR >

2\gamma d2L

(\gamma dL  - \lambda )
2 ,

there exists a (dL, dR)-regular bipartite graph G = (L,R;E) with | L| = n that is both
a (1, \gamma )-right unique neighbor expander and a (\lambda , \gamma )-right p-expander.

For a CSP instance \scrI = (V,A, \scrC ,\bfitw ), we define its primal graph G(\scrI ) as the
bipartite graph (V, \scrC ;E) such that the pair (v, C) \in V \times \scrC belongs to E if and only if
v is in the scope of C. Now, we show the following.

Lemma 4.5. Let p be a prime and B = (\BbbF p; \Gamma ) a constraint language such that \Gamma 
contains a relation \{ (a, b, c) | a + b + c = 0\} . Then testing CSP(B) requires a linear
number of queries even when the primal graph of the input instance is restricted to be
as in Lemma 4.4 for some fixed odd dL \geq 7.
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Proof. As the proof is almost identical to that for the case p = 2 in [5], we only
highlight the difference.

For a vector \bfitx \in \BbbF n
2 , let | \bfitx | denote its Hamming weight. Showing the hardness

for the case p = 2 amounts to finding a subspace of U \subseteq \BbbF n
2 such that the basis

\{ \bfita 1, . . . ,\bfita m\} of the dual space U\bot satisfies the following properties:
\bullet The basis is \epsilon -separating ; that is, every \bfitx \in \BbbF n

2 with a unique i \in [m] satisfying
\langle \bfita i,\bfitx \rangle \not = 0 has | \bfitx | \geq \epsilon n.

\bullet The basis is (q, \mu )-local ; that is, every \bfitalpha \in \BbbF n
2 that is a sum of at least \mu m

vectors in the basis has | \bfitalpha | \geq q,
Here, we want \epsilon , \mu > 0 to be constants and q = \Omega (n). Ben-Sasson, Harsha, and
Raskhodnikova [5] constructed such a subspace from a right 2-expanderG = (L,R;E).
More specifically, they constructed a CSP instance on the variable set L with a
constraint of the form

\sum 
u\in N(v) u = 0 (mod 2) for each right vertex v \in R, where

N(v) \subseteq L is the set of neighbors of v. They showed that, when G is a (\lambda , \gamma )-right
2-expander for some \lambda , \gamma > 0 as in Lemma 4.4, the obtained subspace is (1/100d2R)-
separating and (\lambda n, \gamma )-local, as desired.

We can reuse this argument for our case by changing the Hamming weights | \bfitx | 
and | \bfitalpha | with the \ell 0 norms \| \bfitx \| 0 and \| \bfitalpha \| 0, that is, the numbers of nonzero elements
in those vectors. Here, we construct a CSP instance from a (\lambda , \gamma )-right p-expander
G = (L,R;E) for some \lambda , \gamma > 0 as in Lemma 4.4, by regarding vertices in L as
elements in \BbbF p instead of \BbbF 2. Following the analysis for the case of p = 2, we can
show that the obtained subspace is again (1/100d2R)-separating and (\lambda n, \gamma )-local.

Next, we generalize Lemma 4.5 to the case that k \geq 1.

Lemma 4.6. Let p be a prime, let k \geq 1 be an integer, and let B = (\BbbF pk ; \Gamma ) be a
constraint language such that \Gamma contains a relation \{ (a, b, c) | a + b + c = 0\} . Then
testing CSP(B) requires a linear number of queries even when the primal graph of the
input instance is restricted to be as in Lemma 4.4 for some fixed odd dL \geq 7.

Proof. Let B\prime = (\BbbF p; \{ \{ (a, b, c) | a + b + c = 0\} \} ), which is hard to test even if
the primal graph of the instance is a (1, \gamma )-right unique neighbor expander for some
\gamma > 0 by Lemma 4.5. We show a gap-preserving local reduction from CSP(B\prime ) to
CSP(B) with a constant c1 = 1/\gamma (see Definition 2.1).

