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INTERACTING TWO-STATE MARKOV CHAINS ON UNDIRECTED

NETWORKS

MAUNG MIN-OO

Abstract. It is shown that irreducible two-state continuous-time Markov chains in-

teracting on a network in a bilinear fashion have a unique stable steady state. The

proof is elementary and uses the relative entropy function.

1. Description of the main result

This is an elementary paper about two-state Markov chain attached to each node
(vertex) of a finite undirected network (simple weighted undirected graph). In this paper,
we will deal with time-homogeneous Markov chains in continuous time (sometimes called
Markov jump processes). The interaction between two chains that are linked by an edge
of the network is a simple bilinear function of the two opposite states (a coupling constant
times the product of the probabilities of the two opposite states). The purpose of this
paper is to give an elementary proof of the existence and uniqueness of the steady state
(or equilibrium). In short, we will give a simple proof of the following fact:

There exists a unique steady state of irreducible two-state Markov chains which are linked
on an undirected network through an interaction term that depends bilinearly on neigh-
bouring opposite states.
In more precise technical terms:

Theorem 3.1 Let α, β ∈ R
N
+ , γ01, γ10 ≥ 0 and W be a symmetric N ×N matrix with

non-negative entries and zeros on the diagonal. Then the system of differential equations:

dpi

dt
= −αipi + βiqi − γ01 p

i
∑

j

W i
j q

j + γ10 q
i
∑

j

W i
jp

j i = 1, . . . , N

where qi = 1− pi, leaves the N -dimensional unit cube [0, 1]N invariant and possesses a
unique globally stable steady state (equilibrium point) in the interior of IN .

This is proved in section 3, after setting up the notation in the next section. In the final
section we make some simple remarks about the steady state distribution and discuss
some special cases. In the next paper we plan to deal with the case of directed networks
(which is the more interesting case).
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2. The structure of the equations

2.1. Basic notation and terminology.

2.1.1. Markov chains. There is an extensive theory of Markov chains. Here are two
introductory textbooks: [La][No]. We will briefly describe what we need to know. In
continuous time, a time-homogeneous two-state Markov chain (or a Markov jump pro-
cess) is completely determined by a 2×2 matrix (the infinitesimal transition probability
matrix between the two states) :

Q =

(

−α α

β −β

)

where α ≥ 0 and β ≥ 0. The time evolution of the probabilities p and q = 1− p at the
two states |0〉 and |1〉 is then determined by solving the linear differential equation (with
constant coefficients):

d

dt
(p, q) = (p, q)Q

whose solution is simply (p(t), q(t)) = (p(0), q(0))etQ , and as t → ∞, this converges to
the steady state: (p̄, q̄) = 1

α+β
(β, α). The Markov chain is irreducible and aperiodic

provided α and β are strictly positive.

An important function on the one dimensional simplex (p+q = 1) is the relative entropy
function. With respect to the steady state distribution, it is defined as:

Ep̄(p) = E(p̄,q̄)(p, q) = −p̄ log
p

p̄
− q̄ log

q

q̄

This is also known as the Kullback-Leibler “distance” (although it is not symmetric and
does not satisfy the triangle inequality).

A a warm-up exercise, let us compute the evolution of this entropy function along the
flow:

dE

dt
= (

q̄

q
−

p̄

p
)ṗ = −

(−αp + βq)2

(α+ β)pq
= −

α+ β

pq
(p− p̄)2

which is strictly negative unless p = p̄. This proves the uniqueness and global stability
of the steady state.

