MATH 4L03 Assignment #7 Solutions

Do the following exercises from the course textbook:

1. Exercise 6.5, page 268

Solution: For (a) (i), this is handled earlier in the text. Let Gr be
the (finite) set of these axioms. For (ii) the formula

Op(x) = (x”ze/\( /\ ﬁxj:e>>

will hold for an element x of a group if and only if it has order n. So
the sentence VYx—0O, (z) will hold in a group if and only if the group
does not have an element of order n. For part (iii), the following set of
axioms, along with the set Gr, will work:

Y= {V2-0,(z) | n > 1}.

For part (b), suppose that the theory T of torsion free groups is finitely
axiomatizable. Then there is a single sentence o such that a group G
is torsion free if and only if it satisfies 0. But then the following set is
not satisfiable:

GruXuU{-o}

and so by the compactness theorem, there is some finite subset A of X
such that Gr U A U {—0o} is not satisfiable. Let

N = max{n | Va0, (z) € A}.

Let p be a prime number with p > N and consider the cyclic group
Z,. 1t is not torsion free and so satisfies Gr U {—c} and it does not
have elements of order N or less and so it also satisfies A, which is a
contradiction.

2. Exercise 6.12, page 271

Solution: Let X axiomatize T and let A be some finite set of axioms
for T. We may assume that A consists of a single sentence §. Then
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¥ |= 6 so there is some finite subset ¥ of ¥ with ¥’ |= ¢ (this follows
from the compactness or the completeness theorem). But then ' is a
finite subset of ¥ that axiomatizes 7.

. Exercise 6.17, page 275

Solution: For part (a) (i), a model A of I would be a well ordered A
set that has a subset {c* | n > 0} that has no least element. For (ii),
if A is a finite subset of I' then only a finite number N of sentences of
the form ¢, < ¢, will appear in it. Let Asy be the structure with
domain {0,1,...,2N} that interprets < in the usual way on this set.
Then this structure is a well ordering and so satisfies 3. The structure
will interpret the constant symbols ¢, that appear in A with distinct
elements of {0,1,...,2N} in a way that if ¢, and ¢,, both appear and
n < m, then ¢,, is interpreted as a smaller number than ¢, is. By
the choice of N this can be accomplished since at most 2N different
constants will appear in A. So, we have a model of A.

For (b), if ¥ axiomatizes the theory of well-order then we obtain a
contradiction from part (a), namely, we can produce a set I that is not
satisfiable, but that is finitely satisfiable.

. Exercise 6.24, page 287

Solution: Suppose that there is some first-order language L and set
of L-sentences Y such that » describes R. By using the updward
Lowenheim-Skolem Theorem we can get a structure that satisfies X
that has cardinality greater than |R|. So, ¥ does not solely describe
the structure R.

There is another way to answer this question. We can show that X
must have a model for which the completeness property fails. Let ¢ be
a new constant symbol and let L. be L with ¢ added and let ¥, be the
set

Yu{l<egl+l<e ..., 1+14+14---+1<gc,...}

Then Y. has a model since every finite subset of it is satisfiable. To
see this, let R, be the expansion of R to the language L. such that c
is interpreted as an integer that is bigger than any of the sums that



appear in the finite subset. This expanded structure will be a model of
the finite subset.

In the model A of ¥, that the compactness theorem provides, consider
the following set: N ={1,1+1,...,1+1+14---+1,...}, i.e., the set
of natural numbers, as interpreted in the model A. This set is bounded
above by the element ¢* and so by the completeness axiom there must
be some least upper bound b in A for this set. But the element b — 1 is
also an upper bound for N, since if it isn’t, there will be some integer
m with b —1 < m. From this we get that b < m + 1 and so conclude
that b (and hence ¢) wasn’t an upper bound of N in the first place.

So, no such set ¥ can exist.

. Exercise 6.25 (a), (c), page 288

Solution: For (a), by the downward Lowenheim-Skolem theorem we
can obtain a countable set that satisfies the proposed axioms.

For (c), the issue here is that R is uncountable, but we are working in a
countable language. We know that any non-trivial real vector space is
uncountably infinite, since it will have a 1-dimensional subspace (and
this subspace is isomorphic to R, considered as a 1-dimensional real
vector space. So the subspace and hence the entire space is uncount-
ably infinite. But, by the downward Lowenheim-Skolem Theorem, our
axioms will have a countable non-trivial model. This is a contradiction.

. Exercise 6.29, page 291

Solution: We can use a similar technique used in the solution to 6.24
above. We can build a model that satisfies that same sentences as R
but that has an element that is bigger than all of the integers. Using
the Lowenheim-Skolem Theorem, we can obtain such a model that has
the same cardinality as R. These two models cannot be isomorphic.

. Exercise 6.37, page 299

Solution: Th(A) is complete, since it is consistent (it has a model)
and for every sentence ¢, ¢ will be in Th(A) if A = ¢ or —¢ will be in
Th(A) otherwise (since then A = —¢.



