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1 Introduction

One–period utility based portfolio optimization is a classic method in financial economics
[13]. The theory is extremely well developed, and extends in many directions, for example
to dynamic portfolio optimization in continuous time [12]. Nonetheless, the solutions to
these problems, characterized theoretically, often remain dismayingly difficult to compute in
practise. Very often, finance practitioners retreat from the economically sound methods of
utility based optimization to a computationally simple but economically unjustified mean–
variance method.

This paper will examine a straightforward Monte Carlo method for computing utility-
optimal portfolios for problems of investing in M assets over a single period. After reviewing
the basics of portfolio theory in sections 2 and 3, in section 4 we propose a formula for
the error between the true solution and the Monte Carlo estimate and give a theoretical
justification for it (but not a proof). As is typical in Monte Carlo methods, the error term
is difficult to estimate accurately. In this paper we give rough estimates of the theoretical
error in two ways: first by using the Monte Carlo simulation itself, and second by using an
approximate formula derived under a Gaussian assumption. We find these two approaches
to be mutually consistent, and consistent with the observed convergence of the Monte Carlo
estimates.
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In section 5 we test the efficiency of the method in a benchmark problem which admits an
exact solution, namely a four dimensional problem with asset returns modeled by a mixture
of two Gaussians. Here we observe that the convergence of the method to the true portfolio
as the sample size increases is completely consistent with the error formula.

In section 6, we apply the method to determine the optimal four asset portfolio in a
market modeled by the multivariate Student t distribution with five degrees of freedom.
This distribution is a favourite example of a fat tailed distribution which has often been
used for asset modeling. To keep the model relevant, the model parameters are calibrated
to a data set comprising the historical joint daily returns of four large cap equities, GE,
Exxon-Mobil, Coke and Intel. The risk aversion parameter in the optimization is taken over
a range appropriate to the financial context. In the resulting investigation, we find that the
error formula implies that simulation sizes in the range of 106 to 108 are needed to compute
portfolios with an accuracy of 1%. By choosing a range of simulation sizes from 210 to 220,
we are able to see an agreement between the predicted convergence rate and the observed
rate.

The long history of applying Monte Carlo methods in finance began in [4] with the pricing
of derivatives. An excellent recent review of Monte Carlo methods for pricing and hedging
in finance is [7]. In this book the focus is on univariate problems. Only recently have Monte
Carlo methods been applied to the more general problem of portfolio optimization, beginning
with [6] and [5]. In particular, even the one period portfolio problem posed in the present
paper has not been widely studied. No doubt our method has often been used in industry,
but as far as the authors are aware, no works on this subject have been published in the
academic literature. In particular

In summary, this paper extends the huge existing literature on portfolio selection by
providing a robust, theoretically justified, numerical method for computing one period utility
optimal portfolios. We have tested the method on a practical four dimensional problem and
found that the observed numerical behaviour of the approximation is compatible with the
theoretical error formula. For this example, adequate performance is achievable in several
minutes on a desktop computer.

The primary motivation for developing results of this type is to gain confidence and
proficiency in computing optimal portfolios for financially realistic problems. In particular
we wish to compare the performance of utility optimal portfolios to those produced by the
industry standard, but not economically justified mean-variance method. In the present
paper, we observe in our example that the efficient frontiers of the utility problem and
mean–variance problem coincide to a high degree of accuracy. This somewhat surprising
result will be studied in much greater detail in a companion paper [1] which surveys one
period portfolio problems for a range of probabilistic models.
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2 Setup

We begin our modeling with a data set of multivariate asset prices sampled at discrete times
ti = i∆t, i ∈ Z where t0 = 0 denotes the present time. Using data from the past ti < 0,
we will select a probabilistic model which captures the important stylized facts of the time
series as well as matching the important statistical parameters. Based on the selected model,
we then provide the means to compute the optimal allocation of assets for an investor with
given risk preferences (specified by a utility function) and initial wealth, over a time period
[0, T ], T = tN .

In section 4 we shall review the two basic methods for portfolio selection over a single time
period: the industry standard mean–variance optimization method and the economically
preferable utility based method.

Let Ỹi = {Ỹ α
i }M

α=1 where Ỹ α
i = log Sα

t is the log price of the αth asset at time ti. Let
Yi = Ỹi − Ỹi−1 denote the vector of log returns over the period (ti−1, ti]. We also consider
Xi = [Si − Si−1]/Si−1 = eYi − 1, the vector of relative returns over this period.