The main purpose of this paper is to do a similar calculation on two-state Markov chains
interacting bilinearly on a network.
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2.1.2. Networks and Graphs. A finite network (or a graph) is a collection of vertices (or
nodes), denoted by V = {v1, . . . vN}, together with a collection of edges, denoted by E ,
where each edge joins two vertices. For an undirected network we think of each edge
e ∈ E as an unordered pair of vertices. An edge connecting a vertex to itself is called a
loop. In this paper we will consider undirected finite graphs without loops. We will also
assume that there is at most one edge between two different vertices, but we will consider

the case where each edge is assigned a weight w(e) = wij = W i
j = W

j
i , a positive real

number. We will set wij = 0 if there is no edge between vi and vj . In particular wii = 0.
By default, if there is no specific weight attached, each edge will have weight 1 (we then
sometimes say it is a graph!). The whole information about an undirected network is
therefore completely encoded by a real symmetric matrix W i

j with non-negative entries

and zeros on the diagonal. The sum of ith-row of W (which is the same as the sum of the
ith-column), denoted by di, is the (weighted) number of edges that contain the vertex
vi and is called the degree of that vertex. We will denote the diagonal matrix of these
degrees d1, . . . , dN by D. The (combinatorial) Laplacian of the network is now defined
as: L = D − W . L is a symmetric matrix with non-positive non-diagonal entries with
all row sums (and column sums) equal to zero. L determines W , and so encodes all
the information about the graph. The (non-negative) quadratic form associated to the
Laplacian L is then:

< Lx, x >=
∑

i,j

wij|x
i − xj|2

where xi = x(vi) i = 1, . . . , N is a function defined on the vertices, thought of as a
column vector. Since L vanishes on constant functions, 0 is always an eigenvalue and
it is a simple eigenvalue iff the network is connected. We note that Lx(vmax) ≥ 0 and
Lx(vmin) ≤ 0 if vmax and vmin are respectively, local maximum and minimum points of
x. The inequalities are strict for strict maxima and minima.

These are very basic elementary facts about networks and graphs. There is an extensive
theory and here are two introductory books: [Ch][Ne].

2.2. Interacting Markov processes on a network. Now suppose that at each node
(vertex) vi of a network with weight matrix W i

j , we have a continuos time Markov chain

with two states |0〉 , |1〉 and infinitesimal transition matrix: Qi =

(

−αi αi

βi −βi

)

.

We will denote the probabilities at each node by (pi, qi = 1 − pi). If there would be no
interaction between the Markov processes at different nodes, the infinitesimal transition
matrix for the whole system, consisting of 2N states, will be the tensor product acting
as a derivation Q =

∑

i id⊗ · · · ⊗Qi ⊗ · · · ⊗ id , so one node at a time. This describes a
random walk on the hypercube {0, 1}N . We will add to this tensor product an interaction
term depending on the network as follows. At each node vi, we change the probabilities
of Q by adding the following terms which describe a very simple bilinear interaction
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between the two states at neighbouring sites (only opposite states will interact).

pi 7→ − γ01 p
i
∑

j

W i
j q

j + γ10 q
i
∑

j

W i
jp

j

qi 7→ + γ01 p
i
∑

j

W i
j q

j − γ10 q
i
∑

j

W i
jp

j

where γ01 ≥ 0 and γ10 ≥ 0 are coupling constants (not necessarily equal). This means
that we are changing the transitional probabilities of the independent tensor product
process by a bilinear interaction term that depends on the network and on the coupling
constants between the opposite states.

The new system is strictly speaking not a Markov chain on the hypercube with 2N

states, but it can be thought of as a “non-linear Markov process” on the (continuous)
space of all probability distributions on the nodes of the network. The state space is
therefore IN = [0, 1]N and we study the following dynamical system of N (independent)
differential equations where the non-linearity is of a simple type.

(2.1)
dpi

dt
= −

dqi

dt
= −αipi + βiqi − γ01 p

i
∑

j

W i
j q

j + γ10 q
i
∑

j

W i
jp

j

In terms of the Laplacian, these equations can also be written as:

(2.2)
dpi

dt
= −

dqi

dt
= −αipi + βiqi − γ̂ di pi qi + γ01 p

i
∑

j

Li
jq

j − γ10 q
i
∑

j

Li
jp

j

where di =
∑

j wij is the degree of the vertex vi and γ̂ = (γ01 − γ10).

Note that
∑

j L
i
jq

j = −
∑

j L
i
jp

j and that
∑

i

∑

j L
i
jx

j = 0 for any xj.

