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Abstract. In this paper we study the convergence of the Longstaff-Schwartz
algorithm for the valuation of American options. Our approach is based on
empirical risk minimization initiated by Vapnik and Chervonenkis in the early
1970’s and empirical processes techniques. This allows us to prove convergence,
derive error estimates and a Central Limit Theorem for the sample estimators.
It also opens up a variety of extensions and generalizations.

1. Introduction

1.1. Valuation of American-style Options. Many financial products contain
early exercise features which significantly contribute to their value. Therefore the
valuation of American options, or more generally, of products with early exercise
features has been considered as an important problem in Computational Finance.

Several methods have been developed to numerically solve the related optimal
stopping problem. They range from binomial trees [9], Markov chain approxima-
tions [25], to semi-analytical approximations [2], direct integral equation methods,
and PDE methods on the basis of variational inequalities, [3, 20], the linear com-
plementary problem [19, 10], or the free boundary value problem [43].

An increase in product sophistication and model complexity during the last
decade has called for new methods which can value American-style options with
complicated exercise structures and depending on a multitude of risk factors. This
stimulated the development of Monte Carlo methods to evade the curse of dimen-
sionality caused by these new products and models. Various approaches have been
proposed. The first landmark papers in this direction are [6, 5, 40, 7]. The state of
development as of 1998 is described in the overview paper [8].

Recently, in 1999, Longstaff and Scwartz introduced a new Monte Carlo approach
[28]. Their method is based on a parametric approximation scheme for Bermudan
options in discrete time. They showed how to calculate the parameters algorith-
mically by solving a sequence of least square problems. A brief sketch of a proof
for convergence of the algorithm is then outlined. A more detailed analysis of the
convergence proof and a Central Limit Theorem is then discussed in the work of
Clément, Lamberton and Protter [37]. However, their approach is different from
the methods used in this paper.

It is also worth noting that Tsitsiklis and Van Roy [41] independently proposed a
simpler algorithm for infinite horizon discrete time optimal stopping problem using
also parametric approximations. Their approach is based on stochastic approxima-
tion techniques [23, 4, 24] and the parameters are calculated by temporal difference
updates.
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All of the Monte Carlo algorithms we referred to so far, approximate the value
function or the early exercise rule in some way, hence provide a lower bound to the
true option value. In contrast to this, a recent paper of Rogers [17] focuses on the
dual problem to calculate upper bounds. Finally, a recent comparative study of
various Monte Carlo approaches can be found in [27].

1.2. Our Approach and Contributions. In this paper, we analyze the conver-
gence and error estimates of the Longstaff-Schwartz algorithm, which is based on a
linear approximation of the so called q-function, which plays a key role for optimal
stopping problems and can be thought of as the live value of the option if not exer-
cised immediately. The overall approximation error of the algorithm is decomposed
into two main errors: the approximation error, caused by the finite resolution of
the approximation architecture, and a stochastic error, or the sample error, which
is caused by the finite sample size of the Monte Carlo method.

The approximation error is of a deterministic nature and its convergence is con-
trolled by functional analytic properties of the approximating architecture and and
the degree of smoothness of the q-function. Results of G. Freud and H. N. Mhaskar
[30] on weighted polynomial approximation can be applied to prove convergence
without restricting ourselves to compact domains of the state space.

The sample error, which is our main concern in this paper, is analyzed in the
framework of empirical risk minimization, which has been promoted by Vapnik and
Chervonenkis in a series of papers [44, 45, 46] since the early 1970’s.

Let X be a random variable defined on a probability space (Ω, P ), taking values
in an arbitrary set S, and let G be a class of functions defined on S. Consider a risk
functional L(g) = Pl(g(X)) ≡ EP [l(g(X)] to be minimized. Empirical risk mini-
mization approximates a minimizer g∗ = arg ming∈G L(g) by the sample minimizer
ĝn = arg ming∈G Ln(g) of the empirical criterion Ln(g) = n−1

∑n
i=1 l(g(Xi)), based

on n samples from X. Empirical risk minimization is based on the inequalities

0 ≤ L(ĝn)− L(g∗) ≤ 2 sup
g∈G

|Ln(g)− L(g)|,

0 ≤ Ln(ĝn)− L(ĝn) ≤ sup
g∈G

|Ln(g)− L(g)|. (1.1)

The first series of inequalities provide an upper bound on the sub-optimality of
ĝn for the risk function L(g) over G. The second give an upper bound on the error
if the empirical criterion Ln(ĝn) is used to estimate the risk L(ĝn) of the sample
minimizer q̂n.

If a Uniform Law of Large Numbers can be proved for the probability distribution
P and the function classes G, such that the right hand sides of (1.1) converge to zero
almost surely, we can conclude that Ln(ĝn) converges to L(g∗). Finally, convergence
of the sample minimizes to the minimizer g∗ follows if the risk function satisfies an
estimate

d(g, g∗) ≤ L(g)− L(g∗) (1.2)
for some metric d on G. Note that a uniform one-sided estimate for supg∈G

(
Ln(g)−

L(g)
)
, together with a point estimate for L(ĝn)−Ln(ĝn) is sufficient to carry through

the above arguments. This can result in tighter estimates as been emphasized by
Vapnik [46].

The difficulty in proving convergence for the Longstaff-Schwartz algorithm is
twofold. First, the sequence of sample minimizers is nested because of a backward
recursion. The error of the previous step affects the error of the next step. The
error propogation can be controlled provided some minor continuity assumptions
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are satisfied. The second source of difficulties is the expression of the risk function,
which is quadratic but contains explicitly the approximated optimal stopping time.
The simplified Q-value algorithm of Tsitsiklis and Van Roy avoids this difficulty by
proposing simpler risk functions. We refer to section 3 for more details. Besides
proving overall convergence of the Longstaff-Schwartz algorithm we derive detailed
error estimates.

The article is organized as follows. In Section 2 we briefly review the no-arbitrage
valuation of an American options in discrete time, i.e a Bermudan option, by solving
an optimal stopping problem, introduce the notation and some basic path function-
als that will be used. We also derive, in this section, a relatively simple estimate of
the error caused by truncating the pay-off function from above.

After describing the Longstaff-Schwartz algorithm in the next Section 3, we an-
alyze the approximation error in Section 4. The main estimates are obtained in
Corollaries 4.5 and 4.6. After giving a brief review of the relevant concepts and
results that we use from the theory of empirical processes in Section 5, we turn
our attention in Section 6 to estimation of the sample error and complexity, which
is the main concern of this paper. Convergence is proved in Theorem 6.8 and the
main sample error bound is derived in Theorem 6.15.

The proof of the bound on the sample error utilizes Talagrand’s uniform deviation
inequality from the mean. It exhibits the unpleasant feature that the exponential
rate of convergence deteriorates exponentially fast with increasing number of time
steps. This however is a consequence of the lack of smoothness of the functional
yh,t appearing in the loss function, which results in relatively poor point estimates
(2.23). Our numerical simulations seem to indicate that the deterioration of the
convergence rate with the number of time steps is inherent in these type of algo-
rithms.

Since our estimates are based on a well-established general theory of empirical
processes and risk minimization procedures our results and our methods actually
apply to a wide range of pay-off functions and approximation schemes, although
for the purpose of clarity, we restrict ourselves mainly to the Longstaff-Schwartz
algorithm in this paper. A further merit of applying empirical process theory is a
rather straightforward proof of a Central Limit Theorem for the sample minimizers,
which we establish in Section 7, under the assumption of a bounded payoff function
and L∞ approximation architecture. Our setup also makes a connection to the work
of Arcones [1], who investigated limit behavior of approximate M -estimators.

Another advantage of the machinery of empirical risk minimization and empirical
process theory is that it provides a coherent framework for analyzing more general
Monte Carlo algorithms for optimal stopping problems. This would encompass more
general approximation architectures such as radial basis functions, neural networks
or n-terms approximants, also known as basis projection pursuit, all of which are
non-linear, but also nonparametric approximation schemes such as kernel smoothing
estimators or local polynomial regression.

Structural risk minimization, a generalization of empirical risk minimization,
provides yet another dimension for generalization and bridges to the field of model
selection. Structural risk minimization can be applied to answer the question of how
to balance the different error contributions, to select the proper sieve and truncation
level to minimize the overall error of the algorithm, given a fixed sample size. As a
first result in the direction of structural risk minimization, a generalization of em-
pirical risk minimization, we extend in Section 8 the Longstaff-Schwartz algorithm
to sieve estimation and establish a convergence and consistency result. The final
Section then discusses open problems and future directions for research.
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1.3. Important Remark on Notation. In many cases we need to be precise
with respect to which measure the integrations take place. We therefore apply
the shorthand notation PX = EP [X] to denote the expectation of X with respect
to a measure P , as it is customary in empirical process theory, and analogously
P (X | F) = EP [X | F ] for the conditional expectation.

