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Abstract

Finite mixture distributions have been used as models throughout the

history of modern statistics. A mixture distribution is a compounding

of statistical distributions, which arises when sampling from inhomoge-

neous populations with a different probability density function in each

component. A finite mixture has a finite number of components.

The objective of this project is to develop statistical software for

estimating the parameters of mixture distributions with grouped data

and conditional data. The method we apply is the standard maximum

likelihood estimation method. However, estimating the parameters of a

mixture distribution is difficult when the components are heavily over-

lapped. Macdonald & Pitcher (1979) solved the problem of overparam-

eterization by applying constraints on parameters.

We develop a package called Rmix for the R statistical computing

environment to fit finite mixture distributions, with the functionality

of Macdonald’s MIX software (1979), but with updated and substan-
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tially improved numerical methods based on a combination of the EM

algorithm and a Newton-type method implemented in the function nlm

provided by the R system. A number of utility functions were also

written to aid in preparing data and starting values for the parameters,

plotting mixture distributions, providing the analysis of variance, and

so on.
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Chapter 1

Introduction

1.1 Finite Mixture Distribution

A mixture distribution is a compounding of statistical distributions,

which arises when sampling from inhomogeneous populations (or mixed

populations) with a different probability density function in each com-

ponent. Size-frequency distributions in animal populations with distinct

age-groups, the distribution of times to failure in a mixture of good and

defective items, and the distribution of some diagnostic measure in a

mixed population of patients, some of whom have a given disease and

some of whom do not, are all examples of mixed distributions. A finite

mixture has a finite number of components.

Definition 1.1.1 Suppose that a random variable X takes values in a

sample space X, and that its distribution can be represented by a prob-

1



CHAPTER 1. INTRODUCTION 2

ability density function (or mass function in the case of discrete X) of

the form

g(x) = π1f1(x) + · · ·+ πkfk(x) (x ∈ X), (1.1)

where

0 ≤ πi ≤ 1, i = 1, . . . , k; π1 + · · ·+ πk = 1.

We say that X has a finite mixture distribution and that g(·) is a finite

mixture density function. The parameters π1, . . . , πk will be called

the mixing weights or mixing proportions and f1(·), . . . , fk(·) the

component densities of the mixture.

There is no requirement that the component densities should all be-

long to the same parametric family, but throughout this project, we

will restrict attention to the simplest case, where f1(x), . . . , fk(x) have

a common functional form but have different parameters. We can then

write fi(x) = f(x|θi) where θi denotes the parameters occurring in

fi(x). The finite mixture density function will then have the form

g(x|Ψ ) =
k∑

i=1

πif(x|θi) (x ∈ X), (1.2)

where Ψ = (π1, . . . , πk, θ
T
1 , . . . , θ T

k )T is the complete collection of all

distinct parameters occurring in the mixture model.
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With many direct applications, there are situations where we believe

in the existence of k underlying categories, or groups, such that the

experimental unit on which the observation X is made belongs to one

of these categories. We do not, however, observe directly the source of

X. In these forms of application, f(·|θi) summarizes the probability

distribution of X given that the observation actually derives from group

i, and πi denotes the probability that the observation comes from this

source.

To fit finite mixture distributions, we need to estimate all the param-

eters in the mixture models. There is a remarkable variety of estimation

methods that have been applied to finite mixture problems, such as the

method of moments, maximum likelihood, minimum chi-square, least

squares approaches and so on. We shall consider the most well-known

maximum likelihood estimation method and take the likelihood function

as our starting point. The likelihood functions have different forms with

different kinds of data, we will give a brief introduction of complete and

incomplete data with their likelihood functions in next sections.

1.2 Complete Data Problem

We say that a sample from a mixed population is complete if, for every

observation, both the measurement X and the component the individual
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come from are observed.

Definition 1.2.1 Suppose that a random sample x1, x2, . . . , xn arises

from a mixed population, then complete data can be defined ([TSM85])

as

{yj ; j = 1, 2, . . . , n} = {(xj, zj); j = 1, 2, . . . , n},

where each zj = (z1j, . . . , zkj) is an indicator vector of length k with

1 in the position corresponding to the appropriate category and zeros

elsewhere.

For example, in studies of fish population we have a sample ([MP79])

of fish lengths from 523 pikes of known age. The five components cor-

respond to groups of fish aged one to five, all older fish having been

eliminated from the sample. Here x1, x2, . . . , x523 denote the lengths of

pike, and for each xj, zij will be equal to 1 in the position correspond-

ing to the ith age group to which the fish belongs and zeros elsewhere.

Table 1.1 gives part of the data.

The likelihood function corresponding to the complete data (y1, . . . , yn)

can then be written in the form

L(Ψ ; y1, . . . , yn) =
n∏

j=1

g(xj|Ψ ) =
n∏

j=1

[
k∏

i=1

π
zij

i f(xj|θi)
zij

]
(1.3)
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Table 1.1: Pike lengths and age

Age Age
Num Length

1 2 3 4 5
Num Length

1 2 3 4 5

1 18.0 1 0 0 0 0
...

...
...

...
...

...
...

2 19.0 1 0 0 0 0 454 53.0 0 0 1 0 0
...

...
...

...
...

...
... 455 44.5 0 0 0 1 0

55 28.5 1 0 0 0 0 456 44.5 0 0 0 1 0

56 25.0 0 1 0 0 0
...

...
...

...
...

...
...

57 25.5 0 1 0 0 0 501 64.5 0 0 0 1 0
...

...
...

...
...

...
... 502 49.5 0 0 0 0 1

298 41.5 0 1 0 0 0 503 52.0 0 0 0 0 1

299 31.0 0 0 1 0 0
...

...
...

...
...

...
...

300 32.0 0 0 1 0 0 523 76.5 0 0 0 0 1

with logarithm

log L(Ψ ) =
n∑

j=1

k∑

i=1

zij log πi +
n∑

j=1

k∑

i=1

zij log f(xj|θi) , (1.4)

where πi and f(·|θi) represent the mixing proportion and component

density function for the ith component, respectively. Complete data

estimation is straightforward when there are no constraints on the pa-

rameters: each component is fitted separately and the proportions are

estimated by counting the number of observations in each component.

Even in some situations where there are constraints imposed on the

parameters, the likelihood function for complete data also has explicit



CHAPTER 1. INTRODUCTION 6

solutions.

1.3 Incomplete Data Problem

In many practical applications, the data sets are not complete, so we

concentrate attention on the more difficult incomplete-data situations,

particularly the grouped observations problem where the components

are not observed but only the marginal distribution of X is available,

and the conditional data problem where the components are observed

at given values of X. The likelihood function for these incomplete data

problems is given as

L(Ψ ) =
n∏

j=1

g(xj|Ψ ) =
n∏

j=1

[
k∑

i=1

πif(xj|θi)

]
. (1.5)

From the formula above, we can see that incomplete data result in a

complicated likelihood function and make it difficult to obtain maximum

likelihood estimates.

1.3.1 Grouped Data

Grouped data are the observations grouped into intervals, where in-

dividual observations are not recorded but only the class intervals in

which they fall, and the number of observations falling in each interval

are recorded. Grouped observations are often given in the form of a
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histogram.

Definition 1.3.1 Let X be a random variable with p.d.f. f(x|Ψ ) speci-

fied up to a vector Ψ of unknown parameters. Suppose that the sam-

ple space X of X is partitioned into m mutually exclusive intervals

Xj (j = 1, . . . , m) with cell (or bin) boundaries a0, . . . , am, such that

the jth cell corresponds to the interval [aj−1, aj). Independent observa-

tions are made on X, but only the frequency nj (j = 1, . . . , m) which

denotes the number of observations falling in the jth bin is recorded.

The data having the form as follows

{yj; j = 1, 2, . . . , m} = {(aj, nj); j = 1, 2, . . . , m},

are referred to as grouped data. Usually, a0 is 0 or negative infinity,

so we don’t display it.

Size-frequency data are the most common grouped data. Samples of

fish and other animals have been presented as size-frequency distribu-

tions for a long time because the appearance of separate modes may

be interpreted as revealing age-groups. For the sample of the 523 pike

lengths, we group the data over size, i.e. length, intervals to get length-

frequency data with 25 bins and display it in Table 1.2.

For given

n =
m∑

j=1

nj ,



CHAPTER 1. INTRODUCTION 8

Table 1.2: Pike lengths: grouped data

Bin Length Frequency Bin Length Frequency Bin Length Frequency

1 19.75 4 10 37.75 44 19 55.75 8

2 21.75 10 11 39.75 42 20 57.75 3

3 23.75 21 12 41.75 36 21 59.75 6

4 25.75 11 13 43.75 23 22 61.75 6

5 27.75 14 14 45.75 22 23 63.75 3

6 29.75 31 15 47.75 17 24 65.75 2

7 31.75 39 16 49.75 12 25 Inf 5

8 33.75 70 17 51.75 12

9 35.75 71 18 53.75 11

the observed grouped data

y = (n1, . . . , nm)T

has a multinomial distribution, consisting of n draws on m categories

with probabilities Pj(Ψ ) (j = 1, . . . , m). Thus the likelihood function

for the grouped data y is given by

L(Ψ ) =
n!

n1! · · ·nm!
{P1(Ψ )}n1 · · · {Pm(Ψ )}nm (1.6)

and the log-likelihood is

log L(Ψ ) =
m∑

j=1

nj log Pj(Ψ ) + c, (1.7)

where
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c = log

{
n!

/ m∏
j=1

nj!

}

does not depend on Ψ ,

Pj(Ψ ) =

∫ aj

aj−1

f(x|Ψ ) dx j = 1, . . . , m,

is the theoretical probability that an individual x belongs to the jth

interval and f(x|Ψ ) the p.d.f. of X.

1.3.2 Conditional Data

Conditional data are based on grouped data from mixed populations.

In some applications, in addition to the grouped data, there are also

subsamples available of observations drawn from the selected bins to de-

termine their individual class-memberships. The subsamples are called

conditional data. Since conditional data bring additional information

to the grouped data problem, the estimates of parameters are usually

better.

Definition 1.3.2 Suppose that y1, . . . , ym are grouped data; we select h

bins and let njr (r = 1, . . . , h) denote the frequency of the {jr}th bin.

For each selected bin, we draw a subsample of size cjr (0 < cjr ≤ njr)

to determine which groups they belong to, then count the number of ob-

servations falling into each group; the vectors consisting of the numbers
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are called conditional data and are presented in the form

{c r = (c1,jr , . . . , ck,jr), r = 1, . . . , h}

and

0 ≤ ci,jr ≤ cjr ,

k∑

i=1

ci,jr = cjr,

where c i,jr denotes the number of observations from the {jr}th bin that

belong to the ith group.

For the lengths of pikes again, we select the 4, 5, 12, 13, 15–22nd bins,

draw 11, 14, 36, 21, 10, 12, 12, 11, 8, 3, 6, 6 observations as subsam-

ples, respectively, and then determine the age of these fish by biological

methods. The conditional data obtained are presented in Table 1.3.

For grouped data from a mixture distribution with p.d.f. (1.2), the

log likelihood is

log L(Ψ ) =
m∑

j=1

nj log

{
k∑

i=1

πiPj|i(θi)

}
, (1.8)

where

Pj|i(θi) =

∫ aj

aj−1

f(x|θi) dx i = 1, . . . , k ; j = 1, . . . , m,

denotes the probability of an individual from the ith component falling

into the jth bin and f(x|θi) is the component density of the ith group.

To improve the resolution of highly overlapping component distribu-

tions, we draw subsamples from some bins to determine the components
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Table 1.3: Pike lengths: conditional data

Age Age
Bin Length Frequency

1 2 3 4 5
Bin Length Frequency

1 2 3 4 5

1 19.75 4 14 45.75 22

2 21.75 10 15 47.75 17 0 0 5 5 0

3 23.75 21 16 49.75 12 0 0 6 5 1

4 25.75 11 9 2 0 0 0 17 51.75 12 0 0 5 7 0

5 27.75 14 8 6 0 0 0 18 53.75 11 0 0 4 4 3

6 29.75 31 19 55.75 8 0 0 0 8 0

7 31.75 39 20 57.75 3 0 0 0 2 1

8 33.75 70 21 59.75 6 0 0 0 1 5

9 35.75 71 22 61.75 6 0 0 0 2 4

10 37.75 44 23 63.75 3

11 39.75 42 24 65.75 2

12 41.75 36 0 2 34 0 0 25 Inf 5

13 43.75 23 0 0 21 0 0

to which they belong. For each selected bin, the conditional data c r

has a multinomial distribution, consisting of cjr draws on k categories

with the conditional probabilities Pi|jr(Ψ ) (i = 1, . . . , k). Thus the log

likelihood function for the grouped data with conditional data is

log L(Ψ ) =
m∑

j=1

nj log

{
k∑

i=1

πiPj|i(θi)

}
+

∑

jr,r=1,...,h

k∑

i=1

ci,jr log {Pi|jr(Ψ )}

(1.9)

where
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Pi|jr(Ψ ) =
πiPjr|i(θi)

k∑
i′=1

πi′Pjr|i′(θi)

, r = 1, . . . , h, (1.10)

denotes the probability that a subsampled unit from the {jr}th bin

belongs to the ith group.