Let us denote the vector Lp = −Lq by l , i.e., li =
∑

j L
i
jp

j. We then have:

(2.3)
dpi

dt
= γ̂ di (pi)2 − (αi + βi + γ̂ di) pi + βi − γ̂ pi (Lp)i − γ10(Lp)

i

The equations decouple on different connected components of the network. The relation

to the bigger system on the “hypercube” I2
N

is given by the embedding Φ : IN →

I2
N

p = (pi) 7→ p = Φ(p) defined as:

pσ = p(σ) =
∏

i

pi(σi)

where for (σi) ∈ {0, 1}N which is a sequence of 0’s and 1’s (corners of IN ), we define
pi(0) = pi and pi(1) = 1− pi = qi. Obviously,

∑

σ p(σ) =
∏

i(p
i + qi) = 1.

The process on I2
N

is now determined by its “restriction” to an N -dimensional “qua-
dratic variety”. Note also that the relative entropy (Kullback-Leibler divergence) on the
hypercube, restricted to this subvariety is just the sum of the relative entropies at each
node.
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(2.4) Ep̄(p) = −
∑

σ

p̄σ log
pi
σ

p̄σ
=

∑

i

Ep̄i(p
i)

so the embedding Φ preserves relative entropies.

3. The existence and stability of the steady state

We will prove existence, uniqueness and stability of the steady state of the differential
equation

dpi

dt
= F (p)i

on the product space IN , where F is the vector field:

F (p)i = γ̂ di (pi)2 − (αi + βi + γ̂ di) pi + βi − γ̂ pi(Lp)i − γ10(Lp)
i(3.5)

We now check F on the boundary of the cube IN , consisting of 2N faces where one of
the pi’s is equal to 0 or 1.

When pi = 0, then (Lp)i ≤ 0 and hence F (p)i = +βi − γ10 (Lp)
i > 0.

When pi = 1, then (Lp)i ≥ 0 and hence F (p)i = −αi − γ01 (Lp)
i < 0.

So F points inwards and this proves that there exists at least one zero of the vector field
(or steady state) in the interior (0, 1)N .

We prove now that there is a unique globally stable steady state by showing that the
entropy function with respect to any steady state is strictly decreasing along the flow
until it reaches that steady state. To that purpose, we first need to establish a little fact
about the Laplacian acting on the unit cube:

Lemma 3.1. If xi ∈ (0, 1) and yi ∈ (0, 1) for all i = 1, . . . , N , then

∑

i





yi

xi

∑

j

Li
jx

j +
xi

yi

∑

j

Li
jy

j



 ≤ 0

and equality holds iff xi = yi for all i.

Proof: Using the definition of the Laplacian:

∑

i,j

(
yi

xi
Li
jx

j +
xi

yi
Li
jy

j) =
∑

i∼j

wij(
yi

xi
−

yj

xj
)(xi − xj) + wij(

xi

yi
−

xj

yj
)(yi − yj)

where i ∼ j means that i and j are connected by an edge with weight wij = wji > 0.
Now

yi

xi
−

yj

xj
=

yi

xixj
(xj − xi) +

1

xj
(yi − yj)
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xi

yi
−

xj

yj
=

xi

yiyj
(yj − yi) +

1

yj
(xi − xj)

and hence

(
yi

xi
−

yj

xj
)(xi − xj) + (

xi

yi
−

xj

yj
)(yi − yj)

= −
yi

xixj
(xj − xi)2 + (

1

xj
+

1

yj
)(yi − yj)(xi − xj)−

xi

yiyj
(yj − yi)2

which is a negative definite quadratic form since

(
1

xj
+

1

yj
)2 ≥

4

xjyj

QED

Any steady state p̄i satisfies:

− αip̄i + βiq̄i − γ̂ di p̄i q̄i − γ01p̄
i l̄i − γ10q̄

i l̄i = 0(3.6)

for each i, where l̄i = Li
j p̄

j.