2. Review of American Options Pricing and Optimal Stopping

2.1. American Options Pricing and Optimal Stopping Problem. It is well
known that the no-arbitrage price v0 of an American option with payoff at exercise
ft and expiry date T can be calculated by solving the optimal stopping problem

v0 = sup
τ∈T[0,T ]

P
(
e−
R τ
0 r(s)ds fτ

)
, (2.1)

where r(t) is the spot rate process, T[0,T ] are the stopping times with values in [0, T ]
and the expectation is taken with respect to the martingale measure P . A sufficient
condition such that the expectation in (2.1) makes sense for all stopping times is
that the discounted payoff process exp(− ∫ t

0
r(s)ds) ft is of class D. For additional

details we refer to [22, 34] and [21, Appendix D].

2.2. Bermudan Approximations. The first approximation is to replace the con-
tinuous time problem (2.1) by a discrete time approximation. Restricting exercise
and trading dates to discretization dates

0 = t0 < t1 < . . . < tN = T (2.2)

leads to a Bermudan approximation of the original American option. The finer
the time discretization, the better the original American option is approximated.
However, convergence of discrete time approximations to the continuous time limit
is rather subtle and requires additional conditions, primarily on the filtration. We
refer the interested reader to [26, 33].

2.3. Discrete Time Optimal Stopping Problems. Henceforth we fixed a suit-
able time discretization (2.2) and consider the related discrete time problem. Let ft,
t = 0, . . . , T be a discrete time payoff process, adapted to the filtration Ft. Denote
by dt,s the discount factor from s back to t, which we assume to be Ft-measurable.
The option value Vt at time t allows the optimal stopping characterization

Vt = ess supτ∈Tt,...,T
P

(
dt,τ fτ | Ft

)
= P

(
dt,τ∗t fτ∗t | Ft

)
, (2.3)

where the optimal stopping times τ∗t are given by

τ∗t = inf{s ≥ t | Vs ≤ fs}. (2.4)

Closely related to Vt is the quantity

Qt = ess supτ∈Tt+1,...,T
P

(
dt,τ fτ | Ft

)
= P

(
dt,τ∗t+1

fτ∗t+1
| Ft

)
, (2.5)

called the Q-value, representing the optimal stopping value at time t, subject to the
condition of not stopping immediately. It is easily verified by induction that

Qt = P
(
dt,t+1Vt+1 | Ft

)
, (2.6)

and
Vt = max(ft, Qt). (2.7)

From the last equation one sees that Qt can be interpreted as the continuation value
of the option contract. For the sake of completeness, extend the definition of Qt by
putting QT ≡ fT .
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2.4. Dynamic Programming Principle. The dynamic programming principle
can be applied to calculate option value process recursively according to

VT = fT ,

Vt = max
(
ft, P (dt,t+1Vt+1|Ft)

)
, t = T − 1, . . . , 0.

(2.8)

Similarly, the Q-value Qt satisfies the backward recursion

QT = fT ,

Qt = P
(
dt,t+1 max(ft+1, Qt+1)|Ft

)
, t = T − 1, . . . , 0.

(2.9)

As already noted in [41], the expectation operator enters linearly in the backward
recursion (2.9), and a sample based approximation thereof does not introduce a
bias, hence promotes itself naturally for a sample approximation.

The optimal stopping times τ∗0 ≤ . . . ≤ τ∗T obviously determine Vt or Qt. Con-
versely they can be recovered from the knowledge of either Vt or Qt by the following
backward recursion

τ∗T = T,

τ∗t = t 1{Vt=ft} + τ∗t+11{Vt>ft} =

= t 1{Qt≤ft} + τ∗t+11{Qt>ft}.
(2.10)

Note that the last equality in (2.10) follows directly from (2.8) and (2.6).

2.5. Payoff Truncation. Option payoff functions in Finance are typically un-
bounded. On the other hand any numerical implementation works at finite pre-
cision. This calls for a truncation of the payoff function. For any cutoff level c > 0
introduce the truncation operator

Tc : f 7→ f1{|f |≤c}. (2.11)

Then, for f ∈ Lp(Ω, P ), it follows that

lim
c→∞

cpP
(|f | > c

)
= 0. (2.12)

The next results bounds the error of truncating the payoff function.

Proposition 2.1. Assume that ft ∈ Lp(Ω,Ft, P ) for all t. Let Q(Tcf) be the
Q-value of the truncated payoff process Tcft. Then for t ≤ T − 1,

‖Qt(f)−Qt(Tcf)‖p,P ≤
T∑

s=t+1

‖fs‖p,P P (fs > c)
p−1

p ≤ o(cp−1). (2.13)

Proof. Apply the relation (2.9) and note that |max(a, x) − max(a, y)| ≤ |x − y|.
Then

‖Qt(f)−Qt(Tcf)‖p,P ≤
‖P (

max(ft+1, Qt+1(f))−max(Tcft+1, Qt+1(Tcf)) | Ft

)‖p,P ≤
‖P (

ft+1 − Tcf(X)t+1 | Ft

)‖p,P + ‖P (
Qt+1(f)−Qt+1(Tcf) | Ft

)‖p,P ≤
‖ft+11{ft+1>c}‖p,P + ‖Qt+1(f)−Qt+1(Tcf)‖p,P .

Apply Hölder’s inequality on the first term and proceed by induction. ¤

2.6. Markovian State Process. It is customary to assume that the the payoff
process is a function ft = ft(Xt) of a discrete time Markov process Xt with values in
a potentially high-dimensional euclidian space Rd and that Ft = σ(Xt) is the natural
P -completed filtration. This is no real restriction because path dependency can
always be accounted for by adding additional state variables performing historical
bookkeeping. The Markov property can then be exploited to represent the option
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value and the Q-value in terms of Borel measurable functions vt, qt : Rd → R such
that

Vt = vt(Xt), Qt = qt(Xt).
The recursion (2.9) can be expressed as

qt = Pt,t+1

(
dt,t+1 max(ft+1, qt+1)

)
, (2.14)

where Pt,t+1 is the transition function of the Markov process Xt. In analogy with
the Q-value the qt are called q-functions.

2.7. Basic Assumptions and Notations. Assume that Xt, t = 0, . . . , T is a
discrete time Markov process with values in Rd, defined on a probability space
(Ω, P,F). Let Ft be the natural filtration of Xt and

R = RT = (Rd)T+1. (2.15)

the path space of X = (X0, . . . , XT ). Denote by µXt
the law of Xt on Rd and

by L2(Rd, µXt) the space of µXt-square integrable Borel functions. Note that via
the embedding h 7→ h ◦ Xt we can always regard L2(Rd, µXt) as a subspace of
L2(Ω,F , P ).

Markov path functions are Borel measurable functions h : R → RT+1 defined on
the path space R such that

h(x) = (h0(x0), . . . , hT (xT )), (2.16)

for some real-valued Borel functions ht on Rd. In the following we use h(x)t as a
shorthand notation for ht(xt) and identify a sequence of Borel functions (h0, . . . , hT )
with the corresponding Markov path function. In particular we view the payoff func-
tion and the q-function as Markov path function.

For 1 ≤ p ≤ ∞ let Lp(X) be the space of Markov path functions with ht ∈
Lp(Rd, µXt) for every t = 0, . . . , T , endowed with the norm

‖h‖p,X = ‖h‖1,p,X =
T∑

t=0

‖ht‖p,µXt
. (2.17)

Assumption 2.2. To account for any integrability issues assume from now on that
the payoff process f is nonnegative and that f ∈ L2(X).

With this assumption, Qt and Vt are square integrable and q ∈ L2(X).

2.8. The Functionals τh,t and yh,t. For any Markov path function h introduce
the functional τh,t on R with values in t, . . . , T defined as

τh,t(x) = inf{s ≥ t | h(x)s ≤ f(x)s} ∧ T

= t 1{h(x)t≤f(x)t} + τh,t+1(x) 1{h(x)t>f(x)t},
(2.18)

and the functional yh,t

yh,t(x) = dt,τh,t(x)f(x)τh,t(x) = dt,τh,t(x)fτh,t(x)(xτh,t(x)). (2.19)

Note that τh,t and yh,t only depend on xs and hs for s ≥ t, and that τh,T (x) = T .
It follows that

q(X)t = P
(
yq,t+1(X) | Ft

)
(2.20)

and that the optimal stopping times τ∗t are given by τ∗t = τq,t(X).

