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COHOMOGENEITY ONE SPECIAL LAGRANGIAN 3-FOLDS
IN THE DEFORMED AND THE RESOLVED CONIFOLDS

MARIANTY IONEL AND MAUNG MIN-OO

Abstract. In this paper, we describe the cohomogeneity one
special Lagrangian 3-folds in both the deformed and the resolved

conifolds. Our results give an explicit construction of the families

of SO(3) and T 2-invariant special Lagrangian submanifolds in
these conifolds and describe their asymptotic behavior.

1. Introduction

Beginning with the seminal paper by Harvey and Lawson [HL] on cali-
brated geometry, there has been extensive research in the mathematics litera-
ture on special Lagrangian and other calibrated submanifolds. Recently, a lot
of progress has been done in constructing special Lagrangian submanifolds
using various techniques. To give some examples, Joyce used the method of
ruled submanifolds and integrable systems in [J2], [J3] to construct explicit
examples of special Lagrangian submanifolds in C

n, Haskins exhibited exam-
ples of special Lagrangian cones in C

3 [Ha], etc. Although the main emphasis
has been on examples in C

n, there has also been progress in studying the
special Lagrangian submanifolds in nonflat Calabi–Yau manifolds. Schoen
and Wolfson used variational methods to construct special Lagrangians in
Calabi–Yau manifolds in [SW] and Goldstein constructed special Lagrangian
torus fibrations on the Borcea–Voisin 3-fold and found a mirror to this fibra-
tion in [G2]. Anciaux found new SO(n)-invariant examples in T ∗Sn [An],
equipped with the Ricci-flat Stenzel metric. See also [IKM] and [KM], where
a different method is used to construct calibrated submanifolds.

Special Lagrangian geometry in Calabi–Yau manifolds has become an im-
portant subject due to a phenomenon in physics known as mirror symme-
try. In 1996, Strominger, Yau, and Zaslow [SYZ] conjectured that a compact
Calabi–Yau 3-fold and its mirror should be foliated by special Lagrangian
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3-tori with possibly singular fibres and the fibrations are dual to each other.
This conjecture proposes a way to construct the mirror of a compact Calabi–
Yau manifold, by an appropriate compactification of the dual of the special
Lagrangian fibration. One of the earliest examples of a pair of mirror Calabi–
Yau metrics was found by Candelas and de la Ossa [CO] in 1990. The two
manifolds arise from perturbing a singular cone on S2 × S3 and are respec-
tively known as the deformed and the resolved conifold. In fact, there is a
1-parameter family of Calabi–Yau metrics that passes through the singular
metric and transforms the deformed conifold into the resolved conifold. The
deformed conifold is a (trivial) R

3-bundle over S3 and the resolved conifold
is a C

2-bundle over S2. In passing through the singularity the special La-
grangian, S3 in the deformed conifold is pinched to a point and reappears in
the resolved conifold as a holomorphic CP 1. This is known as the conifold
transition (see also [CO] and [STY]).

In this paper, we will find new examples of cohomogeneity one SL1 sub-
manifolds in both the deformed and the resolved conifolds. The main result
is that we exhibit an explicit foliation of both these Calabi–Yau manifolds by
special Lagrangian 3-folds, where the generic leaf is T 2 × R and the T 2 is an
orbit under the maximal torus of the isometry group SO(4). We show that
asymptotically these special Lagrangian submanifolds approach a special La-
grangian cone in the conifold. The conifold is topologically a cone on S2 × S3,
with the singular Calabi–Yau metric [CO]. We will also recover some of Anci-
aux’s results about SO(n)-invariant special Lagrangian submanifolds in T ∗Sn

using different techniques. Our method uses the moment map of the SO(4)
action and is similar to Harvey–Lawson method of finding cohomogenity one
special Lagrangian folds [HL] for the flat case. Also, in [G1] Goldstein proved
the general result that a Calabi–Yau manifold with a cohomogeneity one torus
action and with H1(M,R) = 0 is fibred by special Lagrangian tori. See also
[Ch] for examples in the canonical bundle of CPn−1 of the same flavor.

The Calabi–Yau metric on T ∗S3, the deformed conifold, was first explicitly
described by Candelas and de la Ossa [CO] in 1990, before Stenzel (indepen-
dently) discovered it for any T ∗Sn, and more generally, for any cotangent
bundles of rank one symmetric spaces. The case T ∗S2 is already very in-
teresting and the Ricci-flat hyper-Kähler metric on this manifold was first
discovered by Eguchi and Hanson [EH] in 1978. This 4-dimensional metric is
the basic model of a number of explicit special holonomy metrics discovered
by physicists.

We now give a brief description of the contents of this paper. In Section 2,
we review the basic facts about Calabi–Yau manifolds and special Lagrangian
submanifolds. In Section 3, we describe the Calabi–Yau structure on the de-
formed conifold and the Stenzel metric on T ∗Sn. We define the associated

1 SL stands for Special Lagrangian.
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moment map and discuss some of its basic properties in Section 4. In Sec-
tion 5, we prove that the only homogenous example of special Lagrangian
3-fold in T ∗S3 is the zero section and we compute our main examples of co-
homogeneity one special Lagrangian folds in T ∗S3, including a description
of the asymptotics. Section 6 is devoted to the study of cohomogeneity one
special Lagrangian 3-folds in the resolved conifold.

2. Special Lagrangian Geometry

Special Lagrangian submanifolds are a special class of minimal subman-
ifolds in Calabi–Yau spaces and were introduced by Harvey and Lawson in
their seminal paper [HL] using the notion of a calibration. We begin by briefly
reviewing the basic definitions and setting up notations. For details, see [HL]
and [J1].

Definition 2.1. A Calabi–Yau n-fold (M,J,ω,Ω) is a Kähler n-dimension-
al manifold (M,J,ω) with a Ricci-flat Kähler metric g and a nonzero holo-
morphic section Ω which trivializes the canonical bundle KM .

Since the metric g is Ricci-flat, Ω is a parallel tensor with respect to the
Levi–Civita connection ∇g . By rescaling Ω, we can take it to be the holomor-
phic (n,0)-form that satisfies:

(2.1)
ωn

n!
= (−1)

n(n−1)
2

(
i

2

)n

Ω ∧ Ω̄,

where ω is the Kähler form of g. The form Ω is called the holomorphic volume
form of the Calabi–Yau manifold M .

Let ϕ be a closed p-form on the manifold M . We say ϕ is a calibrating
form on M if

ϕ|V ≤ volV
for any oriented p-plane V ⊂ TxM, ∀x ∈ M . A submanifold N of M is called
calibrated by ϕ if ϕ|TxN = volTxN , ∀x ∈ N .

Remark. The constant factor in (2.1) is chosen so that ReΩ becomes a
calibration on M .

Definition 2.2. Let (M,J,ω,Ω) be a Calabi–Yau n-fold and L ⊂ M a
real oriented n-dimensional submanifold of M . Then L is called a special
Lagrangian submanifold of M if it is calibrated by ReΩ.

The following gives an alternative description of the special Lagrangian
submanifolds [HL].

Proposition 2.3. Let (M,J,ω,Ω) be an n-dimensional Calabi–Yau man-
ifold and L ⊂ M a real n-dimensional submanifold of M . Then L is called a
special Lagrangian submanifold if ω|L ≡ 0 and ImΩ|L ≡ 0.
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Remark. The condition ω|L ≡ 0 says that L is a Lagrangian submanifold.
Therefore, special Lagrangian submanifolds are Lagrangian with the extra
condition ImΩ|L ≡ 0.

