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A Fourier Transform Method for Spread Option Pricing∗

T. R. Hurd† and Zhuowei Zhou†

Abstract. Spread options are a fundamental class of derivative contracts written on multiple assets and are
widely traded in a range of financial markets. There is a long history of approximation methods
for computing such products, but as yet there is no preferred approach that is accurate, efficient,
and flexible enough to apply in general asset models. The present paper introduces a new formula
for general spread option pricing based on Fourier analysis of the payoff function. Our detailed
investigation, including a flexible and general error analysis, proves the effectiveness of a fast Fourier
transform implementation of this formula for the computation of spread option prices. It is found
to be easy to implement, stable, efficient, and applicable in a wide variety of asset pricing models.
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1. Introduction. When Sjt, j = 1, 2, t ≥ 0, are two asset price processes, the basic
spread option with maturity T and strike K ≥ 0 is the contract that pays (S1T − S2T −K)+

at time T . If we assume the existence of a risk-neutral pricing measure, the risk-neutral
expectation formula for the time 0 price of this option, assuming a constant interest rate r, is

(1.1) Spr(S0;T,K) = e−rTES0 [(S1T − S2T −K)+].

The literature on applications of spread options is extensive and is reviewed by Carmona
and Durrleman [2], who explore further applications of spread options beyond the case of
equities modeled by geometric Brownian motion (GBM), in particular to energy trading. For
example, the difference between the price of crude oil and a refined fuel such as natural gas is
called a “crack spread.” “Spark spreads” refer to differences between the price of electricity
and the price of fuel: options on spark spreads are widely used by power plant operators to
optimize their revenue streams. Energy pricing requires models with mean reversion and jumps
very different from GBM, and pricing spread options in such situations can be challenging.

Closed formulas for (1.1) are known only for a limited set of asset models. In the Bachelier
stock model, St = (S1t, S2t) is an arithmetic Brownian motion, and in this case (1.1) has a
Black–Scholes-type formula for any T,K. In the special case K = 0 when St is a GBM, (1.1)
is given by the Margrabe formula [14].

∗Received by the editors February 23, 2009; accepted for publication (in revised form) November 5, 2009;
published electronically DATE. This research was supported by the Natural Sciences and Engineering Research
Council of Canada.

http://www.siam.org/journals/sifin/x-x/75042.html
†Department of Mathematics and Statistics, McMaster University, Hamilton, ON, L8S 4K1, Canada (hurdt@

mcmaster.ca, zhouz3@univmail.cis.mcmaster.ca).

1

mailto:zhouz3@univmail.cis.mcmaster.ca
http://www.siam.org/journals/sifin/x-x/75042.html
mailto:hurdt@mcmaster.ca
mailto:hurdt@mcmaster.ca


2 T. R. HURD AND ZHUOWEI ZHOU

In the basic case where St is a GBM and K > 0, no explicit pricing formula is known.
Instead, there is a long history of approximation methods for this problem. Numerical inte-
gration methods, typically Monte Carlo based, are often employed. When possible, however,
the fastest option pricing engines by numerical integration are usually those based on the fast
Fourier transform (FFT) methods introduced by Carr and Madan [4]. Their first interest was
in single asset option pricing for geometric Lévy process models like the variance gamma (VG)
model, but their basic framework has since been adapted to a variety of option payoffs and
a host of asset return models where the characteristic function is known. In this work, when
the payoff function is not square integrable, it is important to account for singularities in the
Fourier transform variables.

Dempster and Hong [5] introduced a numerical integration method for spread options
based on two-dimensional FFTs that was shown to be efficient when the asset price processes
are GBMs or to have stochastic volatility. Three more recent papers study the use of multi-
dimensional convolution FFT methods to price a wide range of multiasset options, including
basket and spread options. These newer methods also compute by discretized Fourier trans-
forms over truncated domains, but unlike earlier work using the FFT, they apparently do
not rely on knowing the analytic Fourier transform of the payoff function or integrability of
the payoff function. Lord et al. [11] provide error analysis that explains their observation
that errors decay as a negative power of the size N of the grid used in computing the FFT,
provided the truncation is taken large enough. Leentvaar and Oosterlee [9] propose a parallel
partitioning approach to tackle the so-called curse of dimensionality when the number of un-
derlying assets becomes large. Jackson, Jaimungal, and Surkov [6] proposed a general FFT
pricing framework for multiasset options, including variations with Bermudan early exercise
features. These three papers all find that the FFT applied to the payoff function can perform
well even if the payoff function is not square integrable and observe that errors can be made
to decay as a negative power of N .

As an alternative to numerical integration methods, another stream uses analytical meth-
ods applicable to log-normal models that involve linear approximations of the nonlinear ex-
ercise boundary. Such methods are often very fast, but their accuracy is usually not easy
to determine. Kirk [7] presented an analytical approximation that performs well in practice.
Carmona and Durrleman [3] and later Li, Deng, and Zhou [10] demonstrate a number of lower
and upper bounds for the spread option price that combine to produce accurate analytical
approximation formulas in log-normal asset models. These results extend to approximate
values for the Greeks.