The basic model for returns is the geometric Gaussian model G1 (attributable to Samuel-
son) which assumes that the log returns {Yi}i∈Z form a sequence of iid multivariate Gaussian
random variables Yi ∼ N(µ∆t, Σ′Σ∆t) where the vector µ is called the mean rate of return
and the symmetric positive matrix C = Σ′Σ is called the covariance. The arithmetic Gaus-
sian model A1 is attributable to Bachelier [3] and assumes that the relative returns Xi are iid
multivariate Gaussian. The A1 model is very tractable, but leads to negative values of stock
prices with non-zero probability. Note that for ∆t sufficiently small, the relative returns Xi

become indistinguishable from the log returns Yi.
The experience of decades of quantitative analysis has shown some specific ways in which

observed financial time series fail to satisfy the properties of the geometric Gaussian model
G1.

1. fat tails: the marginal distributions of observed time series have a typical shape which
differs from the Gaussian. Figure 1 shows the historical daily log returns for Exxon,
together with the probability density function for the Gaussian distribution which best
approximates it. We note that the historical distribution is higher in the tail and
central areas, while lower in the shoulders, characteristic of the leptokurtic nature of
financial returns.

2. stochastic volatility: it is observed (and expected by no arbitrage considerations) that
the autocorrelation of log returns decays quickly to near zero over the time scale of
minutes. However, higher order autocorrelations exhibit memory effects which can be
interpreted as serial correlation in the covariance matrix.

3. skewness: left tails tend to be slightly fatter than right tails.
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4. scaling effects: [8] have argued that the marginal distributions of asset returns measured
over two different time increments are related by a simple scaling transformation.

5. multivariate effects: observed multivariate data has “tail dependence” [9]. The ob-
served tail dependence corresponds to the econometric statement that joint extreme
moves are systematically more frequent than is consistent with multivariate Gaussian
models.

The final effect listed above has important implications for portfolio theory. It implies
that the strategy of portfolio diversification, the most important principle in financial risk
management, has less power than otherwise expected to mitigate risk under scenarios of
market distress.

In the present paper, we shall use an extension of the G1 model in which log returns
{Yi}i∈Z form a sequence of iid multivariate Student t random variables. Such random vari-
ables can be written (see e.g. [7]) as

Y = µ +

√
ν

ν − 2
ΣZ (1)

where Z = (Z1, . . . , ZM) is a vector of iid Student t random variables with ν > 2 degrees of
freedom and µ, C = Σ′Σ are the mean and covariance of Y . This model has fat tails and tail
dependence, but does not exhibit stochastic volatility, skewness or scaling effects.

3 Review of one period optimization

We now discuss the problem of determining at time t = 0 the optimal allocation of the
agent’s wealth into the assets for the period T = ∆t. Let θα denote the fraction of wealth
W0 invested in asset α at time 0. It follows that the wealth at time T will be

W = W0

(
1 +

∑
α

θαXα

)
(2)

where X denotes the relative return vector for the period. For each possible vector θ we
define the mean return to be µ(θ) = ∆t−1E[(W −W0)/W0] and the variance to be σ2(θ) =
∆t−1Var[(W −W0)/W0].

1. Mean-variance optimization [11]: For a given mean return value µ (selected by the
investor), the MV portfolio is defined by

θMV (µ) = argmin θ:µ(θ)≥µ
θ·e=1

σ2(θ) (3)
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Figure 1: : Normalized sample probability distribution of daily log returns for Exxon over
the period 1950-2003, compared to standard Gaussian distribution function
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The solution, as a function of µ, is dependent only on the mean µX = (∆t)−1E[X] and
covariance CX = (∆t)−1Cov[X] of X. When CX is nondegenerate, then

θ(µ) = C−1
X [λ1µX + λ2e] (4)

where [
λ1

λ2

]
=

[
µ′XC−1

X µX µ′XC−1
X e

e′C−1
X µX e′C−1

X e

]−1 [
µ
1

]
(5)

The curve {(σ2(θMV (µ)), µ), µ ≥ µ∗} is called the mean variance efficient frontier.