The simplest example of a Calabi–Yau manifold is C
n, with coordinates

(z1, . . . , zn), endowed with the flat metric g, the Kähler form ω0 and the
holomorphic volume form Ω0, where:

g(z,w) = Re
n∑

i=1

ziw̄i,(2.2)

ω0 =
i

2
(dz1 ∧ dz̄1 + · · · + dzn ∧ dz̄n),(2.3)

Ω0 = dz1 ∧ · · · ∧ dzn,(2.4)

R
n is a trivial example of a special Lagrangian submanifold in C

n.

One important property of the special Lagrangian submanifolds is that
they are absolutely area minimizing in their homology class, so they are in
particular minimal submanifolds [HL]. Also, the graph of a function F : R

n →
R

n is special Lagrangian in R2n if and only if F = ∇f , for some function
f : R

n → R that satisfies the differential equation:

ImdetC(I + iHessf) = 0 on C
n.

This is a nonlinear elliptic P.D.E. and it is difficult to solve in general. One
idea, initiated by Harvey and Lawson, is to look for solutions invariant under
certain group actions of C

n. In [HL], Harvey and Lawson produced many ex-
amples of symmetric special Lagrangian submanifolds in C

n. More precisely,
they described the SO(n) and Tn-invariant special Lagrangian in Cn, where
Tn is the maximal torus of SU (n).

3. The deformed conifold

In 1995, Stenzel [St] showed that the cotangent bundle of the sphere can
be endowed with a Ricci-flat metric. As mentioned in the Introduction, the
lower dimensional cases were discovered in the physics literature. The case
n = 2 is the Eguchi–Hanson metric [EH] and the case n = 3 (the deformed
conifold) is due to Candelas and de la Ossa [CO].

Following Szöke [Sz], we will describe the cotangent bundle of the sphere as
a complex affine quadric and define the Kähler potential of the Stenzel metric
as in [St].

3.1. The Stenzel metric on T ∗Sn. Let T ∗Sn = {(x, ξ) ∈ R
n+1 × R

n+1,
|x| = 1, x · ξ = 0} be the cotangent bundle of the n-sphere (which we have
identified with the tangent bundle). The group SO(n + 1,R) acts with coho-
mogeneity one on T ∗Sn, the generic orbit being SO(n+1)/SO(n − 1) (where
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|ξ| is constant). According to Szöke [Sz], one can identify T ∗Sn with the affine
quadric

Qn =

{
z = (z0, z1, . . . , zn) ∈ C

n+1
∣∣∣ n∑

i=0

z2
i = 1

}

using the diffeomorphism h : T ∗Sn → Qn given by:

(3.1) (x, ξ) → z = x cosh(|ξ|) + i
sinh(|ξ|)

|ξ| ξ.

This diffeomorphism is equivariant with respect to the action of SO(n + 1,R)
on T ∗Sn and the natural action of SO(n + 1,C) on Qn. The complex struc-
ture on the cotangent bundle of the n-sphere is obtained by pulling back the
complex structure of the affine quadric under the map h. On the complex
quadric, there exists a Ricci-flat metric whose corresponding symplectic form
is the Stenzel form given by:

ωSt = i ∂∂̄u(r2) = i
n∑

j=0

n∑
k=0

∂2

∂zj ∂z̄k
u(r2)dzj ∧ dz̄k,

where r2 = |z|2 =
∑n

j=0 zj z̄j = cosh(2|ξ|) and u(r2) is a smooth real function
satisfying the following differential equation:

(3.2)
d

dτ
(u′(τ))n = cn(sinh τ)n−1,

where τ = cosh−1(r2) and c is a positive constant (see [St]). In dimension
n = 2, there is an explicit formula for the potential function: u(r2) =

√
1 + r2.

In dimension n = 3, the derivative of the potential function is given by the
relation:

(3.3) u′(τ)3 =
3c

2

(
sinh(2τ)

2
− τ

)
,

which using the initial condition u′(0) = 0 integrates to:

(3.4) u(r2) =
∫ cosh−1(r2)

0

[
3c

2

(
sinh(2σ) − σ

2

)] 1
3

dσ.

The form ωSt = i ∂∂̄u is exact on T ∗Sn and ωSt = dαSt, where αSt = − Im(∂̄u).
αSt is related to the Liouville form α0(v) = 1

2 〈v, Jz〉 on C
n+1 by αSt =

u′(|z|2)α0. Therefore, it follows that the 1-form αSt has the expression:

(3.5) αSt(v) =
1
2
u′(|z|2)ω0(z, v) =

1
2
u′(|z|2)〈v, Jz〉, v ∈ TzQ,z ∈ Q,

where 〈·, · 〉 and ω0 are respectively, the flat Euclidean metric and the Kähler
form of C

n+1. It is well known that on the complex space C
n+1, ω0(v,w) =

〈Jv,w〉, where J is the complex structure on C
n+1.
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Differentiating expression (3.5), we calculate:

ωSt(v,w) = dαSt(v,w)
= v(αSt(w)) − w(αSt(v)) − αSt([v,w])

= v

(
1
2
u′(|z|2)〈w,Jz〉

)
− w

(
1
2
u′(|z|2)〈v, Jz〉

)
− αSt([v,w])

=
1
2

{u′ ′(|z|2)v(|z|2)〈w,Jz〉 + u′(|z|2)v(〈w,Jz〉)

− u′ ′(|z|2)w(|z|2)〈v, Jz〉 − u′(|z|2)w(〈v, Jz〉)
− u′(|z|2)〈[v,w], Jz〉}

= u′(|z|2)ω0(v,w) + u′ ′(|z|2)
(

〈v, z〉ω0(z,w) − 〈w,z〉ω0(z, v)
)
.

In the above calculation, we used that v(|z|2) = 2〈v, z〉, ∇vw − ∇wv = [v,w]
and the fact that 〈v, Jw〉 = −〈w,Jv〉.

Therefore, the Kähler form of the Stenzel metric at a point z on the quadric
Q is given by:

ωSt(v,w) = u′(|z|2)ω0(v,w)(3.6)
+ u′ ′(|z|2)

(
〈w,z〉ω0(v, z) − 〈v, z〉ω0(w,z)

)
,

v,w ∈ TzQ.

Formulas (3.5) and (3.6) will prove to be useful when we compute the moment
maps for group actions on the quadric.

On the quadric Q define the holomorphic (n,0)-form ΩSt by the relation:

ΩSt(v1, v2, . . . , vn) = Ω0(z, v1, . . . , vn), v1, . . . , vn ∈ TzQ,z ∈ Q,(3.7)

where Ω0 = dz0 ∧ dz1 ∧ · · · ∧ dzn is the holomorphic volume form of C
n+1.

The quadric Qn becomes a Calabi–Yau manifold since equation (2.1) holds
for ωSt and the corresponding holomorphic n-form ΩSt, up to a multiplicative
constant (see also [An]).

3.2. The conifold in Dimension 3. Let Q0 be the quadric in C
4 defined

by the equation:
3∑

i=0

z2
i = 0.

This quadric, called the conifold, is singular at the origin and represents a
cone on T1(S3) ∼= S2 × S3. The complex structure of the conifold is given by
the embedding h0 : T1(S3) = {(x, ξ) ∈ R

4 × R
4| |x| = |ξ| = 1, x · ξ = 0} → Q0,

h0(x, ξ) = x + iξ = z. Deforming the conifold equation to
∑3

i=0 z2
i = ε2, with

ε a positive constant, yields the complex quadric Qε in Dimension 3, where
ε is the radius of the zero section S3. This is equivalent to replacing the tip
of the conifold by an S3 (see [CO]) and as ε → 0, this sphere collapses into
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the singular point of Q0. In the physical literature, the complex quadric Qε

is also known as a deformed conifold.
Candelas and de la Ossa [CO] showed that the conifold Q0 admits a Ricci-

flat metric gcone with Kähler potential ucone(r2) = 3
2r

4
3 . The holomorphic

(n,0)-form Ωcone defined by:

(3.8)
1
2
d(z2

0 + z2
1 + · · · + z2

3) ∧ Ωcone = dz0 ∧ dz1 ∧ · · · ∧ dz3

makes the conifold into a singular Calabi–Yau manifold.
We note that the above relation can be used to compute Ωcone as:

(3.9) Ωcone(v1, v2, v3) =
1

|z|2 (dz0 ∧ dz1 ∧ dz2 ∧ dz3)(z̄, v1, v2, v3),

where v1, v2, v3 ∈ TzQ0, z ∈ Q0 and z̄ = z̄0
∂

∂z0
+ z̄1

∂
∂z1

+ z̄2
∂

∂z2
+ z̄3

∂
∂z3

.