The main purpose of the present paper is to give a numerical integration method for
computing spread options in two or higher dimensions using the FFT. Unlike the above
multiasset FFT methods, it is based on square integrable integral formulas for the payoff
function, and like those methods it is applicable to a variety of spread option payoffs in any
model for which the characteristic function of the joint return process is given analytically.
Since our method involves only smooth square integrable integrands, the error estimates we
present are quite straightforward and standard. In fact, we demonstrate that the asymptotic
decay of errors is exponential, rather than polynomial, in the size N of the Fourier grid. For
option payoffs that can be made square integrable, our method has the flexibility to handle a
wide range of desirable asset return models, all with a very competitive computational expense.
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The results we describe stem from the following new formula,1 which gives a square
integrable Fourier representation of the basic spread option payoff function P (x1, x2) =
(ex1 − ex2 − 1)+.

Theorem 1.1. For any real numbers ε = (ε1, ε2) with ε2 > 0 and ε1 + ε2 < −1 and x =
(x1, x2),2

(1.2) P (x) = (2π)−2
∫∫

R2+iε
eiux

′
P̂ (u)d2u, P̂ (u) =

Γ(i(u1 + u2)− 1)Γ(−iu2)

Γ(iu1 + 1)
.

Here Γ(z) is the complex gamma function defined for #e(z) > 0 by the integral Γ(z) =∫∞
0 e−ttz−1dt.

Using this theorem, whose proof is given in the appendix, we will find that we can follow
the logic of Carr and Madan to derive numerical algorithms for efficient computation of a
variety of spread options and their Greeks. The basic strategy to compute (1.1) is to combine
(1.2) with an explicit formula for the characteristic function of the bivariate random variable
Xt = (log S1t, log S2t). For the remainder of this paper, we make a simplifying assumption.

Assumption 1. For any t > 0, the increment Xt −X0 is independent of X0.
This implies that the characteristic function of XT factorizes

(1.3) EX0 [e
iuX′

T ] = eiuX
′
0Φ(u;T ), Φ(u;T ) := EX0 [e

iu(XT−X0)′ ],

where Φ(u;T ) is independent of X0. Although the above assumption rules out mean-reverting
processes that often arise in energy applications, it holds for typical stock models: moreover,
the method we propose can be generalized to a variety of mean-reverting processes. Using
Theorem 1.1 and (1.3), the spread option formula can be written as an explicit two-dimensional
Fourier transform in the variable X0:

Spr(X0;T ) = e−rTEX0 [(e
X1T − eX2T − 1)+]

= e−rTEX0

[
(2π)−2

∫∫

R2+iε
eiuX

′
T P̂ (u)d2u

]

= (2π)−2e−rT
∫∫

R2+iε
EX0 [e

iuX′
T ]P̂ (u)d2u

= (2π)−2e−rT
∫∫

R2+iε
eiuX

′
0Φ(u;T )P̂ (u)d2u.(1.4)

The Greeks are handled in exactly the same way. For example, the Delta ∆1 := ∂Spr/∂S10 is
obtained as a function of S0 by replacing Φ in (1.4) by ∂Φ/∂S10.

Double Fourier integrals like this can be approximated numerically by a two-dimensional
FFT. Such approximations involve both a truncation and discretization of the integral, and the
two properties that determine their accuracy are the decay of the integrand of (1.4) in u-space

1It came to our attention after the submission of our paper that the result of this theorem has been
simultaneously and independently stated in another working paper by Antonov and Arneguy [1].

2Here and in rest of the paper, some variables such as u, ε, x are defined to be row vectors with components
u = (u1, u2), etc. We use implied matrix multiplication so that ux′ = u1x1 + u2x2, where x′ denotes the
(unconjugated) transpose of x.
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and the decay of the function Spr in x-space. The remaining issue of computing the gamma
function is not really difficult. Fast and accurate computation of the complex gamma function
in, for example, MATLAB, is based on the Lanczos approximation popularized by [15].3

In this paper, we demonstrate how our method performs for computing spread options
in three different two-asset stock models, namely GBM, a three factor stochastic volatility
(SV) model, and the VG model. Section 2 provides the essential definitions of the three
types of asset return models, including explicit formulas for their bivariate characteristic
functions. Section 3 discusses how the two-dimensional FFT can be implemented for our
problem. Section 4 provides error analysis that shows how the accuracy and speed will depend
on the implementation choices made. Section 5 describes briefly how the method extends to the
computation of spread option Greeks. Section 6 gives the detailed results of the performance
of the method in the three asset return models. In this section, the accuracy of each model
is compared to benchmark values computed by an independent method for a reference set
of option prices. We also demonstrate that the computation of the spread option Greeks in
such models is equally feasible. Section 7 extends all the above results to several kinds of
basket options on two or more assets. Although the formulation is simple, the resulting FFTs
become, in practice, much slower to compute in higher dimensions, due to the so-called curse
of dimensionality: in such cases, one can implement the parallel partitioning approach of [9].

