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Abstract

When studying universal algebra, one may focus on families of varieties
defined by Mal’cev conditions. Varieties are classes of similar algebras closed
under homomorphic images, subalgebras, and direct products. This paper
deals with idempotent varieties which satisfy the Mal’cev condition of having
a near unanimity term. More specifically, we consider near unanimity terms
in the direct product of algebras, and the arity of these terms. Of all possible
near unanimity terms in the direct product, we focus on those which have
the smallest arity and find bounds for this number.
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1 Introduction

Over the past half century, much focus has been placed on Mal’cev fam-
ilies of varieties when studying universal algebra [5]. Varieties can be char-
acterized by certain conditions that their terms satisfy, called Mal’cev con-
ditions. The earliest research involved families of varieties being congruence
permutable [3]. Significantly, this family contains all varieties of groups and
rings. According to Mal’cev’s result, a variety will be congruence permutable
when it has a term t(x, y, z) where t(x, y, y) ≈ x, and t(x, x, y) ≈ y hold in
the variety. Another important Mal’cev family is the collection of varieties
that satisfy the condition of having a near unanimity term of some arity n.
Having an n-ary near unanimity term can be characterized by a particular
system of n equations. Since many of the common Mal’cev conditions are
defined by idempotent terms, we will focus on idempotent algebras in this
paper.

It is known that if A1 and A2 are two idempotent, similar algebras,
with n-ary and m-ary near unanimity terms p1 and p2 respectively, then the
following will be an mn-ary near unanimity term for their direct product:

t = p1(p2(x1, . . . , xm), . . . , p2(xmn−(m−1), . . . , xmn))

where the xi are all distinct variables. Now, if the basic operation p1 is an
n-ary near unanimity term in both algebras A1 and A2, then of course p1 will
be an n-ary near unanimity term in the direct product A1×A2, so we exclude
this trivial case. We want to investigate whether lower arity near unanimity
terms can be found which work in the direct product of idempotent algebras
that have near unanimity terms.

Why would we want a term of lower arity? To solve certain types of
computational problems for finite algebras, it might be advantageous to work
with a smaller arity near unanimity term, or at least to know that they exist.
For example, if the algebra A has a k-ary near unanimity term, then in order
to distinguish two subalgebras B and C of An, one need only check whether
the projections of B and C onto sets of coordinates of size k are the same or
not [1].
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2 Preliminaries

Definition 1. An algebra A is a pair 〈A,F 〉, where A is a nonempty set
called the universe of A, and F = 〈fi : i ∈ I〉 is a family of operations
indexed by some set I, called the basic operations of A. An operation f
from An to A has arity n.

Definition 2. Let A = 〈A,F 〉 be an algebra with F = 〈fi : i ∈ I〉. The
similarity type (or type) of A is a function ρ : I → ω which assigns to each
i ∈ I the arity of fi. Two algebras are called similar if they have the same
similarity type.

Definition 3. A variety is a nonempty class of similar algebras closed under
homomorphic images, subalgebras and direct products.

Definition 4. A term operation of an algebra A is any operation that can
be built up from the basic operations of A and the projection operations via
composition.

Definition 5. An algebra is idempotent if all of its terms are idempotent. A
term f is idempotent if it satisfies the Idempotency Law, f(x, x, . . . , x) ≈ x.
A variety is idempotent if every algebra in it is idempotent.

Definition 6. Let A = 〈A,F 〉 and B = 〈B,G〉 be similar algebras of type
ρ : I → ω. We call B a subalgebra of A if B ⊆ A, called a subuniverse, and
for every i ∈ I, gi = fi|B.

Definition 7. Let A1 and A2 be two algebras of similar type. The di-
rect product A1 × A2 is an algebra with universe being the set of ordered
pairs (a1, a2) with ai ∈ Ai, for i = 1,2, and with basic operations computed
coordinate wise. In other words, for an n-ary operation f,

fA1×A2((a11, a21), (a12, a22), . . . , (a1n, a2n)) =

(fA1(a11, . . . , a1n), fA2(a21, . . . , a2n)).

For example, a group 〈G, ◦, −1, e〉 is an algebra and the class of all groups
is a variety. The term t(x, y, z) = x◦y−1 ◦z is an idempotent term operation,
however, groups are not idempotent algebras.
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Definition 8. A near unanimity term for an algebra A is a term t such that
for any a, b ∈ A,

tA(b, a, a, . . . , a) = tA(a, b, a, . . . , a) = · · · = tA(a, a, a, . . . , a, b) = a.

We call a 3-ary near unanimity term a majority term. We will also refer to
a near unanimity term as a NU term in this paper.

For example, consider the variety of lattices. For L = 〈L,∨,∧〉 a lattice,
the term t(x, y, z) = (x ∨ y) ∧ (x ∨ z) ∧ (y ∨ z) is a majority term for L.

In this thesis, we will consider products of pairs of idempotent algebras
that have possibly different near unanimity terms. The following theorems
will be used throughout this paper to prove our results:

Theorem 1. Let C be an algebra and X = {a1, . . . , an} ⊆ C. Let D be the
subalgebra generated by X. Then for an element d ∈ C, d ∈ D if and only if
d = t(a1, . . . , an) for some term operation t of C.

See [3] for a proof.

Theorem 2. Let K be a variety, p and q n-ary terms, Y a set and y1, y2, . . . , yn
distinct elements of Y. Let FK(Y) be the free algebra generated by Y . Then
K satisfies p ≈ q if and only if pFK(Y)(y1, . . . , yn) = qFK(Y)(y1, . . . , yn).

See [2] for a proof.

Theorem 3. An algebra A has an n-ary near unanimity term iff the n-tuple
(a1, a2, ...., an) ∈ SgBn{(b1, a2, . . . , an), (a1, b2, . . . , an), . . . , (a1, a2, . . . , bn)} for
all B ∈ HSP (A) and for all ai, bi ∈ B.