1.4 Objective of the Project

The objective of this project is to develop statistical software for fitting

finite normal, log-normal, gamma, Weibull, binomial, negative bino-

mial and Poisson mixture distributions with constrained parameters to

grouped data and conditional data.

For estimating the mixing proportions and the parameters of the

component distributions, we apply the standard maximum likelihood

estimation (MLE) method, but a problem of over-parameterization ex-

ists. Macdonald & Pitcher (1979) solved this problem by applying con-

straints on the parameters. In Chapter 2, the constraints to be imposed

on the parameter spaces are illustrated in some commonly occurring sit-

uations such as the proportions fixed, the means equal, the coefficients

of variation fixed, and others.

Chapter 3 will introduce the EM algorithm and Newton-type meth-

ods, present their nature and explain the reason why we choose these

algorithms and combine them in a particular way.
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In Chapter 4, we will describe the computer programs in the Rmix

library, written to assist users in estimating the parameters of a mixture

distribution with grouped data and conditional data. A brief introduc-

tion of design principles and functionality is given, and the estimation

procedure using the combination of the EM algorithm and a Newton-

type method will be illustrated.

In Chapter 5, examples using Rmix to estimate the parameters of

mixture distributions are provided.

Difficult cases arise in some specific environments, and Chapter 6

will discuss some strategies to avoid those problems. Remarks for the

algorithms employed in this project and suggestions for future research

will be also presented.



Chapter 2

Constraints on the Parameters

Fitting a mixture to data needs to estimate the mixing proportions πi

and the parameters θi (i = 1, . . . , k) of the component distributions,

but, for theoretical and practical reasons it will not always be possible

to estimate all of the parameters, particularly when the components

overlap and obscure one another. Thus it is often desirable to reduce

the number of parameters to be estimated. Macdonald and Pitcher

(1979) approached this problem by assuming constraints.

Not only are the constraints discussed by Macdonald and Green

(1998) considered, we also develop some new constraints for the situ-

ations where the new relations among parameters are applied. We as-

sume that the mixture is composed of two-parameter components and,

without loss of generality, the parameters are taken to be the mean

and standard deviation. Then the parameters to be constrained are the

14
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mixing proportions πi, means µi, and standard deviations σi. Various

combinations of the parameter constraints will also be applied. In the

unconstrained case (no constraints imposed) we will estimate all the

parameters in the model.

2.1 Constraints on Proportions

For the mixing proportions, the natural constraint π1+π2+ · · ·+πk = 1,

where 0 ≤ πi ≤ 1 (i = 1, . . . , k), is always imposed.

2.1.1 Proportions Free (NONE)

Only the natural constraint is applied. All the proportions but the last

one will be estimated. The last one can be computed from the relation

πk = 1− π1 − · · · − πk−1 . (2.1)

The abbreviation “NONE” is the code in the package Rmix that denotes

that none of the constraints is imposed on the proportions.

2.1.2 Specified Proportions Fixed (PFX)

In addition to the natural constraint, any or all of the proportions may be

held fixed while other proportions are being estimated. If a is the number

of proportions fixed, the number of free proportions is k − a− 1, where
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the −1 comes from the natural constraint. To constrain the proportions

to be equal, hold each one fixed at 1/k. We specify this constraint by

the code “PFX” which means that some proportions are fixed. Each

constraint presented in this chapter has its own code in Rmix.

2.2 Constraints on Means

2.2.1 Means Free (NONE)

Under this constraint, we need to estimate all the means µ1, . . . , µk .

2.2.2 Specified Means Fixed (MFX)

Specified means are held at fixed values while the remaining means are

being estimated.

2.2.3 Means Equal (MEQ)

This constraint assumes that µ1 = µ2 = · · · = µk . We attempt to

estimate their common value, and the common value is initialized at µ1.

This constraint is allowed if there are at least two components and the

standard deviations are all different from each other; such a mixture is

called a “ scale mixture”.
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2.2.4 Equally Spaced Means (MES)

We apply this constraint in the situation where we assume that (µ2 −
µ1) = (µ3 − µ2) = · · · = (µk − µk−1) . Only two means, µ1 and µ2, are

estimated directly. Subsequent means are computed from the relation

µi = µ1 + (i− 1)(µ2 − µ1) , i = 3, . . . , k . (2.2)

This constraint is possible if there are at least three components.

2.2.5 Growth Curve (MGC)

This constraint forces the means to lie along a von Bertalanffy growth

curve of the form

µi = L∞{1− exp [−κ(ti − t0)]} (2.3)

where

L∞ = µ1 +
(µ2 − µ1)

2

(µ2 − µ1)− (µ3 − µ2)
(2.4)

κ = − log

(
µ3 − µ2

µ2 − µ1

)
(2.5)

(ti − t0) = −κ−1 log

(
1− µ1

L∞

)
. (2.6)

Interpretation of the above parameters in the context of fisheries appli-

cation is given by Macdonald and Green (1988): for components (age-

groups) spaced exactly one year apart, µi is the mean fish size in the ith
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age-group (age in years), t0 is the hypothetical age at zero size, ti is the

actual age of the ith age-group, L∞ is the hypothetical ultimate mean

size in the population and κ is the growth parameter.

We only need to estimate the first three means µ1, µ2, µ3 . The re-

maining ones can be computed from the formula

µi = µ1 +
(µ2 − µ1)

2

(µ2 − µ1)− (µ3 − µ2)

{
1−

(
µ3 − µ2

µ2 − µ1

)i−1
}

, i = 4, . . . , k.

(2.7)

The growth curve constraint cannot be used unless there are four or

more components and (µ3 − µ2) < (µ2 − µ1) .

2.3 Constraints on Standard Deviations

The component standard deviations σ1, . . . , σk are referred to as “ sigmas”

here.

2.3.1 Sigmas Free (NONE)

We will attempt to estimate all k standard deviations σ1, . . . , σk . If all

the proportions and all the means are also being estimated, this choice

is not likely to work unless the k components show as k clear modes in

the histogram.
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2.3.2 Specified Sigmas Fixed (SFX)

Specified standard deviations will be held fixed while we attempt to

estimate the remaining sigmas.

2.3.3 Sigmas Equal (SEQ)

This constraint assumes that σ1 = σ2 = · · · = σk . We attempt to

estimate their common value and initialize it at σ1. If there are two or

more components and the means are all different from each other, then

it is possible to employ this constraint.

2.3.4 Fixed Coefficients of Variation (FCV)

For this constraint, the coefficients of variation (σ1/µ1) = (σ2/µ2) =

· · · = (σk/µk) will all be held at the same fixed positive value c , and

thus the means completely determine the standard deviations. We do

not count the standard deviations as estimated parameters, and they

can be computed from the relation

σi = c µi , i = 1, . . . , k. (2.8)

This constraint is permitted if all of the means are positive and different

from each other.

Note that if the components are gamma distributions, fixing the coef-
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ficients of variation at 1 will force them to be exponential distributions,

since, for the gamma distribution, σ/µ = p−1/2 , where p is the shape

parameter ([R65], p. 133) , and a gamma distribution with p = 1 is an

exponential distribution.

2.3.5 Constant Coefficient of Variation (CCV)

This constraint assumes that (σ1/µ1) = (σ2/µ2) = · · · = (σk/µk) = c ,

where c is a parameter to be estimated rather than a fixed value, and

is initialized at (σ1/µ1). We estimate σ1 and then compute the other

standard deviations from the formula

σi = c µi =
σ1

µ1
µi , i = 2, . . . , k. (2.9)

In addition to the condition of acceptance mentioned in the last con-

straint, this constraint also requires at least two components.

2.3.6 Binomial Relation (BINOM)

This constraint assumes that the relation between mean and standard

deviation is

σi =

√
µi − µi

2

ni
, i = 1, . . . , k. (2.10)

Since the binomial distribution has such a relation between the mean

and standard deviation, we call this constraint the binomial relation,
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where ni is the number of trials for each component. We don’t estimate

sigmas but just compute them from the above formula.

2.3.7 Negative Binomial Relation (NBINOM)

We term the relation between mean and standard deviation, which has

the form

σi =

√
µi +

µi
2

ni
, i = 1, . . . , k, (2.11)

where ni is the number of trials for each component, a negative binomial

relation, since the negative binomial distribution has such a relation

between the mean and standard deviation. Under this constraint, we

estimate the means only.

2.3.8 Poisson Relation (POIS)

If the relation between mean and standard deviation is of the form

σi =
√

µi , i = 1, . . . , k, (2.12)

we refer to it as Poisson relation for a reason similar to the last two

constraints.
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2.4 Combinations of the Constraints

Combinations of the constraints on the proportions, means and standard

deviations may be applied according to various practical situations, but

not all of the combinations are allowed. We shall give a brief discussion

of situations where some combinations of constraints are restricted.

First of all, the equal means cannot have equal standard deviations,

or the components of the mixture distribution will be reduced. Hence,

the MEQ can’t, obviously, have SEQ. According to this rule, some other

combinations of the constraints on the means and standard deviations

are also not employed. For example, if the constraint MEQ is applied

on the means, the sigmas computed from one of (2.8), (2.9), (2.12) will

be equal, so the combinations of MEQ and FCV, CCV, POIS are not

allowed.

Secondly, for the given data and initial values of the parameters, some

constraints are invalid. If the data or the initial values of the means have

negative values, we can’t use the constraints FCV, CCV and POIS.

Besides, when the distribution of components is specified, only the

appropriate constraints can be applied. For instance, it is impossible

to use NBINOM and POIS for binomial distribution components, since

the variances have to be less than the corresponding means. Similarly,

negative binomial distributions may not have the BINOM and POIS
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constraints.

In brief, various situations should be considered according to theo-

retical and practical restrictions before choosing constraints.



Chapter 3

Numerical Algorithms

3.1 Maximum Likelihood Estimation

For estimating the unknown parameters, we apply the standard maxi-

mum likelihood estimation (MLE) method. Not only is it appealing on

intuitive grounds, but it also possesses desirable statistical properties

such as, under very general conditions, the estimates obtained by the

method are consistent (they converge with probability 1 to the true pa-

rameter values). We first establish a general likelihood function and give

the likelihood equation. Further, a brief introduction of the information

matrix and score statistic will be presented.

Suppose X is a random variable or vector with probability density

function (p.d.f.) f(x|Ψ ), where Ψ = (Ψ1, . . . , Ψd)
T is the parameter

vector we wish to estimate. The parameter space is denoted by Ω.

24
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Although we are taking X to be a continuous random variable, we can

still view f(x|Ψ ) as a p.d.f. in the case where X is discrete by the

adoption of counting measure.

If x1, . . . , xn denotes an observed independent random sample of size

n on the random variable X, then

x = (x1, . . . , xn)
T .

The likelihood function for Ψ formed from the observed data x is given

by

L(Ψ ; x) =
n∏

j=1

f(xj|Ψ ). (3.1)

We attempt to find the particular Ψ that maximizes the likelihood func-

tion. This maximization can be dealt with in the traditional way by dif-

ferentiating L(Ψ ; x) with respect to the components of Ψ and equating

the derivatives to zero to give the likelihood equation

∂L(Ψ )/∂ Ψ = 0, (3.2)

or equivalently,

∂ log L(Ψ )/∂ Ψ = 0. (3.3)

We let

I(Ψ ; x) = −∂2 log L(Ψ )/∂ Ψ∂ ΨT (3.4)

be the matrix of the negative of the second-order partial derivatives of

the log likelihood function with respect to the elements of Ψ . Under
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regularity conditions, the expected (Fisher) information matrix I( Ψ ) is

given by

I( Ψ ) = E	{S(x|Ψ )ST (x|Ψ )}

= −E	{I(Ψ ; x)}, (3.5)

where

S(x|Ψ ) = ∂ log L(Ψ )/∂ Ψ (3.6)

is the gradient vector of the log likelihood function; that is, the score

statistic. Here the operator E	 denotes expectation using the parameter

vector Ψ .

The asymptotic covariance matrix of the MLE Ψ̂ is equal to the

inverse of the expected information matrix I( Ψ ), which can be approx-

imated by I( Ψ̂ ); that is, the standard error of Ψ̂i = (Ψ̂ )i is given by

SE(Ψ̂i) ≈ (I −1( Ψ̂ ))
1/2
ii , i = 1, . . . , d, (3.7)

where the standard notation (A)ij is used for the element in the ith row

and jth column of a matrix A.

