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Abstract
The problem of learning the solution space of an unknown formula has been studied in multiple
embodiments in computational learning theory. In this article, we study a family of such learning
problems; this family contains, for each relational structure, the problem of learning the solution
space of an unknown conjunctive query evaluated on the structure. A progression of results aimed to
classify the learnability of each of the problems in this family, and thus far a culmination thereof was
a positive learnability result generalizing all previous ones. This article completes the classification
program towards which this progression of results strived, by presenting a negative learnability
result that complements the mentioned positive learnability result. In order to obtain our negative
result, we make use of universal-algebraic concepts, and our result is phrased in terms of the varietal
property of non-congruence modularity.
Keywords: conjunctive query, prediction with membership queries, universal algebra

1. Introduction

The problem of learning the solution space of an unknown formula has long been of interest in
computational learning theory. While the general problem of learning the solution space of even
a propositional formula is known to be hard (Kearns and Valiant, 1994; Angluin and Kharitonov,
1995), researchers have considered many restricted versions of formula learning over the years, and
have obtained a variety of learnability and non-learnability results (see for example (Angluin, 1987;
Angluin et al., 1992; Bshouty et al., 2005; Jackson and Servedio, 2006; Bulatov et al., 2007; Idziak
et al., 2010; Bshouty, 2013)).

Conjunctive queries are formulas which are considered heavily in database theory and in the
theory of constraint satisfaction. They can be defined logically as formulas built from predicate
applications, equality of variables, conjunction, and existential quantification. The problem of de-
ciding, given a conjunctive query and a relational structure (which defines the predicates of the
query), whether or not the solution space of the query is non-empty, is a formulation of the con-
straint satisfaction problem, a very general NP-complete problem. One obtains a rich framework
of problems, by considering, for each relational structure B, the constraint satisfaction problem
where the relational structure is fixed as B; the computational aspects of this problem framework
are of interest and have been explored in numerous contexts (see for example Creignou et al. (2001);
Raghavendra (2008); Allender et al. (2009); Chen (2012); Bhattacharyya and Yoshida (2013); Bu-
latov (2013)). Schaefer’s celebrated dichotomy theorem (Schaefer, 1978) provides that, for each
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relational structure B with a two-element universe, the constraint satisfaction problem on B is ei-
ther polynomial-time decidable or is NP-complete. An active line of research aims to obtain a
complexity classification of the constraint satisfaction problem over all relational structures with fi-
nite universe; current frontier results include sufficient conditions for tractability (Idziak et al., 2010;
Barto and Kozik, 2014) as well as a unifying explanation for known intractability proofs (Bulatov
et al., 2005).

As a means of systematically exploring the boundary between learnability and non-learnability,
an analogous framework has been considered in learning theory: for each relational structure B,
we may define a problem CCQ(B) wherein the aim is to learn the solution space of an unknown
conjunctive query evaluated on B (refer to Section 2 for formal definitions). As two particular
examples, consider the following.

• When B is a relational structure with universe {0, 1} that consists of the three relations {0},
{1}, and {(a, b, c) ∈ {0, 1}3 | a ∧ b→ c}, it is known that the solution spaces of conjunctive
queries on B are exactly the solution spaces of conjunctions of propositional Horn clauses;
these solution spaces can be equivalently characterized as those closed under the pointwise
application of the Boolean AND (∧) operation (Creignou et al., 2001, Lemma 4.8).

• For a finite field F = (F ; +, ·,−, 0, 1), let VF be the relational structure with universe F and
whose relations are the singleton unary relations {f}, for f ∈ F ; the graph of the function
x+y; and, the graph of λf (x) = f ·x, for each f ∈ F . Then the solution spaces of conjunctive
queries on VF are exactly the affine subspaces of the vector spaces (〈F,+,−, 0, λf 〉f∈F )n,
for n ≥ 1.

A primary research goal of this line of inquiry is to completely understand, over all finite structures
B, which problems of the form CCQ(B) are learnable and which are not.