Proof. Suppose A has an n-ary NU term t. Since taking powers, subalge-
bras, and quotients of A preserves the identities that define being a NU
term, then every algebra in HSP (A) will have the same NU term t. Thus,
for every B ∈ HSP (A) and for all ai, bi ∈ B, we have (a1, a2, ...., an) ∈
SgB

n{(b1, a2, . . . , an), (a1, b2, . . . , an), . . . , (a1, a2, . . . , bn)} since we can apply
t to the generators coordinate-wise. Now suppose that

(a1, a2, . . . , an) ∈ SgBn{(b1, a2, . . . , an), (a1, b2, . . . , an), . . . , (a1, a2, . . . , bn)}
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holds for all B ∈ HSP (A) and for all ai, bi ∈ B. Consider the free algebra
in HSP(A) generated by {X,Y}, and let SgF

n
(X, Y ) be the subalgebra of Fn

generated by

{(Y,X, . . . , X), (X, Y, . . . , X), . . . , (X, . . . , X, Y )}.

Then, by hypothesis, (X,X, . . . , X) ∈ SgFn
(X, Y ), and by Theorem 1, there

exists a term m(x1, . . . , xn) such that

(X,X, . . . , X) = mFn

((Y,X, . . . , X), (X, Y, . . . , X), . . . , (X,X, . . . , Y )).

Since this equality operates coordinate wise, we get n equalities in the free
algebra F, namely,

mF(Y,X, . . . , X) = X

mF(X, Y, . . . , X) = X

...

mF(X,X, . . . , Y ) = X

By Theorem 2, this implies that the variety HSP (A) satisfies the follow-
ing equations,

m(y, x, . . . , x) ≈ x

m(x, y, . . . , x) ≈ x

...

m(x, x, . . . , y) ≈ x

for any variables x, y, and these precisely define an n-ary NU term.

3 Results

Definition 4. For natural numbers n and m greater than 2, define f(n,m)
to be the smallest k such that if A1 and A2 are idempotent algebras that
have n-ary and m-ary near unanimity terms respectively, then A1 ×A2 has
a k-ary near unanimity term.

It is known that n,m are lower bounds, and nm is an upper bound for
f(n,m).

4
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3.1 Lower Bound

Theorem 5. For any natural numbers n and m greater than 2, there exists
two similar, idempotent algebras A1 and A2 with n-ary and m-ary near
unanimity terms respectively, such that the direct product A = A1×A2 does
not have a near unanimity term with arity less than or equal to n + m − 2.
In other words, f(n,m) > n+m− 2.

We illustrate this result with an example before proving the general case.
To show that 4 6= f(3, 3), we consider the following algebras.

Let A1 = 〈{0, 1}, pA1
1 , pA1

2 〉 and A2 = 〈{0, 1}, pA2
1 , pA2

2 〉 where

pA1
1 (x1, x2, x3) =

{
1 if (x1, x2, x3) contains 2 or 3 1’s
0 else

pA1
2 (x1, x2, x3) =

{
1 if (x1, x2, x3) = (1, 1, 1)
0 else

pA2
1 (x1, x2, x3) =

{
0 if (x1, x2, x3) = (0, 0, 0)
1 else

pA2
2 (x1, x2, x3) =

{
0 if (x1, x2, x3) contains 2 or 3 0’s
1 else

and let A =A1 ×A2.
Consider the set C = {0,2} × {0,2} × {0,1} × {0,1} of A4 ⊆ HSP(A),

where 0=(0,0), 1=(1,0), 2=(0,1), 3=(1,1). We want to show that C is a
subalgebra of A4. To start, we first observe that {0,2} and {0,1} are sub-
algebras of A. This follows since {0,2} = {0}×A2 and {0,1} = A1×{0},
and {0} is a subuniverse of A1 and A2 (since both algebras are idempotent).
Since C is the direct product of subalgebras of A, then it is a subalgebra of
A4, as claimed.

Let S = SgA
4{(2, 0, 1, 1), (0, 2, 1, 1), (0, 0, 0, 1), (0, 0, 1, 0)}. By construc-

tion, S is a subalgebra of C, since the generators are elements of C. We
want to show that S does not contain the element (0, 0, 1, 1). We do this first
by demonstrating that C \ {(0, 0, 1, 1)} is a subalgebra of C. This is done
by showing that the only way to attain the element (0, 0, 1, 1) from a basic
operation of C is by applying it to (0,0,1,1) and two other elements. And
second, we observe that the generators of S are elements of C \ {(0, 0, 1, 1)}
which immediately gives us containment. Thus S ⊆ C \ {(0, 0, 1, 1)} and
(0, 0, 1, 1) /∈ S. Recall that all elements in {0,2} have the element 0 in their
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first coordinate, and all elements in {0,1} have the element 0 in their second
coordinate. Then, applying pA1 to three elements of C, we get

pA1




(0, a1)
(0, b1
(c1, 0)
(d1, 0)




(0, a2)
(0, b2)
(c2, 0)
(d2, 0)




(0, a3)
(0, b3)
(c3, 0)
(d3, 0)




=


(pA1

1 (0, 0, 0), pA2
1 (a1, a2, a3))

(pA1
1 (0, 0, 0), pA2

1 (b1, b2, b3))

(pA1
1 (c1, c2, c3), p

A2
1 (0, 0, 0))

(pA1
1 (d1, d2, d3), p

A2
1 (0, 0, 0))

 =


(0, pA2

1 (a1, a2, a3))

(0, pA2
1 (b1, b2, b3))

(pA1
1 (c1, c2, c3), 0)

(pA1
1 (d1, d2, d3), 0)


since pA1

1 and pA2
1 are idempotent. In order for this to equal

(0, 0)
(0, 0)
(1, 0)
(1, 0)


we must have pA2

1 (a1, a2, a3) = pA2
1 (b1, b2, b3) = 0 which only happens when

(a1, a2, a3) = (b1, b2, b3) = (0, 0, 0). We need pA1
1 (c1, c2, c3) = 1, which hap-

pens when (c1, c2, c3) has at most one 0. We must also have pA1
1 (d1, d2, d3) =

1. In other words, this must happen in the last 2 of the 4 coordinates, but in
each of these, we have pA1

1 which is a 3-ary operation. We can choose from
(1,1,0), (1,0,1), or (0,1,1), i.e we have

(
3
2

)
possible tuples to choose from, and

we only need 2. So which ever tuples we choose, we have ci = di = 1 for
some i.