The observed information matrix is usually more convenient to use

than the expected information matrix, as it does not require an ex-

pectation to be taken. Thus, it is common in practice to estimate the

inverse of the covariance matrix of a maximum-likelihood solution by

the observed information matrix I(Ψ̂ ; x), rather than the expected in-
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formation matrix I( Ψ ) evaluated at Ψ = Ψ̂ . This approach gives the

approximation

SE(Ψ̂i) ≈ (I−1( Ψ̂ ; x))
1/2
ii , i = 1, . . . , d. (3.8)

Often the log likelihood function cannot be maximized analytically,

that is, the likelihood equation has no explicit solutions, particularly in

incomplete-data problems. In such cases, it may be possible to compute

the MLE of Ψ iteratively. Next we will introduce some algorithms for

calculating maximum likelihood estimates.

3.2 EM Algorithm

Incomplete data often result in complicated likelihood functions, where

MLE’s usually have to be computed iteratively. The Expectation-Maxi-

mization algorithm proposed by Dempster, Laird, and Rubin in a cele-

brated paper in 1977, popularly known as the EM algorithm, is a broadly

applicable approach to the iterative computation of MLE’s, useful in

a variety of incomplete-data problems, where algorithms such as the

Newton-type methods may turn out to be more complicated.

For many practical problems, the complete-data likelihood has a nice

form, hence the EM algorithm exploits the reduced complexity of MLE

given the complete data. The basic idea is to associate with the given
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incomplete-data problem, a complete-data problem for which MLE is

computationally more tractable; for instance, the complete-data prob-

lem chosen may yield a closed-form solution to the MLE or may be

amenable to MLE computation with a standard computer package.

On each iteration of the EM algorithm, there are two steps—called

the expectation step or the E-step and the maximization step or the M-

step. Because of this, the algorithm is called the EM algorithm. The

E-step consists in manufacturing data for the complete-data problem,

using the observed data set of the incomplete-data problem and the

current value of the parameters, so that the simpler M-step computation

can be applied to this “ completed ” data set. More precisely, it is the

log likelihood of the complete data problem that is “ manufactured ”

in the E-step. As the log likelihood is based partly on unobservable

data, it is replaced by its conditional expectation given the observed

data, where this E-step is effected using the current fit for the unknown

parameters. Starting from suitable initial parameter values, the E- and

M-steps are repeated until convergence. Of course, the complete data

problem is to be suitably chosen from the point of view of simplicity of

the complete-data MLE’s.

The likelihood functions for grouped data and conditional data have

been given in Chapter 1; we can see that it is difficult to derive explicit
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solutions directly, but complete data estimation is straightforward; we

therefore employ the EM algorithm to compute the MLE’s iteratively

for the parameters of a mixture.

Nevertheless, the EM algorithm is not without its limitations, many

of which came to light in attempting to apply it in certain complex

incomplete-data problems, such as the conditional data problem; we

deal with this problem via a Newton-type algorithm. When estimating

the means and standard deviations we also use the Newton-type method

in the M-step of the EM algorithm, since for some distributions even the

likelihood for complete data has no explicit solutions to the means and

standard deviations.

3.3 Newton-Type Methods

Newton-type methods are common computational methods for calculat-

ing the numerical solution of problems in optimization, which include

the Newton-Raphson (NR) method, quasi-Newton methods, and mod-

ified Newton methods. We shall give a brief introduction to the NR

method and quasi-Newton methods.

The Newton-Raphson method for solving the likelihood equation

S(x|Ψ ) = 0, (3.9)
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approximates the gradient vector S(x|Ψ ) of the log likelihood function

log L(Ψ ) by a linear Taylor series expansion about the current fit Ψ (s)

for Ψ . This gives

S(x|Ψ ) ≈ S(x|Ψ (s))− I(Ψ (s); x)(Ψ − Ψ (s)). (3.10)

A new fit Ψ (s+1) is obtained by taking it to be a zero of the right-hand

side of (3.10). Hence

Ψ (s+1) = Ψ (s) + I−1(Ψ (s); x) S(x|Ψ (s)). (3.11)

If the log likelihood function is concave and unimodal, then the se-

quence of iterates {Ψ (s)} converges to the MLE of Ψ , in one step if the

log likelihood is a quadratic function of Ψ . When the log likelihood

function is not concave, the Newton-Rahpson method is not guaranteed

to converge from an arbitrary starting value. Under reasonable assump-

tions on L(Ψ ) and a sufficiently accurate starting value, the sequence of

iterates Ψ (s) produced by the Newton-Raphson method converges to a

solution Ψ ∗ of (3.9) very fast, and this is regarded as the major strength

of the Newton-Raphson method. But there can be potentially severe

problems with this method in applications. Firstly, it requires at each

iteration the computation of the d×d information matrix I(Ψ (s); x) (that

is, the negative of the Hessian matrix), which is likely to become expen-

sive very rapidly as d becomes large. One must allow for the storage
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of the Hessian or some set of factors of it. Furthermore, the Newton-

Raphson method in its basic form (3.11) requires for some problems an

impractically accurate initial value for Ψ for the sequence of iterates

{Ψ (s)} to converge to a solution of (3.9).

Since the Newton-Raphson method requires the evaluation of I(Ψ (s);

x) on each iteration s, it immediately provides an estimate of the covari-

ance matrix of its limiting value Ψ ∗ (assuming it is the MLE), through

the inverse of the observed information matrix I−1(Ψ ∗; x) .

A broad class of methods are so-called quasi-Newton methods, for

which the solution of (3.9) takes the form

Ψ (s+1) = Ψ (s) −A−1S(x|Ψ (s)), (3.12)

where A is used as an approximation to the Hessian matrix. This ap-

proximation can be maintained by doing a update of A at each itera-

tion. Methods of this class have the advantage over the Newton-Raphson

method of not requiring the explicit evaluation of the Hessian matrix of

the log likelihood function at every iteration.



Chapter 4

Rmix : A Package for Fitting Finite

Mixture Distributions

4.1 Introduction

The objective of this project is to program statistical software for es-

timating the parameters in a mixture model, so we develop a package

(i.e., library) called Rmix for the R statistical computing environment

to fit finite mixture distributions, with the functionality of Macdonald’s

MIX software (1979), but with updated and substantially improved nu-

merical methods based on a combination of the EM algorithm ([MK97])

and a Newton-type method implemented in the function nlm provided

by the R system. A number of utility functions were also written to

aid in preparing data and starting values for the parameters, plotting

mixture distributions, providing the analysis of variance, and so on.

32
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The evolution of the R system as a cross-platform open-code envi-

ronment for statistical computing is one of the most exciting current

developments in statistics. It is freely available world-wide and provides

all the functions for graphics, statistical distributions, linear algebra,

optimization, etc., that one commonly needs for statistical applications.

This permits rapid development of elegant object-oriented code to im-

plement statistically efficient algorithms. By publishing the results as an

R package, this work will be immediately available to users world-wide

on a variety of platforms.

4.2 The Functionality and Feature of Rmix

Rmix is an add-on package to the R system for data analysis and graph-

ics. Rmix provides a suite of tools designed for statistical analysis of

finite mixture distributions with grouped and conditional data. The

components of the mixtures can be normal, log-normal, exponential or

gamma, Weibull, binomial, negative binomial and Poisson distributions.

The statistical method applied to fit the mixture is maximum likelihood

estimation, and the algorithms used for the calculation of the MLE’s are

the EM algorithm and a Newton-type method.

In addition to the same functionality as Macdonald’s MIX software,

Rmix extends his work to fit Weibull, binomial, negative binomial and
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Poisson distributions with some new constraints. Rmix can handle many

mixture distribution applications, such as mixtures of exponential distri-

butions for time-to-failure studies and scale mixtures with equal means

for non-normal error analysis. Titterington et al. (1985) describe many

applications of mixtures for which the current version of Rmix will give

useful results.

In Rmix , there are three steps for fitting a mixture. Rmix assumes

that the data are grouped, in the form of numbers of observations over

successive intervals. Data often come grouped (as a histogram) or can be

grouped with very little loss of information. Grouping greatly simplifies

the calculation of maximum likelihood estimates ([MP79]). For Rmix ,

the grouping intervals are specified by their right-hand boundaries. The

first (leftmost) and last (rightmost) intervals are open-ended; that is,

if there are m intervals, the first interval includes everything up to the

interval boundary a1, the second everything from a1 to a2, and so on to

the m− 1st interval, which includes everything from am−2 to am−1, and

the mth, which includes everything above am−1. Thus it is only necessary

to specify m − 1 boundaries. The choice of boundaries is discussed in

Macdonald and Pitcher (1979). As Rmix only deals with grouped data

and conditional data, we first need to bin ungrouped data. Rmix also

requires the data to be fitted and the initial values of parameters in the
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specified format, and thus there are functions designed for grouping and

formatting data.

Estimating the parameters of a mixture distribution is difficult when

the components are heavily overlapped because the overlapping obscures

information about individual components. The mixture can only be re-

solved by bringing additional information to the problem. The infor-

mation could be from additional samples, or from some form of prior

knowledge about the parameters or the relations among them. Thus,

depending on the applications, we impose suitable constraints on the

proportions, means and standard deviations to reduce the number of

parameters. The constraints itemized in Chapter 2 are all allowed by

Rmix, but some combinations of the constraints are not permitted (see

section 2.4); a function for checking constraints is provided by Rmix .

In Rmix , we also provide a function that translates the whole collec-

tion of parameters occurring in a mixture model to the set of parame-

ters to be estimated in terms of the constraints. For instance, in some

applications it may be reasonable to assume that the coefficients of vari-

ation are all equal, i.e., CCV, and no constraints on the proportions and

means. If we provide the function with the constraints (NONE for the

proportions, NONE for the means and CCV for the sigmas), it will give

the set of the parameters (π1, . . . , πk−1; µ1, . . . , µk; σ1) to be estimated.
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Users can start with as many constraints on the parameters as necessary

and work repeatedly towards a solution that has as few constraints as

possible and makes sense in terms of the application. All of the functions

above are to prepare the elements for fitting mixture distributions.

Rmix allows users to incorporate additional data in the analysis, in

the form of stratified sub-samples, such as conditional data: in length-

frequency applications, sub-samples for age-determination would be taken

at specific lengths, and analyzed jointly with the overall length-frequency

distribution.

The main function mix is intended to realize the main functionality of

Rmix , that is, to fit a mixture distribution to grouped and conditional

data. The arguments users can specify include the data to be fitted,

initial values of parameters, distribution of components, constraints on

parameters, and so on. After running mix, an R object containing the

estimated parameters, standard errors of the parameters estimated, chi-

square statistic, P-value for the goodness-of-fit test, etc., is obtained.

The remaining functions are to do further analysis. The histogram

of the current data can be displayed by the function plot.mix . The

weighted component distributions π1f(x|µ1, σ1), . . . , πkf(x|µk, σk) and

the mixture distribution g(x|Ψ ) = π1f(x|µ1, σ1)+· · ·+πkf(x|µk, σk) can

be computed from the estimated parameter values and superimposed on
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the histogram, and the positions of the means µ1, . . . , µk on the x-axis

are indicated with triangles. Users can judge whether the histogram

is fitted well visually and then make some modifications to the initial

values of parameters or to the distribution of components.

Rmix can also be used to test the goodness-of-fit of the model to the

data and, in some cases, it can be used to test the validity of certain

constraints. These tests depend on the chi-square approximation to

the likelihood ratio statistic ([R65]) and will be valid as long as most

of the intervals have expected counts of 5 or greater. The degrees of

freedom are computed as the number of grouping intervals minus 1 minus

the number of parameters estimated. After a successful fit, Rmix will

compute a significance level (P-value) for the goodness-of-fit test.

If the data can be fitted with and without a certain constraint, the

validity of that constraint can be tested. Removing the constraint will, in

general, reduce the chi-square and the degrees of freedom; the reduction

in chi-square is itself a chi-square statistic with degrees of freedom equal

to the reduction in degrees of freedom ([R65], p. 350). This is only valid

if the data give actual counts over intervals and if most counts are 5 or

greater.

The goodness-of-fit test only indicates how well the mixture distri-

bution g(x) fits the histogram (or the grouped data) overall. If the
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components overlap extensively the test is not very sensitive to features

that are obscured by the overlapping, such as skewness of the component

distributions.

Other functions can compute standard errors for all estimates, do the

analysis of variance (ANOVA) for one or two fits, estimate joint, mixed

or conditional data, and so forth.

4.3 Statistical and Numerical Methods

Next, we will illustrate the statistical methods and numerical algorithms

applied in Rmix to calculate the MLE’s for the parameters of a mixture

distribution with grouped and conditional data.