Let

Ep̄(p) = −
∑

i

(p̄i log pi + q̄i log qi) +
∑

i

(p̄i log p̄i + q̄i log q̄i)(3.7)

which is the sum of all the relative entropies to the steady state at each node.

dE

dt
=

∑

i

(
q̄i

qi
−

p̄i

pi
)
dpi

dt

=
∑

i

(pi − p̄i)

(

−
αi

qi
+

βi

pi
− γ̂ di − γ01

li

qi
− γ10

li

pi

)

=
∑

i

(pi − p̄i)

(

αi(
1

q̄i
−

1

qi
)− βi(

1

p̄i
−

1

pi
)− γ01(

li

qi
−

l̄i

q̄i
)− γ10(

li

pi
−

l̄i

p̄i
)

)

where li = Li
jp

j, l̄i = Li
j p̄

j and we used the steady state equation 3.6.
Now

γ01
∑

i

(pi − p̄i)(
li

qi
−

l̄i

q̄i
) =

∑

i

(q̄i − qi)(
li

qi
−

l̄i

q̄i
) = −

∑

i

(

q̄i

qi
li +

qi

q̄i
l̄i
)

γ10
∑

i

(pi − p̄i)(
li

pi
−

l̄i

p̄i
) =

∑

i

(pi − p̄i)(
li

pi
−

l̄i

p̄i
) =

∑

i

(

p̄i

pi
li +

pi

p̄i
l̄i
)

since
∑

i l
i =

∑

i l̄
i = 0

Using the fact that li =
∑

j L
i
jp

j = −
∑

j L
i
jq

j , l̄i =
∑

j L
i
j p̄

j = −
∑

j L
i
j q̄

j we can now
apply the basic Lemma above to the terms involving the Laplacian to get:
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dE

dt
≤

∑

i

(pi − p̄i)

(

−αi(
1

qi
−

1

q̄i
) + βi(

1

pi
−

1

p̄i
)

)

= −
∑

i

αi

q̄iqi
(q̄i − qi)2 −

∑

i

βi

p̄ipi
(pi − p̄i)2

≤ 0

with strictly inequality unless pi = p̄i, for all i.

This proves both uniqueness and global stability of the steady state and hence the
following theorem is now established.

Theorem 3.1. Let α, β ∈ R
N
+ , γ01, γ10 ≥ 0 and W be a symmetric N ×N matrix with

all entries non-negative and with zeros on the diagonal. Then the system of differential
equations:

dpi

dt
= −αipi + βiqi − γ01 p

i
∑

j

W i
j q

j + γ10 q
i
∑

j

W i
jp

j i = 1, . . . , N

where qi = 1− pi, leaves the N -dimensional unit cube [0, 1]N invariant and possesses a
unique globally stable steady state (fixed point) in the interior of IN .

4. Remarks

4.1. The spatial distribution of the steady state. Let us denote the mean (average)
of a function x on the network by 〈x〉 = 1

N

∑

i x
i. Let r = x− 〈x〉. Then the variance of

x is given by V ar(x) = 〈r2〉. We then have by the basic properties of the Laplacian, the
basic inequality:

(4.8)
1

N
〈x,Lx〉 =

1

N

∑

i

xi Li
jx

j =
1

N

∑

i

ri Li
jr

j ≥ λ1V ar(x)

where λ1 is the first positive eigenvalue (which is the same as the second eigenvalue,
since we are assuming that the graph is connected) of the Laplacian.

Now since the steady state p̄ satisfies:

γ̂ di p̄iq̄i − (αi + βi) p̄i + βi = γ̂p̄i Li
j p̄

j + γ10L
i
j p̄

j

we get by taking averages, the following

(4.9) − γ̂
1

N

∑

i

dip̄iq̄i −
1

N

∑

i

(αi + βi)p̄i + 〈β〉 = γ̂
1

N

∑

i

r̄i Li
j r̄

j

where r̄ = p̄− 〈p̄〉, and hence (trivially):

Proposition 4.1. The variance of the equilibrium distribution satisfies the estimates:

V ar(p̄) ≤
1

λ1

〈β〉

γ̂
if γ̂ > 0

(

V ar(p̄) ≤ −
1

λ1

〈α〉

γ̂
if γ̂ < 0

)
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These are not very useful estimate unless λ1|γ̂| is very large. We will discuss the special
case γ̂ = 0 in the next section.