Suppose i = 1, this leaves us with the following,


(0, 0)
(0, 0)

(pA1
1 (1, 1, 0), 0)

(pA1
1 (1, 0, 1), 0)


which translates back to having

6
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pA1




(0, 0)
(0, 0)
(1, 0)
(1, 0)




(0, 0)
(0, 0)
(1, 0)
(0, 0)




(0, 0)
(0, 0)
(0, 0)
(1, 0)


 =


(0, 0)
(0, 0)
(1, 0)
(1, 0)


A similar process shows closure under pA2 . We now observe that S ⊆

C \ {(0, 0, 1, 1)}, so clearly

(0, 0, 1, 1) /∈ SgA4{(2, 0, 1, 1), (0, 2, 1, 1), (0, 0, 0, 1), (0, 0, 1, 0)},

and by Theorem 3, we see that A1 ×A2 has no 4-ary NU term.

Proof. To prove f(n,m) > n + m − 2, we find a suitable counter example
in the general case. Let A1 = 〈{0, 1}, pA1

1 , pA1
2 〉 and A2 = 〈{0, 1}, pA2

1 , pA2
2 〉,

where pAi
1 have arity n and pAi

2 have arity m for i = 1, 2, and are defined as
follows:

pA1
1 (x1, x2, . . . , xn) =

{
1 if (x1, x2, . . . , xn) contains at least (n-1) 1’s
0 else

pA1
2 (x1, x2, . . . , xn) =

{
1 if (x1, x2, . . . , xn) = (1, 1, . . . , 1)
0 else

pA2
1 (x1, x2, . . . , xm) =

{
0 if (x1, x2, . . . , xm) = (0, 0, . . . , 0)
1 else

pA2
2 (x1, x2, . . . , xm) =

{
0 if (x1, x2, . . . , xm) contains at least (m-1) 0’s
1 else

and let A =A1 ×A2.
Then the universeA= {0 = (0, 0), 1 = (1, 0), 2 = (0, 1), 3 = (1, 1)}. Using

the same logic as in the example above, it is easy to see that {0,2} and {0,1}
are subalgebras of A. Let C = {0,2} × · · · × {0,2} × {0,1} × · · · × {0,1}
be the subalgebra of An+m−2, where the first m − 1 elements come from
the subalgebra {0,2} and the next n− 1 elements come from the subalgebra
{0,1}. As seen in the previous example, C is indeed a subalgebra of An+m−2.

Let l = (0, . . . , 0, 1, . . . , 1), the tuple with the first m−1 coordinates being
0, and the next n − 1 being 1, an element of C. First, we must show that
C\{l} is again a subalgebra of An+m−2. As demonstrated earlier, we do this

7
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by showing that the only way to attain l from a basic operation of An+m−2,
is if at least one of the variables in the term is set to l. When considering pA1
applied to elements of C \ {l}, since all basic operations are idempotent, we
end up with the following,

pA1





(0, y11)
...

(0, y1m−1)
(x11, 0)

...
(x1n−1, 0)





(0, y21)
...

(0, y2m−1)
(x21, 0)

...
(x2n−1, 0)


. . .



(0, yn1 )
...

(0, ynm−1)
(xn1 , 0)

...
(xnn−1, 0)





=



(0, pA2
1 (y11, y

2
1, . . . , y

n
1 ))

...

(0, pA2
1 (y1m−1, y

2
m−1, . . . , y

n
m−1))

(pA1
1 (x11, x

2
1, . . . , x

n
1 ), 0)

...

(pA1
1 (x1n−1, x

2
n−1, . . . , x

n
n−1), 0)


where yij and xrs are all either 0 or 1.

Since we want the right hand side to equal l, we must have that
pA2
1 (y1j , y

2
j , . . . , y

n
j ) = 0 for 1 ≤ j ≤ m− 1. Recall that this will only happen

when (y1j , y
2
j , . . . , y

n
j ) = (0, 0, . . . , 0). We also need pA1

1 (x1j , x
2
j , . . . , x

n
j ) = 1,

for 1 ≤ j ≤ n− 1. This will happen when there is at most one xij = 0 in the
tuple, for each j. By the Pigeon Hole Principle, there will be some i such
that xij = 1, for all j. Thus, we get that for some i,

(0, yi1)
...

(0, yim−1)
(xi1, 0)

...
(xin−1, 0)


=



(0, 0)
...

(0, 0)
(1, 0)

...
(1, 0)


= l

8
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We can use a similar argument when pA2 is applied to elements of C \ {l}.
We have thus shown that C \ {l} is indeed a subalgebra of An+m−2.

Now consider the subalgebra S of An+m−2 generated by the tuples xi
and yj where 1 ≤ i ≤ m − 1 and m ≤ j ≤ n + m − 2, with xi =
(0, . . . , 0, 2, 0, . . . 0, 1, . . . , 1) the tuple that varies from l only in the i-th coor-
dinate, and xj = (0, . . . , 0, 1, . . . , 1, 0, 1, . . . , 1) varies only in the (m−1+j)-th
coordinate. Since all of the generators of S are elements of C \ {l}, imme-
diately we see that S ⊆ C \ {l}, and thus, l /∈ S. Using S and the xi’s and
yj’s, it follows from one direction of Theorem 3 that A does not have an
(n+m− 2)-ary near unanimity term.

3.2 Upper Bound

We will now consider the upper bound for the function f(n,m). We
are aware of a loose upper bound, which is f(n,m) ≤ nm. However, when
considering the direct product of two similar algebras, we want to find a near
unanimity term with a smaller arity.

Conjecture 1. Let A1 and A2 be two similar, idempotent algebras with
n-ary and m-ary near unanimity terms respectively, where n and m are nat-
ural numbers greater than 2. Then the direct product A1 × A2 has a near
unanimity term with arity n+m− 1. In other words, f(n,m) = n+m− 1.

Proposition 1. Let A1 and A2 be two similar, idempotent algebras with
majority terms p1 and p2 respectively. Then the direct product A = A1×A2

has a near unanimity term with arity 5. In other words, f(3, 3) = 5.

Proof. To support this, we show that f(3, 3) = 5 by constructing a suitable
5-ary term.