It is fundamental to optimal stopping that τh,t is not continuous on all of R. To see
this let x ∈ R satisfy h(x)u = f(x)u and h(x+y)u > f(x+y)u for ‖y‖ small enough
as well as h(x)v = f(x)v for t < u < v. Then if τh,t would be continuous at x, τh,t

must be constant on a sufficiently small neighborhood of x. But by construction,
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this is not the case because τh,t(x) = u whereas τh,t(x+ y) = v for any y arbitrarily
small.

Our error analysis depends heavily on the properties of the functionals τh,t and yh,t.
The first important observation is that we can control L2-norm of the projection of
yh,t+1(X)− yq,t+1(X) onto L2(Ω,Ft, P ).

Proposition 2.3. Let q denote the q-function and assume h ∈ L2(X). Then

‖P (
yh,t+1(X)− yq,t+1(X) | Ft

)‖2,P ≤
‖h(X)t+1 − q(X)t+1‖2,P + ‖P (

yh,t+2(X)− yq,t+2(X) | Ft+1

)‖2,P (2.21)

Proof. We can assume that dt,s = 1, which will simplify notations.

‖P (
yh,t+1(X)− yq,t+1(X) | Ft

)‖2,P ≤
‖P (

(f(X)t+1 −Qt+1)(1{q(X)t+1≤f(X)t+1} − 1{h(X)t+1≤f(X)t+1}) | Ft

)‖2,P +

‖P (
f(X)τq,t+2(X)1{q(X)t+1>f(X)t+1} − f(X)τh,t+2(X)1{h(X)t+1>f(X)t+1}+

Qt+1(1{q(X)t+1≤f(X)t+1} − 1{h(X)t+1≤f(X)t+1}) | Ft

)‖2,P = I1 + I2.

The first term can be estimated further as follows

I1 = ‖P (
(f(X)t+1 −Qt+1)(1{q(X)t+1≤f(X)t+1<h(X)t+1}−

1{h(X)t+1≤f(X)t+1<q(X)t+1}) | Ft

)‖2,P ≤
‖P (

(f(X)t+1 −Qt+1)(1{0≤f(X)t+1−q(X)t+1<h(X)t+1−q(X)t+1}−
1{h(X)t+1−q(X)t+1≤f(X)t+1−q(X)t+1<0}) | Ft

)‖2,P ≤
‖P (|h(X)t+1 − q(X)t+1| | Ft

)‖2,P ≤ ‖h(X)t+1 − q(X)t+1‖2,P .

To assess the second term remember the definition (2.5) of Qt+1, which is in terms
of τq,t+2 can be written as

Qt+1 = P
(
dt+1,τq,t+2(X) f(X)τq,t+2(X) | Ft

)
.

Therefore

I2 = ‖P (
f(X)τq,t+2(X)(1− 1{h(X)t+1≤f(X)t+1})−

f(X)τh,t+2(X)1{h(X)t+1>f(X)t+1} | Ft

)‖2,P ≤
‖P (

(f(X)τq,t+2(X) − f(X)τh,t+2(X))1{h(X)t+1>f(X)t+1} | Ft

)‖2,P ≤
‖P (

yh,t+2(X)− yq,t+2(X) | Ft+1

)‖2,P .

¤

Proposition 2.3 only controls the deviation of yh,t from yq,t. The next proposition
provides more general point-wise estimates for the functionals τh,t and yh,t.

Proposition 2.4. Let g, h : R→ R. Then

|τg,t(x)− τh,t(x)| ≤
T−1∑
s=t

(
s + τh,s+1(x)

)
1{|f(x)s−h(x)s|≤|g(x)s−h(x)s|} (2.22)

|yg,t(x)− yh,t(x)| ≤
T−1∑
s=t

( T∑
r=s

|f(x)r|
)
1{|f(x)s−h(x)s|≤|g(x)s−h(x)s|} (2.23)

Proof. The definition of τh,t shows that

|τg,t(x)− τh,t(x)| ≤ t|1{g(x)t≤f(x)t} − 1{h(x)t≤f(x)t}| +
|τg,t+1(x)1{g(x)t>f(x)t} − τh,t+1(x)1{h(x)t>f(x)t}| = t I1 + I2.
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I1 = |1{g(x)t≤f(x)t<h(x)t} − 1{h(x)t≤f(x)t<g(x)t}| =

|1{g(x)t−h(x)t≤f(x)t−h(x)t<0} − 1{0≤f(x)t−h(x)t<g(x)t−h(x)t}| ≤
1{|f(x)t−h(x)t|≤|g(x)t−h(x)t|}.

As for I2,

I2 ≤ |(τg,t+1(x)− τh,t+1(x)
)
1{g(x)t≤f(x)t}|+

|τh,t+1(x)
(
1{g(x)t>f(x)t} − 1{h(x)t>f(x)t}

)| ≤
|τg,t+1(x)− τh,t+1(x)|+ τh,t+1(x)|1{h(x)t≤f(x)t} − 1{g(x)t≤f(x)t}|,

where 1{g(x)t>f(x)t} has been replaced by 1− 1{g(x)t≤f(x)t} and similar for h. The
last term on the right hand side can then be estimated as for I1. By induction, this
shows (2.22). As for (2.23), along the same lines one obtains

|yg,t(x)− yh,t(x)| ≤
(|f(x)t|+ |yh,t+1(x)|)1{|f(x)t−h(x)t|≤|g(x)t−h(x)t|} + |yg,t+1(x)− yh,t+1(x)|.

Now note that |yh,t+1(x)| ≤ ∑T−1
s=t+1 |f(x)s| and complete by induction. ¤

3. The Algorithm

The previous discussion shows that the q function is obtained by applying the
conditional expectation operator P (. | σ(Xt)) to either dt,τ∗t+1

fτ∗t+1
or alternatively

to max(ft+1, qt+1)(Xt+1). Now on the Hilbert spaces L2(Ω,F , P )

P (. | σ(Xt)) : L2(Ω,F , P ) → L2(Ω, σ(Xt), P ) (3.1)

are orthogonal projection operator. The key idea of Longstaff-Schwartz algorithm
and the related algorithms Q-value algorithm is to compose this orthogonal projec-
tion operator with a projection onto suitable finite dimensional subspaces. These
finite dimensional projections are then further approximated by Monte Carlo meth-
ods.

3.1. Approximation Architectures. An approximation architecture is repre-
sented by a sequence of subspaces

Ht ⊂ L2(Rd, µXt). (3.2)

The corresponding subspace of square integrable Markov path function is denoted
by H ⊂ L2(X). The approximation architecture is called linear if Ht are linear
subspaces, and write dim(H) = k if dim(Ht) = k for all t. Linear approximation
architectures can be constructed for example by means of ordinary multivariate
polynomials, Legendre, Hermite or Laguerre polynomials, or more generally, Ht

can be chosen as the span of the first k elements of a Riesz basis1 for L2(Rd, µXt).

3.2. The Algorithm of Longstaff and Schwartz. Let H be a linear approxi-
mation architecture. Define qH ∈ H recursively by

qH(X)t = prHt

(
yqH,t+1(X)

)
, (3.3)

where yqH,t+1(X) ∈ L2(Ω,F , P ) is defined in (2.19) and prHt
is the orthogonal

projection onto Ht ⊂ L2(Rd, µXt) ↪→ L2(Ω,F , P ). Definition (3.3) makes sense
because yqH,t+1(X) only depends on qH(X)s and Xs for s ≥ t + 1. Let

qH,t = arg min
ht∈Ht

P
(
ht(Xt)− yqH,t+1(X)

)2 (3.4)

1A Riesz basis of a Hilbert space H is a system {xn} ⊂ H such that there exists an orthonormal
basis {en} ⊂ H and a bounded and boundedly invertible map T of H with Ten = xn for all n.
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be the variational characterization of qH. A sample approximation is now obtained
by replacing the error functional in (3.4) by its empirical counterpart such that

q̂n,H,t = arg min
ht∈Ht

Pn

(
ht(Xt)− yq̂n,H,t+1(X)

)2
, (3.5)

where Pn be the empirical measure based on n independent sample paths of X.
Expressing q̂n,H,t in terms of a basis for Ht, the minimization problem (3.5) is
transformed into a least square regression problem. This parametrization has no
impact on the convergence as it affects the estimates only by a constant. It is now
apparent that the key step in the convergence proof is to understand the effect of
the functional yh,t.