Let us survey the main known results about the framework of learning problems CCQ(B).1 Dal-
mau (1999) presented an analog of Schaefer’s theorem, namely, a dichotomy theorem indicating,
for each relational structure B with a two-element universe, which of the problems CCQ(B) are
learnable. Precisely, this dichotomy theorem implies that each such problem is either polynomially
learnable with equivalence queries, or is not polynomially predictable with membership queries.
The negative result, and all others under discussion, are proved under established cryptographic
assumptions which are invoked in the present article (see Section 2.2), and the positive and neg-
ative results in the discussion that follows are proved in these two models, respectively. Dalmau
and Jeavons (2003) established a link between this framework and universal algebra; gave a general
strategy for presenting positive results; and provided dichotomy theorems for two restricted classes
of structures. Bulatov, Chen, and Dalmau (Bulatov et al., 2007) gave a positive learnability result
which applies to each relational structure having a so-called generalized majority-minority poly-
morphism. Later, Idziak, Markovic, McKenzie, Valeriote and Willard (Idziak et al., 2010) gave a
positive learnability result generalizing all previous positive results; their result applies to any struc-
ture B for which all solution spaces have small (polynomial-size) generating sets, in a precise sense
(see their discussion for more information). They point out that all previous positive results were
based on small generating sets, and hence that their result is a natural culmination of the progression
of positive results.

1. Let us mention that, in the existing literature, some positive results are stated for queries where universal quantifi-
cation is also permitted. As the main contribution of the present article is to present a negative result, we focus the
discussion on conjunctive queries.
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In this article, we complete the classification program towards which all of these previous works
strive, by presenting a negative learnability result that complements the positive learnability result of
Idziak et al. and hence that encompasses all previous negative learnability results in the framework
at hand. Namely, we prove that for any structure B to which the Idziak et al. positive learnability
result does not apply, it holds that CCQ(B) is not polynomially predictable with membership queries.

In order to establish our negative result, we make significant use of universal-algebraic notions
and results, which we now turn to elaborate on. Each structure B can be passed to an algebra, its
so-called algebra of polymorphisms, and it is known that the complexity of learning CCQ(B) is an
invariant of this passage (that is, two structures that are passed to the same algebra have the same
complexity of learning; see Proposition 5). We consider the variety generated by the algebra of a
structure, which we show is justified (Proposition 4). If this variety is congruence modular, then
we invoke a theorem, due to Libor Barto (Barto, 2014), which shows that the algebra of B has a
property called few subpowers, and thus that the Idziak et al. positive result can be applied. (Barto’s
theorem resolved in the positive a conjecture known as the Edinburgh conjecture and also as the
Valeriote conjecture (Bova et al., 2013).)

The focus in this article, then, is on proving that if the mentioned variety is not congruence
modular, then the problem CCQ(B) is hard to learn. In order to prove this, we make use of concepts
developed in a previous work which also studied non-congruence modularity (Bova et al., 2013). In
particular, we make use of a structural result established there (Lemma 12) which essentially shows
that, to prove hardness, one can work with a relational structure which can be localized to behave
as a set of pentagons, which are a certain type of relational structure. Exploiting this structural
result in the context of learning, however, is far from obvious, and involves developing significantly
more detailed reductions than those used in the previous work (Bova et al., 2013), which dealt with
comparing the solution spaces of two given conjunctive queries. The reason the reductions need to
be more detailed here is that, when reducing one problem to another, one needs to translate from
one concept to a second in a way that closely preserves structure of the solution space; this contrasts
sharply with the earlier work (Bova et al., 2013), where reductions needed only preserve a single bit,
namely, the answer to a decision problem. Indeed, as an intermediate step, we show the hardness of
a natural term-learning problem on lattices, which may be of independent interest (Section 5).

Let us emphasize that our main technical contribution, that non-congruence modularity of a
structure’s variety implies hardness of learning, does not at all require Barto’s theorem and can be
read and understood independently thereof.

2. Preliminaries

When P is a condition (such as a containment x ∈ c), we use [P ] to denote the value equal to 1 if
P is true, and 0 if P is false. When f : A → B and g : B → C are functions, we sometimes use
g(f) to denote their composition.