Let this 5-ary term be t(x0, x1, x2, x3, x4) = p1(t0, t1, t2), where the xi are
variables, and the ti are the three subterms described by the following parse
trees:

9
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t0 =
p1

p2 p1 p1

x0 x2 x3

p2 p2 p2 p2 p2 p2

x0 x2 x3 x0 x3 x4 x0 x1 x3 x0 x1 x2 x0 x1 x3 x0 x1 x3

t1 =
p1

p2 p1 p1

x0 x1 x3

p2 p2 p2 p2 p2 p2

x1 x2 x4 x1 x3 x4 x0 x1 x4 x1 x2 x4 x1 x2 x3 x0 x1 x2

t2 =
p1

p2 p1 p1

x1 x2 x4

p2 p2 p2 p2 p2 p2

x1 x2 x3 x2 x3 x4 x0 x2 x3 x0 x1 x2 x0 x2 x4 x0 x2 x3

10
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These subterms can also be defined as follows:

t0 = p1(p2(x0, x2, x3),

p1(p2(x0, x2, x3), p2(x0, x3, x4), p2(x0, x1, x3)),

p1(p2(x0, x1, x2), p2(x0, x1, x3), p2(x0, x1, x3)))

t1 = p1(p2(x0, x1, x3),

p1(p2(x1, x2, x4), p2(x1, x3, x4), p2(x0, x1, x4)),

p1(p2(x1, x2, x4), p2(x1, x2, x3), p2(x0, x1, x2)))

t2 = p1(p2(x1, x2, x4),

p1(p2(x1, x2, x3), p2(x2, x3, x4), p2(x0, x2, x3)),

p1(p2(x0, x1, x2), p2(x0, x2, x4), p2(x0, x2, x3)))

Now to verify that t is indeed a 5-ary NU term for A, we need only show
this for A1 and A2 separately. Recall that p1 and p2 are majority terms for
the algebras A1 and A2 respectively, and that both algebras are idempotent.

First consider A1. Now, t(x0, x1, x2, x3, x4) = p1(t0, t1, t2), and we must
show that A1 satisfies the following five equations:

t(y, x, x, x, x) ≈ t(x, y, x, x, x) ≈ t(x, x, y, x, x)

≈ t(x, x, x, y, x) ≈ t(x, x, x, x, y) ≈ x

Let a, b ∈ A1 and consider tA1(b, a, a, a, a). We need at least two of the
three ti’s to evaluate to a since p1 is a 3-ary NU term for A1. Again, each
subterm ti = p1(s

i
0, s

i
1, s

i
2) so we must have that two of the three sij’s evaluate

to a. Notice that in the subterm t0, the term s00 evaluates to p2(b, a, a)
which may not equal a, since p2 is just assumed to be idempotent. Also,
s01 = p1(p2(x0, x2, x3), p2(x0, x3, x4), p2(x0, x1, x3)) evaluates to

p1(p2(b, a, a), p2(b, a, a), p2(b, a, a))

and for similar reasons, its value is undetermined. Similarly for s02. Thus, t0 =
p1(s

0
0, s

0
1, s

0
2) may or may not evaluate to a. So, in order for tA1(b, a, a, a, a) =

a, we need both t1 and t2 to evaluate to a.

Looking at t1 = p1(s
1
0, s

1
1, s

1
2), we see that s10 = p2(x0, x1, x3) may or may

not evaluate to a. However, s11 = p1(p2(x1, x2, x4), p2(x1, x3, x4), p2(x0, x1, x4))

11
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and when evaluated at (b,a,a,a,a) is equal to

p1(p2(a, a, a), p2(a, a, a), p2(b, a, a)) = p1(a, a, p2(b, a, a)) = a.

A similar process shows this for s12.

Considering t2 = p1(s
2
0, s

2
1, s

2
2), s

2
0 = p1(x1, x2, x4) evaluates to

p1(a, a, a) = a,

so we only need one of s21 and s22 to evaluate to a. We use
s21 = p1(p2(x1, x2, x3), p2(x2, x3, x4), p2(x0, x2, x3)) since once evaluated, we
get

p1(p2(a, a, a), p2(a, a, a), p2(b, a, a)) = p1(a, a, p2(b, a, a)) = a.

Thus, tA1(b, a, a, a, a) = p1(t0(b, a, a, a, a), a, a) = a, and the first of the
five equations is satisfied. The remaining equations are similar. We now have
that t(x0, x1, x2, x3, x4) is a 5-ary NU term for A1.

As for A2, as described above, p2 is a 3-ary NU term, and p1 is an idem-
potent operation. Within the term t(x0, x1, x2, x3, x4), p2 is always evaluated
at 3 distinct variables. For each of the five equations we must satisfy, there is
only one b occurring in the tuple. This means that at most one b will occur in
any given p2 instance. For example, p2(x0, x2, x3) evaluates to p2(b, a, a) = a
when t is evaluated at (b,a,a,a,a) in A2, since p2 is a 3-ary NU term.

Now, t(x0, x1, x2, x3, x4) = p1(t0, t1, t2) so we must have that all ti’s eval-
uate to a, in order for t to evaluate to a. Let’s look at t0 = p1(s

0
1, s

0
2, s

0
3).

Again, each s0j must evaluate to a since p1 is idempotent. Recall that

s00 =p2(x0, x2, x3)

s01 =p1(p2(x0, x2, x3), p2(x0, x3, x4), p2(x0, x1, x3))

s02 =p1(p2(x0, x1, x2), p2(x0, x1, x3), p2(x0, x1, x3))

For any tuple (x0, x1, x2, x3, x4) consisting of four a’a and one b, we will get
that s0j evaluates to a. Similarly for t1 and t2. Thus,

tA2(b, a, a, a, a) = · · · = tA2(a, a, a, a, b) = a,

and we have shown that t is a 5-ary NU term for A2. Therefore, it is a 5-ary
NU term for A.

12
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We began the search for an upper bound by working with small algebras
and testing if their direct products had NU terms. This was tested using
the Universal Algebra Calculator [4] and some software produced by Dr.
Valeriote. We found a 5-ary NU term when both algebras consisted of two,
3-ary basic operations. After manipulating the tree structure of this term
to suit algebras with higher arity NU terms, we were able to find an upper
bound for f , namely that f(n,m) ≤ dnm

2
e.

Theorem 6. Let A1 and A2 be two similar, idempotent algebras with n-ary
and m-ary near unanimity terms respectively, where n and m are natural
numbers greater than 2. Then the direct product A1 ×A2 has a near una-
nimity term with arity dnm

2
e. In other words, f(n,m) ≤ dnm

2
e.