3.3. The Q-Value Algorithm. The Q-value algorithm of Tsitsiklis and Van Roy
[41] is a simplified version of the Longstaff-Schwarz algorithm. The projection
operator is applied to dt,t+1 max(ft+1, qt+1(Xt+1)), which is justified by (2.9). The
recursion is then given by

q̂n,H,t = arg min
ht∈Ht

Pn

(
ht(Xt)−max(ft+1, q̂n,H(X)t+1

)2
, (3.6)

and the approximated option price is

v̂H,0 = max
(
f(X)0, P (d0,1 max(f(X)1, q̂n,H(X)1)

)
.

Note that there is no need in keeping track of the approximating optimal stopping
times as in the case of the Longstaff-Schwartz algorithm. The convergence proof
of the Q-value algorithm is much simpler. Therefore, we will mainly focus on the
analysis of the Longstaff-Schwartz algorithm.

3.4. Error Decomposition. The the overall error of the above algorithms can be
decomposed into two components, the approximation error, a deterministic quantity
caused by the finite resolution of the approximation architecture, and the sample
error, which is stochastic and results from a finite sample approximation. More
precisely,

‖q − q̂n,H‖2,X ≤ ‖q − qH‖2,X + ‖qH − q̂n,H‖2,X , (3.7)
of which the first term on the right hand side is the approximation error, and the
second term the sample error. If the payoff is truncated according to proposition
2.1, a third error term appears.

4. Approximation Error

4.1. General Linear Approximation Architectures.

Theorem 4.1. Let H be a linear approximation architecture such that the maximal
error in approximating the q-function satisfies

‖q(X)t − prHt

(
q(X)t

)‖2,P ≤ εt. (4.1)

Then

‖q(X)t − qH(X)t‖2,P ≤

εt +
T−1∑

s=t+1

‖q(X)s − qH(X)s‖2,P ≤ εt +
T−t−1∑

s=1

2s−1εt+s. (4.2)

Proof.

Et = ‖q(X)t − qH(X)t‖2,P = ‖q(X)t − prHt

(
yqH,t+1(X)

)‖2,P ≤
‖q(X)t − prHt

(
yq,t+1(X)

)‖2,P + ‖prHt

(
yq,t+1(X)− yqH,t+1(X)

)‖2,P = I1 + I2.

By assumption (4.1)

I1 = ‖q(X)t − prHt
P

(
yq,t+1(X) | Ft

)‖2,P ≤ ε.
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For the second term a recursive application of proposition 2.3 yields

I2 ≤ ‖P (
yq,t+1(X)− yqH,t+1(X) | Ft

)‖2,P ≤ ‖q(X)t+1 − qH(X)t+1‖2,P +

‖P (
yq,t+2(X)− yqH,t+2(X) | Ft+1

)‖2,P ≤
T−1∑

s=t+1

‖q(X)s − qH(X)s‖2,P .

The last estimate in (4.2) is obtained by observing that ET−1 = εT−1, ET−2 =
εT−2 + εT−1 and the recursion Et = εt + εt+1 + 2

∑T−1
s=t+2 Es. ¤

It is well-known that the rate of approximation depends on the degree of smooth-
ness of the function to be approximated. Under additional assumptions on the
Markov transition functions and the payoff function, theorem 4.1 can be strength-
ened to provide such a rate of convergence. Even though vt = max(ft, qt) has only
one weak derivative, the q-function

qt(x) = Pt,t+1

(
dt,t+1vt+1

)
(x) =

∫

Rd

dt,t+1(y)vt+1(y)pt,t+1(x, dy) (4.3)

is typically infinitely differentiable, because Pt,t+1 = P (. | σ(Xt)) exhibits strong
smoothing properties.

4.2. Polynomial Approximation. Let Pm be the space of multivariate polyno-
mials on Rd and coordinatewise degree at most m − 1. Let O ⊂ Rd be a smooth
bounded domain and denote by W k

p (O) the usual Sobolev space with weak deriva-
tives in Lp(O) up to order k. The following is a classical result in approximation
theory, see for example [29].

Theorem 4.2. Let 1 ≤ p ≤ ∞. Then, for any f ∈ W k
p (O)

inf
p∈Pm

‖f − p‖Lp(O) ≤ C m−k ‖f‖W k
p (O) ≤ C dim(Pm)−k/d ‖f‖W k

p (O), (4.4)

where the constant C is independent of f and m.

Polynomial approximation of functions on the whole Euclidian space Rd is more
involved and necessitates weighted norms. Let w(x) be a weight function on Rd.
Introduce the spaces Lp,w(Rd) of functions f with weighted p-norm

∫
|f(x)w(x)|pdx < ∞

and let W k
p,w(Rd) be the weighted Sobolev space with weak derivatives in Lp,w(Rd)

up to order k.
The following theorem is a multivariate extension of the univariate weighted

approximation results of [16] for special tensor product weights of Freud type. A
survey of univariate weighted polynomial approximation can be found in [30], an
extensive presentation of the whole theory is available in [31].

Theorem 4.3. Let 1 ≤ p ≤ ∞ and

wα,β(x) =
d∏

i=1

exp
(− β|xi|α

)
, (4.5)

for α ≥ 2. Then, for any f ∈ W k
p,wα,β

(Rd)

inf
p∈Pm

‖f − p‖Lp,wα,β
(Rd) ≤

C m−k(1− 1
α ) ‖f‖W k

p,wα,β
(Rd) ≤ C dim(Pm)−k(1− 1

α )/d ‖f‖W k
p,wα,β

(Rd), (4.6)

where C is a universal constant, independent of f and m, only dependent on the
weight wα,β.
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Not much is published on multivariate weighted approximation. One reason is
that tensor product approximation results are somewhat routine to obtain, given the
univariate results [32]. For completeness we briefly sketch how to use the univariate
theory to derive multivariate results.

Proof. The constant c denotes a universal constant, which might be different wher-
ever it appears. Let

Ep,m(f) = inf
p∈Pm

‖f − p‖Lp,w(R).

A central tool is the shifted average operator vm, defined in [31, equation (3.4.4)].
If f ∈ Lp,w(R) then vm(f) is a polynomial of degree 2m− 1 and

Ep,2m−1(f) ≤ ‖f − vm(f)‖Lp,w(R) ≤ cEp,m(f).

The key estimates are the so called Jackson-Favard estimates, which state that for
every differentiable function f ∈ Lp,w(R)

Ep,m(f) ≤ c
qm

m
Ep,m−1(f ′). (4.7)

For so called Freud weights [31, definition 3.1.1] the Freud numbers qm are deter-
mined as the least positive solution of qmQ′(qm) = m, where Q(x) = log(w(x)−1),
and satisfy

c1qm ≤ q2m ≤ c2qm (4.8)

for constants c1, c2 only depending on w. For Freud weights of the concrete type
w(x) = wα,β(x) = exp(−β|x|α)

qm =
(

m

αβ

) 1
α

. (4.9)

These results can be found in [31, section 3,4] or [30, theorem 4]. Assume f is
k-times differentiable with ∂kf ∈ Lp,w(R). Iterating (4.7) and applying the obvious
bound Ep,m−k(∂kf) ≤ ‖∂kf‖Lp,w(R) shows

‖f − vm(f)‖Lp,w(R) ≤ Ep,m(f) ≤ c
(qm

m

)k

Ep,m−k(∂kf) ≤
c(α, β)m−k+1/α‖∂kf‖Lp,w(R), (4.10)

which proves the result in one dimension. For higher dimensions d introduce the
multivariate shifted average operators v

[d]
m (f) as in [31, equation (11.2.8)]: Denote

by vm,j(f) the operator vm applied to f as a function of the j-th coordinate. Then
define v

[0]
m (f) = f , v

[1]
m (f) = vm,1(f) and v

[j]
m (f) = v

[j−1]
m (vm,j(f)). A telescoping

argument yields

‖f − v[d]
m (f)‖Lp,w(Rd) ≤

d∑

j=1

‖v[j−1]
m (f − vm,j(f))‖Lp,w(Rd) ≤

c

d∑

j=1

‖f − vm,j(f)‖Lp,w(Rd),

because all v
[j]
m are bounded linear operators [31, theorem 3.4.2]. Using the product

structure of the weights and Fubini, the summands on the right hand side can be
estimated by the univariate estimate (4.10) such that for all i ≤ k,

‖f − vm,j(f)‖Lp,w(Rd) ≤ c
(qm

m

)i

Ep,m−i(∂i
jf).
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To derive the final result (4.6) note that v
[d]
m (f) is a polynomial of coordinatewise

degree at most 2m− 1 such that

inf
p∈P2m

‖f − p‖Lp,wα,β
(Rd) ≤ ‖f − v[d]

m (f)‖Lp,w(Rd),

and apply the estimate c1qm ≤ q2m followed by the explicit representation (4.9).
The generalization from smooth functions to functions in the Sobolev space W k

p,wα,β
(Rd)

is standard. ¤

Remark 4.4. We would like to stress that the proof is constructive. The polynomial
v
[d]
m (f) is a linear combination in tensor products of Freud polynomials introduced

in [31, equation (3.1.12a)], which are special orthogonal polynomials with respect
to the weighted scalar product L2,w(Rd).