2. Utility based optimization:

“Utility” is a measure of an agent’s attitude to wealth: more wealth gives the agent
more “happiness” or utility. A utility function U : R → R̄ is defined to be a concave,
increasing differentiable function taking values in the extended real line. For each U ,
the utility–optimal portfolio θ(U) is that allocation which gives the agent the maximal
expected utility of terminal wealth, that is:

θ(U) = argmaxθ:θ·e=1E[U(W (θ))] (6)

It can be proved under broad hypotheses on the model and the utility function that
there exists a unique solution to this problem.

Examples:

(a) Exponential utility: This is the family U(x) = −γ−1e−γx with one parameter
γ > 0 called the absolute risk aversion coefficient. In the arithmetic Gaussian
model A1, we find

E[U(θ ·X)] = −γ−1ΦX(γθ) (7)

where ΦX is the characteristic function of X:

ΦX(a) = e−ia′µX−a′CXa/2 (8)

If X is a multivariate Student t distribution, which has power law tails in all
directions, one can see that

E[U(θ ·X)] =

{
−γ−1 θ = 0
−∞ θ 6= 0

(9)

We see that the exponential utility does not admit investment in the risky assets
in this case. When Y = log(1 + X) is a multivariate Student t distribution with
all correlations |ρij| < 1 , one can show that E[U(θ ·X)] = −∞ if and only if at
least one component of θ is negative.
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(b) Power utility: This family has the form U(x) = p−1(xp−1) (including the limiting
form U(x) = log x when p = 0) for values of the relative risk aversion coefficient
p < 1. We extend with U(x) = −∞ when x < 0. For this utility we have
no analytic expressions for E[U(θ · X)] in any of the above models for returns.
We can see that the arithmetic models which allow returns which are unbounded
from above and below all give E[U(θ ·X)] = −∞ unless θ = 0. For the geometric
models, one can see again that E[U(θ · X)] = −∞ if and only if at least one
component of θ is negative.

In the arithmetic model A1, utility optimization coincides with mean–variance optimiza-
tion:

Proposition 1 (Stein’s Lemma) Suppose the market model is of type A1 and let U be
any utility function. Then the utility optimal portfolio lies on the mean–variance efficient
frontier.

Remark: This result was proved in [10] using Stein’s results in [14].

4 Monte Carlo optimization

Analytical formulas are usually impossible to obtain for expectations such as the one in
(6), and thus a numerical method of some sort is necessary. In this section we introduce

a simple optimization method based on Monte Carlo and estimate its accuracy. Let ~X
.
=

{X1, . . . , XN} be a size N Monte Carlo sample of the relative return vector X.
We define the random variable Uθ(X) = U([θ, 1 − θ · e]′X), where we have solved the

portfolio constraint θ · e = 1 by writing each portfolio allocation vector as [θ, 1− θ · e] with
θ ∈ RM−1. The optimal allocation of an agent with initial wealth 1 and utility U is the
solution of

θ̂ = argmaxθF (θ), F (θ)
.
= E[Uθ] (10)

The Monte Carlo approximation θ̃( ~X) generated by ~X is defined to be

θ̃( ~X) = argmaxθf(θ| ~X), f(θ| ~X)
.
=

1

N

∑
i≤N

Uθ(Xi) (11)

Now f(θ| ~X) is certainly concave in θ. If N is large enough then, with near certainty, for
any number P > 0 there is R such that ‖θ‖ > R implies f(θ) ≤ −P . In this case it is easy to

see that the function f(θ| ~X) achieves its maximum value at a unique finite point θ̃ ∈ RN−1.
Therefore, for N large enough, the method produces a finite approximation θ̃ to the exact
optimum θ̂ with near certainty.

The following formula gives an estimate of the accuracy of this approximation.
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Error formula: Let K̂ = K̂2
1K̂2 be defined by (20) and (16) respectively. Provided the

technical assumptions of Lemma 1 and Lemma 2 hold, then for any α < 1, ε > 0

Prob
[
‖θ̃( ~X)− θ̂‖ > ε

]
< α (12)

provided N ≥ K̂
αε2

where N is the size of the simulation.

Our heuristic derivation of this error estimate is based on noting that the approximate
solution θ̃ satisfies

∑
i∇Uθ(Xi) = 0 while θ̂ is the root of ∇F (θ) = 0. Two lemmas proved

in the Appendix will be used: we will see that ∇F (θ̃) will be small by Lemma 1, and then
by Lemma 2 θ̃ − θ̂ will be small.