2. Three kinds of stock models.

2.1. The case of GBM. In the two-asset Black–Scholes model, the vector St = (S1t, S2t)
has components

Sjt = Sj0 exp[(r − σ2
j /2)t+ σjW

j
t ], j = 1, 2,

where σ1,σ2 > 0 and W 1,W 2 are risk-neutral Brownian motions with constant correlation
ρ, |ρ| < 1. The joint characteristic function of XT = (log S1T , log S2T ) as a function of u =
(u1, u2) is of the form eiuX

′
0Φ(u;T ) with

(2.1) Φ(u;T ) = exp[iu(rTe− σ2T/2)′ − uΣu′T/2],

where e = (1, 1), Σ = [σ2
1 ,σ1σ2ρ;σ1σ2ρ,σ

2
2 ], and σ2 = diagΣ. We remind the reader that we

use implied matrix multiplication and that u′ denotes the (unconjugated) matrix transpose.
Substituting this expression into (1.4) yields the spread option formula

(2.2) Spr(X0;T ) = (2π)−2e−rT
∫∫

R2+iε
eiuX

′
0 exp[iu(rTe− σ2T/2)′ − uΣu′T/2]P̂ (u)d2u.

As we discuss in section 3, we recommend that this be computed numerically using the FFT.

2.2. Three factor SV model. The spread option problem in a three factor stochastic
volatility model was given as an example by Dempster and Hong [5]. Their asset model is

3According to these authors, computing the gamma function becomes “not much more difficult than other
built-in functions that we take for granted, such as sinx or ex.”
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defined by SDEs for Xt = (log S1t, log S2t) and the squared volatility vt:

dX1 = [(r − δ1 − σ2
1/2)dt + σ1

√
vdW 1],

dX2 = [(r − δ2 − σ2
2/2)dt + σ2

√
vdW 2],

dv = κ(µ − v)dt+ σv
√
vdW v,

where the three Brownian motions have correlations:

E[dW 1dW 2] = ρdt,

E[dW 1dW v] = ρ1dt,

E[dW 2dW v] = ρ2dt.

As discussed in that paper, the asset return vector has the joint characteristic function
eiuX

′
0Φ(u;T, v0), where

Φ(u;T, v0) =

[(
2ζ(1− e−θT )

2θ − (θ − γ)(1 − e−θT )

)
v0

+ iu(re− δ)′T − κµ

σ2
v

[
2 log

(
2θ − (θ − γ)(1− e−θT )

2θ

)
+ (θ − γ)T

]]

and

ζ := −1

2

[(
σ2
1u

2
1 + σ2

2u
2
2 + 2ρσ1σ2u1u2

)
+ i

(
σ2
1u1 + σ2

2u2
)]

,

γ := κ− i(ρ1σ1u1 + ρ2σ2u2)σν ,

θ :=
√
γ2 − 2σ2

vζ.

2.3. Exponential Lévy models. Many stock price models are of the form St = eXt , where
Xt is a Lévy process for which the characteristic function is explicitly known. We illus-
trate with the example of the VG process introduced by [13] the three parameter process Yt

with Lévy characteristic triple (0, 0, ν), where the Lévy measure is ν(x) = λ[e−a+x1x>0 +
ea−x1x<0]/|x| for positive constants λ, a±. The characteristic function of Yt is

(2.3) ΦYt(u) =

[
1 + i

(
1

a−
− 1

a+

)
u+

u2

a−a+

]−λt
.

To demonstrate the effects of correlation, we take a bivariate VG model driven by three
independent VG processes Y1, Y2, Y with common parameters a± and λ1 = λ2 = (1 − α)λ,
λY = αλ. The bivariate log return process Xt = log St is a mixture:

(2.4) X1t = X10 + Y1t + Yt, X2t = X20 + Y2t + Yt.

Here α ∈ [0, 1] leads to dependence between the two return processes but leaves their marginal
laws unchanged. An easy calculation leads to the bivariate characteristic function eiuX

′
0Φ(u;T )
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with

Φ(u;T ) =

[
1 + i

(
1

a−
− 1

a+

)
(u1 + u2) +

(u1 + u2)2

a−a+

]−αλt
(2.5)

×
[
1 + i

(
1

a−
− 1

a+

)
u1 +

u21
a−a+

]−(1−α)λt [
1 + i

(
1

a−
− 1

a+

)
u2 +

u22
a−a+

]−(1−α)λt
.

3. Numerical integration by FFT. To compute (1.4) in these models we approximate the
double integral by a double sum over the lattice

Γ = {u(k) = (u1(k1), u2(k2)) | k = (k1, k2) ∈ {0, . . . , N − 1}2}, ui(ki) = −ū+ kiη

for appropriate choices of N, η, ū := Nη/2. For the FFT it is convenient to take N to be
a power of 2 and lattice spacing η such that truncation of the u-integrals to [−ū, ū] and
discretization leads to an acceptable error. Finally, we choose initial values X0 = log S0 to lie
on the reciprocal lattice with spacing η∗ = 2π/Nη = π/ū and width 2x̄, x̄ = Nη∗/2:

Γ∗ = {x(/) = (x1(/1), x2(/2)) | / = (/1, /2) ∈ {0, . . . , N − 1}2}, xi(/i) = −x̄+ /iη
∗.

For any S0 = eX0 with X0 = x(/) ∈ Γ∗ we then have the approximation

(3.1) Spr(X0;T ) ∼
η2e−rT

(2π)2

N−1∑

k1,k2=0

ei(u(k)+iε)x(&)′Φ(u(k) + iε;T )P̂ (u(k) + iε).