4.3.1 Estimate Proportions for Fixed Means, Sigmas

Suppose that X is a random variable from a mixture distribution com-

posed of 2-parameter components θi = (µi, σi)
T , i = 1, . . . , k. Then the

p.d.f. of X can be written

g(x|Ψ ) =
k∑

i=1

πif(x|µi, σi), (4.1)

where Ψ = (π1, . . . , πk−1, µ1, . . . , µk, σ1, . . . , σk)
T . Let x1, . . . , xn be a

sample of size n made on X. Instead of the raw data, we obtain the

grouped data over m intervals with probabilities Pj(Ψ ), and nj denotes
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the frequency of the jth interval. The likelihood function for the grouped

data has the multinomial form

L(Ψ ) =
n!

n1! · · ·nm!
{P1(Ψ )}n1 · · · {Pm(Ψ )}nm . (4.2)

Then the log likelihood is given by

log L(Ψ ) =
m∑

j=1

nj log Pj(Ψ ) , (4.3)

where

Pj(Ψ ) =

∫ aj

aj−1

g(x|Ψ ) dx

=

∫ aj

aj−1

[
k∑

i=1

πif(x|µi, σi)

]
dx

=
k∑

i=1

πiPj|i(θi) . (4.4)

Substitution of (4.4) into (4.3) yields

log L(Ψ ) =
m∑

j=1

nj log

{
k∑

i=1

πiPj|i(θi)

}
, (4.5)

where

Pj|i(θi) =

∫ aj

aj−1

f(x|µi, σi) dx , j = 1, . . . , m, (4.6)

denotes the probability that an individual known to be from the ith

group falls into the jth interval.

We first consider the estimation of proportions πi in which the com-

ponents of the mixture occur, where we assume the component densities
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are completely specified; that is, the means and standard deviations of

components are held fixed. On differentiating (4.5) with respect to πi

and equating the result to zero, we obtain

m∑
j=1

nj

{
Pj|i(θi)

Pj(Ψ )
− Pj|k(θk)

Pj(Ψ )

}
= 0 , i = 1, . . . , k − 1, (4.7)

as the likelihood equation, which clearly does not yield an explicit solu-

tion for π̂i.

This problem can be solved within the EM framework by introducing

the vectors

zj = (z1j, . . . , zkj)
T , j = 1, . . . , m,

as the missing data, where zij denotes the number of observations from

the ith group falling into the jth interval. If these zij were observable,

then the complete-data likelihood function for Ψ is equivalent to

Lc(Ψ ) =
k∏

i=1

zi+!

zi1! · · · zim!
{πiP1|i(θi)}zi1 · · · {πiPm|i(θi)}zim , (4.8)

with logarithm

log Lc(Ψ ) =
k∑

i=1

m∑
j=1

zij log πi +
k∑

i=1

m∑
j=1

zij log Pj|i(θi) + c1, (4.9)

where

c1 =
k∑

i=1

log

{
zi+!

/ m∏
j=1

zij!

}
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does not depend on Ψ . Then the MLE of πi is simply given by

π̂i =
m∑

j=1

zij/n, i = 1, . . . , k, (4.10)

which is the proportion of the sample having arisen from the ith com-

ponent of the mixture.

If the constraint PFX is imposed on the proportions—that is, we

assume that the proportions πi1, πi2, . . . , πit(0 ≤ t < k − 1) are fixed—

then the MLE’s of the remaining proportions πi are

π̂i =
zi+(1− πi1 − · · · − πit)

n− zi1+ − · · · − zit+
(4.11)

where

zi+ =
m∑

j=1

zij ; zid+ =
m∑

j=1

zid,j , d = 1, . . . , t.

We can see that (4.11) also holds when there are no constraints on the

proportions.

As (4.9) is linear in the unobservable data zij, the E-step (on the

(s + 1)th iteration) simply requires the calculation of the current condi-

tional expectation of Zij given the observed nj, where Zij is the random

variable corresponding to zij. Now

E	 (s)(Zij|nj, j = 1, . . . , m) = z
(s)
ij , (4.12)

where

z
(s)
ij = τi(nj|Ψ (s)) (4.13)
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and

τi(nj|Ψ (s)) = nj Pi|j(θ
(s)
i )

= nj

π
(s)
i Pj|i(θ

(s)
i )

k∑
i′=1

π
(s)
i′ Pj|i′(θ

(s)
i )

(4.14)

for i = 1, . . . , k; j = 1, . . . , m. The M-step on the (s + 1)th iteration

simply requires replacing each zij by z
(s)
ij in (4.10) to give

π̂
(s+1)
i =

z
(s)
i+ (1− πi1 − · · · − πit)

n− z
(s)
i1+ − · · · − z

(s)
it+

, (4.15)

for the proportions that are not fixed.

4.3.2 Estimate Means, Sigmas for Fixed Proportions

We now consider the estimations of the means and standard deviations

for fixed proportions. For grouped data, the log likelihood function

is given by (4.5). To derive the maximum likelihood estimate θ̂i , we

differentiate (4.5) with respect to θi and equate the result to zero; then

we obtain the likelihood equation for θi with the proportions fixed

m∑
j=1

nj

πi(∂Pj|i(θi)/∂θi)
k∑

i=1
πiPj|i(θi)

= 0 i = 1, . . . , k. (4.16)

We can see that (4.16) has no solution with a closed form.

This problem can also be simplified within the EM framework. We

use the same E-step as that for estimating the proportions, so that we



CHAPTER 4. RMIX 43

obtain the same log likelihood function as (4.9) for the complete data.

As the proportions are fixed, this log likelihood can then be written

log Lc(θ) =
k∑

i=1

m∑
j=1

zij log Pj|i(θi) . (4.17)

There is no general form for the MLE’s of the means and standard

deviations since Pj|i(θi) has different forms when different distributions

and constraints are applied. For example, when the component densities

are taken to be univariate normal with unknown means µ1, . . . , µk and

variances σ2
1, . . . , σ

2
k, and no constraints are imposed on the means and

variances, the MLE’s of µi and σ2
i are

µ̂i =
m∑

j=1

zij xj

/ m∑
j=1

zij

and

σ̂2
i =

m∑
j=1

zij(xj − µi)
2
/ m∑

j=1

zij .

If we assume that all the variances are equal, then we obtain the MLE

of the common variance

σ̂2
i =

k∑
i=1

m∑
j=1

zij(xj − µi)
2/n .

However, for some distributions and constraints we can’t derive the

MLE’s of the means and sigmas from the likelihood function (4.17) di-

rectly, and thus we use a Newton-type method in the M-step to compute

the MLE’s of the means and sigmas.
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Differentiating

Lc(θ) = −2
k∑

i=1

m∑
j=1

zij log
{

Pj|i(θi)/P̂j|i
}

, (4.18)

with respect to θi and equating the result to zero, we can obtain the

same equation as the likelihood equation of (4.17), so maximizing (4.17)

is exactly equivalent to minimizing (4.18). Here P̂j|i = zij/zi+ denotes

the estimated relative frequency in the jth interval of the ith component,

and the (i, j)th term in the sum is taken to be zero if P̂j|i = 0.

The reason why we work with the function (4.18) rather than (4.17)

is that we want to make use of the function nlm provided by the R

system, which carries out minimization of functions using a Newton-

type algorithm, to compute the MLE’s of the means and sigmas.

4.3.3 Estimate Proportions, Means, Sigmas with or without

Constraints

We can also estimate proportions, means and sigmas at the same time by

using the Newton-type method without the EM framework. To accom-

plish this purpose, we take advantage of the function nlm to compute

the MLE’s of all the parameters in a mixture distribution.

For grouped data, the log-likelihood function is

log L(Ψ ) =
m∑

j=1

nj log Pj(Ψ ), (4.19)
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where Pj(Ψ ) denotes the theoretical probability that an individual be-

longs to the jth interval. Let P̂j = nj/n denote the observed relative

frequency of the jth interval; then maximizing (4.19) is exactly equiva-

lent to minimizing

L(Ψ ) = −2
m∑

j=1

nj log
{

Pj(Ψ )/P̂j

}
, (4.20)

where the jth term in the sum is taken to be zero if P̂j = 0. Working with

(4.20), which is twice the Kullback (1959) “ minimum discrimination

information statistic”, is more convenient than working with (4.19) for

three reasons: we can directly use the function nlm to carry out the

minimization; (4.20) is the more clearly interpretable as a measure of

discrepancy between P̂j and Pj(Ψ ); and, in large samples, the minimized

value of (4.20) can be used as a chi-squared statistic for testing the

goodness-of-fit of the model.

For conditional data, we minimize the function

Lcondit(Ψ ) = −2
m∑

j=1

nj log

{
k∑

i=1

πiPj|i(θi)

}
+

−2
∑

jr,r=1,...,h

k∑
i=1

ci,jr log {Pi|j(Ψ )/P̂i|j} (4.21)

where

P̂i|j = ci,jr

/ k∑

i=1

ci,jr ,
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instead of maximizing the likelihood (1.9).

The Newton-type iterative method for minimizing (4.20) converges

more quickly than the EM algorithm, but, in general, only when start-

ing from an initial value very close to the minimum. An exception is

the case where only the mixture proportions are being estimated. We

therefore first run a few iterations of the EM algorithm to improve the

initial values, and then use the Newton-type method to estimate the

parameters and covariance matrix.



Chapter 5

Examples: Fit Mixture

Distributions Using Rmix

5.1 Introduction

In this chapter we will illustrate the estimation procedure for fitting

a mixture distribution using Rmix, and then give some examples and

explain the results.

In this chapter, the typewriter font is used for R commands and

functions, and R commands displayed are shown with the R prompt >.

Commands that require more than one line of input are displayed with

the R continuation prompt +.

47
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5.2 Preparation for Fitting a Mixture

Start Rmix by starting R, and then loading the add-on package Rmix

to the R session by using the following command:

> library(Rmix)

After attaching the Rmix functions, we shall begin preparing the data,

the initial values of parameters and the constraints.

5.2.1 Organizing the Working Data

We have a data set consisting of the sample of n = 523 northern pike

described in chapter 1. The mixture was known to comprise exactly five

components. The five components correspond to the five age-groups

present in the sample, all fish more than five years old having been

removed from the sample. The age of each fish had been determined

by scale-reading, and so this is a very suitable example for studying the

statistical methodology.

The raw data called pikraw contain two columns, the first column

displays the 523 lengths of pike, the second column gives the age-group

of each fish:

> pikraw
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length age

1 18.0 1

...
...

...

55 28.5 1

56 25.0 2

...
...

...

298 41.5 2

299 31.0 3

...
...

...

454 53.0 3

455 44.5 4

...
...

...

501 64.5 4

502 49.5 5

...
...

...

523 76.5 5

As Rmix only deals with grouped data and conditional data, we have

to reconstruct the raw data in the form of length-frequency data. To

group raw data in the form described in section 2.4, one can use the

function mixgroup as follows:
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> pikgrp <- mixgroup(pikraw[ , 1],

+ breaks = c(0, seq(19.75, 65.75, 2), 80))

The grouped data pikgrp is an R object with class "mixdata" and

"data.frame" which can be used for further calculation:

> pikgrp

length freq

1 19.75 4

2 21.75 10

3 23.75 21

4 25.75 11

5 27.75 14

6 29.75 31

7 31.75 39

8 33.75 70

9 35.75 71

10 37.75 44

11 39.75 42

12 41.75 36

13 43.75 23

14 45.75 22

15 47.75 17
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16 49.75 12

17 51.75 12

18 53.75 11

19 55.75 8

20 57.75 3

21 59.75 6

22 61.75 6

23 63.75 3

24 65.75 2

25 Inf 5

The intervals of grouped data should not be too wide or too narrow,

or it is difficult to determine the means and standard deviations by

inspecting the histogram. Also, most intervals should include at least 5

observations so that one can test the validity of a constraint.

If grouped data rather than raw data are given, one can enter the

data directly from the keyboard to create a data frame by using the

expression:

> pikgrp <- data.frame(length = c(19.75, 21.75, 23.75,

+ 25.75, 27.75, 29.75, 31.75, 33.75, 35.75, 37.75,

+ 39.75, 41.75, 43.75, 45.75, 47.75, 49.75, 51.75,
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+ 53.75, 55.75, 57.75, 59.75, 61.75, 63.75, 65.75, Inf),

+ freq = c(4, 10, 21, 11, 14, 31, 39, 70, 71, 44, 42,

+ 36, 23, 22, 17, 12, 12, 11, 8, 3, 6, 6, 3, 2, 5))

> class(pikgrp) <- c("mixdata", "data.frame")

Data files also can be created beforehand using a text editor. Write

the name of the measurement, "length" here, a space and "freq" on

the first line. Then write the pairs of right boundaries and frequencies,

starting each pair on a new line and separating the right boundary from

the frequency by a space. End with "Inf" and the frequency from the

rightmost interval, again on a new line. Place an empty line at the end

of the file. Make sure that the boundaries are in strictly ascending order.