Given an instance \scrI \prime = (V \prime ,\BbbF p, \scrC \prime ,\bfitw \prime ) of CSP(B\prime ) such that the primal graph
G(\scrI \prime ) is a (1, \gamma )-right unique neighbor expander, we construct an instance \scrI =
(V,\BbbF pk , \scrC ,\bfitw ), where V = V \prime , \scrC = \scrC \prime (after changing the domain from \BbbF p to \BbbF pk),
and \bfitw = \bfitw \prime . A value in \BbbF pk can be identified with a vector in \BbbF k

p, where addition

in \BbbF pk is coordinatewise addition in \BbbF k
p. Now given an assignment f \prime : V \prime \rightarrow \BbbF p to

the variables of \scrI \prime , define an assignment f : V \rightarrow \BbbF pk to the variables of \scrI by setting
f(v) = (f \prime (v), 0, . . . , 0) \in \BbbF k

p for every v \in V . Clearly, if f \prime satisfies \scrI \prime , then f satisfies

\scrI . On the other hand, suppose f is \epsilon -close to a satisfying assignment \~f for \scrI . Note
that we can assume \epsilon \leq \gamma , as otherwise the third condition in Definition 2.1 is trivial
from the choice of c1. Let S = \{ v \in V | \exists i > 1 with \~f(v)(i) \not = 0\} . Then if a constraint
of the form x+ y+ z = 0 involves a variable in S, then we must have another variable
in S in the constraint. This violates the fact that G(\scrI \prime ) is a (1, \gamma )-right unique neigh-
bor expander, and hence S = \emptyset holds. Then we can naturally recover a satisfying
assignment \~f \prime for \scrI \prime from \~f by setting \~f \prime (v) = \~f(v)(1), which is \epsilon -close to f \prime .

We further generalize to the case that \ell \geq 1. We omit the proof because it is
almost identical to that of Lemma 4.6.
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Lemma 4.7. Let p be a prime, let k, \ell \geq 1 be integers, and let B = (\BbbF \ell 
pk ; \Gamma ) be a

constraint language such that \Gamma contains a relation \{ (a, b, c) | a + b + c = 0\} . Then
testing CSP(B) requires a linear number of queries.

Theorem 4.8. Let A be a relational structure such that \scrV (Alg(A)) is not congru-
ence meet semidistributive. Then testing CSP(A) requires a linear number of queries.

Proof. The proof is immediate from Lemmas 2.3, 4.2, 4.3, and 4.7.

4.2. Hardness for the non-congruence-permutable case. Now, we con-
sider the case that the variety \scrV (Alg(A)) is not congruence permutable. We use the
following well-known fact.

Lemma 4.9. Let A be a finite relational structure that does not have a Maltsev
polymorphism. Then there are some finite algebra \BbbB in \scrV (Alg(A)) and some subuni-
verse \gamma of \BbbB 2 such that there are elements 0, 1 \in B with (0, 0), (0, 1), (1, 1) \in \gamma and
(1, 0) \not \in \gamma .

Proof. Since A does not have a Maltsev polymorphism, then \scrV (Alg(A)) is not
congruence permutable, and so there is some finite algebra \BbbB \in \scrV (Alg(A)) having
congruences \alpha and \beta such that \alpha \circ \beta \not = \beta \circ \alpha . We may assume that \alpha \circ \beta \not \subseteq \beta \circ \alpha , and
so there will be elements 0, 1 \in B with (0, 1) \in \alpha \circ \beta but (1, 0) /\in \alpha \circ \beta . Since \alpha \circ \beta is
a reflexive relation, then setting \gamma = \alpha \circ \beta works.

We now establish a superconstant lower bound for CSP((B; \gamma )) for B and \gamma as
in Lemma 4.9 based on the superconstant lower bound for monotonicity testing given
in [17]. We first note that it is not clear whether we can directly reduce monotonicity
testing to testing CSP((B; \gamma )) to obtain a superconstant lower bound for the latter
problem. The reason is that B may have more than two elements and \gamma may have
satisfying assignments other than (0, 0), (0, 1), and (1, 1), which makes it hard to
preserve \epsilon -farness through the reduction. Hence, although our proof is almost identical
to the one given in [17], we include the outline here for completeness.