Note that both bounds depend on the dimension of the state space. To evade the
curse of dimensionality if the dimension of the state space increases, the degree of
smoothness has to be increased in order to keep the rate of convergence constant.

Theorems 4.2 and 4.3 can be applied to derive the approximation rate for specific
cases.

Corollary 4.5. Consider the linear approximation architecture Ht = Pm. Let O
be a smooth domain in Rd. Assume that f ∈ Lp(X) for some p ≥ 2, that

rO Pt,t+1 : Lp(Rd, µXt) → W k
2 (O), (4.11)

and that for some constant c > 0,

‖1O g‖2,µXt
≤ c‖g‖L2(O) ∀g ∈ L2(Rd, µXt). (4.12)

Then

‖1O (qt − qH,t)‖2,µXt
≤ c‖qt − qH,t‖L2(O) ≤

C 2T−t−1dim(Pm)−k/d
T−1∑
s=t

‖qs‖W k
2 (O) (4.13)

for a constant C independent of q, m.

Corollary 4.6. Consider the linear approximation architecture Ht = Pm. Assume
that f ∈ Lp(X) for some p ≥ 2, that

Pt,t+1 : Lp(Rd, µXt) → W k
2,w2,β

(Rd) (4.14)

for some k > 0, β > 0, and that for some constant c > 0,

‖g‖2,µXt
≤ c‖g‖L2,w2,β

(Rd) ∀g ∈ L2(Rd, µXt). (4.15)

Then

‖qt − qH,t‖2,µXt
≤ c‖qt − qH,t‖L2,w2,β

(Rd) ≤

C 2T−t−1dim(Pm)−k/(2d)
T−1∑
s=t

‖qs‖W k
2,w2,β

(Rd) (4.16)

for a constant C independent of q, m.

Proof. Both corollaries follow from theorem 4.1 combined with theorems 4.2 respec-
tively 4.3. ¤

In proposition 2.1, the error of truncating the payoff function has been estimated.
In the following example we therefore deliberately restrict ourselves to bounded
payoff functions.
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Example 4.7. Let Pt,t+1 be a convolution operator

Pt,t+1

(
g) = g ∗Kt =

∫

Rd

g(y)Kt(x− y)dy (4.17)

for some kernel Kt ∈ Cm
b (Rd) with ∂αKt ∈ L1(Rd) for all |α| ≤ k. Then for every

g ∈ L∞(Rd), Pt,t+1

(
g) ∈ Ck

b (Rd) and

∂αPt,t+1

(
g) = g ∗ ∂αKt (4.18)

for all |α| ≤ k. Obviously, M1O : Ck
b (Rd)) → W k

2 (O) and Ck
b (Rd) ⊂ W k

p,w2,β
(Rd)

for any β > 0. Hence conditions (4.11) and (4.14) are satisfied for p = ∞.
If Xt is sampled a time steps of width ∆t from a diffusion at with uniformly

elliptic generator, the transition functions satisfy the Gaussian bounds

Kt(x) ≤ c(∆t)−d/2 exp
(− λ

∆t
‖x‖2) (4.19)

for some constants c, λ. Consequently, conditions (4.12) and (4.15) are satisfied as
well.

Note that example 4.7 covers the traditional multivariate Black-Scholes model,
where Xt = (log S1,t, . . . , log Sd,t).

5. Review of Relevant Results from Empirical Process Theory

Before we proceed to the analysis of the sample error we give an excerpt of the
key results on empirical process theory which are needed later on. A thorough de-
velopment of the topic can be found in the books of Pollard [35, chapter II], [36],
Dudley [13], or van der Vaart and Wellner [42].

Consider a sequence of iid random variables X1, . . . , Xn, . . . on a probability space
(Ω, P,F). Introduce the empirical measure

Pnf =
1
n

n∑

i=1

δXif =
1
n

n∑

i=1

f(Xi) (5.1)

where δx is the Dirac measure concentrated at x, and the empirical process

En =
√

n(Pn − P ). (5.2)

The ordinary strong Law of Large Numbers states that for a function f ∈ L1(Ω, P,F)

lim
n→∞

|Pnf − Pf | = 0

almost sure, and if P (f2) < ∞,
√

n(Pnf − Pf) → N(0,Var f)

in distribution, by the ordinary Central Limit Theorem. For many applications, in
particular for empirical risk minimization as we have seen in the introduction, these
point-wise convergence results are not sufficient. The objective of empirical process
theory is to extend them uniformly to whole classes of functions. Uniform Law of
Large Numbers provide conditions on a class of functions G ⊂ L1(Ω, P,F) and on
the underlying probability measure such that

lim
n→∞

sup
f∈G

|Pnf − Pf | = 0

almost sure. The earliest result in this direction is the well-known Glivenko-Cantelli
theorem, for which the class G are the indicator functions 1(∞,t], t ∈ R. In their
seminal paper [44], Vapnik and Chervonenkis proved that classes of sets satisfying
a combinatorial condition, nowadays called VC-classes, satisfy a uniform Law of
Large Numbers, to be precise they showed convergence in probability. Similarly,
the uniform Central Limit Theorems provide conditions, such that the empirical
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process En =
√

n(Pn − P ), indexed by f ∈ G ⊂ L2(Ω, P,F), converges weakly in
l∞(G) to a Brownian bridge.

To properly deal with empirical measure and the empirical process as random
elements, introduce a countable product space

(Ω∞,P,F∞), (5.3)

where P = P⊗∞ is the product measure and F∞ is the product σ-algebra. The
random variable Xi can now be identified with the i-th coordinate projection.

5.1. Entropy and Covering Numbers. Let (M, d) be a semi-metric space2. A
subset {x1, . . . xn} ⊂ M is called ε-net if ∀ x ∈ M, ∃ xi, such that d(x, xi) ≤ ε.
Define the covering number by

N(ε,M, d) = inf{n ∈ N | ∃ ε-net {x1, . . . xn} of cardinality n}. (5.4)

It is the minimum number of closed balls of radius ε required to cover M. A
quantity related to the covering number is the packing number D(ε,M, d), defined
as the maximal number of disjoint ε-balls that can be packed into M. Then

D(2ε,M, d) ≤ N(ε,M, d) ≤ D(ε,M, d). (5.5)

If follows directly from the definition that if two metrics satisfy d2 ≤ cd1 for some
constant c > 0, then

N(ε,M, d2) ≤ N(ε,M, c d1) = N(
ε

c
,M, d1). (5.6)

The function H(·,M, d) = log N(·,M, d) is called the metric entropy of (M, d).

Example 5.1. For all δ < R the δ-covering number of a ball BR of radius R in the
Euclidian space Rn is bounded by

N(δ,BR, de) ≤
(

4R

δ

)n

. (5.7)

Let (Ω,F) be a measure space and P a probability measure on (Ω,F). Let
Lp(Ω,F , P ) denote the set of all p-integrable functions with respect to the measure
P and Lp(Ω,F , P ) the corresponding space of equivalence classes. If the measure
space is clear from the context or not relevant we just drop it in the notation. The
spaces Lp(P ) are endowed with the usual semi-metric dp,P (f, g) = ‖f − g‖p,P . A
measurable function G is called an envelope of G if |g| ≤ G for every g ∈ G. Finally
define

Np(ε,G) = sup
P

N(ε,G, dp,P ), (5.8)

where the supremum runs over all over all probability measures P on (Ω,F) con-
centrated in finite sets.

The following lemmas are useful to bound the covering numbers.

Lemma 5.2. Let (Mi, di) be metric spaces and F : M1 →M2 a surjective Lips-
chitz map with d2(F (x1), F (x2)) ≤ Cd1(x1, x2). Then

N(Cε,M2, d2) ≤ N(ε,M1, d1).