The first lemma applies to the RM random variable X, the random sample ~X and utility
function U and involves further random variables defined in terms of X:

∇Uθ(X) = U ′([θ, 1− θ · e]′X)[X<M − eXM ] ∈ RM−1 (13)

∇2Uθ(X) = U ′′([θ, 1− θ · e]′X)[X<M − eXM ][X<M − eXM ] ∈ R(M−1)×(M−1) (14)

Note that E[∇Uθ] = ∇F (θ), E[∇2Uθ] = ∇2F (θ).

Lemma 1 Let ~X = {X1, . . . , XN} be a size N Monte Carlo sample of the relative return
vector X and θ ∈ V ⊂ RM−1. Then for any ε > 0 and confidence level 1− α, α ∈ (0, 1)

Prob

[
‖ 1

N

∑
i

∇Uθ(Xi)− E[∇F (θ)]‖ > ε

]
≤ α (15)

provided
K̂2

.
= max

θ∈V
tr[Cov(∇Uθ)] < ∞ (16)

and N is chosen larger than K̂2

αε2
.

We suppose that V ⊂ RM−1 is chosen convex and large enough that it contains both θ̃
and θ̂. For the specific value of θ̃( ~X) we assume1 we can apply Lemma 1. For any constant
K1, if we take

N ≥ K2
1K̂2

αε2
(17)

1This point is not rigorous because θ̃ is actually a function of the random vector ~X. Fixing θ̃ imposes a
nonlinear constraint on ~X violating the independence assumption underlying 1. We must keep this caveat
in mind when applying the error estimate.
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with K̂2 defined by (16), then with probability 1− α,

‖∇F (θ̃)]‖ ≤ ‖ 1

N

∑
i

∇Uθ̃(Xi)‖+ ‖ 1

N

∑
i

∇Uθ̃(Xi)−∇F (θ̃)]‖

≤ ε

K1

. (18)

Finally we apply the following Lemma to the function g = −F :

Lemma 2 Let g : V ⊂ Rn → R be two times differentiable and convex on the convex domain
V. Suppose θ̂ ∈ V satisfies ∇g(θ) = 0 and thus minimizes g. Then for any θ ∈ V

‖θ − θ̂‖ ≤ K̂1‖∇g(θ)‖ (19)

provided
K̂1

.
= sup

θ∈V
‖(∇2g(θ))−1‖ < ∞ (20)

(this is the reciprocal of the smallest singular value the Hessian matrix achieves on V.)

This leads to the desired estimate

‖θ̃ − θ̂‖ ≤ K̂1‖∇F (θ̃)‖ ≤ ε (21)

with probability 1− α provided

N ≥ K̂2
1K̂2

αε2
. (22)

Remark: It is clear that an important difficulty in applying this error estimate lies in
determining the quantity K̂

.
= K̂2

1K̂2. In our simulation work, we estimate K̂ simply by
evaluating the quantities Cov(∇Uθ), ‖(∇2g(θ))−1‖ at the values of θ which arise during the
iterations of the optimization algorithm: when these quantities are observed to be relatively
stable we view their average value as a somewhat optimistic approximation to K̂1 and K̂2.

We can also understand the size of K̂ by an exact computation in the A1 model of

K̃ = ‖∇2F−1‖ × tr (E[∇Uθ∇Uθ]− E[∇Uθ]E[∇Uθ]) (23)

at θ̂, the minimizer of F (θ) = E[Uθ]. In terms of θ ∈ RM−1 we have

F (θ) = −γ−1 exp

[
−γ[Aθ + eM ]′µX +

γ2

2
[Aθ + eM ]′CX [Aθ + eM ]

]
(24)

where A is the M × (M − 1) matrix such that [Aθ]′ = [θ′,−θ · e] and eM = [0, . . . , 0, 1]′. The
minimizer satisfies

A′µX = γA′CX [Aθ̂ + eM ] (25)
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Then at θ = θ̂ we find

E[∇Uθ∇Uθ] =
∂

∂θ1

∂

∂θ2

E [exp[−γ(θ1 + θ2)
′A′X − 2γe′MX]]

∣∣∣
θ1=θ2=θ̂

(26)

= [γ2A′CXA + γ2(A′µX)⊗ (A′µX)] (27)

×F (θ̂)2 exp
[
γ2[Aθ̂ + eM ]′CX [Aθ̂ + eM ]

]
(28)