Then data can be read from the file in table format by the command:

> pikgrp <- read.table("d:/temp/pikdat.txt", header = T)

> class(pikgrp) <- c("mixdata", "data.frame")

The data frames obtained by the three methods are identical.

The raw data also contain the age of each fish; we can display them

by using the expression:

> pikcondit <- mixgroup(pikraw, breaks =

+ c(0, seq(19.75, 65.75, 2), 80), usecondit = T)
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Users also can add conditional data to the grouped data using the func-

tion:

> pikcondit <- conditdat(pikgrp, 5, c(c(4, 9, 2, 0, 0, 0),

+ c(5, 8, 6, 0, 0,0), c(12, 0, 2, 34, 0, 0),

+ c(13, 0, 0, 21, 0, 0), c(15, 0, 0, 5, 5, 0),

+ c(16, 0, 0, 6, 5, 1), c(17, 0, 0, 5, 7, 0),

+ c(18, 0, 0, 4, 4, 3), c(19, 0, 0, 0, 8, 0),

+ c(20, 0, 0, 0, 2, 1), c(21, 0, 0, 0, 1, 5),

+ c(22, 0, 0, 0, 2, 4)))

> pikcondit

length freq C1 C2 C3 C4 C5

1 19.75 4 0 0 0 0 0

2 21.75 10 0 0 0 0 0

3 23.75 21 0 0 0 0 0

4 25.75 11 9 2 0 0 0

5 27.75 14 8 6 0 0 0

6 29.75 31 0 0 0 0 0

7 31.75 39 0 0 0 0 0

8 33.75 70 0 0 0 0 0

9 35.75 71 0 0 0 0 0

10 37.75 44 0 0 0 0 0
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11 39.75 42 0 0 0 0 0

12 41.75 36 0 2 34 0 0

13 43.75 23 0 0 21 0 0

14 45.75 22 0 0 0 0 0

15 47.75 17 0 0 5 5 0

16 49.75 12 0 0 6 5 1

17 51.75 12 0 0 5 7 0

18 53.75 11 0 0 4 4 3

19 55.75 8 0 0 0 8 0

20 57.75 3 0 0 0 2 1

21 59.75 6 0 0 0 1 5

22 61.75 6 0 0 0 2 4

23 63.75 3 0 0 0 0 0

24 65.75 2 0 0 0 0 0

25 Inf 5 0 0 0 0 0

Conditional data from a prepared file or from the keyboard can also

be used to produce the same data frame by applying similar expressions

to those for grouped data.
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5.2.2 Determining Starting Values for Parameters

For fitting a mixture using iterative algorithms, a complete set of initial

parameter values is required, and the format is specified in Rmix. The

starting values should be in the form of a data frame containing three

variables, which are, in order, the proportions πi, means µi, and stan-

dard deviations σi. None of the starting values for the three variables

can be missing (NA or NaN) or infinity (Inf), and the proportions can

only have values between 0 and 1. Besides, the sigmas cannot be nega-

tive or zero. The components must be indexed so that the means are in

non-decreasing order, µ1 ≤ µ2 ≤ · · · ≤ µk . If any two consecutive means

are equal the corresponding standard deviations must be in strictly as-

cending order. That is, µi = µi+1 is allowed only if σi < σi+1. Rmix will

not accept starting values unless these requirements are satisfied.

In a typical application the parameters of the component distribution

would not be known initially: only the histogram would be available.

However, after some experience with graphs of this type one can do a

reasonable job of sketching in the component distributions if the number

of components is known and if something about the population being

studied is available, for example, they are known to be about equally

spaced and about equal in standard deviation. Note, however, that

this would not be possible in the present example if the number of
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components were unknown. The components do not all form distinct

modes and there is therefore no indication from the histogram alone as

to the number of components to expect. While estimating the number of

components from the data alone is an attractive possibility, estimation

will clearly be unreliable in cases such as this and we will not consider

the problem in this report.

Starting values for the means and sigmas should be as good as pos-

sible, since the iterations will not converge if the starting values and

constraints are not well chosen. Starting values for the proportions are

less critical, since they can usually be improved very efficiently. Users

can find starting values for the means and sigmas by inspecting the his-

togram, and Rmix provides a function for plotting the histogram with or

without the weighted components distributions and mixture distribution

superimposed on it.

In Figure 5.1 the length-frequency histogram is displayed by using the

method function plot.mixdata called via the generic function plot:

> plot(pikgrp)

Although the leftmost (first) and rightmost (mth) intervals are always

open-ended (section 4.2), on the histogram the first interval is shown as

being twice the width of the second and the mth is shown as being twice

the width of the (m− 1)st.
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Figure 5.1: Pike length-frequency histogram
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In this example, we determine the starting values for the means and

sigmas visually, and we just make the proportions equal. A simple way

to enter the initial values is to use the function mixparam as follows:

> pikpar <- mixparam(c(20, 30, 40, 50, 60),

+ c(2, 3, 4, 5, 6), rep(0.2, 5))

> pikpar

pi mu sigma

1 0.2 20 2

2 0.2 30 3

3 0.2 40 4

4 0.2 50 5

5 0.2 60 6
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Then we plot the histogram (Figure 5.2) with the components using

the starting values, to check if the means and sigmas are reasonable.

Lognormal distributions are assumed for the components.

> plot(pikgrp, pikpar, "lnorm")

Figure 5.2: Pike lengths histogram with initial parameter values
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Lognormal Mixture

To help determine and modify the starting values, one can regard the

thick curve in Figure 5.2 as providing a fit to the sample histogram. Then

try to envisage how the “goodness-of-fit” is affected by slight alterations

in the parameters, particularly the means and standard deviations. Al-

tering a mean will shift the corresponding component to the left or right;

increasing a standard deviation will cause the corresponding component

to spread and flatten, while decreasing a standard deviation will produce
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a narrower and higher peak. It is always better to choose initial values

for the standard deviations that are too small, rather than too large.

Large standard deviations cause the components to overlap more than

is necessary, obscuring the resolution of the means. Changing either the

mean or the variance a little would make the fit much better or worse

and so we conclude that the fit is sensitive to these parameters. The

important corollary to this is that fitting the model to the data will yield

good estimates of these parameters. Applying these observations to Fig-

ure 5.2, we can see that the first and second means can be improved.

Nevertheless, one reason why the mixture (the thick curve) doesn’t fit

the histogram well is that the proportions have not yet been fitted.

Furthermore, the starting values should be consistent with the con-

straints and the distribution of components. For example, if one wants to

constrain the means to lie along a growth curve, then (µ3−µ2) < (µ2−µ1)

is required. Also, negative means are not permitted by the constraints

"FCV", "CCV", "BINOM", "NBINOM", "POIS" and all the distributions

but normal. If binomial distribution components with the constraint

"BINOM" are fitted, then the initial values need to satisfy µi > σ2
i .

And negative binomial components with the constraint "NBINOM" re-

quire µi < σ2
i .
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5.2.3 Preparing the Constraints

Choosing the constraints mainly depends on some form of prior informa-

tion about the parameters or the relations among them. The histogram

also provides some information. Two examples are given in section 1.1

of Macdonald ([MG88]).

Further, there are intimate relations among the parameters, the con-

straints and the distribution of components. So the selection of con-

straints is restricted by the relations (see section 2.4). Users can use

the function mixconstr to organize the constraints in the form Rmix

requires and to check if the constraints meet those requirements.

5.3 The Estimation Procedure for Fitting Mixtures

After preparing the data, starting values and constraints, we can begin

to estimate the parameters of a mixture. The function mix performs the

whole estimation procedure for fitting a mixture.

5.3.1 Fit Mixtures with Grouped Data

For the grouped data pikgrp, we try to fit the lognormal distribution

to all 5 age-groups with constant coefficient of variation using the com-

bination of the EM algorithm and Newton-type method:
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> fitccv <- mix(mixdat = pikgrp, mixpar = pikpar,

+ dist = "lnorm", constr = mixconstr(consigma = "CCV"),

+ emsteps = 10)

If the EM procedure is employed, the number of EM steps needs to be

provided. Usually, 10 or 20 will be more than adequate. If the value is

0, Rmix will skip this procedure without changing any of the parameter

values. In our example, the number of EM steps is 10. The parameter

values obtained by the EM estimation procedure are displayed as follows:

pi mu sigma

1 0.09427418 22.84942 2.227289

2 0.35195367 32.37254 3.155572

3 0.33950791 37.77252 3.681944

4 0.15493256 47.51442 4.631554

5 0.05933167 59.66492 5.815946

We can see that the proportions are much changed from the starting

values after the 10 EM steps. The final estimates of the parameters are

listed below:

> fitccv

pi mu sigma

1 0.09967030 23.07345 2.372187
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2 0.51889286 33.60686 3.455129

3 0.22676635 41.10281 4.225790

4 0.10710022 49.88250 5.128431

5 0.04757028 60.46696 6.216622

Distribution:

"lnorm"

Constraints:

conpi conmu consigma

"NONE" "NONE" "CCV"

And the estimates of parameters from complete data are given by:

pi mu sigma

1 0.105 23.33 2.44

2 0.465 33.09 3.00

3 0.298 41.27 4.27

4 0.090 51.24 5.08

5 0.042 61.32 7.07

The two sets are very similar.

5.3.2 Fit Mixtures with Conditional Data

We fit a mixture to the conditional data pikcondit using the command:
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> fitcondit <- mix(mixdat = pikcondit, mixpar = pikpar,

+ dist = "lnorm", constr = mixconstr(consigma = "CCV"),

+ usecondit = T)

There are no EM steps for conditional data. The estimates of the pa-

rameters are:

> fitcondit$parameters

pi mu sigma

1 0.10228190 23.17540 2.238091

2 0.48298761 33.16981 3.203271

3 0.29571900 41.65567 4.022766

4 0.07501706 51.85026 5.007277

5 0.04399443 60.83656 5.875100

Compared with the estimated parameter values for the grouped data,

we can see that the estimates obtained from the conditional data are

more accurate, since additional information about the population is pro-

vided by the subsamples.

5.4 Other Issues

After fitting the mixture to the data, it is desirable to see intuitively

how well we have done, and thus we plot the histogram for the grouped
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data with the estimated values of parameters (Figure 5.3). It can be

seen that the result obtained by Rmix is quite a reasonable fit.

> plot(fitccv)

Figure 5.3: Pike lengths histogram with estimated parameters
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Lognormal Mixture

We can also draw a hanging rootogram (Figure 5.4) to visualize de-

partures from the model.

> plot(fitccv, root = T)

As the rectangles around the x-axis are small and no areas are with the

rectangles only above or below the x-axis, we can say that the model

fits the histogram well.

Next, we attempt to test the goodness-of-fit of the model. Rmix

provides the method function anova.mix to accomplish this purpose,

called via the generic function anova:
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Figure 5.4: Pike lengths rootogram with fitted curves
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Lognormal Mixture

> anova(fitccv)

Analysis of Variance Table

Df Chisq Pr(>Chisq)

Residuals 14 11.948 0.6105

The P-value is 0.6105, which indicates the model estimated is consistent

with the data.

We can also use this function to test the validity of certain constraints.

For example, if we fit the mixture with not only constant coefficient

of variation but also means that lie along a curve, then the model is

“ nested” within the model with constant coefficient of variation. From

the ANOVA table given by the function anova.mix, one can test the

validity of the constraint "MGC" (see section 4.2).
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Furthermore, Rmix has a function to give the estimated data such as

zij, i = 1, . . . , k; j = 1, . . . , m. Please refer to the documentation for the

function fitted.mix in the Appendix for more information.

5.5 Examples

We randomly generate four groups of binomial distribution data with

means 4, 8, 12, 16, and corresponding variances 3.2, 4.8, 4.8 and 3.2.

Then we mix the four data groups with 100 observations for each group,

i.e., with equal proportions. After grouping the mixture data, we plot

the histogram (Figure 5.5) for the grouped data.

Figure 5.5: Histogram for binomial distribution data
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We give starting values for parameters as follows:
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> binpar

pi mu sigma

1 0.25 3 1.5

2 0.25 7 2.0

3 0.25 13 2.0

4 0.25 15 1.5

We use the function mix to fit the binomial mixture.

> fitbin <- mix(mixdat = bindat, mixpar = binpar,

+ dist = "binom", constr = mixconstr(consigma = "BINOM",

+ size = c(20, 20, 20, 20)))

The estimated values obtained are

> fitbin

pi mu sigma size

1 0.2322 3.702 1.737 20

2 0.3046 7.895 2.186 20

3 0.3221 13.365 2.106 20

4 0.1410 16.768 1.646 20

Distribution:

"binom"

Constraints:
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conpi conmu consigma

"NONE" "NONE" "BINOM"

We can see that the estimated means and standard deviations are close

to the real values, but the proportions not so close. Next we fix all the

proportions at the starting values, and the results are much better, that

is, they are very close to the true values. Figure 5.6 gives the histogram

with fitted curves.