Let Ri be the quadratic function:

Ri(x) = γ̂ di x2 − (αi + βi + γ̂ di)x+ βi(4.10)

defined at each node with a (unique) zero ρi ∈ (0, 1). Since L(p̄)i ≥ 0 at the nodes where
p̄ attains a local maximum and L(p̄)i at the node where p̄ attains a local minimum (with
strict inequalities for strict (local) maxima and minima nodes we have the following
bounds on the absolute maximum and minimum values p̄max and p̄min of the steady
state p̄.

Rimax(p̄max) ≥ 0 and Rimin(p̄min) ≤ 0(4.11)

To simplify the discussion, let us assume that all the αi’s and the βi’s are the same. Then
ρi < ρj iff di > dj and that ρ will be close to a constant if the degrees are almost the
same. In other words, if the graph is “almost” homogeneous, L(ρ) would be small and
hence ρ will be close to the true steady state p̄. We can set up an iterative procedure
starting with the initial guess p(0) = ρ and iterating using the Laplacian: We define
recursively, (p(k + 1))i to be the solution ∈ (0, 1) of the equation:

Ri(p(k + 1)i) = γ̂ (p(k))i L(p(k))i + γ10(L(p(k))
i

This will converge rapidly to the steady state if the graph is “almost” homogeneous.

4.2. Some special cases.

4.2.1. The homogeneous case. If all nodes have the same matrix Q, the same degree d

and all the non-zero weights are equal to 1 (i.e. the network is a regular graph), then the
stationary probability (p̄, q̄) is the same for all nodes and since the Laplacian vanishes
on constant functions we get:

γ̂ d p̄2 − (α+ β + γ̂ d) p̄ + β = 0

This quadratic equation has exactly one zero in the interior of [0, 1], provided α > 0 and

β > 0. If γ̂ = 0 then p̄ = β
α+β

. It is also easy to check that p̄ < β
α+β

if γ̂ > 0 and

p̄ >
β

α+β
if γ̂ < 0, so the probability strictly changes if the Markov chains are linked by

a network. In fact, p̄ → 0 as γ̂ → +∞ and p̄ → 1 as γ̂ → −∞. Note also that even
if α = 0 there is a solution p̄ = β

γ̂
∈ (0, 1) provided 0 < β < γ̂ and if β = 0 there is

a solution p̄ = 1 + α
γ̂
∈ (0, 1) provided 0 < α < − γ̂. On the hypercube {0, 1}N , the

probabilities are then binomially distributed. The probability at a state with k |0〉’s and
l |1〉’s is p̄k q̄l.
The proof of the uniqueness and stability of the steady state in the homogeneous case
can be simplified using another useful little fact about the Laplacian which we would
like to record here (the proof is elementary).
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Lemma 4.1. If xi ∈ (0, 1) for all i = 1, . . . , N , then

∑

i,j

xi

1− xi
Li
jx

j ≥ 0

and equality holds iff xi = xj for all i, j.

4.2.2. SIS model. This is a simple epidemiological model (see [Ne]), corresponding to
α = 0 and γ10 = 0 in our notation. In the epidemiological literature, what we call β is
γ, what we call γ01 is β, the state |0〉 is called S(susceptible), |1〉 is I(infected). Let us
also assume that all the Markov chains are identical, so all the β’s are the same. S is
an absorbing steady state at each site in the absence of connections. If the network is
homogeneous (a regular graph) where every node has the same degree d, there is another

stable steady state solution (endemic equilibrium) p̄ = β
dγ

∈ (0, 1) provided 0 < β < dγ.

In the case of a general network, our proof shows that if there is an endemic equilibrium
in the interior (this is true in many cases), it will be unique and stable.

4.2.3. The case γ̂ = 0. If we assume that the two interaction strengths are the same
γ01 = γ10 = γ and all the α’s and β’s are equal (but we do not assume that the network
is homogeneous), then the equation for the equilibrium state simplifies to:

−(α+ β) p̄i + β = γ
∑

j

Li
j p̄

j

Averaging over i, we see that p̄ is a constant equal to β
α+β

, so the network has no effect

in this case and the “synchronization” is perfect.
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