(29)

and
∇2F (θ̂) = γ2A′CXA F (θ̂) (30)

Therefore

K̃ = γ−2‖(A′CXA)−1‖2
[
tr(A′CXA) + ‖A′µX‖2

)
exp

[
γ2[Aθ̂ + eM ]′CX [Aθ̂ + eM ]

]
(31)

When γ is not too large, we find

K̃ ∼ Mγ−2, M = ‖(A′CXA)−1‖2
[
tr(A′CXA) + ‖A′µX‖2

)
(32)

5 A Benchmark Problem

Before applying the method to a real–life problem in the next section we consider here a
simpler portfolio problem where the objective function can be computed in closed form. This
will allow us to determine if the Monte Carlo approximants converge to the true solution in
the predicted fashion. We are also able to choose the model so that the resulting portfolios
lie quite far from the mean–variance frontier.

We model X by a simple mixture of two Gaussians X = ξN1 + (1 − ξ)N2 where the
independent random variables are ξ, binomial with probabilities p1, p2 = 1 − p2, and Ni ∼
N(µi, Ci). If we choose p1 = .9 and mixture components

stock µ̂1 Ĉ1(·, GE) Ĉ1(·, XOM) Ĉ1(·, KO) Ĉ1(·, INTC)

GE 0.00031 0.00017 0.00010 0.00009 0.00008
XOM 0.00036 0.00010 0.00022 0.00012 0.00011
KO 0.00048 0.00009 0.00016 0.00019 0.00013
INTC 0.00069 0.00008 0.00011 0.00013 0.00060

stock µ̂2 Ĉ2(·, GE) Ĉ2(·, XOM) Ĉ2(·, KO) Ĉ2(·, INTC)

GE 0.00224 0.00087 0.00025 0.00027 0.00025
XOM 0.00419 0.00025 0.00118 0.00039 0.00021
KO 0.00349 0.00027 0.00039 0.00142 0.00090
INTC 0.00736 0.00025 0.00021 0.00090 0.00347
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then µX , CX agree with the values for the Student t model found in the next section. Thus
the mean–variance optimal portfolios coincide. However, the mixture of Gaussians here is
quite different both from an A1 model and the Student t distribution and thus will lead to
utility–optimal portfolio curves which are quite different from the mean–variance efficient
frontier.

The theoretical optimizer θ̂(γ) is obtainable by a numerical maximization of the objective
function

F (θ) = −γ−1

2∑
i=1

pi exp

[
−γ[Aθ + eM ]′µi +

γ2

2
[Aθ + eM ]′Ci[Aθ + eM ]

]
(33)

The one period optimization algorithm was computed on Monte Carlo simulations of
the relative return vector X with a range of sample sizes N = 2n, n = 12, 14, 16, 18, 20 and
with the exponential utility with a range of risk aversion parameters γ ∈ [1, 32]. For each
simulated data set and choice of γ, a straightforward Newton–Raphson iteration algorithm
was used to compute θ̃(n)(γ), the solution of (11). Our interest is in observing whether in all
cases the expected convergence of the Monte Carlo approximants to the true solutions θ̂(γ)
is exhibited as n increases.

To test whether the errors ε(n)(γ)
.
= ‖θ̃(n) − θ̂‖ behave consistently with the theoretical

error formula we also need to obtain approximate values for K̂ = K̂2
1K̂2. For this we

computed values using the simulation itself. Since θ̃ varies randomly with n during the
computation, we thereby observe K on a random set of points near θ̂. Table 6 shows these
values as well as the estimated value K̃ given by (23). This table shows that K tends to be
stable in n over the range of γ values, and furthermore these values agree with the estimate
K̃. Therefore we have confidence that these values serve as a reliable proxy for the theoretical
best value K̂.

N\γ 21 22 23 24 25

210 55988 14053 3534.9 887.34 215.14
212 48319 12091 3016.6 739.54 167.77
214 54087 13537 3378.2 828.14 186.72
216 51699 12929 3221.4 787.45 176.79
218 52372 13094 3261 796.05 177.85
220 52552 13143 3274.8 800.31 179.29

K̃ 32520 8147 2053.9 530.93 151.73

Table 3: The values of K2
1K2 for the mixture of Gaussians evaluated

at the values θ̃(n) for a range of values of N = 2n and γ. Also shown
are the values of K̃.