Now, as usual for the discrete FFT, as long as N is even,

iu(k)x(/)′ = iπ(k1 + k2 + /1 + /2) + 2πik/′/N (mod 2πi).

This leads to the double inverse discrete Fourier transform (i.e., the MATLAB function ifft2)

Spr(X0;T ) ∼ (−1)&1+&2e−rT

(
ηN

2π

)2

e−εx(&)
′



 1

N2

N−1∑

k1,k2=0

e2πik&
′/NH(k)





= (−1)&1+&2e−rT

(
ηN

2π

)2

e−εx(&)
′
[ifft2(H)](/),(3.2)

where
H(k) = (−1)k1+k2Φ(u(k) + iε;T )P̂ (u(k) + iε).

4. Error discussion. The selection of suitable values for ε, N , and η when implementing
the above FFT approximation of (1.4) is a somewhat subtle issue whose details depend on
the asset model in question. We now give a general discussion of the pure truncation error
and pure discretization error in (3.1): a more complete analysis of the combined errors using
methods described in [8] will lead to the same broad conclusions.

The pure truncation error, defined by taking η → 0, N → ∞ while keeping ū = Nη/2
fixed, can be made smaller than δ1 * 1 if the integrand of (1.4) is small and decaying outside
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the square [−ū + iε1, ū + iε1] × [−ū + iε2, ū + iε2]. Corollary A.1, proved in the appendix,
gives a uniform O(|u|−2) upper bound on P̂ , while Φ(u) can generally be seen directly to have
some u-decay. Thus the truncation error will be less than δ1 if one picks ū large enough so
that |Φ| < O(δ1) and has decay outside the square.

The pure discretization error, defined by taking ū → ∞, N → ∞ while keeping x̄ = π/η
fixed, can be made smaller than δ2 * 1 if eεX

′
0Spr(X0), taken as a function of X0 ∈ R2, has

rapid decay in X0. This is related to the smoothness of Φ(u) and the choice of ε. The first two
models are not very sensitive to ε, but in the VG model the following conditions are needed
to ensure that singularities in u-space are avoided:

−a+ < ε1, ε2, ε1 + ε2 < a−.

By applying the Poisson summation formula to eεX
′
0Spr(X0), one can write the discretization

error as

(4.1) Spr(x̄)(X0)− Spr(X0) =
∑

&∈Z2\{(0,0)}

e2x̄ε&
′
Spr(X0 + 2x̄/).

One can verify using brute force bounds that the terms on the right-hand side of (4.1) are all
small and decay in all lattice directions, provided x̄ is sufficiently large. Thus the discretization
error will be less than δ2 for all X0 ∈ [−cx̄, cx̄]2 with 0 < c * 1 if one picks x̄ large enough so
that |eεX′

0Spr(X0)| < O(δ2) and has decay outside the square [−x̄, x̄]2.
In summary, one expects that the combined truncation and discretization error will be

close to δ1 + δ2 if ū = Nη/2 and η = π/x̄ are each chosen as above. We shall see in section 6
that the observed errors are consistent with the above analysis that predicts an asymptotic
exponential decay with the size N of the Fourier lattice for the models we address.

5. Greeks. The FFT method can also be applied to the Greeks, enabling us to tackle
hedging and other interesting problems. It is particularly efficient for the GBM model, where
differentiation under the integral sign is always permissible. For instance, the FFT formula
for vega (the sensitivity to σ) takes the form

∂Spr(S0;T )

∂σ1
= (−1)&1+&2e−rT

(
ηN

2π

)2

e−εx(&)
′
[
ifft2

(
∂H

∂σ1

)]
(/),

∂H(k)

∂σ1
=

[
−(u(k) + iε)

(
i
∂σ2

∂σ1

′
+

∂Σ

∂σ1
(u(k) + iε)′

)
T

2

]
H(k),

where ∂σ2

∂σ1
= [2σ1, 0] and

∂Σ
∂σ1

= [2σ1, ρσ2; ρσ2, 0]. Other Greeks including those of higher
orders can be computed in a similar fashion. This method needs to be used with care for the
SV and VG models, since it is possible that differentiation leads to an integrand that decays
slowly.

6. Numerical results. Our numerical experiments were coded and implemented in
MATLAB version 7.6.0 on an Intel 2.80 GHz machine running under Linux with 1 GB physical
memory. If they were coded in C++ with similar algorithms, we should expect to see faster
performance.
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Figure 1. This graph shows the objective function Err for the numerical computation of the GBM spread
option versus the benchmark. Errors are plotted against the grid size for different choices of ū. The parameter
values are those of the GBM model used by [5]: r = 0.1, T = 1.0, ρ = 0.5, δ1 = 0.05, σ1 = 0.2, δ2 = 0.05,
σ2 = 0.1.