> fitbinpfx <- mix(mixdat = bindat, mixpar = binpar,

+ dist = "binom", constr = mixconstr(conpi = "PFX",

+ fixpi = c(T, T, T, T), consigma = "BINOM",

+ size = c(20, 20, 20, 20)))

> fitbinpfx

pi mu sigma size fixpi

1 0.25 3.836 1.761 20 T

2 0.25 7.743 2.178 20 T

3 0.25 12.215 2.181 20 T

4 0.25 15.965 1.795 20 T

Distribution:

"binom"

Constraints:
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conpi conmu consigma

"PFX" "NONE" "BINOM"

Figure 5.6: Histogram with fitted curves for binomial distribution data
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Chapter 6

Discussion and Suggestions for

Future Research

6.1 Comparison of the EM Algorithm and Newton-

type Methods

We employ two numerical methods to fit a mixture in our project, which

are presented in the last sections. Here we shall give some comparative

remarks:

1. The EM algorithm is usually simple to apply and satisfies the ap-

pealing monotonic property.

2. The EM algorithm is less sensitive to starting values.

3. Newton-type methods are more complicated, particularly in view

of the matrix inversion required, and there is no guarantee of mono-
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tonicity.

4. If the Newton-type methods converge, convergence is of second or-

der (i.e. fast), whereas the EM algorithm is often excruciatingly

slow.

5. The iterations for Newton-type methods incorporate approxima-

tions to the covariance matrix of Ψ̂ , the maximum likelihood esti-

mator of Ψ . This is not available directly with the EM algorithm.

6. Unconditional convergence to Ψ̂ is not guaranteed with any of the

techniques. This is not surprising and is a familiar characteristic

of Newton-type methods. Of course, even with the monotonic EM

algorithm we would not necessarily obtain convergence to a global

maximum.

6.2 Strategies for Difficult Cases

Difficult cases arise under some specific conditions, such as when itera-

tions diverge, some of the estimated proportions are close to zero, and so

on. Thus, some strategies will be provided for avoiding the occurrence

of those situations.
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6.2.1 What to do when Iterations will not Converge

We have introduced the algorithms employed in Rmix, and discussed

their respective strengths and weakness. We can see that convergence

sometimes cannot be guaranteed for Newton-type algorithms, especially

when the starting values and constraints are not well chosen.

For determining starting values, the histogram of data is definitely

helpful. The initial guesses from inspection of the histogram can be

revised by superimposing the component density curves with the starting

values on the original histogram to see how well they fit. Any attempt

to fit without constraints on the parameters, in particular on the means

and sigmas, usually results in divergence since too many parameters are

estimated simultaneously. A strategy is to impose enough constraints

first to prevent the iterations from diverging, and then to repeat the

fitting process with fewer constraints to see how much the goodness-of-

fit and the estimates depend on that choice.

In the procedure of estimation, we suggest that users run 1, 2 or 3

iterations of the EM algorithm. There are three reasons for this rec-

ommendation: one is that the proportions and the means, sigmas are

estimated separately; that is, the proportions are first estimated with

fixed means and sigmas, and then holding the proportions fixed, means

and sigmas are computed (see section 4.3). Thus the number of param-
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eters being estimated at one time will be reduced. The second reason

is that the EM algorithm bears the monotonic property, so that it may

improve the initial values to prevent the iterations for the Newton-type

method from diverging. The last reason is that the estimated values of

parameters can be printed at each step if the argument ‘print.level’

takes the value ‘3’, so that the user can know how the estimation pro-

cess is going.

A warning message indicating the reason why the optimization pro-

cess terminated will be given when the estimation procedure is com-

pleted without convergence. The message often provides important in-

formation. For example, if a warning saying “ the optimization process

terminated because iteration limit exceeded” is given, then the user may

try to give a larger number for the limit of iterations performed to see

if the iterations will converge.

6.2.2 What to do when Proportions Go Close to 0

Rmix may, in some cases, produce some proportions close to 0, and

at the same time the corresponding components will disappear on the

histogram.

If this happens, it probably indicates that too many components are

fitted. The user may reset the initial values of parameters with fewer
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components. It is also possible that there really is a component there,

but the current value of its mean places it too far into one of the neigh-

boring components. There are then several strategies to choose from:

plot the current fit and see if any components are obviously misplaced;

try other distributions or constraints; set the offending proportion to a

small positive value and hold it fixed at that value.

6.2.3 What to do when Parameters Have Large Standard Er-

rors

It sometimes turns out that one or more of the parameters have exceed-

ingly large standard errors associated with them, or the standard errors

cannot be computed because the information matrix is singular (Mac-

donald and Pitcher 1979). This will happen if there is no information in

the data for one or more of the parameters, or if the current parameter

values are very far from their true values. In either case, inspection of

the plot with the current parameter values and consideration of what

the solution ought to be, should suggest a revision of the starting values

or constrains that will be more successful on the next attempt.

6.3 Suggestions for Future Research

Three suggestions for future research are as follows:
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1. For the iteration scheme of Newton-type methods, the calculation

of the gradient and Hessian of the likelihood function, i.e. the first

and second partial derivatives with respect to each parameter being

estimated, is necessary. Thus, whichever of the likelihood functions

(4.19) and (1.9) is employed, we have to differentiate Pj(Ψ ) with

respect to each element of Ψ . However, the forms of the gradient

and Hessian will change when different component distributions and

constraints are applied; therefore all of the forms need to be con-

sidered. Because of the scope of this project, we only give the like-

lihood functions, but don’t write routines to compute the gradient

and Hessian; instead, we make use of the function nlm provided by

the R computing statistical software to carry out the minimization

of the functions (4.18), (4.20) and (4.21). The algorithm employed

by nlm is a Newton-type method. Although the documentation for

nlm provides plenty of information, it’s still not enough to under-

stand clearly each step of the minimization procedure, and so the

general method for computing various forms of derivatives and rou-

tines to achieve the functionality of nlm should be investigated in

future research.

2. For any software, it is possible that some functionality desirable

for specific users is not provided. Rmix would not be an excep-
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tion; nevertheless, the power of the R environment is that one can

combine elements in new ways, the result of a calculation is an ob-

ject available for further calculation, and the user can easily define

various functions to achieve specified purposes, so one can enhance

the capability of Rmix by adding functions to it. We shall give an

example to illustrate how a user can extend Rmix. Suppose that

a user is trying to force the means to lie along a growth curve,

but this curve is different from the von Bertalanffy growth curve

defined by Rmix, so the constraint MGC cannot be used directly

in this specific situation. However, the user can attempt to pro-

gram a function, we assume, named vbgc to compute points on

this specific curve and add the function to Rmix. When the user

attempts to fit a mixture with means fixed and on the growth curve,

he can just call the function vbgc() inside mixparam(). Therefore,

the routines that can enhance the functionality of Rmix should be

explored further.

3. The EM algorithm bears the property of monotonicity, but it usu-

ally converges very slowly, while the much more rapid Newton-type

methods have no guarantee to converge. So modifications of the

algorithms to overcome the limitations should be considered for

future versions of Rmix.
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1. anova.mix

ANOVA Tables for Mixture Model Objects

Description:

Compute analysis of variance tables for one or two

mixture model objects.

Usage:

anova.mix(mixobj1, mixobj2)

Arguments:

mixobj1: an object of class ‘"mix"’, usually, the results

returned by the model fitting function ‘mix’.

mixobj2: an object of the same type to be compared with

‘mixobj1’, which contains the results of fitting

another model with more or fewer parameters

fitted.
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Value:

An object of class ‘anova’ inheriting from class

‘data.frame’. When given a single argument this

function produces a table which tests whether the model

is significant. The table contains the residual

degrees of freedom, Chi-square statistic and P value.

If the class of the argument is not ‘"mix"’, it

returns ‘NULL’. When given two objects, it tests the

models against one another and lists them in the order

of number of parameters fitted. For the model with

fewer parameters fitted, the change in degrees of

freedom is given. This only make statistical sense if

the models are nested. If one of arguments does not

belong to the class ‘"mix"’, the function will give

the anova table for the other argument; if both of

them do not, it returns ‘NULL’.

Warning:

The comparison between two models will only be valid

if they are fitted to the same data set. And the two

models should be nested.
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See also:

The model fitting function ‘mix’, the generic function

‘anova’.

Examples:

data(pikdat) # load the grouped data ‘pikdat’

data(pikpar0) # load the parameters ‘pikpar0’

anova.mix(pikdat) # NULL with a warning message

fitpik1 <- mix(pikdat, pikpar0, "lnorm", mixconstr(

conmu = "MFX", fixmu = c(F, F, F, F, T),

consigma = "CCV"), emstep = 10)

anova.mix(fitpik1)

fitpik2 <- mix(pikdat, pikpar0, "lnorm", mixconstr(

consigma = "CCV"), emsteps = 10)

anova.mix(fitpik1, fitpik2)

anova.mix(fitpik2, fitpik1)

2. coef.mix

Extract Mixture Model Coefficients

Description:

‘coef.mix’ is a function which extracts mixture model
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coefficients from objects returned by the model

fitting function ‘mix’. It is called via the generic

function ’coef’.

Usage:

coef(mixobj, natpar = F)

Arguments:

mixobj: an object of class ‘"mix"’, usually, the results

returned by the model fitting function ‘mix’.

natpar: a logical scalar specifying whether the natural

parameters should be given.

Value:

A data frame containing three variables, which are,

in order, the proportions, means, and standard

deviations, respectively. If ‘natpar’ is ‘TRUE’,

then the natural parameters of component

distributions are also displayed.

See also:

‘mix’ for model fitting.

Examples:
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data(pikdat) # load the grouped data ‘pikdat’

data(pikpar0) # load the data set ‘pikpar0’

fit <- mix(pikdat, pikpar0, "lnorm", mixconstr(

consigma = "CCV"), emsteps = 10)

coef(fit)

coef(fit, natpar = T)

3. conditdat

Add Conditional Data to Grouped Data

Description:

It adds conditional data to grouped data.

Usage:

conditdat(mixdat, k, conditsamples)

Arguments:

mixdat: a data frame containing grouped data, whose

first column should be the right boundaries of

grouping intervals, and the second one should

be the numbers of observations falling into

each interval.

k: the number of components.
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conditsamples: a vector containing conditional data, which

consists of the conditional samples, the

first element of each sample is the number

indicating which interval this sample comes

from.

Value:

A data frame containing the grouped data with

conditional data.

See also:

‘mixgroup’ for constructing grouped and conditional

data.

Examples:

data(pikdat) # load the data set ‘pikdat’

pikdat # display the data set ‘pikdat’

conditdat(pikdat, k = 5, conditsamples =

c(c(4, 9, 2, 0, 0, 0), c(5, 8, 6, 0, 0,0),

c(12, 0, 2, 34, 0, 0), c(13, 0, 0, 21, 0, 0),

c(15, 0, 0, 5, 5, 0), c(16, 0, 0, 6, 5, 1),

c(17, 0, 0, 5, 7, 0), c(18, 0, 0, 4, 4, 3),

c(19, 0, 0, 0, 8, 0), c(20, 0, 0, 0, 2, 1),
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c(21, 0, 0, 0, 1, 5), c(22, 0, 0, 0, 2, 4))))

# add conditional data to the grouped data ‘pikdat’

4. covmat

Compute Standard Errors of the Estimated Parameters

Description:

Compute the covariance matrix and standard errors of

the estimated parameters of a mixture distribution.

Usage:

covmat(mixpar, constr, hessian)

Arguments:

mixpar: A data frame containing the parameter values of

component distributions, which are, in order,

the proportions, means, and standard deviations.

constr: a list of constraints on parameters of component

distributions.

hessian: the hessian at the estimated maximum of log

likelihood function.
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Value:

A list containing the following items:

vmat: the covariance matrix of the estimated parameters

of component distributions.

mixse: a data frame giving the standard errors of

estimated parameters.

See also:

‘mix’ for fitting mixture distributions, ‘mixconstr’

for constructing constraints.

5. fitted.mix

Compute Mixture Model Fitted Values

Description:

‘fitted.mix’ is a function which computes fitted

values from objects returned by modeling function

‘mix’. It is called via the generic function

’fitted’.

Usage:

fitted(mixobj, digits = NULL)
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Arguments:

mixobj: an object of class ‘"mix"’, usually, the results

returned by the model fitting function ‘mix’.

digits: a specified number of decimal places to be

reserved.