2.1. Concept learning

Our terminology and notation is based on those employed by Pitt and Warmuth (1990) and by
Angluin and Kharitonov (1995).

We assume that objects are encoded over the binary alphabet {0, 1}, and use X to denote
{0, 1}∗. When x is a string, we use |x| to denote its length, and for each n ∈ N, we use X [n]

to denote {x ∈ X : |x| ≤ n}. A prediction problem C is a subset of X ×X; when (u, x) ∈ C, we
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refer to u as a concept name or concept representation (of C). Relative to a prediction problem C,
the concept represented by u is defined as κC(u) = {x | (u, x) ∈ C}.

A pwm-algorithm (short for prediction with membership queries algorithm) is an algorithm A
with the following properties. The algorithm A takes as input a bound s ∈ N on the size of the
target concept representation, a bound n ∈ N on the length of examples, and an accuracy bound
ε, a positive rational number. It may make three types of oracle calls, the responses to which
are determined by an unknown target concept c and an unknown distribution D on X [n]: (1) A
membership query takes a string x ∈ X as input and returns [x ∈ c]; (2) A request for a random
classified example takes no input and returns a pair (x, b), where x is a string chosen independently
according to D, and b = [x ∈ c]; (3) A request for an element to predict takes no input and returns
a string x chosen independently according to D. The algorithm A may make any number of oracle
calls of types 1 and 2; however, in any run, it must make exactly one oracle call of type 3 and then
eventually halt with an output of 1 or 0 without making any further oracle calls.

A pwm-algorithm is said to run in polynomial time if its running time is bounded by a polyno-
mial in s, n, and 1/ε. A pwm-algorithm A is said to successfully predict a prediction problem C
if for each input (s, n, ε), each concept name u ∈ X [s] of C, and for each probability distribution
D on X [n], when A is run on (s, n, ε) and the oracle calls of type 1 and 2 are answered according
to c = κC(u) and D, the probability that the output of A is not equal to [x ∈ c] is bounded above
by ε. A prediction problem is polynomially predictable with membership queries if there exists a
pwm-algorithm that runs in polynomial time and successfully predicts C.

2.2. Problems

We introduce the problems that will be of concern.
A relational signature is a finite set of relation symbols; each relation symbol has an arity

k ≥ 0 associated with it. Note that we assume that all relational signatures under discussion are
finite. A relational structure B over a relational signature σ consists of a finite set B called its
universe and, for each relation symbol R ∈ σ, a relation RB ⊆ Bk, where k is the arity of R.
We generally use the letters A, B, . . . to denote relational structures, and the corresponding letters
A, B, . . . to denote their respective universes. Note that we assume that all relational structures
under discussion are finite in that each has a finite universe; nonetheless, we sometimes state this
explicitly for emphasis. A conjunctive query on a relational signature σ is a first-order formula
built from predicate applications R(v1, . . . , vk) (where R ∈ σ and v1, . . . , vk are variables, with k
equal to the arity of R), equality of variables v = v′, conjunction, and existential quantification.
When B is a relational structure and Q ⊆ Bk is a relation, we say that Q is cq-definable over B if
there exists a conjunctive query φ(v1, . . . , vk) such that (b1, . . . , bk) satisfies φ on B if and only if
(b1, . . . , bk) ∈ Q.

The prediction problems that we study are as follows. There is a problem for each relational
structure B. Each conjunctive query φ(V ) over the signature of B is a concept representation, and
its concept is the set that contains an assignment f : V → B if it holds that B, f |= φ, that is,
if it satisfies φ(V ) over B. Formally, for each relational structure B, we define CCQ(B) to be the
prediction problem

{(φ(V ), f) | φ is a conjunctive query and f : V → B is a mapping such that B, f |= φ}.