4. Moment maps and special Lagrangians with symmetry

The group SO(n + 1,R) acts with cohomogeneity one on the cotangent
bundle of the sphere

(4.1) T ∗Sn = {(x, ξ) ∈ R
n+1 × R

n+1, |x| = 1, x · ξ = 0}.

The action is transitive on the sets |ξ| = ρ = constant and is given by:

(4.2) g.(x, ξ) = (gx, gξ), g ∈ SO(n + 1), (x, ξ) ∈ T ∗Sn.

In what follows, we use similar techniques as in [HL], [J1], [G1] to find explicit
examples of G-invariant special Lagrangian 3-folds in T ∗S3, where G is an
appropriate subgroup of the isometry group SO(4).

Let Q ∼= T ∗Sn be endowed with the Calabi–Yau structure described in
Section 3.1. As we have seen, the group of automorphisms of T ∗Sn preserving
the Calabi–Yau structure is SO(n + 1,R) ⊂ SO(n + 1,C). Let G be a Lie
subgroup of SO(n+1,R), with Lie algebra g. Let A ∈ g ⊂ o(n+1). Then the
induced vector field on Q is given by: z �→ XA(z) = Az with flow z �→ etAz
for z ∈ Q. Using well-known techniques (see [MS]), we compute the moment
map μ : T ∗Sn → g∗ of the G-action.

Proposition 4.1. Let G ⊂ SO(n + 1) be a connected Lie group. The mo-
ment map of the G-action on the complex quadric Q is given by:

(4.3) μA : Qn → R, μA(z) = αSt(Az) =
1
2
u′(|z|2)〈Az,Jz〉, ∀A ∈ g,

where 〈·, · 〉 is the Euclidean metric on C
n+1 and the function u satisfies equa-

tion (3.2).

Proof. The forms ωSt and αSt are invariant under the flow of XA, that is
LXA

ωSt = LXA
αSt = 0, for any A ∈ g ⊂ o(n + 1).
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From Cartan’s formula, LXA
αSt = d(XA�αSt)+XA�dαSt and using dαSt =

ωSt, we see that
−XA�ωSt = d(αSt(XA)).

This shows that the action of G on T ∗Sn is Hamiltonian, with moment map
μ(z) given by A �→ αSt(Az) which can be rewritten as:

〈μ(z),A〉 = μA(z) = αSt(XA(z)),

where z ∈ Q ⊂ C
n+1, A ∈ g ⊂ o(n + 1) and 〈·, · 〉 is the pairing between g and

g∗. Using formula (3.5) for αSt, the conclusion follows. �
We define the center Z(g) of g to be the subspace of g fixed by the coadjoint

action of G. Since the moment map is equivariant, a level set of the moment
map μ−1(c) for c ∈ g∗ is G-invariant if and only if c ∈ Z(g∗). In order to find
examples of SL submanifolds in Q, we will use the following special case of a
more general result due to Goldstein [G1] and Gross [Gr].

Proposition 4.2. Let G ⊂ SO(n + 1) be a connected Lie subgroup with
Lie algebra g and moment map μ : T ∗Sn → g∗ and O an orbit of G in T ∗Sn.
Then the orbit is isotropic, i.e., ωSt| O ≡ 0 if and only if O ⊆ μ−1(c) for some
c ∈ Z(g∗).

Remark. The result ensures that all the isotropic G-orbits are contained
in the level sets of the moment map. A simple calculation shows that a 3-
dimensional G-invariant extension L3 of an isotropic orbit is a Lagrangian
submanifold if and only if L lies in the level set of the moment map. Since SL
submanifolds are in particular Lagrangian, we have the following corollary.

Corollary 4.3. If L is a connected special Lagrangian submanifold in
T ∗Sn with symmetry group G ⊆ SO(n + 1), then L ⊆ μ−1(c) for some c ∈
Z(g∗), where μ : T ∗Sn → g∗ is the moment map of the action of G.

5. Special Lagrangian submanifolds of T ∗S3

5.1. Homogenous special Lagrangian 3-folds. We will start by looking
at homogenous SL 3-folds, i.e., those invariant under subgroups of SO(4) that
act on T ∗S3 with at least one orbit of Dimension 3. Let U be the group of
unit quaternions and Φ the 2 : 1 homomorphism Φ : U × U → SO(4) given
by Φ(u1, u2)(x) = u1xū2. It is easy to see that so(4) ∼= so(3)1 ⊕ so(3)2, where
so(3)1 and so(3)2 are two different copies of so(3) whose intersection is the
zero vector. By looking at the subgroups of SO(4) of Dimension ≥ 3 (see also
[Io]), one can see that the only connected subgroups of SO(4) that act on Q
with generic orbits of Dimension 3 are:
1. The full group SO(4). The generic orbit of the action is an S2 × S3, but

the zero section is an orbit of Dimension 3.
2. The two nonconjugate SU (2) subgroups in SO(4), with Lie algebras so(3)1

and so(3)2, respectively.
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3. The subgroup U(2), with Lie algebra so(3)1 ⊕ so(2)1 (or so(2)1 ⊕ so(3)2),
whose infinitesimal generators are given by:

(5.1)
{(

i 0
0 0

)
,

(
−i 0
0 i

)
,

(
0 −1
1 0

)
,

(
0 i
i 0

)}
.

This group acts with generic orbit of Dimension 4.
4. The subgroup SO(3) acting trivially on (1,0,0,0) with generic orbit of

Dimension 3.

Proposition 5.1. Every homogeneous special Lagrangian 3-fold in T ∗S3

is conjugate under the action of SO(4) to the zero section S3 ⊂ T ∗S3.

Proof. Let L be a homogeneous special Lagrangian submanifold and G ⊂
SO(4) its symmetry group. Then G is one of the subgroups of SO(4) described
above. We will sketch the proof for G = SO(4). Similar arguments work for
the rest of the subgroups.

From Equation (4.3), the moment map of the SO(4)-action is given by
μ : Q → so(4)∗ with: μ(z0, z1, z2, z3) = u′(|z|2)(Im(z0z̄1), Im(z1z̄2), Im(z2z̄3),
Im(z3z̄0), Im(z1z̄3), Im(z2z̄0)).

Since Z(so(4)∗) = {0}, it follows from Corollary 4.3 that any SO(4)-invari-
ant special Lagrangian 3-fold in Q3 lies in the level set μ−1(0). Applying
an appropriate rotation by an element of SO(4), one can assume that x =
(x0, x1, x2, x3) = (cot t, sin t,0,0), t ∈ [0, π). Now, since the special Lagrangian
has to be in the zero level set of the moment map above, we have

Im(z0z̄1) = Im(z1z̄2) = Im(z2z̄3) = Im(z3z̄0) = Im(z1z̄3) = Im(z2z̄0).