The strength of the FFT method is demonstrated by comparison with accurate benchmark
prices computed by an independent (usually extremely slow) method. Based on a representa-
tive selection of initial log-asset value pairs logSi

10 =
iπ
10 , logS

j
20 = −π

5 +
jπ
10 , i, j ∈ 1, 2, 3, . . . , 6,

the objective function we measure is defined as

(6.1) Err =
1

36

6∑

i,j=1

|log(M ij)− log(Bij)|,

where M ij and Bij are the corresponding FFT computed prices and benchmark prices. These
choices cover a wide range of moneyness, from deep out-of-the-money to deep in-the-money.
Since these combinations all lie on lattices Γ∗ corresponding to N = 2n and ū/10 = 2m for
integers n,m, all 36 prices M ij can be computed simultaneously with a single FFT.

Figure 1 shows how the FFT method performs in the two-dimensional GBM model for
different choices of N and ū. Since the two factors are bivariate normal, benchmark prices can
be calculated to high accuracy by one-dimensional integrations. In Figure 1 we can clearly
see the effects of both truncation errors and discretization errors. For a fixed ū, the objective
function decreases when N increases. The ū = 20 curve flattens out near 10−5 due to its
truncation error of that magnitude. In turn, we can quantify its discretization errors with
respect to N by subtracting the truncation error from the total error. The flattening of the
curves with ū = 40, 80, and 160 near 10−14 should be attributed to MATLAB round-off
errors: because of the rapid decrease of the characteristic function Φ, their truncation error
is negligible. For a fixed N , increasing ū brings two effects: reducing truncation error and
enlarging discretization error. These effects are well demonstrated in Figure 1.
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Figure 2. This graph shows the objective function Err for the numerical computation of the SV spread
option versus the benchmark computed using the FFT method itself with parameters N = 212 and ū = 80. The
parameter values are those of the SV model used by [5]: r = 0.1, T = 1.0, ρ = 0.5, δ1 = 0.05, σ1 = 1.0,
ρ1 = −0.5, δ2 = 0.05, σ2 = 0.5, ρ2 = 0.25, v0 = 0.04, κ = 1.0, µ = 0.04, σv = 0.05.

For the SV model, no analytical or numerical method we know is consistently accurate
enough to serve as an independent benchmark. Instead, we computed benchmark prices using
the FFT method itself with N = 212 and ū = 80. The resulting objective function shows
similar behavior to Figure 1 and is consistent with accuracies at the level of roundoff. We also
verified that the benchmark prices are consistent to a level of 4× 10−4 with those resulting
from an intensive Monte Carlo computation using 1,000,000 simulations, each consisting of
2000 time steps. The computational cost to further reduce the Monte Carlo simulation error
becomes prohibitive.

Because the VG process has an explicit probability density function in terms of a Bessel
function [12], rather accurate benchmark spread option values for the VG model can be
computed by a three-dimensional integration.4 We used a Gaussian quadrature algorithm set
with a high tolerance of 10−9 to compute the integrals for these benchmarks. The resulting
objective function for various values of ū, N is shown in Figure 3. The truncation error for
ū = 20 is about 2× 10−5. The other three curves flatten out near 5× 10−8, a level we identify
as the accuracy of the benchmark. A comparable graph (not shown), using benchmark prices
computed with the FFT method with N = 212 and ū = 80, showed behavior similar to Figures
1 and 2 and is consistent with the FFT method being capable of producing accuracies at the
level of roundoff.

The strength of the FFT method is further illustrated by the computation of individual
prices and relative errors shown in Tables 1, 2, and 3. One can observe that an FFT with
N = 256 is capable of producing very high accuracy in all three models. It is interesting to note
that FFT prices in almost all cases were biased low compared to the benchmark. Exceptions

4We thank a referee for this suggestion.
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Figure 3. This graph shows the objective function Err for the numerical computation of the VG spread
option versus the benchmark values computed with a three-dimensional integration. Errors are plotted against
the grid size for five different choices of ū. The parameters are r = 0.1, T = 1.0, ρ = 0.5, a+ = 20.4499,
a− = 24.4499, α = 0.4, λ = 10.

Table 1
Benchmark prices for the two-factor GBM model of [5] and relative errors for the FFT method with

different choices of N . The parameter values are the same as Figure 1 except we fix S10 = 100, S20 = 96,
ū = 40. The interpolation is based on a matrix of prices with discretization of N = 256 and a polynomial with
a degree of 8.

Strike K Benchmark 64 128 256 512 Interpolation

0.4 8.312461 −3.8 −4.5E-4 −1.9E-8 −1.7E-14 1.9E-8
0.8 8.114994 −3.8E-1 −4.6E-4 −2.0E-8 −7E-15 2.0E-8
1.2 7.920820 −7.3E-2 −4.6E-4 −2.0E-8 −2.8E-14 2.0E-8
1.6 7.729932 −7.2E-2 −4.7E-4 −2.0E-8 −4.8E-14 2.0E-8
2.0 7.542324 −7.3E-2 −4.8E-4 −2.1E-8 −4.9E-14 2.1E-8
2.4 7.357984 −7.5E-2 −4.9E-4 −2.1E-8 −7.3E-14 2.1E-8
2.8 7.176902 −7.6E-2 −5.0E-4 −2.2E-8 −6.8E-14 2.2E-8
3.2 6.999065 −7.8E-2 −5.1E-4 −2.2E-8 −9.7E-14 2.2E-8
3.6 6.824458 −8.0E-2 −5.3E-4 −2.3E-8 −8.2E-14 2.3E-8
4.0 6.653065 −8.1E-2 −5.4E-4 −2.3E-8 −9.0E-14 2.3E-8

to this observation seem only to appear at a level of the accuracy of the benchmark itself.