Our hardness results for prediction problems are based on the hardness of predicting propo-
sitional formulas. By a propositional formula, we understand a formula built from propositional
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variables and the basis consisting of AND (∧), OR (∨), and NOT (¬), where the fan-in of AND and
OR is assumed to be two. We define CPF as the prediction problem containing those pairs (θ, f)
where θ is a propositional formula, and f is a propositional assignment to the variables of θ that
satisfies θ. (Note that the existence of a pwm-algorithm for CPF is readily verified to be insensitive
to our assumption of fan-in two for AND and OR gates.) The following cryptographic evidence is
known for the hardness of learning CPF. Let us refer to the following three hypotheses (Kearns and
Valiant, 1994) as the Kearns-Valiant hypotheses: testing quadratic residues is intractable; inverting
RSA encryption is intractable; factoring Blum integers is intractable.

Theorem 1 (Angluin and Kharitonov, 1995, Corollary 3) Under the assumption that one of the
Kearns-Valiant hypotheses holds, the prediction problem CPF is not polynomially predictable with
membership queries.

3. Reducibility and hardness

In this section, we describe the notion of reduction that will be used throughout the paper (Sec-
tion 3.1); we demonstrate how certain standard algebraic constructions are relevant in our learning
context, and also present notions of algebra to be used (Section 3.2); and, we provide a certain
learning problem on propositional formulas that will be wieldy (Section 3.3).

3.1. Oracular pwm-reducibility

We define an extension of the notion of pwm-reduction due to Angluin and Kharitonov (1995); we
refer to our notion of reduction as oracular pwm-reduction.

An oracular pwm-reduction from a prediction problem C to a second prediction problem C′ is a
triple (f, g,H) where f and g are mappings and H is an algorithm with the following properties:

1. There exists a polynomial q such that for each s, n ∈ N and for each u ∈ X [s], it holds that
g(s, n, u) is a string with |g(s, n, u)| ≤ q(s, n, |u|).

2. For each s, n ∈ N, for each u ∈ X [s], and for each x ∈ X [n], it holds that x′ = f(s, n, x) is a
string such that x ∈ κC(u) if and only if x′ ∈ κC′(g(s, n, u)). Also, there exists a polynomial
t such that f is computable in time t(s, n, |x|).

3. For each s, n ∈ N, for each u ∈ X [s], and for each x′ ∈ X [n], the algorithm H , on input
(s, n, x′), may submit strings x ∈ X as queries to an oracle, which responds [x ∈ κC(u)];
the algorithm’s output must be [x′ ∈ κC′(g(s, n, u))]. The algorithm H is required to run in
polynomial time (in s, n, and |x′|).

Let us remark that the existence of a pwm-reduction between two prediction problems imme-
diately implies the existence of an oracular pwm-reduction: pwm-reducibility can be viewed as the
special case of oracular pwm-reducibility where the algorithmH can make at most one oracle query
and, in the case that this query is made, the result must be the output of H .

Proposition 2 Let C and C′ be prediction problems. If there exists an oracular pwm-reduction
from C to C ′ and it holds that C′ is polynomially predictable with membership queries, then C is
also polynomially predictable with membership queries.
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The proof of Proposition 2 is extremely similar to that of (Angluin and Kharitonov, 1995,
Lemma 2).

The following property, which is straightforward to verify, will be used tacitly.2

Proposition 3 Oracular pwm-reducibility is transitive.

3.2. Algebras and varieties

We make use of basic notions from universal algebra, and suggest (Burris and Sankappanavar,
1981; McKenzie et al., 1987) as references. For our purposes in this article, an algebra is a pair
(A;F ) consisting of a set A, the universe of the algebra, and a set F of finitary operations on A.
An algebra is finite if its universe is finite; we deal here mainly with finite algebras. The variety
generated by an algebra A, denoted by V(A), is the smallest class of algebras containing A that is
closed under taking homomorphic images, subalgebras, and products. An operation f : Bm → B
is a polymorphism of a relation Q ⊆ Bk if for any m tuples (b11, . . . , b

1
k), . . . , (b

m
1 , . . . , b

m
k ) in Q,

the tuple (f(b11, . . . , b
m
1 ), . . . , f(b1k, . . . , b

m
k )) is in Q. A relational structure B is compatible with

an algebra having the same universe B if for each operation f : Bm → B of the algebra, it holds
that f is a polymorphism of B, by which is meant, f is a polymorphism of each relation of B. We
similarly speak of a single relation or a set of relations being compatible with an algebra. For a
relational structure B, we define A(B) to be the algebra with universe B and whose operations are
the polymorphisms of B.