Using the diffeomorphism (3.1) between the complex quadric Q3 and T ∗S3,
we see that ξ has to be of the form ξ = ρ(− sin t, cos t,0,0), where ρ = |ξ| and
it has to also satisfy Im(z0z̄1) = 0, i.e., ρ = 0. Therefore, L is the zero section
of the cotangent bundle. �

The next most symmetric case is when the symmetry group of the special
Lagrangian submanifold acts with cohomogeneity one. In this case, the dif-
ferential equation of a special Lagrangian simplifies and we can find examples
by solving an O.D.E. The idea is to find subgroups G of SO(4) which has
orbits of Dimension 2 in T ∗S3. In order to have orbits of Dimension 2, one
must have that dim G ≥ 2. Then, the strategy is to choose an isotropic 2-di-
mensional orbit of the group action and then to find an extra direction in the
level set of the moment map such that the resulting submanifold is special
Lagrangian.

The subgroups of SO(4) that act on Q with orbits of Dimension 2 are the
maximal torus T 2 and the subgroup SO(3) which leaves a direction invariant.
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5.2. T 2-invariant special Lagrangian in T ∗S3. Let G be the maximal
torus T 2 of SO(4), described as:⎧⎪⎪⎨

⎪⎪⎩

⎛
⎜⎜⎝

cosθ1 − sin θ1 0 0
sinθ1 cosθ1 0 0

0 0 cosθ2 − sin θ2

0 0 sinθ2 cosθ2

⎞
⎟⎟⎠ , θ1, θ2 ∈ [0,2π)

⎫⎪⎪⎬
⎪⎪⎭ .

The following result describes the family of T 2-invariant special Lagrangian
3-folds of T ∗S3.

Theorem 5.2. The special Lagrangian submanifolds in T ∗S3 = Q = {z ∈
C

4|
∑3

i=0 z2
i = 1}, which are invariant under the action of the maximal torus

T 2 of SO(4) are given by:

u′(|z|2) Im(z0z̄1) = c1,

u′(|z|2) Im(z2z̄3) = c2,(5.2)
Im(z2

0 + z2
1) = c3,

where u is given by (3.4) and c1, c2, and c3 are any real constants.

Proof. Using the two infinitesimal generators of the T 2-action:

B1 =

⎛
⎜⎜⎝

0 −1 0 0
1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , B2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ,

and the expression (4.3), the moment map for the T 2-action on Q3 is given
by:

μ : Q3 → (t2)∗, μ(z0, z1, z2, z3) = u′(|z|2)(Im(z0z̄1), Im(z2z̄3)).

Since (t2)∗ = R
2, it follows from Corollary 4.3 that any T 2-invariant special

Lagrangian 3-fold L in Q3 lies in a level set μ−1(c), where c = (c1, c2) ∈ R
2. We

choose an orbit O lying in the level set of the moment map, hence isotropic.
Any extension that lies in the level set of the moment map is Lagrangian. This
can also be checked using directly formula (3.6). We want to find the direction
in which the extension will be special Lagrangian. This is done by imposing
the special Lagrangian condition ImΩSt|L = 0 at a given point z. We compute
ΩSt on the three tangent vectors Y1 = B1z,Y2 = B2z, Y3 = ż and get:

ΩSt(Y1, Y2, Y3) = (dz0 ∧ dz1 ∧ dz2 ∧ dz3)(z,Y1, Y2, Y3)

=

∣∣∣∣∣∣∣∣
z0 −z1 0 ż0

z1 z0 0 ż1

z2 0 −z3 ż2

z3 0 z2 ż3

∣∣∣∣∣∣∣∣
= (z2

0 + z2
1)(z2ż2 + z3ż3) − (z2

2 + z2
3)(z0ż0 + z1ż1).
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Now using z2
0 + z2

1 + z2
2 + z2

3 = 1, Im(z2
0 + z2

1) = − Im(z2
2 + z2

3) and Im(z2ż2 +
z3ż3) = − Im(z0ż0 + z1ż1), we finally obtain ImΩSt(Y1, Y2, Y3) = Im(z0ż0 +
z1ż1), hence the conclusion follows. �

Remark. Since equations (5.2) are linearly independent, the above family
foliates T ∗S3. The generic orbit is two disconnected copies of T 2 × R and the
zero section is obtained by setting c1 = c2 = c3 = 0.

Asymptotic behavior. We now study the asymptotic behavior of this family of
SL 3-folds, i.e., the limiting behavior of the family as ρ = |ξ| → ∞. For this,
we will rewrite equations (5.2) in terms of x and ξ.

Note that one can also view the T 2-invariant SL 3-folds constructed above
as being obtained by rotating a curve in T ∗S3 by the torus action. To see this,
let γ(t) = (x(t), ξ(t)) ∈ T ∗S3 be a curve in the complex quadric. By applying
an appropriate rotation with an element of T 2, we can assume that

x(t) =

⎛
⎜⎜⎝

cos t
0

sin t
0

⎞
⎟⎟⎠ , t ∈ [0, π)

(since |x| = 1). Denote the length of the vector

ξ =

⎛
⎜⎜⎝

ξ0

ξ1

ξ2

ξ3

⎞
⎟⎟⎠ by ρ = |ξ| ≥ 0.

Let ρ0 = ξ2
0 + ξ2

2 and ρ1 = ξ2
1 + ξ2

3 . Since ρ2
0 + ρ2

1 = ρ2, we let:

ρ0 = ρ cosϕ,

ρ1 = ρ sinϕ.

Since x · ξ = 0, we can parameterize the vector as

ξ(t) =

⎛
⎜⎜⎝

−ρ0 sin t
ρ1 cosψ
ρ0 cos t
ρ1 sinψ

⎞
⎟⎟⎠= ρ

⎛
⎜⎜⎝

− cosϕ sin t
sinϕ cosψ
cosϕ cos t
sinϕ sinψ

⎞
⎟⎟⎠ .

Using the diffeomorphism h given by relation (3.1), one gets that any point
on the quadric is conjugate under the T 2-action to a point of the form:

z =

⎛
⎜⎜⎝

cos t coshρ − i sinhρ cosϕ sin t
i sinhρ sinϕ cosψ

sin t coshρ + i sinhρ cosϕ cos t
i sinhρ sinϕ sinψ

⎞
⎟⎟⎠ ∈ Q.
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In fact the whole quadric Q6 can be parametrized as:⎛
⎜⎜⎝

cosθ1 cos t coshρ − i sinhρ(cosθ1 cosϕ sin t + sin θ1 sinϕ cosψ)
sinθ1 cos t coshρ + i sinhρ(cosθ1 sinϕ cosψ − sinθ1 cosϕ sin t)
cosθ2 sin t coshρ + i sinhρ(cosθ2 cosϕ cos t − sinθ2 sinϕ sinψ)
sin θ2 sin t coshρ + i sinhρ(sinθ2 cosϕ cos t + cosθ2 sinϕ sinψ)

⎞
⎟⎟⎠ ,

where t, θ1, θ2, ϕ,ψ ∈ S1 and ρ ≥ 0.
Equations (5.2) become:

u′(cosh(2ρ)) sinh(2ρ) cos t sinϕ cosψ = c1,

u′(cosh(2ρ)) sinh(2ρ) sin t sinϕ sinψ = c2,(5.3)
sinh(2ρ) sin(2t) cosϕ = c3.

These equations describe a curve in the parameter space (ρ, t,ϕ,ψ) which
under the T 2-action on Q gives the family of special Lagrangian 3-folds Lc.

As we have seen previously, T ∗S3 approaches the conifold Q0 asymptoti-
cally as |ξ| → ∞.

Notice that as ρ → ∞, u′(cosh(2ρ)) → ∞ from relation (3.3), so in the limit,
equations (5.3) become one of the following cases:

(a) sinϕ = 0, sin t = 0,

(b) sinϕ = 0, cos t = 0,
(5.4)

(c) cos t = 0, sinψ = 0,

(d) cosψ = 0, sin t = 0.