Let G = (V ;E) be an undirected graph, and let M \subseteq E be a matching in G;
i.e., no two edges in M have a vertex in common. Let V (M) be the set of the
endpoints of edges in M . A matching M is called induced if the subgraph induced by
V (M) contains only the edges of M . A bipartite graph G = (X,Y ;E) is called (s, t)-
Ruzsa--Szemer\'edi if its edge set can be partitioned into at least s induced matchings
M1, . . . ,Ms, each of size at least t.

Lemma 4.10 (Theorem 16 of [17]). There exists an (n\Omega (1/ log logn), n/3  - o(n))-
Ruzsa--Szemer\'edi graph G = (X,Y ;E) with | X| = | Y | = n.

Lemma 4.11. Let B = (B; \gamma ), where \gamma is a binary relation such that for some 0,
1 \in B, (0, 0), (0, 1), and (1, 1) \in \gamma but (1, 0) /\in \gamma . Then CSP(B) is not constant-query
testable.

Proof sketch. If CSP(B) is testable with q queries, then CSP(B) is nonadaptively
testable with | B| q queries. Hence, in order to show that CSP(B) is not constant-query
testable, it suffices to show that CSP(B) is not constant-query testable nonadaptively.

Let G = (X,Y ;E) be an (s, n/3  - o(n))-Ruzsa--Szemer\'edi graph, provided as in
Lemma 4.10, where s = n\Omega (1/ log logn). Then we construct an instance \scrI = (V,B, \scrC ,\bfitw )
of CSP(B), where V = X \cup Y , \scrC = \{ \langle (x, y), \gamma \rangle | (x, y) \in E\} , and \bfitw (x) = 1/| V | for all
x \in V .

The rest of the proof, based on Yao's minimax principle, is almost identical to
the proof of Theorem 15 in [17] and we omit it. Here, we construct distributions
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DP , DN on satisfying and \Omega (1)-far assignments, respectively, and show that they
are hard to distinguish. As opposed to reductions, we can easily show that almost
all assignments in DN are \Omega (1)-far because they have \Omega (| V | ) unsatisfied constraints
imposed on disjoint sets of variables.

Theorem 4.12. Let A be a relational structure such that \scrV (Alg(A)) is not con-
gruence permutable. Then testing CSP(A) requires a linear number of queries.

Proof. The proof is immediate from Lemmas 4.9 and 4.11.

5. Discussion. Theorem 1.2 characterizes the relational structures A on general
domains for which CSP(A) is constant-query testable. Obtaining a characterization
for the sublinear-query testable case is a tantalizing open problem. In [15] we succeed
in settling this for a closely related problem, \exists CSP(A), whose instances may include
existentially quantified variables. Our characterization makes use of the following
generalization of a majority operation (see Definition 1.1).

Definition 5.1. For a nonempty set A and k \geq 3, an operation n : Ak \rightarrow A is a
k-ary near unanimity operation on A if for all a, b \in A,

n(b, a, a, . . . , a) = n(a, b, a, . . . , a) = \cdot \cdot \cdot = n(a, a, . . . , a, b) = a.

(Note that a majority operation is a 3-ary near-unanimity operation.)

In [15] we establish the following trichotomy:
1. IfA has a majority polymorphism and a Maltsev polymorphism, then \exists CSP(A)

is constant-query testable with one-sided error.
2. Otherwise, if A has a k-ary near-unanimity polymorphism for some k \geq 3,

and no Maltsev polymorphism, then \exists CSP(A) is not constant-query testable
(even with two-sided error) but is sublinear-query testable with one-sided
error.

3. Otherwise, testing \exists CSP(A) with one-sided error requires a linear number of
queries.

The third item above was obtained by reducing the problem of testing assignments
of monotone circuits to \exists CSPs. If we do not allow existentially quantified variables,
then the number of variables blows up polynomially, in the reduction, and a linear
lower bound for monotone circuits does not imply a linear lower bound for CSPs.

The above trichotomy for \exists CSPs is in terms of the number of queries needed to
test with one-sided error. Obtaining a similar trichotomy for two-sided error testers
is also an interesting open problem. Again the obstacle is that we reduce from the
problem of testing assignments of monotone circuits. It is not clear whether this
problem is hard also for two-sided error testers.
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