We will make use of the following facts, the second of which was established in previous work.

Proposition 4 Suppose that B is a finite algebra, and that A is a finite structure which is compati-
ble with an algebra in V(B). Then, there exists a relational structure B which is compatible with B
such that there exists an oracular pwm-reduction from CCQ(A) to CCQ(B).

Proposition 5 (follows from (Dalmau and Jeavons, 2003, Proof of Lemma 9)) Suppose that B and
B′ are relational structures with the same universe and such that B is compatible with A(B′). Then
there exists an oracular pwm-reduction from CCQ(B) to CCQ(B

′).

A lattice is an algebra (L;∧,∨) where each of the operations ∧ and ∨ is binary, idempotent,
commutative, and associative; and, the absorption law a∧ (a∨ b) = a∨ (a∧ b) = a holds. A lattice
naturally induces a partial order≤ defined by a ≤ b if and only if a∧ b = a. A lattice is distributive
if it satisfies the identity x ∧ (y ∨ z) = (x ∧ y) ∨ (x ∧ z). We say that a lattice is non-trivial if its
universe has size strictly greater than 1. By a lattice term, we refer to a term built from variables
and the two operation symbols ∧ and ∨.

A congruence of an algebra A = (A;F ) is an equivalence relation on A that is compatible with
A. The congruences of an algebra naturally form a lattice. An algebra A is congruence modular if
its lattice of congruences satisfies the modular law: x ≤ y → x ∨ (y ∧ z) = y ∧ (x ∨ z). A class of
algebras is congruence modular if each algebra therein is congruence modular.

2. We remark that, strictly speaking, transitivity of oracular pwm-reducibility is not needed to derive the main result
of the paper. Our main result shows that for certain relational structures B, the prediction problem CCQ(B) is not
polynomially predictable with membership queries unless CPF is as well. To establish this, it suffices to give a
sequence of pwm-reductions from CPF to CCQ(B) (which is what we do) and then invoke Proposition 2.
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3.3. Propositional formulas

By log, we indicate the logarithm base 2. When θ is a formula or a term, we define depth(θ) to be
the maximum length of a path from the root of θ (viewed as a tree) to a leaf; we define leafsize(θ) to
be the number of leaves of θ (again, viewed as a tree). Define Clog-MPF to be the subset of CPF that
contains a pair (θ, h) ∈ CPF when θ is monotone (that is, when it does not contain any instances of
negation (¬)) and when depth(θ) ≤ 6 + 6 log(leafsize(θ)).

The following proposition is readily derivable using Spira’s lemma and known techniques for
representing a propositional formula as a monotone propositional formula.

Proposition 6 There exists an oracular pwm-reduction from CPF to Clog-MPF.

4. Dichotomy theorem statement

We are now in a position to present the dichotomy theorem statement and to explain how it will
follow from the results in the following two sections.

Theorem 7 Let B be a finite relational structure.

• If the variety V(A(B)) is congruence modular, then the prediction problem CCQ(B) is poly-
nomially exactly learnable with improper equivalence queries, using a concept representation
that is polynomially evaluable.

• Otherwise, the prediction problem CCQ(B) is not polynomially predictable with membership
queries unless CPF is as well, and hence (by Theorem 1) not unless each of the Kearns-Valiant
hypotheses fails.

Let us remark that the following is known: each problem that is polynomially exactly learn-
able with improper equivalence queries under a polynomially evaluable concept representation is
polynomially predictable with membership queries (see for example (Angluin, 1987, Section 2.4)).
Proof If the variety V(A(B)) is congruence modular, then by Barto’s theorem (Barto, 2014), it
holds that this variety has few subpowers and that there is a k-edge polymorphism of B; thus, the
Idziak et al. result (Idziak et al., 2010, Corollary 5.6) applies. If this variety is not congruence
modular, then Proposition 6, Theorem 9, Theorem 11, and Theorem 13 yield a sequence of oracular
pwm-reductions from the prediction problem CPF to CCQ(A), where A is a structure compatible
with an algebra in the variety; an oracular pwm-reduction from CCQ(A) to CCQ(B) exists by appeal
to Propositions 4 and 5. Hence, CCQ(B) is not polynomially predictable with membership queries
unless CPF is as well, by Proposition 2.