We will study each case separately.
(a) sinϕ = 0, sin t = 0. z = (coshρ,0, i sinhρ,0) and its unit vector is:

z

|z| =
1√

cosh(2ρ)
(coshρ,0, i sinhρ,0) → 1√

2
(1,0, i,0) ∈ Q0 as ρ → ∞.

Applying the T 2-action in the limit, one gets a surface Σ1 diffeomorphic to
T 2:

Σ1 =
{

1√
2
(cosθ1, sinθ1, i cosθ2, i sinθ2), θ1, θ2 ∈ [0,2π)

}
⊂ Q0.

We will show that the cone on Σ1,C(Σ1) = {sz|z ∈ Σ1, s ∈ R}, is special La-
grangian in the conifold Q0, endowed with the Ricci-flat metric found by
Candelas and de la Ossa [CO].

We first show that the cone C(Σ1) is Lagrangian, i.e., ωcone |C(Σ1) = 0. The
moment map of the T 2-action on the cone is:

μ0 : Q0 → R
2, μ0(z) = u′

cone(|z|2)(Im(z0z̄1), Im(z2z̄3))

where ucone(r2) is the potential function for the conifold given in Section 3.2.
Since the cone on Σ1 is seen to lie in μ−1

0 (0,0), it follows from Proposition 4.2
that it is Lagrangian.
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Next, we show that the cone is special Lagrangian, i.e., ImΩcone |C(Σ1) ≡ 0.
For this, we compute Ωcone on three tangent vectors Y1, Y2, Y3 to the cone
C(Σ1). One of them is the position vector and the other two vectors are the
derivatives with respect to the parameters θ1 and θ2. The unit vector normal
to the cone is given by

w = z̄ =
1√
2
(cosθ1, sinθ1, −i cosθ2, −i sinθ2)

and using formula (3.9), we get:

ImΩcone(Y1, Y2, Y3) = Im(dz0 ∧ dz1 ∧ dz2 ∧ dz3)(z̄, Y1, Y2, Y3)

= Im
1
s2

∣∣∣∣∣∣∣∣∣∣

cosθ1√
2

cosθ1√
2

−s sin θ1√
2

0
sin θ1√

2
sin θ1√

2
s cosθ1√

2
0

− i cosθ2√
2

i cosθ2√
2

0 −s i sin θ2√
2

− i sin θ2√
2

i sin θ2√
2

0 s i cosθ2√
2

∣∣∣∣∣∣∣∣∣∣
= 0.

Therefore, the cone on Σ1 is special Lagrangian.
(b) sinϕ = 0, cos t = 0. In this case, in the limit as ρ → ∞, the unit vector

z
|z| goes to: 1√

2
(−i,0,1,0) ∈ Q0. Applying the T 2-action in the limit, one gets

a surface Σ2 in Q0, diffeomorphic to T 2:

Σ2 =
{

1√
2
(−i cosθ1, −i sinθ1, cosθ2, sinθ2), θ1, θ2 ∈ [0,2π)

}
⊂ Q0.

The unit vector z
|z| in this case is the unit vector from case (a) rotated by J

and so the limiting cone C(Σ2) is the special Lagrangian cone in (a) rotated
by J .

(c) cos t = 0, sinψ = 0. Similar computations as above yield the special
Lagrangian cone in case (b).

(d) cosψ = 0, sin t = 0. This case yields the special Lagrangian cone in (a).
Thus, we have showed the following result.

Proposition 5.3. For generic c ∈ R
3, the T 2-invariant special Lagrangian

Lc in the complex quadric has two components, each of them asymptotic to
a special Lagrangian submanifold with four ends, each end being a cone on a
flat torus in the conifold, diffeomorphic to T 2 × (0, ∞).

Remark 1. When ρ = 0, equations (5.3) are identically satisfied and the
solution is the zero section S3 of the cotangent bundle, which was known to
be special Lagrangian.

Remark 2. If we set c1 = c2 = 0 in equation (5.3), we obtain the equation

sin(2t) sinh(2ρ) = c

in the (t, ρ)-plane, t ∈ [0, π). The phase portrait in this special case is shown
in Figure 1. Note that as t → π

2 , |ρ| → ∞. The SL are obtained by rotating



852 M. IONEL AND M. MIN-OO

Figure 1. Phase portrait for the equation sin(2t) sinh(2s) = c.

these curves by the T 2-action.

5.3. The SO(3)-case. Let G be the subgroup SO(3,R) of SO(4,C), where
SO(3,R) sits in SO(4,R) as{(

1 0
0 A

)
,A ∈ SO(3)

}
.

Theorem 5.4. Let T ∗S3 = {(x, ξ) ∈ R
4 × R

4, |x| = 1, x · ξ = 0}. Then:

Lc =

⎧⎪⎪⎨
⎪⎪⎩(gx(t), gξ(t))

∣∣∣∣(x(t), ξ(t)) ∈ T ∗S3, g ∈ SO(3),

x(t) =

⎛
⎜⎜⎝

cos t
sin t
0
0

⎞
⎟⎟⎠ ,2|ξ(t)| − cos(2t) sinh(2|ξ(t)|) = c

⎫⎪⎪⎬
⎪⎪⎭

are the only SO(3)-invariant special Lagrangian 3-folds of T ∗S3.

Proof. Let z = (z0, z1, z2, z3) ∈ Q3, i.e., z2
0 + z2

1 + z2
2 + z2

3 = 1. Using ex-
pression (4.3), the moment map of the SO(3)-action on Q3 is computed to
be:

μ : Q3 → so(3)∗, μ(z0, z1, z2, z3) = u′(|z|2)(Im(z1z̄2), Im(z2z̄3), Im(z3z̄1)).
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To see how we obtained it, let

A1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

A3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠

be the infinitesimal generators of the SO(3)-action. Equation (4.3) implies
that:

μA3(z) =
1
2
u′(|z|2)〈A3z, iz〉 =

1
2
u′(|z|2)

〈⎛
⎜⎜⎝

0
−z2

z1

0

⎞
⎟⎟⎠ ,

⎛
⎜⎜⎝

iz0

iz1

iz2

iz3

⎞
⎟⎟⎠
〉

=
1
2
u′(|z|2)(iz̄1z2 − iz1z̄2) = u′(|z|2) Im(z1z̄2).

We get the other two components of the moment map similarly.
Since Z(so(3)∗) = {0}, it follows from Corollary 4.3 that any SO(3)-invari-

ant special Lagrangian 3-fold in Q3 lies in the level set μ−1(0), so Im(z1z̄2) =
Im(z2z̄3) = Im(z3z̄1) = 0. By applying an appropriate rotation, we can assume
that x = (cot t, sin t,0,0), t ∈ [0,2π). Hence, the level set μ−1(0) is Dimension 4
and it is given by:

μ−1(0) = {(gx, gξ)|g ∈ SO(3), x(t) = (cos t, sin t,0,0),
ξ(t) = ρ(− sin t, cos t,0,0), t ∈ [0, π), ρ ≥ 0},

or equivalently, using the identification of T ∗S3 with Q,⎧⎪⎪⎨
⎪⎪⎩g.z(t, ρ) : g ∈ SO(3), z(t, ρ) =

⎛
⎜⎜⎝

cos(τ)
sin(τ)

0
0

⎞
⎟⎟⎠ , ρ ≥ 0, t ∈ [0,2π)

⎫⎪⎪⎬
⎪⎪⎭ ,

where τ = t + iρ lies in the [0, π) vertical strip of the complex plane.
We now look for curves γ(s) in the τ = (t, ρ) plane which after applying

the SO(3)-action give rise to special Lagrangians of the form L = g.γ(s). If

p = γ(s) =

⎛
⎜⎜⎝

cos(τ(s))
sin(τ(s))

0
0

⎞
⎟⎟⎠
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is a point in μ−1(0), then

A3p =

⎛
⎜⎜⎝

0
0

sin(τ)
0

⎞
⎟⎟⎠ , A2p =

⎛
⎜⎜⎝

0
0
0

− sin(τ)

⎞
⎟⎟⎠ and A1p = 0,

where A1,A2,A3 are the infinitesimal generators of so(3) as defined above.
The tangent plane at p to L is spanned by the vectors 〈X1 = A1p,X2 =

A2p,X = γ̇(s)〉 at p, where

γ̇(s) =

⎛
⎜⎜⎝

− sin(τ)τ̇
cos(τ)τ̇

0
0

⎞
⎟⎟⎠ .