The FFT computes in a single iteration an N × N panel of prices spread corresponding
to initial values S10 = ex10+&1η∗ , S20 = ex20+&2η∗ , K = 1, (/1, /2) ∈ {0, . . . , N − 1}2. If the
desired selection of {S10, S20,K} fits into this panel of prices, or its scaling, a single FFT
suffices. If not, then one has to match (x10, x20) with each combination, and run several
FFTs, with a consequent increase in computation time. However, we have found that an
interpolation technique is very accurate for practical purposes. For instance, prices for multiple
strikes with the same S10 and S20 are approximated by a polynomial fit along the diagonal
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Table 2
Benchmark prices for the three factor SV model of [5] and relative errors for the FFT method with different

choices of N . The parameter values are the same as Figure 2 except we fix S10 = 100, S20 = 96, ū = 40. The
interpolation is based on a matrix of prices with discretization of N = 256 and a polynomial with a degree of 8.

Strike K Benchmark 64 128 256 512 Interpolation

2.0 7.548502 −7.3E-2 −4.8E-4 −2.1E-8 1.6E-11 −2.1E-8
2.2 7.453536 −7.4E-2 −4.9E-4 −2.1E-8 1.2E-11 −2.1E-8
2.4 7.359381 −7.5E-2 −4.8E-4 −2.1E-8 8.6E-12 −2.1E-8
2.6 7.266037 −7.5E-2 −5.0E-4 −2.1E-8 4.6E-12 −2.1E-8
2.8 7.173501 −7.6E-2 −5.0E-4 −2.2E-8 6.1E-13 −2.2E-8
3.0 7.081775 −7.7E-2 −5.1E-4 −2.2E-8 −3.5E-12 −2.2E-8
3.2 6.990857 −7.8E-2 −5.2E-4 −2.2E-8 −7.7E-12 −2.2E-8
3.4 6.900745 −7.9E-2 −5.2E-4 −2.2E-8 −1.2E-11 −2.2E-8
3.6 6.811440 −8.0E-2 −5.3E-4 −2.3E-8 −1.7E-11 −2.3E-8
3.8 6.722939 −8.1E-2 −5.3E-4 −2.3E-8 −2.0E-11 −2.3E-8
4.0 6.635242 −8.1E-2 −5.4E-4 −2.3E-8 −2.4E-11 −2.3E-8

Table 3
Benchmark prices for the VG model and relative errors for the FFT method with different choices of N .

The parameter values are the same as Figure 3 except we fix S10 = 100, S20 = 96, ū = 40. The interpolation
is based on a matrix of prices with discretization of N = 256 and a polynomial with a degree of 8.

Strike K Benchmark 64 128 256 512 Interpolation

2.0 9.727458 −5.9E-2 −3.9E-4 1.5E-8 3.2E-8 1.5E-8
2.2 9.630005 −5.9E-2 −3.9E-4 1.7E-8 3.4E-8 1.7E-8
2.4 9.533199 −6.0E-2 −3.9E-4 1.8E-8 3.5E-8 1.8E-8
2.6 9.437040 −6.0E-2 −4.0E-4 2.0E-8 3.7E-8 2.0E-8
2.8 9.341527 −6.0E-2 −4.0E-4 2.5E-8 4.3E-8 2.5E-8
3.0 9.246662 −6.1E-2 −4.0E-4 2.5E-8 4.3E-8 2.5E-8
3.2 9.152445 −6.1E-2 −4.1E-4 2.3E-8 4.1E-8 2.3E-8
3.4 9.058875 −6.2E-2 −4.1E-4 3.0E-8 4.8E-8 3.0E-8
3.6 8.965954 −6.2E-2 −4.1E-4 3.0E-8 4.8E-8 3.0E-8
3.8 8.873681 −6.3E-2 −4.2E-4 2.8E-8 4.6E-8 2.8E-8
4.0 8.782057 −6.4E-2 −4.2E-4 2.9E-8 4.7E-8 2.9E-8

of the price panel: Spr(S0;K1) = K1 · spread (1, 1), Spr(S0;K1e−η
∗
) = K1e−η

∗ · spread (2, 2),
Spr(S0;K1e−2η∗) = K1e−2η∗ · spread (3, 3), . . . . The results of this technique are recorded
in Tables 2 and 3 in the column “Interpolation.” We can see this technique generates very
accurate results and moreover, saves computational resources.

Finally, we computed first order Greeks using the method described at the beginning of
section 3 and compared them with finite differences. As seen in Table 4, the two methods
come up with very consistent results. The Greeks of our at-the-money spread option exhibit
some resemblance to those of the at-the-money European put/call option. The delta of S1 is
close to the delta of the call option, which is about 0.5. And the delta of S2 is close to the
delta of the put option, which is also about 0.5. The time premium of the spread option is
positive. The option price is much more sensitive to S1 volatility than to S2 volatility. It is
an important feature that the option price is negatively correlated with the underlying corre-
lation: Intuitively speaking, if the two underlyings are strongly correlated, their comovements
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Table 4
The Greeks for the GBM model compared between the FFT method and the finite difference method. The

FFT method uses N = 210 and ū = 40. The finite difference uses a two-point central formula, in which the
displacement is ±1%. Other parameters are the same as Table 1 except that we fix the strike K = 4.0 to make
the option at-the-money.