Let us now present a theorem that addresses the effectivity of the stated dichotomy, that is, the
complexity of deciding, given a relational structure B, which of the two cases of the dichotomy
theorem applies.

Theorem 8 There is an EXPTIME algorithm that decides, given a finite relational structure B,
whether the variety V(A(B)) is congruence modular or not.
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Proof Essentially, this result follows immediately from the characterization of congruence modular
varieties given by Day or Gumm (consult Section 8 of Freese and Valeriote (2009)). Using Gumm’s
characterization, to determine if V(A(B)) is congruence modular one need only search amongst
the ternary functions on B for a finite sequence of polymorphisms of B that satisfy a specified set
of equations. This search can be carried out by an algorithm whose running time is bounded by
an exponential function in the size of B. A full discussion of the relevant details can be found in
Section 8 of Freese and Valeriote (2009).

Recently, Kazda (2014) has shown that the decision problem addressed in Theorem 8 actually
lies in the class NP. His algorithm is based on a “local” characterization of congruence modularity
and a clever encoding of the problem into an instance of the constraint satisfaction problem over the
structure.

5. Learning lattice terms

In this section, we prove the hardness of a class of prediction problems that deal with lattices, which
will serve as a useful intermediate result on the way to our main hardness result; roughly speaking,
the problems studied here involve learning the function induced by an unknown term. When r ≥ 1
and L is a finite set of finite lattices, define CrTERM(L) to be the prediction problem containing
a pair (t, (L, h, c)) when the following conditions hold: t is a lattice term with depth(t) ≤ r +
r log(leafsize(t)); L = (L;∧,∨) is a lattice in L; h is an assignment mapping each variable of t to
an element of L; c is an element of L; and, L, h |= (t ≥ c), that is, under the assignment h, the term
t evaluates to a value greater than or equal to c in L.

Theorem 9 Suppose that L is a finite set of finite lattices containing a non-trivial lattice. Then,
there exists r > 1 such that there exists an oracular pwm-reduction from the prediction problem
Clog-MPF to the prediction problem CrTERM(L).

It is helpful to first establish this theorem in the case of distributive lattices; the proof uses
the fact that each finite distributive lattice can be embedded into a finite power of the two-element
lattice.

Lemma 10 Theorem 9 holds in the case that L contains only distributive lattices.

Proof (Theorem 9) By Lemma 10, it suffices to prove the theorem for each such setL that contains a
non-distributive lattice. We prove this by induction on the maximum cardinality of a non-distributive
lattice in L. Define s(x, y, z) to be the term (x ∧ y) ∨ (x ∧ z), and define s′(x, y, z) to be the term
x ∧ (y ∨ z). In the scope of this proof, when d and d′ are elements of a lattice L with d ≤ d′,
we use [d, d′] to denote the set {c | d ≤ c ≤ d′}, and we use L[d, d′] to denote the sublattice
of L with universe [d, d′]. Note that for any elements a, b, c of a lattice L, it always holds that
s(a, b, c) ≤ s′(a, b, c) (see (Burris and Sankappanavar, 1981, Chapter 1, Section 3)).

Define L− as the set {L[s(a, b, c), s′(a, b, c)] | a, b, c ∈ L and L ∈ L}. We will prove that,
for any value r > 1, it holds that CrTERM(L−) has an oracular pwm-reduction to Cr+4

TERM(L). Let
us argue that this suffices. Consider a lattice L ∈ L. If the lattice L is distributive, then for any
elements a, b, c ∈ L, it holds that s(a, b, c) = s′(a, b, c) and thus that L[s(a, b, c), s′(a, b, c)] is
a one-element lattice. If the lattice L is non-distributive, then for any elements a, b, c ∈ L, if
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s′(a, b, c) is the top element of L, then a must be equal to the top element of L, which in turn
implies that s(a, b, c) = s′(a, b, c). Hence (when L is non-distributive) each lattice of the form
L[s(a, b, c), s′(a, b, c)] has cardinality strictly smaller than that of L. Now consider two cases. If
L− contains a non-distributive lattice, then by the argumentation just given and by induction, there
exists a value r such that CrTERM(L−) admits an oracular pwm-reduction from Clog-MPF, and hence
an oracular pwm-reduction from CrTERM(L−) to Cr+4