Figure 2 shows that for this problem the observed error is completely consistent with the
theoretical formula.
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Figure 2: Observed errors and theoretical errors as functions of the log simulation size for
the mixture of Gaussians model. Starting from the top left, these correspond to the values
log2(γ) = 0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5.

6 Real–life Application

With the method verified in the previous section, we consider a financially relevant port-
folio problem where no analytical results are known, and so where a numerical method
such as the Monte Carlo optimization is needed. We focused on a data set obtained from
http://finance.yahoo.com/ consisting of closing daily share prices of four large cap com-
panies trading on NASDAQ and NYSE, namely GE, Exxon (XOM), Coke (KO), and Intel
(INTC) for the period July 9/86 to July 18/03, and consists of 4274 trading days. Then we
addressed the problem of an investor trying to determine the portfolio made up of these four
assets which maximizes expected exponential utility over the next day to the future, based
on the historical data.

By the general properties of the exponential utility, the solution depends on the risk
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aversion parameter γ but not on the investor’s wealth. Before we begin, we expect that for
small values of γ, the investor will be excessively risk tolerant, and the corresponding solution
will involve shortselling of the worst performing asset. Disallowing shortselling provides a
natural lower bound to the values of γ. We will also observe that for large values of γ
the portfolios become more difficult to compute, and results turn out to be less and less
dependent on γ. Thus in practice only a narrow range of γ corresponds to acceptable risk
preferences.

We assume that the log returns Y = log(X + 1) ∈ R4 follow a multivariate Student t
distribution as described in section 2. For simplicity we take the degrees of freedom parameter
ν to be 5, which is a typical value for daily asset returns. The method of moments applied
to the data sample log returns leads to the following values for µ̂Y , ĈY :

stock µ̂ Ĉ(·, GE) Ĉ(·, XOM) Ĉ(·, KO) Ĉ(·, INTC)

GE 0.00038 0.00024 0.00012 0.00011 0.00010
XOM 0.00058 0.00012 0.00032 0.00015 0.00013
KO 0.00062 0.00011 0.00015 0.00031 0.00021
INTC 0.00091 0.00010 0.00013 0.00021 0.00090

The one period optimization algorithm was computed on Monte Carlo simulations of the
relative return vector X = eY −1 based on the historically calibrated parameters µ̂Y , ĈY with
a range of sample sizes N = 2n and with the exponential utility with a range of risk aversion
parameters γ ∈ [1, 32]. For each simulated data set and choice of γ, a straightforward
Newton–Raphson iteration algorithm was used to compute θ̃(n)(γ), the solution of (11). Our
interest is in observing whether in all cases the expected convergence properties as n increases
is exhibited.

Since the true optimal portfolio is not known, we ran preliminary computations based
on a very large sample size of 224 random vectors, which was the largest sample size our
desktop machine could easily handle. If the resulting portfolios are denoted by θ̃(24)(γ), we
obtain the theoretical errors ε(th)(γ)

.
= ‖θ̃(24) − θ̂‖ based on the observed values of K1, K2 as

well as δ(mv) .
= ‖θ̃(24)(γ) − θ(mv)(µ(γ))‖. These values are tabulated below, from which we

see that the theoretical error is small enough to clearly resolve the difference between the
mean–variance and utility optimal portfolios.

To test the theoretical error formula over the range of sample sizes, we observed the
behavior of ε(n) .

= ‖θ̃(n)− θ̃(24)‖) for values of n = log2(N) in the range [10, 20]. We compare
to θ̃(24) because θ̂ is not calculable. To obtain approximate values for K̂1, K̂2 we used the
simulation itself. Since θ̃ varies randomly with n during the computation, we thereby observe
K1, K2 on a random set of points near θ̂. Table 6 shows that these values tend to be stable
in n over the range of acceptable γ values, so it is clear that they serve as a reliable proxy
for the theoretical best values K̂1, K̂2.
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N\γ 21 22 23 24 25

210 43581 10880 2689.7 638.54 130.04
212 41133 10293 2553.9 598.03 103.32
214 46277 11535 2837.3 661.12 116.13
216 47566 11912 2961.1 712.93 203.73
218 47810 11971 2961.2 671.68 190.12
220 47398 11859 2925.8 663.27 121.77

K̃ 32520 8147 2053.9 530.93 151.73

Table 3: The values of K2
1K2 evaluated at the values θ̃(n)

for a range of values of N = 2n and γ. Also shown are the values of K̃.