Proof. Consider f(n,m) where m = 2p for simplicity, then d = dnm
2
e =

dn2p
2
e = np. The structure of the np-ary NU term t that we construct is as

follows:

t(x0, x1, . . . , xnp−1) =p1(t0, t1, . . . , tn−1)

ti =p1(s
i
0, s

i
1, . . . , s

i
n−1)

si0 =p2(y1, y2, . . . , ym)

sij =p1(p2(z
1
1 , . . . , z

1
m), . . . , p2(z

n
1 , . . . , z

n
m))

for 0 ≤ i ≤ n− 1 and 1 ≤ j ≤ n− 1.
Because the order of the placement of variables in each instance of p2 in

t will not matter, we will describe the set of m variables that appear in each
instance. We now divide the variables into n cosets, based on the modulus of
their index. Let {̄i} = {xi, xn+i, x2n+i, . . . } for 0 ≤ i ≤ n−1. There will be p
elements in each coset. Then si0 = p2({̄i}, {i+ 1}), sn−10 = p2({n− 1}, {0̄}),
and we can start filling in the variables in each sij as follows:

sij = p1(p2({̄i}, . . . ), . . . , p2({̄i}, . . . ))

We have now filled in np of the 2np variables in each sij. Now, for each coset
{k̄}, divide it into n − 1 subsets as evenly as possible, call them {k̄j} with
1 ≤ j ≤ n− 1. Then we continue to fill in each sij.

sij = p1(p2({k̄j}k 6=i,i+1, {̄i}, . . . ), . . . , p2({k̄j}k 6=i,i+1, {̄i}, . . . ))

Of the remaining np variables, we have filled np(n−2)
n−1 variables in for each

13
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sij. There is now only (np− np(n−2)
n−1 ) left to fill. Let D = {x0, x1, . . . , xnp−1}

and let Ri
j = D \ {{̄i} ∪ {k̄j}k 6=i,i+1}. We will choose from the sets Ri

j to fill

in the remaining variables. The cardinality of Ri
j is (np− p− (n−2)p

n−1 ) and we

may only use each variable once. So, we must have that np − p − (n−2)p
n−1 ≥

np− n(n−2)p
n−1 , or that

np− p− (n− 2)p

n− 1
− np+

np(n− 2)

n− 1
≥ 0

−p+ p[
n(n− 2)

n− 1
− (n− 2)

n− 1
] ≥ 0

−p+ p(n− 2) ≥ 0

p(n− 3) ≥ 0

and this is always true since n ≥ 3 and p ≥ 0. Therefore, we can fill the
remaining positions in sij for all 0 ≤ i, j ≤ n− 1 by cycling through Ri

j. This
ensures that p2 is always evaluated at distinct variables. We leave it to the
reader to verify that t is indeed a np-ary NU term for both algebras.

When m is odd, we may overfill or under fill si0. So we then rearrange
the cosets by moving one variable to another coset, and ensuring that no
variable appears in more than 2 of the n si0’s. It may also happen that when
dividing each coset into n− 1 subsets, {k̄j} may be empty for larger j. This
will leave Ri

j with a higher cardinality, which will compensate for the missing
variables.

We illustrate this construction for f(3, 8) = 12. Let

{0̄} ={x0, x3, x6, x9}
{1̄} ={x1, x4, x7, x10}
{2̄} ={x2, x5, x8, x11}

14
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{0̄1} = {x0, x6}, {0̄2} = {x3, x9}
{1̄1} = {x1, x7}, {1̄2} = {x4, x10}
{2̄1} = {x2, x8}, {2̄2} = {x5, x11}

We begin by partially filling in each sij as follows:

s00 = p2(x0, x3, x6, x9, x1, x4, x7, x10)

s01 = p1(p2(x0, x3, x6, x9, x2, x8, . . . ), p2(x0, x3, x6, x9, x2, x8, . . . ),

p2(x0, x3, x6, x9, x2, x8, . . . ))

s02 = p1(p2(x0, x3, x6, x9, x5, x11, . . . ), p2(x0, x3, x6, x9, x5, x11, . . . ),

p2(x0, x3, x6, x9, x5, x11, . . . ))

s10 = p2(x1, x4, x7, x10, x2, x5, x8, x11)

s11 = p1(p2(x1, x4, x7, x10, x0, x6, . . . ), p2(x1, x4, x7, x10, x0, x6, . . . ),

p2(x1, x4, x7, x10, x0, x6, . . . ))

s12 = p1(p2(x1, x4, x7, x10, x3, x9, . . . ), p2(x1, x4, x7, x10, x3, x9, . . . ),

p2(x1, x4, x7, x10, x3, x9, . . . ))

s20 = p2(x2, x5, x8, x11, x0, x3, x6, x9)

s21 = p1(p2(x2, x5, x8, x11, x1, x7, . . . ), p2(x2, x5, x8, x11, x1, x7, . . . ),

p2(x2, x5, x8, x11, x1, x7, . . . ))

s22 = p1(p2(x2, x5, x8, x11, x4, x10, . . . ), p2(x2, x5, x8, x11, x4, x10, . . . ),

p2(x2, x5, x8, x11, x4, x10, . . . ))

We now describe the set of remaining variables that we will fill each sij with,

15
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and cycle through these sets, using each variable only once.

R0
1 = {x1, x4, x7, x10, x5, x11}, R0

2 = {x1, x4, x7, x11, x2, x8}
R1

1 = {x2, x5, x8, x11, x3, x9}, R1
2 = {x2, x5, x8, x11, x0, x6}

R2
1 = {x0, x3, x6, x9, x4, x10}, R2

2 = {x0, x3, x6, x9, x1, x7}

The result is a 12-ary term, with the following structure:

t(x0, x1, . . . , x11) = p1(t0, t1, t2)

where ti = p1(s
i
0, s

i
1, s

i
2), and

s00 = p2(x0, x3, x6, x9, x1, x4, x7, x10)

s01 = p1(p2(x0, x3, x6, x9, x2, x8, x1, x10), p2(x0, x3, x6, x9, x2, x8, x4, x5),

p2(x0, x3, x6, x9, x2, x8, x7, x11))

s02 = p1(p2(x0, x3, x6, x9, x5, x11, x1, x10), p2(x0, x3, x6, x9, x5, x11, x4, x2),

p2(x0, x3, x6, x9, x5, x11, x7, x8))

s10 = p2(x1, x4, x7, x10, x2, x5, x8, x11)