TERM(L) yields the theorem. If L− contains only
distributive lattices, we claim that L− contains a non-trivial lattice, which completes the argument
by appeal to Lemma 10. This claim holds because there exists (by assumption) a non-distributive
lattice L ∈ L; by definition, there exist elements a, b, c ∈ L such that s(a, b, c) 6= s′(a, b, c). Hence,
the lattice L[s(a, b, c), s′(a, b, c)] is non-trivial.

It remains to give an oracular pwm-reduction (f, g,H) from CrTERM(L−) to Cr+4
TERM(L). First,

define g(r, n, t−(x1, . . . , xn)) to be the term t(z1, z2, z3, x1, . . . , xn) defined as t−(x∗1, . . . , x
∗
n),

where each x∗i is defined as the term (xi ∨ s(z1, z2, z3)) ∧ s′(z1, z2, z3). Observe that depth(t) ≤
depth(t−) + 4. Define f(r, n, (L−, h−, c−)) to be (L, h, c−) where L is a lattice in L such that
there exist a, b, c ∈ L with L− = L[s(a, b, c), s′(a, b, c)], and where h is the extension of h−

defined on {z1, z2, z3, x1, . . . , xn} where h(z1) = a, h(z2) = b, and h(z3) = c. This f sat-
isfies the needed property, as L−, h− |= t− ≥ c− holds if and only if L, h− |= t− ≥ c−

holds; this latter condition is equivalent to L, h |= t ≥ c−, as h(x∗i ) is equal to h−(xi) for
each i. Define the algorithm H on (r, n, (L, h, d)) to perform the following. Let L− be the lat-
tice L[s(h(z1), h(z2), h(z3)), s

′(h(z1), h(z2), h(z3))]. Define h− on {x1, . . . , xn} by h−(xi) =
(h(xi)∨s(h(z1), h(z2), h(z3)))∧s′(h(z1), h(z2), h(z3)). SetD− to be the set {d− ∈ L− | d− ≥ d}.
The algorithm H makes, for each d− ∈ D−, the oracle query (L−, h−, d−), and returns 1 if and
only if at least one of the oracle responses was 1. Let us discuss why this algorithm satisfies the
desired property. It is readily verified that, when t and t− are terms with g(s, n, t−(x1, . . . , xn)) =
t(z1, z2, z3, x1, . . . , xn) and (L, h, d) is a triple, that it holds that L, h |= t ≥ d if and only if
L, h |= t−(x∗1, . . . , x

∗
n) ≥ d if and only if L, h− |= t−(x1, . . . , xn) ≥ d. Since all values in the

image of h− are in L−, the last condition L, h− |= t−(x1, . . . , xn) ≥ d holds if and only if there
exists d− ∈ D− such that L−, h− |= t−(x1, . . . , xn) ≥ d−.

6. Learning solutions to conjunctive queries

Let A be a set. When θ and θ′ are binary relations on A, we use θ ◦ θ′ to denote their relational
product. We use Eq(A) to denote the lattice of equivalence relations on A, and we use 0A =
{(a, a) | a ∈ A} and 1A = A2 to denote the bottom and top elements of Eq(A), respectively. We
define a pentagon to be a finite relational structure P over the signature {α, β, γ} containing three
binary relation symbols such that αP, βP, and γP are equivalence relations on P , and the following
conditions hold in Eq(P ): αP ≤ βP, βP ∧ γP = 0P , βP ◦ γP = 1P , and αP ∨ γP = 1P . The
universe P of a pentagon P can be naturally decomposed as a direct product P = B × C in such a
way that βP and γP are the kernels of the projections of P onto B and C, respectively. Then, via
the equivalence relation αP, each element b ∈ B induces an equivalence relation αP

b = {(c, c′) ∈
C × C | ((b, c), (b, c′)) ∈ αP} on C. For each pentagon P, we define L(P) to be the lattice which
is the sublattice of Eq(C) generated by the equivalence relations αP

b (over b ∈ B); we extend this
operator L(·) to sets of pentagons in the natural fashion.