Figure 3 graphs the log error between the portfolio vectors versus log simulation sizes,
for nine different values of the risk aversion parameter γ. On the same graph, we plot the
theoretical error versus the simulation size using the quantity K2

1K2 obtained from Table 3.
As a rule of thumb, no more than one data point in ten should lie above the curve in these
graphs.

Based on the observed values of K̂, we estimate that to achieve theoretical error ε(n) ≤
0.01 requires sample sizes of approximately 229, 227, 225, 223, 221 for γ = 21, 22, 23, 24, 25 re-
spectively.

Figure 4 is a variance–mean plot of the portfolios which result from exponential utility
optimization within the multivariate student t model. The Monte Carlo method is used with
a range of simulation sizes from 210 to 220.

7 Summary

The Monte Carlo method provides a feasible method for producing approximate solutions
to the one–period utility optimization problem for low dimensional stochastic models cali-
brated to market data. The method can be applied in any model which can be efficiently
simulated. The picture that arises is that in the model we investigated, the Monte Carlo
method does indeed converge with the rate predicted by theory. The values K̂1, K̂2 entering
in the error formula can be determined accurately enough to be able to estimate errors simply
by computing E[D2Uθ] and Cov(DUθ) for the approximate optimal portfolio vector, since
these quantities are observed to vary only slowly over the domain on which the optimization
operates.

We notice in our computations that the resulting portfolios do not differ very much from
the naive mean–variance portfolios, even when the underlying probability distribution is as
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Figure 3: Observed errors and theoretical errors as functions of the log simula-
tion size. Starting from the top left, these correspond to the values log2(γ) =
0, 0.5, 1, 1.5, 2, 2.5, 3, 3.5, 4, 4.5, 5.

fat-tailed as the multivariate Student t with 5 degrees of freedom. This suggests that fat
tails in themselves do not greatly influence the choice of optimal portfolio. This somewhat
surprising result is the focus of a companion paper [2]. It remains to be seen to what extent
tail dependence influences portfolio selection.
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Figure 4: Mean–variance plots of the approximate utility optimal portfolios for a range of γ
values. The different curves correspond to the simulation sizes N = 2n for n = 12, 16, 20, 24.

A Appendix

A.1 Proof of Lemma 1

The probability in question equals

Prob

[
1

N2ε2

M−1∑
α=1

N∑
i,j=1

(∇αUθ(Xi)− E[∇αUθ]) (∇αUθ(Xj)− E[∇αUθ]) > 1

]
(34)

which is bounded from above by

E

[
1

N2ε2

∑
α,i,j

(∇αUθ(Xi)− E[∇αUθ]) (∇αUθ(Xj)− E[∇αUθ])

]
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=
1

N2ε2

∑
α,i

E
[
(∇αUθ(Xi)− E[∇αUθ])

2]
=

1

Nε2
tr [Cov(∇Uθ)]

≤ K2

Nε2
≤ α. (35)

A.2 Proof of Lemma 2

Let γ : [0, 1] → V be the curve of steepest ascent with γ(0) = θ̂, γ(1) = θ and ‖γ′(t)‖2 = Γ =

constant. Then
∫ 1

0

√
‖γ′(t)‖2 dt = Γ is the length of the curve. Now

‖∇g(θ)‖2 =

∫ 1

0

d

dt
‖∇g(γ(t))‖2dt

= 2

∫ 1

0

[
(∇g) · [(∇2g)γ′]

]
dt (36)

By the steepest ascents condition γ′ is parallel to ∇g and from the definition of K1 this
implies (∇g) · [(∇2g)γ′] ≥ K−1

1 ∇g · γ′. Thus

‖∇g(θ)‖2 ≥ 2K−1
1

∫ 1

0

(∇g) · γ′(t)dt

= 2K−1
1 [g(θ)− g(θ̂)] (37)

Let G(λ) = g(λθ + (1− λ)θ̂) and then because G′(0) = 0

g(θ)− g(θ̂) = G(1)−G(0) =
1

2
G′′(ξ) (38)

for some ξ ∈ (0, 1). But

G′′(ξ) = (θ − θ̂) · [(∇2g) (θ − θ̂)] ≥ K−1
1 ‖θ − θ̂‖2 (39)

and hence
‖∇g(θ)‖2 ≥ K−2

1 ‖θ − θ̂‖2 (40)
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