L is invariant under the SO(3)-flow and ωSt|L = 0, since it lies in μ−1(0).
Therefore, L is Lagrangian. One can also verify this directly with formula
(3.6). Now, we will impose the condition that L is special Lagrangian, i.e.,
ImΩSt = 0 should hold.

Using equation (3.7), we compute ΩSt(X1,X2,X3) = (dz0 ∧ dz1 ∧ dz2 ∧
dz3)(γ(s),X1,X2, γ̇(s)):∣∣∣∣∣∣∣∣

cos(τ) 0 0 − sin(τ)τ̇
sin(τ) 0 0 cos(τ)τ̇

0 sin(τ) 0 0
0 0 − sin(τ) 0

∣∣∣∣∣∣∣∣
= − sin2(τ)τ̇ .

Integrating, the condition ImΩSt = 0 becomes:

Im
(
2τ − sin(2τ)

)
= c,

which is equivalent to

(5.5) 2ρ − cos(2t) sinh(2ρ) = c,

where c is any real constant. �

Remark 1. Notice that ρ = 0 which gives S3 ⊂ T ∗S3 is indeed a solution
to equation (5.5).

Remark 2. The result we obtained in the n = 3 case can be generalized to
obtain a family of SO(n)-invariant special Lagrangians in T ∗Sn. This family
was also obtained by Anciaux [An] using different methods.

The SO(3)-invariant special Lagrangian L can also be written intrinsically
as follows. Choose (z0, z1, z2, z3) coordinates on the complex quadric Q3.
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Figure 2. Phase portrait for the equation 2s − cos(2t) ×
sinh(2s) = c.

Then L is given by the equations:

u′(|z|2) Im(z1z̄2) = 0,

u′(|z|2) Im(z2z̄3) = 0,(5.6)

Im
(
arccos(z0) − z0

√
1 − z2

0

)
= c,

where c is a constant. This family does not foliate the deformed conifold.

Asymptotic behavior. In what follows, we will study the equation 2ρ −
cos(2t) sinh(2ρ) = c in the (t, ρ)-plane (see Figure 2) and describe the asymp-
totic behavior of the special Lagrangian 3-folds obtained in Theorem 5.4.

When ρ → ∞, equation (5.5) becomes cos2t = 0, so t = π
4 , 3π

4 , 5π
4 , 7π

4 .
We analyze only the case t = π

4 , the other three cases being similar.
(a) t = π

4 . The unit vector z
|z| is:

1√
2cosh(2ρ)

⎛
⎜⎜⎝

coshρ − i sinhρ
coshρ + i sinhρ

0
0

⎞
⎟⎟⎠→ 1

2

⎛
⎜⎜⎝

1 − i
1 + i

0
0

⎞
⎟⎟⎠ ∈ Q0 as ρ → ∞.

Applying the SO(3)-action in the limit, one gets a surface Σ, diffeomorphic
to S2 and described in coordinates as:

Σ =

⎧⎪⎪⎨
⎪⎪⎩

1
2

⎛
⎜⎜⎝

1 − i
(1 + i) cosϕ cosθ
(1 + i) cosϕ sinθ

(1 + i) sinϕ

⎞
⎟⎟⎠ , ϕ ∈

[
− π

2
,
π

2

]
, θ ∈ [0,2π)

⎫⎪⎪⎬
⎪⎪⎭⊂ Q0.
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The cone on Σ is special Lagrangian in the conifold Q0, endowed with the
Ricci-flat metric found by Candelas and de la Ossa [CO]. To see this, we
will first show that the cone C(Σ) is Lagrangian. The moment map of the
SO(3)-action on the cone is:

μ0 : Q0 → R
3, μ0(z) = u′

cone(|z|2)(Im(z1z̄2), Im(z2z̄3), Im(z3z̄1)),

where ucone(r2) is the potential function for the conifold given in Section 3.2.
Since the cone on Σ is seen to lie in μ−1

0 (0,0), it follows that it is Lagrangian.
Next, we show that the cone is SL, i.e., ImΩcone |C(Σ) ≡ 0. For this, we

compute Ωcone on three tangent vectors Y1, Y2, Y3 to the cone C(Σ). One of
them is the position vector and the other two vectors are A3z and A2z. The
unit vector normal to the cone is given by w = z̄ = 1

2 (1 + i,1 − i,0,0) and we
compute:

ImΩcone(Y1, Y2, Y3) = Im(Ω0)(z̄, Y1, Y2, Y3)

= Im
1
8

∣∣∣∣∣∣∣∣
1 − i 0 0 1 + i
1 + i 0 0 1 − i

0 1 + i 0 0
0 0 −1 − i 0

∣∣∣∣∣∣∣∣
= 0.

Hence, the cone on Σ is special Lagrangian.

The other cases can be dealt with similarly. The case t = 5π
4 yields the

cone for t = π
4 rotated by π (the opposite cone). The cases t = 3π

4 and 7π
4 give

a SL double cone on S2, which is the previous double cone rotated by π
2 .

The above analysis shows the following proposition.

Proposition 5.5. For generic c ∈ R, the SO(3)-invariant special Lagrang-
ian Lc in the complex quadric has two components, each of them asymptotic
to a special Lagrangian submanifold with four ends, each end being a cone on
S2 in the conifold, diffeomorphic to S2 × (0, ∞).

Remark. In the particular case of the Eguchi–Hanson metric (n = 2), the
subgroups SO(2) and T 1 of SO(3) coincide and equations (5.2) & (5.6) give
the same SO(2)-invariant SL 3-fold. In coordinates z = (z0, z1, z2) on Q2,
these special Lagrangians are given by the equations:

|z|√
|z|2 + 1

Im(z1z̄2) = c1,

Im(z0) = c2,

where c1, c2 are any constants.

5.4. The general SO(n)-case. One can generalize our method to higher
dimensions and recover the SO(n)-invariant family of special Lagrangians that
Anciaux obtained in [An]. Computing the imaginary part of the holomorphic
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n-form ΩSt to check the special Lagrangian condition yields

Im(sinn−1(τ)τ̇) = 0.

Now, let F (τ) be the function Im(
∫ τ

0
sinn−1(σ)dσ). Combining with the mo-

ment map conditions, the SO(n)-invariant special Lagrangians are given by
the following set of equations:

u′(|z|2) Im(z1z̄j) = 0, 2 ≤ j ≤ n,
(5.7)

Im(F (arccos(z0))) = c,

where and c constant and the function u satisfies (3.2) for the given dimension.

6. Special Lagrangian 3-folds in the resolved conifold

Following the original paper of Candelas–de la Ossa [CO], we will first give
a brief description of the resolved conifold and its Calabi–Yau structure.

Let Q0 be conifold defined by the equation
∑3

i=0 z2
i = 0. One can resolve

the singularity of the conifold. Making the linear change of variables:

(6.1)

⎛
⎜⎜⎝

X
Y
U
V

⎞
⎟⎟⎠=

1√
2

⎛
⎜⎜⎝

1 −i 0 0
1 i 0 0
0 0 −i 1
0 0 −i −1

⎞
⎟⎟⎠
⎛
⎜⎜⎝

z0

z1

z2

z3

⎞
⎟⎟⎠ ,

the conifold equation becomes:

(6.2) XY − UV = 0.