Delta(S1) Delta(S2) Theta Vega(σ1) Vega(σ2) ∂Spr/∂ρ

FD 0.512648 −0.447127 3.023823 33.114315 −0.798959 −4.193749
FFT 0.512705 −0.447079 3.023777 33.114834 −0.798972 −4.193728

Table 5
Computing time of FFT for a panel of prices.

Discretization GBM SV VG

64 0.091647 0.083326 0.109537
128 0.099994 0.120412 0.139276
256 0.126687 0.234024 0.220364
512 0.240938 0.711395 0.621074
1024 0.609860 2.628901 2.208770
2048 2.261325 10.243228 8.695122

diminish the probability that S1T develops a wide spread over S2T . This result is consistent
with observations made by [10].

Since the FFT method naturally generates a panel of prices and interpolation can be
implemented accurately with negligible additional computational cost, it is appropriate to
measure the efficiency of the method by timing the computation of a panel of prices. Such
computing times are shown in Table 5. For the FFT method, the main computational cost
comes from the calculation of the matrixH in (3.2) and the subsequent FFT ofH. We see that
the GBM model is noticeably faster than the SV and VG models: This is due to a recursive
method used to calculate the H matrix entries of the GBM model, which is not applicable for
the SV and VG models. The number of calculations for H is of order N2, which for large N
exceeds the N logN of the FFT of H, and thus the advantage of this efficient algorithm for the
GBM model is magnified as N increases. However, our FFT method is still very fast for the
SV and VG models and is able to generate a large panel of prices within a couple of seconds.

7. High-dimensional basket options. The ideas of section 2 turn out to extend naturally
to two particular classes of basket options on M ≥ 2 assets.

Proposition 7.1. Let M ≥ 2.
1. For any real numbers ε = (ε1, . . . , εM ) with εm > 0 for 2 ≤ m ≤ M and ε1 <

−1−
∑M

m=2 εm,

(7.1)

(
ex1 −

M∑

m=2

exm − 1

)+

= (2π)−M
∫

RM+iε
eiux

′
P̂M (u)dMu,

where for u = (u1, . . . , uM ) ∈ CM

(7.2) P̂M (u) =
Γ(i(u1 +

∑M
m=2 um)− 1)

∏M
m=2 Γ(−ium)

Γ(iu1 + 1)
.
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2. For any real numbers ε = (ε1, . . . , εM ) with εm > 0 for all m ≤ M ,

(7.3)

(
1−

M∑

m=1

exm

)+

= (2π)−M
∫

RM+iε
eiux

′
Q̂M (u)dMu,

where for u = (u1, . . . , uM ) ∈ CM

(7.4) Q̂M (u) =

∏M
m=1 Γ(−ium)

Γ(−i
∑M

m=1 um + 2)
.

Remark. Clearly, these two results can be applied directly to obtain an M -dimensional
FFT method to price M -asset basket options that pay off either (S1T −S2T − · · ·−SMT −1)+

or (1− S1T − S2T − · · ·− SMT )+. However, it is important to also note that by a generalized
“put-call parity” one can also price options that pay off either (1 +S2T + · · ·+ SMT − S1T )+

or (S1T + S2T + · · ·+ SMT − 1)+.
Proof. The proof of both parts of the above proposition is based on a simple lemma proved

in the appendix.
Lemma 7.2. Let z ∈ R and u = (u1, . . . , uM )′ ∈ CM with ,m(um) > 0 for all m ≤ M .

Then

(7.5)

∫

RM
ezδ

(

ez −
M∑

m=1

exm

)

e−iux′
dMx =

∏M
m=1 Γ(−ium)

Γ(−i
∑M

m=1 um)
e−i(

∑M
m=1 um)z.

To prove (7.2), we need to compute, for u ∈ CM ,

P̂M (u) =

∫

RM

(
ex1 −

M∑

m=2

exm − 1

)+

e−iũx̃dMx.

We introduce the factor 1 =
∫
R δ(e

z −
∑M

m=2 e
xm)ezdz and interchange the z integral with the

x integrals. Then using Lemma 7.2 one finds

P̂M (u) =

∫

R2
(ex1 − ez − 1)+

[∫

RM−1
ezδ

(
ez −

M∑

m=2

exm

)
e−iux′

dx2 . . . dxM

]
dx1dz

=

∏M
m=2 Γ(−ium)

Γ(−i
∑M

m=2 um)

∫

R2
e−iu1x1e−i(

∑M
m=2 um)z(ex1 − ez − 1)+dx1dz.

We can then apply Theorem 1.1 and obtain the result.
The proof of (7.4) is similar to the proof of (7.2), where the two-dimensional problem can

be deduced first and extended to higher dimensions with the application of Lemma 7.2.