s11 = p1(p2(x1, x4, x7, x10, x0, x6, x2, x11), p2(x1, x4, x7, x10, x0, x6, x5, x3),

p2(x1, x4, x7, x10, x0, x6, x8, x9))

s12 = p1(p2(x1, x4, x7, x10, x3, x9, x2, x11), p2(x1, x4, x7, x10, x3, x9, x5, x0),

p2(x1, x4, x7, x10, x3, x9, x8, x6))

s20 = p2(x2, x5, x8, x11, x0, x3, x6, x9)

s21 = p1(p2(x2, x5, x8, x11, x1, x7, x0, x9), p2(x2, x5, x8, x11, x1, x7, x3, x4),

p2(x2, x5, x8, x11, x1, x7, x6, x10))

s22 = p1(p2(x2, x5, x8, x11, x4, x10, x0, x9), p2(x2, x5, x8, x11, x4, x10, x3, x1),

p2(x2, x5, x8, x11, x4, x10, x6, x7))

It is left as an exercise to the reader to verify that this is a 12-ary NU term.
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However, these upper bounds are not always in accordance with our con-
jecture. With these NU terms, we can reduce the arity by deepening the
parse tree structure, or in other words, increasing the length of the term by
composing more basic operations within this term. By adding one more layer
to the parse tree structure, which is done by replacing a variable by a basic
operation and evaluating this at existing variables, we were able to achieve
the following:

• f(3, 3) = 5

• f(3, 4) = 6

• f(3, 5) = 7

• f(4, 4) = 7

• f(4, 5) = 8

For this one additional layer, we replace the unwanted variable by the
basic operation p1 and evaluate this at the set of variables complementary to
the variables in the original tuple.

For f(3, 4) we have

t(x0, x1, x2, x3, x4, x5) = p1(t0, t1, t2)

where ti = p1(s
i
0, s

i
1, s

i
2) and

s00 = p2(x0, x2, x3, x5)

s01 = p1(p2(x0, x3, x4, x5), p2(x0, x2, x3, x4), p2(x0, x1, x3, x4))

s02 = p1(p2(x0, x1, x3, x5), p2(x0, x1, x3, x4), p2(x0, x1, x2, x3))

s10 = p2(x0, x1, x3, x4)

s11 = p1(p2(x1, x3, x4, x5), p2(x1, x2, x4, x5), p2(x0, x1, x4, x5))

s12 = p1(p2(x1, x2, x3, x4), p2(x1, x2, x4, x5), p2(x0, x1, x2, x4))

s20 = p2(x1, x2, x4, x5)

s21 = p1(p2(x2, x3, x4, x5), p2(x1, x2, x3, x5), p2(x0, x2, x3, x5))

s22 = p1(p2(x0, x2, x4, x5), p2(x0, x2, x3, x5), p2(x0, x1, x2, x5))
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For f(3, 5) we have

t(x0, x1, x2, x3, x4, x5, x6) = p1(t0, t1, t2)

where ti = p1(s
i
0, s

i
1, s

i
2) and

s00 = p2(x0, x2, x3, x5, x6)

s01 = p1(p2(x0, x3, x4, x5, x6), p2(x0, x2, x3, x4, x6), p2(x0, x1, x3, x4, x6))

s02 = p1(p2(x0, x1, x3, x4, x6), p2(x0, x1, x3, x5, x6), p2(x0, x1, x2, x3, x6))

s10 = p2(x0, x1, x3, x4, x6)

s11 = p1(p2(x1, x3, x4, x5, p1(x0, x2, x6)), p2(x1, x2, x4, x5, p1(x0, x3, x6)),

p2(x0, x1, x4, x5, x6))

s12 = p1(p2(x1, x2, x3, x4, p1(x0, x5, x6)), p2(x1, x2, x4, x5, p1(x0, x3, x6)),

p2(x0, x1, x2, x4, x6))

s20 = p2(x1, x2, x4, x5, p1(x0, x3, x6))

s21 = p1(p2(x2, x3, x4, x5, p1(x0, x1, x6)), p2(x1, x2, x3, x5, p1(x0, x4, x6)),

p2(x0, x2, x3, x5, x6))

s22 = p1(p2(x0, x2, x4, x5, x6), p2(x0, x2, x3, x5, x6), p2(x0, x1, x2, x5, x6))

For f(4, 4) we have

t(x0, x1, x2, x3, x4, x5, x6) = p1(t0, t1, t2, t3)

where ti = p1(s
i
0, s

i
1, s

i
2, s

i
3) and

s00 = p2(x0, x3, x4, p1(x1, x2, x5, x6))

s01 = p1(p2(x0, x2, x3, x6), p2(x0, x2, x5, x6), p2(x0, x2, x4, x6), p2(x0, x1, x2, x6))

s02 = p1(p2(x0, x2, x5, p1(x1, x3, x4, x6)), p2(x0, x5, x6, p1(x1, x2, x3, x4)),

p2(x0, x3, x5, p1(x1, x2, x4, x6)), p2(x0, x1, x4, x5)

s03 = p1(p2(x0, x1, x3, p1(x2, x4, x5, x6)), p2(x0, x1, x5, p1(x2, x3, x4, x6)),

p2(x0, x1, x4, x6), p2(x0, x1, x2, p1(x3, x4, x5, x6))
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s10 = p2(x0, x1, x4, x5)

s11 = p1(p2(x1, x2, x3, x4), p2(x1, x2, x4, x6), p2(x1, x2, x4, x5), p2(x0, x1, x2, x4))

s12 = p1(p2(x1, x2, x4, x6), p2(x1, x4, x5, x6), p2(x1, x3, x4, x6), p2(x0, x1, x4, x6))

s13 = p1(p2(x1, x2, x3, x4), p2(x1, x3, x4, x5), p2(x1, x3, x4, x6), p2(x0, x1, x3, x4))

s20 = p2(x1, x2, x5, x6)

s21 = p1(p2(x1, x2, x3, x5), p2(x2, x3, x4, x5), p2(x2, x3, x5, x6), p2(x0, x2, x3, x5))

s22 = p1(p2(x1, x2, x4, x5), p2(x2, x4, x5, x6), p2(x2, x3, x4, x5), p2(x0, x2, x4, x5))

s23 = p1(p2(x0, x1, x2, x5), p2(x0, x2, x4, x5), p2(x0, x2, x5, x6), p2(x0, x2, x3, x5))

s30 = p2(x2, x3, x6, p1(x0, x1, x4, x5))

s31 = p1(p2(x1, x2, x3, x6), p2(x1, x3, x4, x6), p2(x1, x3, x5, x6), p2(x0, x1, x3, x6))

s32 = p1(p2(x1, x3, x4, x5), p2(x2, x3, x4, x5), p2(x3, x4, x5, x6), p2(x0, x3, x4, x5))

s33 = p1(p2(x0, x1, x3, x6), p2(x0, x3, x4, x6), p2(x0, x3, x5, x6), p2(x0, x2, x3, x6))