We note that the change of variables matrix is in U(4), so the Euclidean length
is still preserved:

(6.3) r2 =
3∑

i=0

|zi|2 = |X|2 + |Y |2 + |U |2 + |V |2.

The SO(4,C) action on the z variables is now conjugated to an action on the
new variables via g �→ g̃ = PgP −1. Let

(6.4) W =
(

X U
V Y

)
=

1√
2

(
z0 − iz1 z3 − iz2

−z3 − iz2 z0 + iz1

)
.

To resolve the conifold, one has to replace the equation (6.2) by the pair of
equations:

(6.5)
(

X U
V Y

)(
λ1

λ2

)
=
(

0
0

)
,
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where [λ1 : λ2] are homogeneous coordinates on CP 1 = S2. In other words,
the resolved conifold M is the complex 3-fold defined by:

{(X,Y,U,V, [λ1 : λ2]) ∈ C
4 × CP 1|(6.6)

XY − UV = 0,Xλ1 + Uλ2 = 0, V λ1 + Y λ2 = 0}.

Each point (X,Y,U,V ) ∈ Q0, except the origin, determines a unique point

[λ1 : λ2] = [−U : X] = [−Y : V ] ∈ CP 1

and the singularity at the origin is replaced by a copy of CP 1. Outside the
origin, the resolved conifold is topologically the same as the conifold.

We will also use inhomogeneous coordinates λ+ = λ2
λ1

in the coordinate
patch H+ where λ1 �= 0 and λ− = λ1

λ2
in the coordinate patch H−, where

λ2 �= 0. In H+, we can take (U,Y,λ+), and in H−, we can take (X,V,λ−) as
coordinates for the conifold. On the intersection H+ ∩ H−, we have:

(X,V,λ−) = (−λ+U, −λ+Y,λ−1
+ ).

In [CO], Candelas and de la Ossa showed that the resolved conifold is in fact
an O(−1) ⊕ O(−1) bundle over CP 1 � S2 with fibre C

2. The radius in the
fibre is given by

r2 = tr(W ∗W ) = (1 + |λ+|2)(|U |2 + |Y |2) = (1 + |λ− |2)(|X|2 + |V |2).
Asymptotically, as r → ∞, the resolved conifold approaches the singular coni-
fold Q0.

The Ricci-flat metric on M found in [CO] is:

(6.7) grc = F ′
a(r2) tr(dW ∗ dW ) + F ′ ′

a (r2)| tr(W ∗ dW )|2 + 4a2gS2

where Fa is a function of r2 satisfying an appropriate differential equation
and gS2 is the Fubini–Study metric on S2 with area π. In the patch H+, gS2

is given by:

gS2 =
|dλ+|2

(1 + |λ+|2)2 .

The resolution parameter a (a = 0 for the conifold) measures the size of the
bolt CP 1. The differential equation satisfied by the function Fa is given by
imposing the Ricci-flat condition and is given given by:

(6.8) F ′
a(r2) = r−2(−2a2 + 4a4N − 1

3 + N
1
3 ),

where N(r) = 1
2 (r4 − 16a6 +

√
r8 − 32a6r4).

For the conifold Q0 with a = 0, we have F ′
0 = r− 2

3 .
The Kähler form ωrc(v,w) = grc(Jv,w) on the resolved conifold can be

expressed as a sum of two terms ωrc = dαrc +4a2ωS2 , where the one-form αrc

is given by:

αrc = F ′
a(r2) Imtr(W ∗ dW )(6.9)

= F ′
a(r2) Im(X̄ dX + Ȳ dY + Ū dU + V̄ dV )
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and ωS2 is the standard Kähler form of area π on S2. It can be expressed as
ωS2 = dα± in the two patches H± on S2 where:

α± =
1
2
Im

λ±dλ±
1 + |λ± |2 on H±.

One can see that αrc is invariant under the action of SO(4,R) = SO(4). To
show that α± is also SO(4)-invariant, we now compute the action of SO(4)
on CP 1. The following three matrices acting on the z-coordinates generate
the so(4) as a Lie algebra:

B1 =

⎛
⎜⎜⎝

0 1 0 0
−1 0 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , B2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ ,

(6.10)

A3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠ .

Conjugating by the change of coordinate matrix P (6.1), we obtain the action
on the X,Y,U,V -coordinates:

B̃1 =

⎛
⎜⎜⎝

−i 0 0 0
0 i 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , B̃2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i

⎞
⎟⎟⎠ ,

(6.11)

Ã3 =
1
2

⎛
⎜⎜⎝

0 0 −1 −1
0 0 1 1
1 −1 0 0
1 −1 0 0

⎞
⎟⎟⎠ .

In H+, λ+ = − X
U = − V

Y , and so dλ+ = − dX
U + XdU

U2 . The action of B̃1 on
λ+ is given by evaluating dλ+ on the vector field corresponding to B̃1. We
obtain: B̃1.λ+ = −iλ+. Similarly, on H− we compute that B̃1.λ− = iλ−. The
action of B̃2 is the same as for B̃1 and the action of Ã3 is given by:

Ã3.λ+ =
1
2
(1 + λ2

+), Ã3.λ− = − 1
2
(1 + λ2

−).

A computation now shows that the form α± is invariant under the action
of these three generators and hence under the SO(4)-action. Therefore, the
Kähler form and the metric are SO(4)-invariant. The holomorphic volume
3-form on M has the form:

(6.12) Ωrc = dU ∧ dY ∧ dλ+ = dV ∧ dX ∧ dλ−
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in local coordinates and it is also invariant under the action of SO(4). We
will now describe the cohomogeneity one special Lagrangians in the resolved
conifold M .

6.1. T 2-invariant special Lagrangians. Under the coordinate transform
(6.1), the action of the maximal torus T 2 of SO(4) on the z-coordinates
corresponds to the diagonal matrix diag (e−iθ1 , eiθ1 , eiθ2 , e−iθ2) with respect to
the (X,Y,U,V )-coordinates. The T 2-action on the patch H+ with coordinates
(U,Y,λ) is given by:

g.(U,Y,λ+) =
(
eiθ2U,eiθ1Y, e−i(θ1+θ2)λ+

)
,

and on the patch H− with coordinates (X,V,μ) is given by:

g.(X,V,λ−) =
(
e−iθ1X,e−iθ2V, ei(θ1+θ2)λ−

)
.

The next result gives the T 2-invariant SL 3-folds of the resolved conifold.

Theorem 6.1. The special Lagrangian 3-folds in the resolved conifold M
described by equation (6.6), which are invariant under the action of the max-
imal torus T 2 of SO(4) are given by:

1
2
F ′

a(r2)(|X|2 − |Y |2) + 4a2 |λ2|2
|λ1|2 + |λ2|2 = c1,

1
2
F ′

a(r2)(|V |2 − |U |2) + 4a2 |λ2|2
|λ1|2 + |λ2|2 = c2,(6.13)

Im(XY ) = c3,

where F ′
a is given by (6.8) and c1, c2 and c3 are real constants.