Proof. This follows directly from (5.6). ¤

2Possibly d(x1, x2) = 0 for some x1 6= x2.
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Lemma 5.3. Let F and G be classes of measurable functions with envelopes F
respectively G. Then for every operation ? ∈ {+,−,∧,∨} and constants a, b > 0,

N(ε(a + b),F ? G, dp,P ) ≤ N(aε,F , dp,P )N(bε,G, dp,P ), (5.9)
N(ε(a + b),F · G, dp,P ) ≤ N(aε,F , dp,Gp·P ) N(bε,G, dp,F p·P ), (5.10)

N(ε,F2, dp,P ) ≤ N(ε/2,F , dp,F p·P ), (5.11)
N(ε,F , dp,P ) ≤ N(εp,F , d1,(2F )p−1·P ), (5.12)

N(ε,F , dp,F ·P ) ≤ N(ε/‖F‖1/p
r,P ,F , dp q,P ), (5.13)

where F ∗ G = {f ∗ g | f ∈ F , g ∈ G} for ∗ ∈ {·, +,−,∧,∨}, F2 = F · F , and F · P
is the measure F · P (A) = P (1AF ) and 1/q + 1/r = 1 are conjugate exponents.

Proof. Let {fi} ⊂ F and {gi} ⊂ G appropriate minimal nets. The first relation
follows from the triangle inequality. For (5.10)

P (|fg − gifi|p)1/p ≤ P (|fgi − figi|p)1/p + P (|fg − fgi|p)1/p ≤
P (|f − fi|pGp)1/p + P (|g − gi|pF p)1/p.

As for (5.11)

P (|f2 − f2
i |p)1/p = P (|f + fi|p|f − fi|p)1/p ≤ 2P (F p|f − fi|p)1/p.

Inequality (5.12) follows similarly

P (|f − fi|p)1/p = P (|f − fi||f − fi|p−1)1/p ≤ P (|f − fi|(2F )p−1)1/p.

Finally, (5.13) is a consequence of Hölder’s inequality. ¤
A typical application of the above lemma is to convert the L2 covering numbers

into L1 covering numbers. (5.11) and (5.13) imply

N(ε,F2, d1,P ) ≤ N(ε/2,F , d1,F ·P ) ≤ N(ε/(2‖F‖2,P ),F , d2,P ), (5.14)

or
N(2ε‖F 2‖1,P ,F2, d1,P ) ≤ N(ε‖F‖2,P ,F , d2,P ). (5.15)

5.2. Vapnik-Chervonenkis Classes. Let C be a class of subsets of an arbitrary
set X . A set x = (x1, . . . , xn) ∈ Xn of n points is shattered by C if

∆C(x) = |{C ∩ {x1, . . . , xn} | C ∈ C}| = 2n. (5.16)

In terms of indicator functions, x = (x1, . . . , xn) is shattered by C if

{(1C(x1), . . . , 1C(xn)
) | g ∈ G} = {0, 1}n. (5.17)

The VC dimension dimV C(C) of C is the cardinality of the largest discrete subset
of X shattered by C

dimV C(C) = sup{n | ∃ x ∈ Xn s.t. ∆C(x) = 2n}. (5.18)

The class C is a VC class if dimV C(C) < ∞. A peculiar property of a VC class is
that the growth function

∆C(n) = max
x∈Xn

∆C(x) (5.19)

is polynomial in n, more precisely, if dimV C(C) = d,

∆C(n) ≤ φ(n, d), (5.20)

for n ≥ d ≥ 1, where, by Stirling’s formula,

φ(n, d) =
d∑

i=0

(
n

i

)
≤ 1.5

nd

d!
≤

(e n

d

)d

, (5.21)

denotes the number of subsets of a set of cardinality n, which contain at most d ele-
ments. (5.20) is known as Sauer’s lemma, the first bound in (5.21) is due to Vapnik
and Chervonenkis. VC classes have a variety of permanence properties which allow
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the construction of new VC classes form basic VC classes by simple operations such
as complements, intersections, unions or products.

The covering number of VC classes can only grow at a polynomial rate. Let
(Ω, P,F) be a probability space and introduce on F the pseudo-metric

dP (A, B) = P (A∆B),

where ∆ is the symmetric difference. Haussler improved the L1 packing number
bound of Dudley [12] by a logarithmic factor.

Theorem 5.4 (Haussler [18]). Let X be a set. For any probability measure P on
X , any class C of P -measurable sets of dimV C = d < ∞ and any ε > 0,

N(ε, C, dP ) ≤ D(ε, C, dP ) ≤ e(d + 1)
(

2e

ε

)d

. (5.22)

It is worthwhile to remark that Haussler established also lower bounds on the
packing number in [18].

Let G be a class of real-valued functions on X . A set x = (x1, . . . , xn) ∈ Xn is
pseudo-shattered by G, if there are real numbers t = (t1, . . . , tn) such that

{( sign(g(x1)− t1), . . . , sign(g(xn)− tn)
) | g ∈ G} = {0, 1}n, (5.23)

in other words, given a fixed translation vector t, every boolean vector b ∈ {0, 1}n

can be realized by a function g ∈ G. The pseudo-dimension of G is the largest
integer n such that there exists a set of cardinality n which is pseudo-shattered by
X , or

dimP (G) = sup{n | ∃ x ∈ Xn pseudo-shattered by G}. (5.24)
The pseudo-dimension has been formulated by [36] and [18]. It can also be intro-
duced via the concept of subgraph classes. The subgraph of a real-valued function
f on an arbitrary set X is defined as

Gf = {(x, t) ∈ X × R | t ≤ f(x)}. (5.25)

A class of real-valued functions G on X is called a VC subgraph class if its class of
subgraphs is a VC class. Because a set is shattered by the subgraph class {Gf |
f ∈ G} if and only if it is pseudo-shattered by the class of indicator functions
{sign(f(x) − t) | f ∈ G}, the pseudo-dimension of G is equal to the VC dimension
of its subgraph class.

Proposition 5.5. Let G be a finite dimensional real vector space of measurable real-
valued functions. Then the class of sets nn(G) = {{g ≥ 0} | g ∈ G} is a VC class
with dimV C(nn(G)) = dim(G). If f is a fixed function, then dimV C(nn(f + G)) =
dimV C(nn(G)). Finally, G is a VC subgraph class with finite pseudo-dimension
dimP (G) = dim(G).

Proof. For the first two statements we refer to [13, theorem 4.2.1]. The last state-
ments follows from the first two: Consider the affine class of functions f+G on X×R,
where f(x, t) = −t and note that the subgraph class of G is precisely nn(f +G). ¤

Theorem 5.4 can be used to bound the Lp covering number of classes of functions
with finite pseudo-dimension. A proof of the following result can also be found in
[42, theorem 2.6.7], however, the constants are not quite correct.

Theorem 5.6. Let G be a class of measurable functions with finite pseudo-dimension
dimP (G) = d < ∞ and measurable envelope G. Then, for p ≥ 1 and any probability
measure P with ‖G‖p,P > 0,

N(ε‖G‖p,P ,G, dp,P ) ≤ e(d + 1)
(

2p+1e

εp

)d

(5.26)
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for all 0 < ε < 1.

Proof. As in [18] or [42] note that by Fubini, P |f − g| = (P × λ)(Gf∆Gg) where
λ is the Lebesgue measure on R. Normalize P × λ to a probability measure Q =
(P × λ)/(2PG) on {(x, t) ∈ X × R | |t| ≤ G(x)}. Theorem 5.4 implies for any
probability measure P

N(ε 2 PG,G, d1,P ) = N(ε 2 PG, GG , dP×λ) = N(ε,GG , dQ) ≤ e(d + 1)
(

2e

ε

)d

,

where GG is the class of subgraphs of G. As for p > 1 apply (5.12)

N(ε,G, dp,P ) ≤ N(εp,G, d1,(2G)p−1·P ) = N(εp QG

2p−1P (Gp)
,G, d1,Q),

where Q = Gp−1/P (Gp−1) · P is the normalization of Gp−1 · P to a probability
measure. Apply these two estimates to conclude

N(ε‖G‖p,P ,G, dp,P ) ≤ N((ε/2)p 2 QG,G, d1,Q) ≤ e(d + 1)
(

2p+1e

εp

)d

.