For f(4, 5) we have

t(x0, x1, x2, x3, x4, x5, x6, x7) = p1(t0, t1, t2, t3)

where ti = p1(s
i
0, s

i
1, s

i
2, s

i
3) and

s00 = p2(x0, x3, x4, x7, p1(x1, x2, x5, x6))

s01 = p1(p2(x0, x4, x5, x6, x7), p2(x0, x3, x4, x5, x6), p2(x0, x2, x4, x5, x6),

p2(x0, x1, x4, x5, x6))

s02 = p1(p2(x0, x2, x4, x5, p1(x1, x3, x6, x7)), p2(x0, x2, x4, x6, p1(x1, x3, x5, x7)),

p2(x0, x2, x3, x4, p1(x1, x5, x6, x7)), p2(x0, x1, x2, x4, x7))

s03 = p1(p2(x0, x1, x4, x5, p1(x2, x3, x6, x7)), p2(x0, x1, x4, x6, p1(x2, x3, x5, x7)),

p2(x0, x1, x3, x4, p1(x2, x5, x6, x7)), p2(x0, x1, x2, x4, x7))
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s10 = p2(x0, x1, x4, x5, p1(x2, x3, x6, x7))

s11 = p1(p2(x1, x4, x5, x6, p1(x0, x2, x3, x7)), p2(x1, x3, x5, x6, p1(x0, x2, x4, x7)),

p2(x1, x2, x5, x6, p1(x0, x3, x4, x7)), p2(x0, x1, x5, x6, x7))

s12 = p1(p2(x1, x3, x4, x5, p1(x0, x2, x6, x7)), p2(x1, x3, x5, x6, p1(x0, x2, x4, x7)),

p2(x1, x2, x3, x5, p1(x0, x4, x6, x7)), p2(x0, x1, x3, x5, x7))

s13 = p1(p2(x1, x2, x4, x5, x7), p2(x1, x2, x5, x6, x7), p2(x1, x2, x3, x5, x7),

p2(x0, x1, x2, x5, x7))

s20 = p2(x1, x2, x5, x6, p1(x0, x3, x4, x7))

s21 = p1(p2(x2, x4, x5, x6, p1(x0, x1, x3, x7)), p2(x2, x3, x4, x6, p1(x0, x1, x5, x7)),

p2(x1, x2, x4, x6, p1(x0, x3, x5, x7)), p2(x0, x2, x4, x6, x7))

s22 = p1(p2(x2, x3, x5, x6, p1(x0, x1, x4, x7)), p2(x2, x3, x4, x6, p1(x0, x1, x5, x7)),

p2(x1, x2, x3, x6, p1(x0, x4, x5, x7)), p2(x0, x2, x3, x6, x7))

s23 = p1(p2(x0, x2, x5, x6, x7), p2(x0, x2, x4, x6, x7), p2(x0, x2, x3, x6, x7),

p2(x0, x1, x2, x6, x7))

s30 = p2(x2, x3, x6, x7, p1(x0, x1, x4, x5))

s31 = p1(p2(x3, x4, x5, x6, x7), p2(x2, x3, x4, x7, p1(x0, x1, x5, x6)),

p2(x1, x3, x4, x7, p1(x0, x2, x5, x6)), p2(x0, x3, x4, x7, p1(x1, x2, x5, x6)))

s32 = p1(p2(x1, x3, x5, x6, x7), p2(x1, x3, x4, x7, p1(x0, x2, x5, x6)),

p2(x1, x2, x3, x7, p1(x0, x4, x5, x6)), p2(x0, x1, x3, x7, p1(x2, x4, x5, x6)))

s33 = p1(p2(x0, x3, x5, x6, x7), p2(x0, x3, x4, x5, x7), p2(x0, x2, x3, x5, x7),

p2(x0, x1, x3, x5, x7))
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For f(5, 5), with one additional layer, we were able to find a NU term
with arity 10. This term is as follows:

t(x0, x1, x2, x3, x4, x5, x6, x7, x8, x9) = p1(t0, t1, t2, t3, t4)

where ti = p1(s
i
0, s

i
1, s

i
2, s

i
3, s

i
4) and

s00 = p2(x0, x4, x5, x9, p1(x1, x2, x3, x6, x7))

s01 = p1(p2(x0, x1, x2, x5, x8), p2(x0, x1, x4, x5, x8), p2(x0, x1, x5, x7, x8),

p2(x0, x1, x5, x6, x8), p2(x0, x1, x3, x5, x8))

s02 = p1(p2(x0, x2, x5, x6, p1(x1, x3, x4, x7, x8)), p2(x0, x5, x6, x7, p1(x1, x2, x3, x4, x8)),

p2(x0, x4, x5, x6, p1(x1, x2, x3, x7, x8)), p2(x0, x3, x5, x6, x8),

p2(x0, x1, x5, x6, x9))

s03 = p1(p2(x0, x2, x3, x5, p1(x1, x4, x6, x7, x8)), p2(x0, x3, x5, x7, p1(x1, x2, x4, x6, x8)),

p2(x0, x3, x5, x6, x8), p2(x0, x3, x4, x5, p1(x1, x2, x6, x7, x8)),

p2(x0, x1, x3, x5, x9))

s04 = p1(p2(x0, x2, x3, x5, x7), p2(x0, x2, x5, x7, x8),

p2(x0, x2, x5, x6, x7), p2(x0, x2, x4, x5, x7), p2(x0, x1, x2, x5, x7))

s10 = p2(x0, x1, x5, x6, p1(x2, x3, x4, x7, x8))