9



CHEN VALERIOTE

To each pentagon P, we associate a 2-sorted relational structure, denoted by P2, which has
BP and CP as first and second universe, respectively; here, BP and CP denote the sets in the
decomposition of the universe P as described above. The structure P2 is defined on signature {R}
and has RP2 = {(b, c, c′) ∈ BP×CP×CP | (c, c′) ∈ αP

b }. The definition of P2 comes from Bova
et al. (2013). In forming conjunctive queries over this signature {R} each variable has a sort (first
or second) associated with each variable; an atom R(x, y, y′) may be formed if x is of the first sort
and y and y′ are of the second sort. When P is a set of pentagons, we define the prediction problem
CCQ-2-PENT(P) to be the set

{(φ(V1, V2), (P, (h1, h2))) | P ∈ P and h1 : V1 → BP, h2 : V2 → CP such that P2, h1, h2 |= φ }.

Here, φ(V1, V2) denotes a conjunctive query over the signature {R} with V1 a set of variables of the
first sort and V2 a set of the second sort.

Theorem 11 Let P be a finite set of pentagons. There exists an oracular pwm-reduction from the
prediction problem CrTERM(L(P)) for any r > 1 to the prediction problem CCQ-2-PENT(P).

The proof makes use of a version of a construction presented in the proof of (Bova et al., 2013,
Theorem 10), which construction produces a 2-sorted conjunctive query φt(x1, . . . , xm, y, y′) over
the signature {R} from a lattice term t(x1, . . . , xm), where in φt the variables xi are of sort 1 and
the variables y and y′ are of sort 2. The construction has the property that if P ∈ P , then for all
b1, . . . , bm ∈ BP and for all c, c′ ∈ CP, φt(b1, . . . , bm, c, c′) holds in P2 if and only if the pair
(c, c′) is in the equivalence relation given by tL(P)(αP

b1
, . . . , αP

bm
).

Lemma 12 Bova et al. (2013) Let B be a finite relational structure such that V(A(B)) is not
congruence modular. There exists a relational structure A defined on a signature including three
binary relation symbols α, β, and γ which is compatible with an algebra in V(A(B)), such that the
following hold:

• There exists a finite set P of pentagons where for each P ∈ P , the universe P of P is a subset
of A, and it holds that αP = αA ∩ P 2, βP = βA ∩ P 2, and γP = γA ∩ P 2. Moreover, the
set L(P) contains a non-trivial lattice.

• For each k ≥ 1, there exists a relation Dk ⊆ Ak which is cq-definable over A such that
for any elements a1, . . . , ak ∈ A, the tuple (a1, . . . , ak) is in Dk if and only if there exists
a P ∈ P such that all of the elements a1, . . . , ak are contained in the universe P of P. In
addition, there exists an algorithm that computes a cq-definition ofDk (over A) in polynomial
time, when given k as input (in unary representation).

In the definition of the set P we may assume that if P, P′ are members, then P * P ′. This
additional property can be arranged by only including in P those pentagons whose universes are
maximal with respect to inclusion. Doing so will not change the other properties listed in the
previous lemma.

Theorem 13 Let A be a relational structure satisfying the conditions described in Lemma 12,
and let P be the set of pentagons described there. There exists an oracular pwm-reduction from
CCQ-2-PENT(P) to CCQ(A).

10
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Essentially, Theorem 13 is proved in the following way. In order to translate a 2-sorted con-
junctive query φ over pentagons to a conjunctive query φ′ over A, the relations β and γ are used to
simulate the two sorts, and the relation α is used to simulate the behavior of the relation R. Also,
in the resulting conjunctive query φ′, all of the variables are related by the relation DU (where U is
the total number of variables), effectively localizing φ′ to the pentagons found in the set P .
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