Value:

List with the following components:

mixed: the estimated mixed data, that is, the

fitted numbers of observations falling into

each interval.

joint: the estimated joint data, that is, the

fitted numbers of observations from each

component falling into every interval.

conditional: the estimated conditional data to be

returned if ‘usecondit’ of ‘mixobj’ is

‘TRUE’, which are the fitted numbers of

observations from given intervals belonging

to each component.

conditprob: the estimated conditional probabilities of

observations from given interval belonging

to each component.
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See also:

‘mix’ for fitting mixture distributions.

Examples:

fit1 <- mix(pikdat, pikpar0, "lnorm", mixconstr(

consigma = "CCV"), emsteps = 10)

fitted(fit1)

fit2 <- mix(pike65sg, pikpar0, "gamma", mixconstr(

consigma = "CCV"), usecondit = T)

fitted(fit2, digits = 2)

6. groupstats

Estimate Parameters of One-Component Mixture Distribution

Description:

‘groupstats’ is a function which estimates the

proportion, mean and standard deviation for a mixture

distribution with one component.

Usage:

groupstats(mixdat)

Arguments:
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mixdat: A data frame containing grouped data, whose first

column should be right boundaries of grouping

intervals where the first and last intervals are

open-ended; whose second column should consist of

the frequencies indicating numbers of observations

falling into each interval.

Value:

List with the following components:

pi: the value is ‘1’ because of only one component.

mean: the estimated mean of this component.

sigma: the estimated standard deviation of this component.

See also:

‘mixparam’ for constructing starting values of

parameters.

Examples:

data(pikdat)

groupstats(pikdat)

7. grintprob

Compute Probabilities of an Observation Falling into a
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Grouping Interval

Description:

Compute probabilities of an observation falling into a

grouping interval when given component distribution

the observation comes from.

Usage:

grpintprob(mixdat, mixpar, dist, constr)

Arguments:

mixdat: A data frame containing grouped data, whose first

column should be right boundaries of grouping

intervals where the first and last intervals are

open-ended; whose second column should consist

of the frequencies indicating numbers of

observations falling into each interval.

mixpar: A data frame containing the parameter values of

component distributions, which are, in order,

the proportions, means, and standard deviations.

dist: the distribution of components, it can be

‘"norm"’, ‘"lnorm"’, ‘"gamma"’, ‘"weibull"’,

‘"binom"’, ‘"nbinom"’ and ‘"pois"’.
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constr: a list of constraints on parameters of component

distributions.

Value:

It produces a matrix, whose each column contains the

probabilities of the observations from one component

falling into each grouping interval.

Examples:

data(bindat)

data(binpar)

grpintprob(bindat, binpar, "binom", mixconstr(

consigma = "BIN", size = c(20, 20, 20, 20)))

8. mix

Estimate Parameters of Mixture Distributions

Description:

Find a set of overlapping component distributions that

gives the best fit to grouped data and conditional

data, using a combination of EM algorithm and

Newton-type methods.
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Usage:

mix(mixdat, mixpar, dist = "norm", constr = list(

conpi = "NONE", conmu = "NONE", consigma = "NONE",

fixpi = NULL, fixmu = NULL, fixsigma = NULL,

cov = NULL, size = NULL), emsteps = 1,

usecondit = F, exptol = 5e-06, print.level = 0, ...)

Arguments:

mixdat: A data frame containing grouped data, whose first

column should be right boundaries of grouping

intervals where the first and last intervals are

open-ended; whose second column should consist of

the frequencies indicating numbers of observations

falling into each interval. If conditional data

are available, this data frame should have k + 2

columns, where k is the number of components,

whose element in row j and column i + 2 is the

number of observations from the jth interval

belonging to the ith component.

mixpar: A data frame containing starting values for

parameters of component distributions, which are,

in order, the proportions, means, and standard
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deviations.

dist: the distribution of components, it can be

‘"norm"’, ‘"lnorm"’, ‘"gamma"’, ‘"weibull"’,

‘"binom"’, ‘"nbinom"’ and ‘"pois"’.

constr: a list of constraints on parameters of

component distributions. See function

‘mixconstr’.

emsteps: a non-negative integer specifying the number

of EM steps to be performed.

usecondit: if ‘usecondit’ is ‘TRUE’ and ‘mixdat’

includes conditional data, then conditional

data will be used with grouped data to

estimate parameters of mixtures.

exptol: a positive scalar giving the tolerance at

which the scaled fitted value is considered

large enough to be a degree of freedom.

print.level: this argument determines the level of

printing which is done during the

optimization process. The default value

of ‘0’ means that no printing occurs, a

value of ‘1’ means that initial and final



APPENDIX 92

details are printed and a value of ‘2’ means

that full tracing information is printed.

...: additional arguments to the optimization function

‘nlm’.

Value:

A list containing the following items:

parameters: A data frame containing estimated values for

parameters of component distributions, which

are, in order, the proportions, means, and

standard deviations.

se: A data frame containing estimated values for

standard errors of parameters of component

distributions.

distribution: the distribution used to fit the data.

constraint: the constraints on parameters.

chisq: the goodness-of-fit chi-square statistic.

df: degrees of freedom of the fitted mixture

model.

P: a significance level (P-value) for the

goodness-of-fit test.
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vmat: covariance matrix for the estimated

parameters.

mixdata: the original data, i.e. the argument ‘mixdat’.

usecondit: the value of the argument ‘usecondit’.

See also:

‘mixgroup’ for grouping data, ‘mixparam’ for

organizing the parameter values, ‘mixconstr’ for

constructing constraints. ‘nlm’ for additional

arguments.

Examples:

data(pikdat)

data(pikpar0)

mix(pikdat, pikpar0, "lnorm", constr = mixconstr(

consigma = "CCV"), emsteps = 10)

data(bindat)

data(binpar)

mix(bindat, binpar, "binom", constr = mixconstr(

consigma = "BINOM", size = c(20, 20, 20, 20)))
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9. mixconstr

Construct Constraints on Parameters

Description:

Construct constraints on parameters and check if the

constraints are invalid. See the reference for

details.

Usage:

mixconstr(conpi = "NONE", conmu = "NONE", consigma =

"NONE", fixpi = NULL, fixmu = NULL,

fixsigma = NULL, cov = NULL, size = NULL)

Arguments:

conpi: a constraint on proportions, it can be either

‘"NONE"’ denoting no constraint on proportions,

or ‘"PFX"’ indicating some proportions being

fixed.

conmu: a constraint on means, it can be ‘"NONE"’,

‘"MFX"’, ‘"MEQ"’, ‘"MES"’ and ‘"MGC"’, which

denote no constraint, specified means fixed,

means equal, means with equal spaces and means

lying along a growth curve, respectively.
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consigma: a constraint on standard deviations, it can be

‘"NONE"’, ‘"SFX"’, ‘"SEQ"’, ‘"FCV"’, ‘"CCV"’,

‘"BINOM"’, ‘"NBINOM"’ and ‘"POIS"’, which

denote no constraint, specified standard

deviations fixed, standard deviations equal,

fixed coefficient of variation, constant

coefficient of variation, the means and standard

deviations have the same relation as that of

Binomial distribution, as that of Negative

Binomial distribution and as that of Possion

distribution.

fixpi: ‘NULL’ or a vector with ‘TRUE’ and ‘FALSE’ as

its elements, indicating which proportions are

fixed when ‘conpi’ is ‘"PFX"’. If an element

is ‘TRUE’, the corresponding proportion is

fixed at the starting value.

fixmu: similar to ‘fixpi’. ‘NULL’ or a vector

indicating which means are fixed when ‘conmu’

is ‘"MFX"’.

fixsigma: similar to ‘fixpi’. ‘NULL’ or a vector

indicating which standard deviations are fixed
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when ‘consigma’ is ‘"MFX"’.

cov: ‘NULL’ or a scalar if ‘consigma’ is ‘"FCV"’, then

the coefficients of variation are fixed at this

scalar.

size: ‘NULL’ or a vector of numbers of trials for each

component when ‘consigma’ is ‘"BINOM"’ or

‘"NBINOM"’.

Value:

A list containing the following components, which are,

in order, ‘conpi’, ‘conmu’, ‘consigma’, ‘fixpi’,

‘fixmu’, ‘consigma’, ‘cov’, ‘size’.

References:

Macdonald, P.D.M. and Green, P.E.J. (1988) User’s

Guide to Program MIX: An Interactive Program for

Fitting Mixtures of Distributions. ICHTHUS DATA

SYSTEMS.

See also:

‘mixgroup’ for grouping data, ‘mixparam’ for

constructing starting values of parameters.

Examples:
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mixconstr()

mixconstr(conmu = "MEQ", consigma = "SFX", fixsigma =

c(T, F, T, T, F))

mixconstr(consigma = "BINOM", size = c(25, 25, 25))

10. mixgroup

Construct Grouped Data from Raw Data

Description:

Group raw data in the form of numbers of observations

over successive intervals.

Usage:

mixgroup(x, breaks = NULL, xname = NULL, k = NULL,

usecondit = F)

Arguments:

x: a data frame or matrix containing raw data, whose

first column should be the measurements to be

grouped, and the second one, if available, includes

the numbers indicating which component each

individual belongs to.
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breaks: one of:

1: a vector giving the boundaries of intervals

which raw data are grouped into,

2: a single number giving the number of

intervals,

3: a character string naming an algorithm to

compute the number of intervals,

4: a function to compute the number of

intervals.

In the last three cases the number is a

suggestion only.

xname: the name of measurement.

k: the number of components.

usecondit: if ‘usecondit’ is ‘TRUE’ and ‘x’ has two

columns, then conditional data will be

displayed with grouped data.

Value:

A data frame containing grouped data derived from raw

data, whose first column includes the right boundaries

of grouping intervals, where the first and last
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intervals are open-ended; whose second column consists

of the frequencies which are the numbers of

observations falling into each interval. If

‘usecondit’ is ‘TRUE’ and the numbers indicating

which component the individual comes from are

available, conditional data which can be regarded as a

table, whose element in row j and column i is the

number of observations from the jth interval belonging

to the ith component, will be displayed with grouped

data.

See also:

‘hist’ for more information about the argument

‘breaks’, ‘mixparam’ for organizing the parameter

values, ‘mixconstr’ for constructing constraints.

Examples:

data(pikraw) # load the data set ‘pikraw’

pikraw # display the data set ‘pikraw’

mixgroup(pikraw) # group raw data

mixgroup(pikraw, usecondit = T, k = 3) # construct

grouped data associated with conditional data

mixgroup(pikraw, usecondit = T, k = 8)



APPENDIX 100

mixgroup(pikraw, breaks =

c(0, seq(19.75, 65.75, 2), 80),

usecondit = T, k = 5)

11. mixpar2theta

Find the Parameters to be Estimated

Description:

When there are constraints on parameters, we only

estimate some parameters in terms of the constraints.

This function is to find the parameters to be estimated.

See the reference for details.

Usage:

mixpar2theta(mixpar, constr, mixprop = T)

Arguments:

mixpar: A data frame containing the values for

parameters of component distributions, which

are, in order, the proportions, means, and

standard deviations.

constr: a list of constraints on parameters of

component distributions.
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mixprop: if ‘TRUE’, the proportions will be estimated.

Value:

a vector containing the values for the parameters to

be estimated.

References:

Macdonald, P.D.M. and Green, P.E.J. (1988) User’s

Guide to Program MIX: An Interactive Program for

Fitting Mixtures of Distributions. ICHTHUS DATA

SYSTEMS.

See also:

‘mix’ for fitting mixture model, ‘mixtheta2par’ for

computing all the parameters from the estimated

parameters.

Examples:

mixpar2theta(pikpar, constr = mixconstr(consigma =

"CCV"))

mixpar2theta(pikpar, constr = mixconstr(conmu = "MGC",

consigma = "SFX", fixsigma = c(F, F, F, T,

T)), mixprop = F)
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12. mixparam

Construct Starting Values for Parameters

Description:

Construct starting values for parameters of a mixture

model.

Usage:

mixparam(mu, sigma, pi = NULL)

Arguments:

mu: a vector of means of component distributions, which

should be in ascending order.

sigma: a vector of standard deviations of component

distributions, which are corresponding to the

means. ‘sigmas’ must be in ascending order when

means are equal.

pi: the corresponding mixing proportions of components.

If ‘NULL’, the proportions will be taken as 1/k,

where k is the length of ‘mu’.

Value:

A data frame containing three variables, which are,
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in order, the proportions, means, and standard

deviations, respectively.

See also:

‘mixgroup’ for grouping data, ‘mixconstr’ for

constructing constraints.

Examples:

mixparam(mu = c(20, 30, 40), sigma = c(2, 3, 4))

mixparam(c(20, 30, 40), c(3), c(0.15, 0.78, 0.07))

13. mixtheta2par

Compute All of Parameters from the Estimated Parameters

Description:

When there are constraints on parameters, we only

estimate some parameters in terms of the

constraints. This function is to compute all of

parameters from the estimated ones.