s11 = p1(p2(x1, x2, x3, x6, x8), p2(x1, x3, x6, x7, x8), p2(x1, x3, x5, x6, x8),

p2(x1, x3, x4, x6, x8), p2(x0, x1, x3, x6, x8))

s12 = p1(p2(x1, x2, x6, x7, p1(x0, x3, x4, x5, x8)), p2(x1, x5, x6, x7, p1(x0, x2, x3, x4, x8)),

p2(x1, x4, x6, x7, p1(x0, x2, x3, x5, x8)), p2(x1, x3, x6, x7, x9),

p2(x0, x1, x6, x7, x8))

s13 = p1(p2(x1, x2, x4, x6, p1(x0, x3, x5, x7, x8)), p2(x1, x4, x6, x7, p1(x0, x2, x3, x5, x8)),

p2(x1, x4, x5, x6, p1(x0, x2, x3, x7, x8)), p2(x1, x3, x4, x6, x9),

p2(x0, x1, x4, x6, x8),

s14 = p1(p2(x1, x2, x3, x6, x9), p2(x1, x2, x6, x7, x9), p2(x1, x2, x5, x6, x9),

p2(x1, x2, x4, x6, x8), p2(x0, x1, x2, x6, x9))
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s20 = p2(x1, x2, x6, x7, p1(x0, x3, x4, x5, x8))

s21 = p1(p2(x0, x2, x5, x7, x8), p2(x2, x5, x6, x7, x8), p2(x2, x4, x5, x7, x8),

p2(x2, x3, x5, x7, x8), p2(x1, x2, x5, x7, x8))

s22 = p1(p2(x0, x2, x3, x7, p1(x1, x4, x5, x6, x8)), p2(x2, x3, x4, x7, p1(x0, x1, x5, x6, x8)),

p2(x2, x3, x6, x7, p1(x0, x1, x4, x5, x8)), p2(x2, x3, x5, x7, x9),

p2(x1, x2, x3, x7, x8))

s23 = p1(p2(x0, x2, x4, x7, p1(x1, x3, x5, x6, x8)), p2(x2, x4, x6, x7, p1(x0, x1, x3, x5, x8)),

p2(x2, x4, x5, x7, p1(x0, x1, x3, x6, x8)), p2(x2, x3, x4, x7, x9),

p2(x1, x2, x4, x7, x8))

s24 = p1(p2(x0, x2, x3, x7, x9), p2(x0, x2, x6, x7, x9), p2(x0, x2, x5, x7, x9),

p2(x0, x2, x4, x7, x9), p2(x0, x1, x2, x7, x8))

s30 = p2(x2, x3, x7, x8, p1(x0, x1, x4, x5, x6))

s31 = p1(p2(x0, x2, x3, x8, x9), p2(x0, x3, x6, x8, x9), p2(x0, x3, x5, x8, x9),

p2(x0, x3, x4, x8, x9), p2(x0, x1, x3, x7, x8))

s32 = p1(p2(x0, x3, x4, x8, p1(x1, x2, x5, x6, x7)), p2(x2, x3, x4, x8, p1(x0, x1, x5, x6, x7)),

p2(x3, x4, x6, x8, p1(x0, x1, x2, x5, x7)), p2(x3, x4, x5, x8, x9),

p2(x1, x3, x4, x7, x8))

s33 = p1(p2(x0, x3, x5, x6, x8), p2(x3, x5, x6, x7, x8), p2(x3, x4, x5, x6, x8),

p2(x2, x3, x5, x6, x8), p2(x1, x3, x5, x6, x8))

s34 = p1(p2(x0, x1, x3, x8, p1(x2, x4, x5, x6, x7)), p2(x1, x3, x6, x8, p1(x0, x2, x4, x5, x7)),

p2(x1, x3, x5, x8, p1(x0, x2, x4, x6, x7)), p2(x1, x3, x4, x7, x8),

p2(x1, x2, x3, x8, x9))
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s40 = p2(x3, x4, x8, x9, p1(x0, x1, x2, x5, x6))

s41 = p1(p2(x0, x2, x4, x9, p1(x1, x3, x5, x6, x7)), p2(x0, x4, x5, x9, p1(x1, x2, x3, x6, x7)),

p2(x0, x4, x6, x9, p1(x1, x2, x3, x5, x7)), p2(x0, x3, x4, x8, x9),

p2(x0, x1, x4, x7, x9))

s42 = p1(p2(x0, x4, x5, x6, x9), p2(x4, x5, x6, x7, x9), p2(x3, x4, x5, x6, x9),

p2(x2, x4, x5, x6, x9), p2(x1, x4, x5, x6, x8))

s43 = p1(p2(x0, x2, x4, x9, p1(x1, x3, x5, x6, x7)), p2(x2, x4, x5, x9, p1(x0, x1, x3, x6, x7)),

p2(x2, x4, x6, x8, x9), p2(x2, x3, x4, x9, p1(x0, x1, x5, x6, x7)),

p2(x1, x2, x4, x7, x9))

s44 = p1(p2(x0, x1, x4, x7, x9), p2(x1, x4, x6, x7, x9), p2(x1, x4, x5, x7, x9),

p2(x1, x3, x4, x7, x9), p2(x1, x2, x4, x7, x8))

We want to reduce the arity of this term by one, which means we need
to eliminate a variable. If we try to eliminate say x9, we see that in some
tuples, we can replace this variable by p1 evaluated at the complement of the
other variables in the tuple. However, this replacement can only occur once
in each instance of p2. To further eliminate this variable, we will need a term
to satisfy certain equations which maintain the original conditions.

4 Conclusion

Throughout this report, we considered idempotent algebras with near
unanimity terms and analyzed the arity of near unanimity terms in the direct
product of pairs of such algebras. To do this, we introduced the function
f(n,m). Firstly, we have proven that the function f is bounded below by
n + m − 2. We also proved that the function f is bounded above by dnm

2
e.

However, this upper bound has potential for improvement and we conjecture
that n + m − 1 is the actual value of f(n,m). Supporting evidence for our
conjecture was obtained by computing f(n,m) for small values of n and m.
Our technique involved starting with a near unanimity term of arity dnm

2
e and

then eliminating variables in an inductive manner to attain the conjectured
result. This process has yet to be proven to work in all cases, however, once
a thorough analysis of more examples has been completed, we hope that the
inductive nature of our method will lead to a proof of the conjecture.
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