¤

5.3. Uniform Law of Large Numbers. The generalized Glivenko-Cantelli the-
orem can now be stated.

Theorem 5.7 (Uniform Law of Large Numbers, [13, theorem 6.1.7]). Let (Ω,F , P )
be a probability space and G a class of measurable functions on Ω with envelope
G ∈ L1(Ω,F , P ). Assume that G satisfies appropriate measurability conditions. If

N1(ε,G) = sup
Q

N(ε,G, d1,Q) < ∞ ∀ ε > 0, (5.27)

where the supremum runs over all probability measures Q concentrated on finite
sets, then

lim
n→∞

sup
g∈G

|Png − Pg| = 0 almost sure. (5.28)

Remark 5.8. The condition (5.27) can be replaced in fact by

log N(ε,G, d1,Pn) = oP (n), (5.29)

which is, if PG < ∞, equivalent to

log N(ε‖G‖1,Pn ,G, d1,Pn) = oP (n). (5.30)

To avoid measurability problems which might be caused by taking the supremum
over an uncountable class G, (5.27) is normally formulated in terms of an outer mea-
sure. However, a rather weak condition called image admissible Suslin is sufficient
to rule out any measurability problems. See for example [13, chapter 5].

Definition 5.9. A class of functions G for which the generalized Glivenko-Cantelli
theorem 5.7 holds is called a Glivenko-Cantelli class (for P ).

The covering number bounds (5.26) in theorem 5.6 show that for VC subgraph
classes with L1-envelope, the left hand side of (5.30) is uniformly bounded for every
fixed ε and are therefore Glivenko-Cantelli.
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5.4. Uniform Deviation from the Mean. The proof of theorem 5.7 relies on
the following estimate due to Pollard [35, page 26], see also [11, theorem 29.1]. For
a class G of measurable functions uniformly bounded by K

P
(
sup
g∈G

|Png − Pg| > ε
) ≤ 8E[N(

ε

8
,G, d1,Pn

)] exp
(
− nε2

128K2

)
. (5.31)

Remember that P = P⊗∞ denotes the product measure. Similar uniform deviation
inequalities have been obtained earlier by Vapnik and Chervonenkis for VC classes
of sets and VC-major classes. This estimate has been substantially improved by
Talagrand in [39]. He considered functions with values in [0, 1]. Let G be a class of
measurable functions with range [0,K] of pseudo-dimension d. Then by (5.26)

N(ε,G/K, d2,Pn
) = N(εK,G, d2,Pn

) ≤ e(d + 1)

(√
8e

ε

)2d

. (5.32)

A straightforward scaling argument combined with [39, theorem 1.3] leads to

P
(
sup
g∈G

|Png − Pg| > ε
) ≤

(
C(V )

√
n ε√

2dK

)2d

exp
(
−2nε2

K2

)
, (5.33)

where C(V ) is a constant only depending on V = (e(d + 1))1/(2d)
√

8e. The bound
(5.33) does not just holds for VC subgraph classes but whenever an entropy estimate
of the form (5.32) holds. It also shows that the convergence rate of the expectation
is

P sup
g∈G

|Png − Pg| ≤ O

(
1√
n

)
, (5.34)

whereas (5.31) would result in a rate of O
(√

log n/n
)
. For other new deviation

inequalities see also [14].

5.5. Uniform Central Limit Theorems. Consider a class G of functions en-
dowed with a semi-metric dG . The class G is said to be asymptotically equicontin-
uous if for every ε > 0,

lim
δ→0

lim sup
m→∞

P
(

sup
dG(f,g)<δ

| En(f − g) |> ε
)

= 0. (5.35)

Same remarks on measurability as for the generalized Glivenko-Cantelli theorem
apply. For G ⊂ L2(P ) the natural semi-metric to consider is

dG(f, g) = ρP (f − g), (5.36)

where ρP (f) = (P (f − Pf)2)1/2. Let l∞(G) be the metric space of all bounded
functions H from G to R endowed with the supremum norm supG |H(f)|. Note the
difficulty that l∞(G) is typically not separable.

Definition 5.10. A class of functions G is called a Donsker class for P if it is pre-
Gaussian and En ⇒ BP in l∞(G). It is called uniformly Donsker if it is a Donsker
class for every P .

Note that Donsker classes are Glivenko-Cantelli classes, but not conversely. In
the above definition BP is the P -Brownian bridge. It is a Gaussian process indexed
by f ∈ G ⊂ L2(P ) with mean 0 and covariance function

P
(
BP (f)BP (g)

)
= P

(
(f − Pf)(g − Pg)

)
= P (fg)− P (f)P (g).

The class G is pre-Gaussian if BP can be defined on a probability space such that
for almost all ω, f 7→ BP (f)(ω) is bounded and uniformly continuous for ρP as
a function from G to R. Consequently En and BP can be considered as random
elements with values in the metric space l∞(G). We refer to [13] for more details.
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Theorem 5.11 ([13, theorem 3.7.2]). A class of measurable functions G ⊂ L2(P )
is Donsker for P if and only if G is totally bounded in L2(P ) and satisfies the
asymptotic equicontinuity condition (5.35) with dG = ρP .

We now require conditions to verify the Donsker property. This is achieved by
imposing a uniform entropy bound.

Theorem 5.12 (Koltchinskii-Pollard Central Limit Theorem, [13, theorem 6.3.1]).
Let (Ω,F , P ) be a probability space and G ⊂ L2(Ω,F , P ) a class of functions with
envelope G ∈ L2(Ω,F , P ). Assume that G satisfies appropriate measurability con-
ditions. If ∫ 1

0

sup
Q

√
log N(ε‖G‖2,Q,G, d2,Q)dε < ∞ (5.37)

where the supremum is taken over probability measures Q concentrated on finite
sets, then G is Donsker for P .

In light of the covering number bounds of VC subgraph classes we have

Corollary 5.13. If G ⊂ L2(Ω,F , P ) is a VC subgraph class with envelope G ∈
L2(Ω,F , P ), then G is Donsker for P .

6. Sample Error

As in section 5, let Pn be the empirical measure and En the empirical process
based on n independent sample path X1, . . . , Xn of the Markov process X. Then,
the approximate q-function q̂n,H can be viewed as a random element on Ω∞ with
values in L2(X) and the sample error as a random variable on Ω∞. Assume from
now on that the approximation architectureH is held fixed. Introduce the quadratic
loss functions

lt : L2(Rd, µXt)× L2(X) → L1(X), lt(u, h)(x) =
(
u(xt)− yh,t+1(x)

)2
. (6.1)

For u, v, w ∈ L2(Rd, µXt) and h ∈ L2(X), it follows that

lt(u, h) = lt(v, h) + (2v − yh,t+1)(u− v) + (u− v)2, (6.2)

showing that lt(u, h), as a function of u, is Fréchet differentiable with

D1lt(u, h) = M(2u−yh,t+1), D2
1lt(u, h) = M2. (6.3)

Here, Ma is the multiplication operator by a. Define the risk and empirical risk
functional

Lt(u, h) = P lt(u, h)(X),

Lt,n(u, h) = Pn lt(u, h)(X).
(6.4)

Integrating (6.2) shows that Lt(u, h) is differentiable in u with

D1Lt(u, h)(v) = 2 P
(
u(Xt)− yh,t+1(X)

)
v(Xt),

D2
1Lt(u, h)(v, w) = 2 P v(Xt)w(Xt).

(6.5)

Introduce the minimizers
q∗H,t(h) = arg min

u∈Ht

Lt(u, h),

q∗n,H,t(h) = arg min
u∈Ht

Ln,t(u, h).
(6.6)

parameterized by h ∈ L2(X). Note that they only depend on hs for s > t. Conse-
quently,

qH,t = q∗H,t(qH), q̂n,H,t = q∗n,H,t(q̂n,H). (6.7)
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Fix t and h ∈ L2(X) for the moment and let H be any approximation architecture.
The inequalities (1.1) translate to

0 ≤ Lt(q̂n, h)− Lt(q∗, h) = Lt(q̂n, h)− inf
uHt

Lt(u, h) ≤
Lt(q̂n, h)− Lt,n(q̂n, h) + sup

u∈Ht

(
Lt,n(u, h)− Lt(u, h)

) ≤

2 sup
u∈Ht

|Lt,n(u, h)− Lt(u, h)|,
(6.8)

where q̂n = q∗n,H,t(h), q∗ = q∗H,t(h), and

0 ≤ Lt,n(q̂n, h)− Lt(q̂n, h) ≤ sup
u∈Ht

|Lt,n(u, h)− Lt(u, h)|. (6.9)

Also note that from (6.2) and D1Lt(q∗H,t(h), h) = 0

P
(
q∗n,H,t(h)(Xt)− q∗H,t(h)(Xt)

)2 = Lt(q∗n,H,t(h), h)− Lt(q∗H,t(h), h), (6.10)

which provides (1.2). Almost sure convergence of the parameterized minimizers is
now a direct consequence of a Uniform Law of Large Numbers as explained in the
introduction.