Proof. Using the two infinitesimal generators:

B̃1 =

⎛
⎜⎜⎝

−i 0 0 0
0 i 0 0
0 0 0 0
0 0 0 0

⎞
⎟⎟⎠ , B̃2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i

⎞
⎟⎟⎠

of the T 2-action on the resolved conifold, the moment map is given by:

μ : M → (t2)∗ � R
2,

μ =
(

1
2
F ′

a(r2)(|X|2 − |Y |2) + 4a2μS2 ,
1
2
F ′

a(r2)(|V |2 − |U |2) + 4a2μS2

)
,

where μS2(λ1, λ2) = |λ2|2
|λ1|2+|λ2|2 is the moment map of the standard S1-action

on CP 1.
Since (t2)∗ = R

2 is Abelian, it follows from Proposition 4.2 that any T 2-
invariant special Lagrangian 3-fold L in M lies in a level set μ−1(c), where
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c = (c1, c2) ∈ R
2. The first two equations enforce this condition and ensures

that the submanifold is Lagrangian. Now, we impose the special Lagrangian
condition at a given point p = (U,Y,λ+). On H+, we compute Ωrc on the
three tangent vectors Y1 = B̃1p = (0, iY, −iλ+), Y2 = B̃2p = (iU,0, −iλ+), and
Y3 = ṗ = (U̇ , Ẏ , λ̇+):

Ωrc(Y1, Y2, Y3) = (dU ∧ dY ∧ dλ+)(Y1, Y2, Y3)(6.14)

=

∣∣∣∣∣∣
0 iU U̇

iY 0 Ẏ

−iλ+ − iλ+ λ̇+

∣∣∣∣∣∣
= U̇Y λ+ + UẎ λ+ + UY λ̇+ = (UY λ+)·.

Integrating the condition ImΩrc = 0, we obtain Im(UY λ+) = c for c ∈ R.
Using λ+ = − X

U , we finally obtain the third equation of the theorem. Note
that in the other coordinate patch H−, we will obtain Im(V Xλ−) = c which
is the same equation since λ− = − Y

V . �

Remark 1. Equations (6.13) are linearly independent at a generic point,
so the above family foliates the resolved conifold. The generic orbit is T 2 × R,
where T 2 is an orbit of the maximal torus in SO(4). For the special values
c1 = c2 = c3 = 0, the SL intersect the CP 1 in circles.

Remark 2. Asymptotically, as r → ∞ (or equivalently as a → 0), these
special Lagrangians approach the special Lagrangian cone on T 2 in the coni-
fold described by the equations:

|X|2 − |Y |2 = 0,

|V |2 − |U |2 = 0,

Im(XY ) = 0,

which is the same asymptotic cone found in the case of the deformed coni-
fold in Section 5.2. In z coordinates on the conifold, the equations become:
Im(z0z̄1) = Im(z2z̄3) = Im(z2

0 + z2
1) = 0.

6.2. SO(3)-invariant special Lagrangians. In what follows, we describe
the SO(3)-invariant special Lagrangian 3-folds in M .

Theorem 6.2. The SO(3)-invariant special Lagrangian submanifolds in
the resolved conifold given by equation (6.6) are:

Lc = {g̃.p ∈ M |g ∈ SO(3), p = (0, Y,0,0),Re(Y 2) = c}

where g̃ is the conjugated action on the (X,Y,U,V )-coordinates.
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Proof. Let

A1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 0 −1
0 0 1 0

⎞
⎟⎟⎠ , A2 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 1
0 0 0 0
0 −1 0 0

⎞
⎟⎟⎠ ,

A3 =

⎛
⎜⎜⎝

0 0 0 0
0 0 −1 0
0 1 0 0
0 0 0 0

⎞
⎟⎟⎠

be the infinitesimal generators of SO(3). Using the change of coordinate
matrix P (6.1), the action on the (X,Y,U,V )-variables is given by:

Ã1 =

⎛
⎜⎜⎝

0 0 0 0
0 0 0 0
0 0 i 0
0 0 0 −i

⎞
⎟⎟⎠ , Ã2 =

1
2

⎛
⎜⎜⎝

0 0 −i i
0 0 i −i

−i i 0 0
i −i 0 0

⎞
⎟⎟⎠ ,

Ã3 =
1
2

⎛
⎜⎜⎝

0 0 −1 −1
0 0 1 1
1 −1 0 0
1 −1 0 0

⎞
⎟⎟⎠ .

The moment map with respect to these generators is μ : M → so(3)∗ given
by:

μ =
(

1
2
(|U |2 − |V |2), 1

2
Im
(
(U − V )(Ȳ − X̄)

)
,
1
2

Im
(
(Y − X)(Ū + V̄ )

))
+ μS2 ,

where

μS2(λ+) =
(

|λ+|2
1 + |λ+|2 , − Re(λ+ − |λ+|2λ+)

2(1 + |λ+|2) , − Im(λ+ + |λ+|2λ+)
2(1 + |λ+|2)

)

on the patch coordinate patch H+. A similar expression can be computed on
H−.

Let p = (X,Y,U,V ) ∈ M . Since Z(so(3)∗) = 0, we need to start at a point in
μ−1(0). We make the simplifying assumption that U = V = 0. Using the fact
that XY = UV on the resolved conifold, we can assume that X = 0 or Y = 0.
If we choose Y = 0, then the point (X,0,0,0) /∈ μ−1(0) since μ(X,0,0,0) has
the first component equal to 1. Hence, we must choose p = (0, Y,0,0), where
Y �= 0. Since λ+ = − V

Y = 0, it follows that p ∈ μ−1(0). We now look for curves
Y (s) in the complex Y -plane, which after applying the SO(3)-action give rise
to special Lagrangians of the form L = g̃.Y (s), g ∈ SO(3).
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The tangent plane at p to L is spanned by the vectors:

{v1 = Ã2p = (PA2P
∗)p, v2 = Ã3 = (PA3P

∗)p, v3 = ṗ},

where P is the change of coordinate matrix in (6.1) and the dot denotes
differentiation with respect to the parameter s. The generic orbit of the SO(3)
action is an S2, so the three infinitesimals generators are linearly dependent
(note that PA1P

∗p = 0). Calculations yield that the tangent space of L at
the point p is spanned by the vectors:⎧⎪⎪⎨

⎪⎪⎩v1 =
iY

2

⎛
⎜⎜⎝

0
0
1

−1

⎞
⎟⎟⎠ , v2 =

Y

2

⎛
⎜⎜⎝

0
0

−1
−1

⎞
⎟⎟⎠ , v3 =

⎛
⎜⎜⎝

0
Ẏ
0
0

⎞
⎟⎟⎠
⎫⎪⎪⎬
⎪⎪⎭ .

L is invariant under the SO(3)-action and ωrc|L = 0, since L lies in the zero
level set of the moment map. We now impose the special Lagrangian condition
ImΩrc|L = 0. Working on the patch H+ with coordinates (U,Y,λ+), the
holomorphic volume form is given from (6.12):

Ωrc = dU ∧ dY ∧ dλ+.

Since λ+ = − V
Y , we can instead use coordinates (U,Y,V ), getting:

Ωrc = dU ∧ dY ∧ dλ+

= −dU ∧ dY ∧ V dY − Y dV

Y 2
= − 1

Y
dU ∧ dY ∧ dV,

Ωrc(v1, v2, v3) = − 1
Y

dU ∧ dY ∧ dV (v1, v2, v3)

= − 1
Y

∣∣∣∣∣∣
iY
2 − Y

2 0
0 0 Ẏ

− iY
2 − Y

2 0

∣∣∣∣∣∣= − i

2
Y Ẏ .

Integrating, the condition Im Ωrc = 0 becomes Re(Y 2) = c. Letting Y = u +
iv, we get a family of hyperbolas: u2 − v2 = c. �

The special Lagrangian Lc is topologically S2 × R and has two components,
each asymptotic to the special Lagrangian cones on S2 given by setting c = 0
(obtained from the lines u + v = 0 and u − v = 0) in the conifold. This case is
reminiscent of the flat case studied in [HL].

Remark 1. Lc does not intersect the zero-section (the bolt) S2 of the
resolved conifold since r2 = |Y |2 is preserved under SO(3).

Remark 2. Note that the SO(3)-invariant special Lagrangian 3-folds in
both the resolved and the deformed conifold have the same limiting SL cone.
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Remark 3. In this paper, we described only the special Lagrangian 3-folds
with phase 1, but a similar analysis will yield formulas for special Lagrangians
with a fixed phase θ.
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