8. Conclusion. This paper presents a new approach to the valuation of spread options,
an important class of financial contracts. The method is based on a newly discovered explicit
formula for the Fourier transform of the spread option payoff in terms of the gamma function.
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In the final section we extended this formula to spread options in all dimensions and a certain
class of basket options.

This mathematical result leads to simple and transparent algorithms for pricing spread
options and other basket options in all dimensions. We have shown that the powerful tool
of the FFT provides an accurate and efficient implementation of the pricing formula in low
dimensions. For implementation of higher-dimensional problems, the curse of dimensionality
sets in, and such cases should proceed using parallel partitioning methods as introduced in [9].
The difficulties and pitfalls of the FFT, of which there are admittedly several, are by now well
understood, and thus the reliability and stability properties of our method are clear. We
present a detailed discussion of errors and show which criteria determine the optimal choice
of implementation parameters.

Many important processes in finance, particularly affine models and Lévy jump models,
have well-known explicit characteristic functions and can be included in the method with little
difficulty. Thus the method can easily be applied to important problems arising in energy and
commodity markets.

Finally, the Greeks can be systematically evaluated for such models, with similar perfor-
mance and little extra work.

While our method provides a basic analytic framework for spread options, much as has
been done for one-dimensional options, it is certainly possible to add refinements that will
improve convergence rates. Such techniques might include, for example, analytic computation
of residues combined with contour deformation.

Appendix. Proof of Theorem 1.1 and Lemma 7.2.
Proof of Theorem 1.1. Suppose ε2 > 0, ε1+ε2 < −1. One can then verify either directly or

from the argument that follows that eε·xP (x), ε = (ε1, ε2) is in L2(R2). Therefore, application
of the Fourier inversion theorem to eε·xP (x), ε = (ε1, ε2) implies that

(A.1) P (x) = (2π)−2
∫∫

R2+iε
eiu·xg(u)d2u,

where

g(u) =

∫∫

R2
e−iu·xP (x)d2x.

By restricting to the domain {x : x1 > 0, ex2 < ex1 − 1} we have

g(u) =

∫ ∞

0
e−iu1x1

[∫ log(ex1−1)

−∞
e−iu2x2 [(ex1 − 1)− ex2 ]dx2

]
dx1

=

∫ ∞

0
e−iu1x1(ex1 − 1)1−iu2

[
1

−iu2
− 1

1− iu2

]
dx1.

The change of variables z = e−x1 then leads to

g(u) =
1

(1− iu2)(−iu2)

∫ 1

0
ziu1

(
1− z

z

)1−iu2 dz

z
.
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The beta function

B(a, b) =
Γ(a)Γ(b)

Γ(a+ b)

is defined for any complex a, b with #e(a),#e(b) > 0 by

B(a, b) =

∫ 1

0
za−1(1− z)b−1dz.

From this and the property Γ(z) = (z − 1)Γ(z − 1) we have the formulas

(A.2) g(u) =
Γ(i(u1 + u2)− 1)Γ(−iu2 + 2)

(1− iu2)(−iu2)Γ(iu1 + 1)
=
Γ(i(u1 + u2)− 1)Γ(−iu2)

Γ(iu1 + 1)
.

The above derivation also leads to the following bound on P̂ .
Corollary A.1. Fix ε2 = ε, ε1 = −1− 2ε for some ε > 0. Then

(A.3) |P̂ (u1, u2)| ≤
Γ(ε)Γ(2 + ε)

Γ(2 + 2ε)
· 1

Q(|u|2/5)1/2
,

where Q(z) = (z + ε2)(z + (1 + ε)2).
Proof. First note that for z1, z2 ∈ C, |B(z1, z2)| ≤ B(#e(z1),#e(z2)). Then (A.2) and a

symmetric formula with u2 ↔ −1− u1 − u2 lead to the upper bound

|P̂ (u1 − i(ε+ 1), u2 + iε)| ≤ B(ε, 2 + ε)min

(
1

Q(|u2|)
,

1

Q(|u1 + u2|)

)
.

But since Q is monotonic and |u| ≤
√
5max (|u2|, |u1 + u2|) for all u ∈ R2, the required result

follows.
Proof of Lemma 7.2. We make the change of variables p = ez and qm = exm and prove by

induction that

(A.4)

∫

RM
pδ

(
p−

M∑

m=1

qm

)
M∏

m=1

q−ium−1
m dMq =

∏M
m=1 Γ(−ium)

Γ(−i
∑M

m=1 um)
p−i(

∑M
m=1 um).

The above equation trivially holds when M = 1. If it holds for M = N , then for M = N + 1
one finds

LHS =

∫

RN+1
pδ

(

p− qN+1 −
N∑

m=1

qm

)

q
−iuN+1−1
N+1

N∏

m=1

q−ium−1
m dN+1q

=

∏N
m=1 Γ(−ium)

Γ(−i
∑N

m=1 um)

∫ p

0

p

p− qN+1
(p − qN+1)

−i(
∑N

m=1 um)q
−iuN+1−1
N+1 dqN+1.(A.5)

The proof is complete when one notices that the qN+1 integral is simply p−i(
∑N+1

m=1 um) multi-
plied by a beta function with parameters −i(

∑N
m=1 um) and −iuN+1.
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