Usage:

mixtheta2par(mixtheta, mixpar, constr, mixprop = T)
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Arguments:

mixtheta: a vector containing the values for the estimated

parameters, usually, a result of the function

‘mixpar2theta’.

mixpar: A data frame containing the values for

parameters of component distributions, which

are, in order, the proportions, means, and

standard deviations.

constr: a list of constraints on parameters of component

distributions. See function ‘mixconstr’.

mixprop: if ‘TRUE’, the proportions are estimated.

Value:

A data frame containing three variables, which are,

in order, the proportions, means, and standard

deviations, respectively.

See also:

‘mix’ for fitting mixture model, ‘mixpar2theta’ for

finding the parameters to be estimated.

Examples:

mixtheta2par(mixtheta = c(30, 2, 3, 4, 5, 6), pikpar,

mixconstr(consigma = "MEQ"), mixprop = F)
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par <- mixpar2theta(pikpar, constr = mixconstr(

consigma = "CCV"))

mixtheta2par(par, pikpar, mixconstr(consigma = "CCV"))

14. plot.mix

Mix Object Plotting

Description:

A function for plotting of Mix objects. It is called

via the generic function ’plot’.

Usage:

plot(mixobj, mixpar = NULL, dist = "norm", root = F,

ytop = NULL, clwd = 1, main, sub, xlab, ylab,

bty, ...)

Arguments:

mixobj: an object of class ‘"mix"’, usually, the results

returned by the model fitting function ‘mix’.

mixpar: ‘NULL’ or a data frame containing the values for

parameters of component distributions, which are,

in order, the proportions, means, and standard

deviations.
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dist: the distribution of components, it can be

‘"norm"’, ‘"lnorm"’, ‘"gamma"’, ‘"weibull"’,

‘"binom"’, ‘"nbinom"’ and ‘"pois"’.

root: if ‘TRUE’, a hanging rootogram will be displayed.

ytop: a specified value for the top of the y axis.

clwd: a positive number denoting the line width,

defaulting to ‘1’.

main: an overall title for the plot.

sub: a subtitle for the plot.

xlab: a title for the x axis.

ylab: a title for the y axis.

bty: A character string which determined the type of box

which is drawn about plots. If ‘bty’ is one of

‘"o"’, ‘"l"’, ‘"7"’, ‘"c"’, ‘"u"’, or ‘"]"’ the

resulting box resembles the corresponding upper

case letter. A value of ‘"n"’ suppresses the box.

...: additional arguments to the function ‘plot.default’.

Details:

If the argument ‘mixobj’ gives an object of class

‘"mix"’, the plot will be a histogram for the grouped
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data come from the element ‘mixdata’ of ‘mixobj’.

Although the leftmost (first) and rightmost (mth)

intervals are always open-ended, on the histogram the

first interval is shown as being twice the width of

the second and the mth is shown as being twice the

width of the m− 1st. When the fitted distribution

is one of ‘"lnorm"’, ‘"gamma"’ and ‘"weibull"’, the

left boundary of the first interval will be taken

zero since negative values and zeroes are not allowed

for these distribution. For the distributions

‘"binom"’, ‘"nbinom"’ and ‘"pois"’ negative data are

not permitted, so the left boundary of the first

interval is taken -0.5. The component distributions

weighted by their respect proportions and the mixture

distribution are computed by the estimated parameter

values from the element ‘parameters’ of ‘mixobj’,

and superimposed on the histogram. The distribution

of components will be taken the value of the element

‘distribution’. If ‘sub’, ‘xlab’, ‘ylab’ and ‘bty’

are not specified, the default values will be used.

The positions of the means are indicated with
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triangles.

When the argument ‘root’ is ‘TRUE’, a hanging

rootogram will be displayed, that is, if there is only

the grouped data, this option plots the histogram

with the square root of relative frequency on the

y-axis. If there is a model as well as data, not only

is the y-axis the square root of relative frequency,

also the bars of the histogram, instead of rising from

0, are shifted up or down so that the mid-point of the

top of the bar is exactly on the curve indicating the

mixture distribution and the bottom of the bar may

therefore be above or below the x-axis. If the bar

goes below the x-axis, the portion below is shown as a

blue rectangle. If the bar does not reach the x-axis,

the space between the bottom of the bar and the

x-axis is shown as a blue rectangle. If the blue

rectangles are almost above or below in an area of

the x-axis, we may say that the mixture curve around

that area is not fitting well.

See also:

‘mixparam’ for organizing the parameter values, ‘mix’
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for fitting mixture model, ‘plot.default’ for

additional arguments.

Examples:

fit1 <- mix(pikdat, pikpar0, "lnorm", constr =

mixconstr(consigma = "CCV"), emsteps = 10)

plot(fit1)

plot(fit1, root = T)

fit2 <- mix(bindat, binpar, "binom", constr =

mixconstr(consigma = "BINOM", size =

c(20, 20, 20, 20)))

plot(fit2)

plot(fit2, root = T)

15. plot.mixdata

Mixdata Object Plotting

Description:

A function for plotting of Mixdata objects. It is

called via the generic function ’plot’.

Usage:



APPENDIX 110

plot(mixdata, mixpar = NULL, dist = "norm", root = F,

ytop = NULL, clwd = 1, main, sub, xlab, ylab,

bty, ...)

Arguments:

mixobj: an object of class ‘"mixdata"’, usually, the

results returned by the model fitting function

‘mixgroup’.

Other arguments are the same as those of the function

’plot.mix’.

Details:

When the argument ‘mixdata’ is a data frame containing

grouped data, the histogram of the data will be

displayed if ‘mixpar’ is ‘NULL’; if it gives the

parameters, the component distributions and the

mixture are computed from the parameter values and

superimposed on the histogram.

See also:

‘plot.mix’ for plotting the mix object, ‘plot.default’

for additional arguments.

Examples:
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plot(pikdat)

plot(pikdat, pikpar0, "lnorm")

plot(pikdat, pikpar0, "lnorm", root = T)

16. print.mix

Print Objects of Class ‘"Mix"’

Description:

‘print.mix’ is a function which prints objects of

class ‘"mix"’ and returns it invisibly. It is called

via the generic function ’print’.

Usage:

print(mixobj, digits = 4)

Arguments:

mixobj: an object of class ‘"mix"’, usually, the results

returned by the model fitting function ‘mix’.

digits: how many significant digits are to be used.

Details:

This function only prints information about the

mixture model, which are the estimated parameters of
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the mixture, the distribution of components and the

constraints on the parameters. Also, the values for

the parameters are rounded to the specified number

of decimal places (default 4). The whole object can

be printed out using the function ‘print.default’.

See also:

‘mix’ for model fitting. ‘print.default’ for

printing the whole object.

Examples:

fit <- mix(pikdat, pikpar0, "lnorm", mixconstr(

consigma = "CCV"), emsteps = 10)

fit

print(fit)

print.default(fit)

17. summary.mix

Summarizing Mixture Model Fits

Description:

‘summary’ method for class ‘"mix"’. It is called via

the generic function ’summary’.
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Usage:

summary(mixobj, digits = 4)

Arguments:

mixobj: an object of class ‘"mix"’, usually, the results

returned by the model fitting function ‘mix’.

digits: how many significant digits are to be used.

Value:

A list containing the following items:

parameters: A data frame containing the values for

parameters of component distributions,

which are, in order, the proportions,

means, and standard deviations.

standard errors: a data frame giving the standard errors

of estimated parameters.

anova table: analysis of variance table for the

‘mixobj’, that is, the results from the

function ‘anova.mix’.

See also:

‘mix’ for fitting mixture distributions, ‘summary’ for

summarizing other kinds of object. ‘anova.mix’ for

information about ‘anova table’.
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Examples:

fit <- mix(pikdat, pikpar0, "lnorm", mixconstr(

consigma = "CCV"), emsteps = 10)

summary(fit)

18. testconstr

Check Constraints

Description:

Check if constraints on parameters are valid.

Usage:

testconstr(mixdat, mixpar, dist, constr)

Arguments:

mixdat: A data frame containing grouped data, whose first

column should be right boundaries of grouping

intervals, whose second column should consist of

the frequencies indicating numbers of observations

falling into each interval. If conditional data

are available, this data frame should have k + 2

columns, where k is the number of components,
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whose element in row j and column i + 2 is the

number of observations from the jth interval

belonging to the ith component.

mixpar: A data frame containing the values for parameters

of component distributions, which are, in order,

the proportions, means, and standard deviations.

dist: the distribution of components, it can be

‘"norm"’, ‘"lnorm"’, ‘"gamma"’, ‘"weibull"’,

‘"binom"’, ‘"nbinom"’ and ‘"pois"’.

constr: a list of constraints on parameters of component

distributions. See function ‘mixconstr’.

Value:

If the constraints are valid, this function will give

a logical value ‘TRUE’. If not, it gives an error

message to illustrate the reason.

See also:

‘mixgroup’ for grouping data, ‘mixparam’ for organizing

the parameter values, ‘mixconstr’ for constructing

constraints, ‘testpar’ for checking parameters.

Examples:
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testconstr(pikdat, pikpar, "lnorm", constr =

mixconstr(consigma = "CCV"))

testconstr(bindat, binpar, "binom", constr =

mixconstr())

testconstr(bindat, binpar, "binom", constr =

mixconstr(consigma = "BINOM"))

testconstr(bindat, binpar, "pois", constr =

mixconstr(conmu = "MEQ", consigma =

"POIS"))

19. testpar

Check Parameters

Description:

Check if the values of parameters are valid.

Usage:

testpar(mixpar, dist, constr)

Arguments:

mixpar: A data frame containing the values for parameters

of component distributions, which are, in order,

the proportions, means, and standard deviations.
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dist: the distribution of components, it can be

‘"norm"’, ‘"lnorm"’, ‘"gamma"’, ‘"weibull"’,

‘"binom"’, ‘"nbinom"’ and ‘"pois"’.

constr: a list of constraints on parameters of component

distributions. See function ‘mixconstr’.

Value:

logical. If ‘TRUE’, the parameters are valid. If

‘FALSE’, some of the parameters are invalid. Since

this function is for internal use, it doesn’t give

error messages.

Details:

Any of the parameter values can not be missing value

(‘NA’ or ‘NaN’) or infinity (‘Inf’), and the

proportions can only take the values between 0

and 1. Besides, the standard deviations can not be

negative. The components must be indexed so that

the means are in non-decreasing order. If any two

consecutive means are equal the corresponding

standard deviations must be in strictly ascending

order. Furthermore, the parameter values should be

consistent with the constraints and the distribution
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of components. For example, if one wants to constraint

the means to lie along a growth curve, then (µ3 − µ2) <

(µ2 − µ1) is required. Also, negative means are not

permitted by the constraints ‘"FCV"’, ‘"CCV"’,

‘"BINOM"’, ‘"NBINOM"’, ‘"POIS"’ and all the

distributions but Normal. If the Binomial

distribution components with the constraint ‘"BINOM"’

are fitted, then the relation µi > σ2
i need to be

satisfied. And the Negative Binomial components with

the constraint ‘"NBINOM"’ require µi < σ2
i .

See also:

‘mixparam’ for organizing the parameter values,

‘mixconstr’ for constructing constraints, ‘testconstr’

for checking constraints.

20. weibullpar

Compute Shape and Scale Parameters for Weibull

Distribution

Description:

Compute the shape and scale parameters for weibull



APPENDIX 119

distribution given the mean, standard deviation and

location.

Usage:

weibullpar(mu, sigma, loc = 0)

Arguments:

mu: the mean of weibull distribution.

sigma: the standard deviation of weibull distribution.

loc: the location parameter of weibull distribution.

Value:

A data frame containing three variables, which are, in

order, the shape, scale, and location parameter.

See also:

‘weibullparinv’ for computing the mean and standard

deviation from the shape, scale and location

parameters.

Examples:

weibullpar(2, 1.2)

weibullpar(2, 1.2, 1)
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21. weibullparinv

Compute the Mean and Standard Deviation of Weibull

Distribution

Description:

Compute the mean and standard deviation given the

values of shape, scale and location of weibull

distribution.

Usage:

weibullparinv(shape, scale, loc = 0)

Arguments:

shape: the shape parameter of weibull distribution.

scale: the scale parameter of weibull distribution.

loc: the location parameter of weibull distribution

defaulting to 0.

Value:

A data frame containing three variables, which are,

in order, the mean, standard deviation and location

parameter.

See also:
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‘weibullpar’ for computing the shape and scale

parameters from the mean and standard deviation.

Examples:

weibullpar(2, 1.2, 1)

weibullparinv(shape = 0.837612, scale = 0.910627,

loc = 1)
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