6.1. Almost Sure Convergence. The application of empirical risk minimization
to control the sample error of the Longstaff-Schwartz algorithm is slightly more
involved. Instead of a fixed h ∈ L2(X) one has to deal with the approximate q-
functions q̂n,H,s of the previous time step s = t+1, . . . , T−1, which is are themselves
random elements.

Fix an approximation architecture H ⊂ L2(X). Let r > 0 and introduce the
following classes of functions

Yt = {yh,t | h ∈ H},
Lt = {lt(u, h) | u ∈ Ht, h ∈ H},

Ht(r) = {u ∈ Ht | ‖u(Xt)‖2,P ≤ r},
Lt(r) = {lt(u, h) | u ∈ Ht(r), h ∈ H}.

(6.11)

The class Yt has envelope Yt =
∑T

s=t+1 fs ∈ L2(Ω, P,F). If Ht(r) is compact,
which is for example the case whenever H is a linear approximation architecture of
finite dimension, then Ht(r) and Lt(r) have an envelope as well.

The outline for proving convergence of the sample estimator q̂n,H is now as
follows: Bound the covering number of the function classes (6.11) and prove a
compactness result for the sample minimizers to derive almost sure convergence of
q∗n,H,t(h). The continuity of the minimizers q∗H,t(h) in h is then used to finalize the
convergence proof.

Proposition 6.1. Let H is a linear approximation architecture of dim(H) = k.
Then, the class Ht has finite pseudo-dimension dimP (Ht) = k. Let Ht be an envelop
for Ht(r). Then, for any probability measure Q on (Ω,F) with ‖Ht‖2,Q > 0, the
covering number is bounded by

N(ε‖Ht‖2,Q,Ht(r), d2,Q) ≤ e(k + 1)
(

8e

ε2

)k

Proof. Apply propositions 5.5 and 5.6. ¤
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Proposition 6.2. Let H is an approximation architecture of dimP (H) = k. Then,
the class Yt has finite pseudo-dimension

dYt = dimP (Yt) ≤

K inf{j ∈ N | j

log2(ej)
> (T − t)} ≤ 2(T − t) log2(e(T − t))k (6.12)

In particular, for any probability measure Q on (Ω,F) with ‖Yt‖2,Q > 0, the covering
number is bounded by

N(ε‖Y ‖2,Q,Yt, d2,Q) ≤ e(dYt
+ 1)

(
8e

ε2

)dYt

.

Proof. First observe that if G is a vector space of real-valued functions of dimension
d and g is an arbitrary real-valued function, then, by proposition 5.5, the class

nn(g + G) = {{g + f ≥ 0} | f ∈ G}
is a VC class of VC dimension d, equivalently, the class of corresponding indicator
functions has pseudo-dimension d. This applies in particular to the classes

AH,t =
{
Ah,t = {x ∈ Rd | h(x)t ≤ f(x)t} | h ∈ H

}
(6.13)

whenever Ht are of finite dimension or more generally of finite pseudo-dimension.
Without restriction we can assume that t = 0. From (2.18) and (2.19) and the
definition of the classes AH,t it follows that

yh(x) ≡ yh,0(x) = 〈f(x),1Ah
(x)〉, (6.14)

where

1Ah
(x) =

(
1Ah,0(x0), 1Ac

h,0
(x0)1Ah,1(x1), . . . ,

1Ac
h,0

(x0) · · · 1Ac
h,T−2

(xT−2)1Ah,T−1(xT−1), 1Ac
h,0

(x0) · · · 1Ac
h,T−1

(xT−1)
)
, (6.15)

and 〈·, ·〉 is the ordinary euclidian scalar product in RT+1. Let (x1, . . . , xn) ⊂ R
be a fixed, but arbitrary subset of cardinality n and let (t1, . . . , tn) be an arbitrary
threshold vector. To bound the pseudo-dimension of Y0 on has to investigate the
cardinality of

S(t1, . . . , tn) =

{( sign(〈f(x1),1Ah
(x1)〉 − t1), . . . , sign(〈f(xn),1Ah

(xn)〉 − tn)
) | h ∈ H}

as a subset of {0, 1}n. Let ∆C(m) be the growth function of a VC class, introduced
in (5.19). As h varies over H the first column of the matrix




1Ah
(x1)
...

1Ah
(xn)




can take on ∆AH,0(n) different vectors in {0, 1}n of the maximal possible cardinality
2n. For the subsequent columns corresponding to t > 0, additional degree of freedom
is generated only by the indicator functions 1Ah,t

. Consequently,

#S(t1, . . . , tn) ≤ ∆AH,0(n) · · ·∆AH,T−1(n) ≤
(e n

k

)T k

< 2n

for n sufficiently large. Note that the above bound is independent of (t1, . . . , tn)
and holds for any set of cardinality n. As a result, Y0 cannot pseudo-shatter sets
of cardinality n for n large enough, because this would require at least 2n different
graphs over an n-point set. Finally, to bound the pseudo-dimension of Y0 observe
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that dimP (Y0) ≤ n0 if it cannot pseudo-shatter n-point set for n > n0. By the
above remarks, this is equivalent to

#S(t1, . . . , tn) < 2n

for n > n0 or by the above estimate,
(e n

k

)T k

< 2n

for n > n0. Looking for solutions n0 = jk that are multiples of k yields

T log2(ej) < j,

which is satisfied for example by j = 2T log2(e T ). ¤

Corollary 6.3. Let H ⊂ L2(X) be a finite dimensional linear approximation ar-
chitecture. Then the classes Yt,Ht(r),Lt(r) are Glivenko-Cantelli classes.

Proof. All classes have an L1 envelope. Because the L1 metric is shorter than the
L2 metric hence, by (5.6) the above L2 covering number bounds imply the required
L1 covering number bounds. ¤

The next step is to show that the sample minimizers q̂n,H remain almost surely
in a compact set of the approximation architecture H. It relies crucially on the
convexity of the criterion function.

Lemma 6.4 (Compactness Lemma). There exists a compact subset K ⊂ H such
that for all h ∈ K, q∗H,t(h) ∈ Ht ∩ K and q∗n,H,t(h) ∈ Ht ∩ K almost surely for
n →∞.

Proof. Denote by Br(x) the metric ball of radius r around x. The proof is by
induction. For t = T − 1, note that q∗H,t(h) and q∗n,H,t(h) are independent of h.
Let ε > 0 arbitrary. Choose rT−1 > 0 large enough such that Bε(q∗H,t(h)) ⊂
HT−1(rT−1). Because LT−1(rT−1) is a Glivenko-Cantelli class,

supu∈HT−1(rT−1),h∈H|Ln,T−1(u, h)− LT−1(u, h)| → 0

almost sure. This and the convexity of LT−1(u, h) as a function of u shows that
Ln,T−1(u, h) must have a local minimum in Bε(q∗H,t(h)) almost surely for n large
enough. By the convexity of Ln,T−1(u, h), this local minimum must be the unique
global minimum q∗n,H,t(h) of Ln,T−1(u, h).

Now let t < T − 1. Choose rt > 0 large enough such that Bε(q∗H,t(h)) ⊂ Ht(rt)
for all h ∈ H with hs ∈ Hs(rs), s > t. Fix an h with this property. The same
argument as before shows that q∗n,H,t(h) ∈ Bε(q∗H,t(h)) almost surely for n large
enough. ¤

Proposition 6.5 (Convergence of Parameterized Minimizers).

limn→∞ ‖q∗n,H,t(h)(Xt)− q∗H,t(h)(Xt)‖2,P = 0, (6.16)

P-almost surely, uniformly in h ∈ K.

Proof. From (6.10) and (6.8) it follows that for an arbitrary h ∈ K

P
(
q∗n,H,t(h)− q∗H,t(h)

)2(X) = Lt(q̂n, h)− Lt(q∗, h) ≤
2 supu∈Ht∩K|Lt,n(u, h)− Lt(u, h)| ≤

2 supu∈Ht∩K,h∈K|Lt,n(u, h)− Lt(u, h)|. (6.17)

By compactness, Ht ∩ K × K has an envelope in L2 and is therefore a Glivenko-
Cantelli class. The right hand side of the above estimate converges to zero almost
surely. ¤
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Lemma 6.6 (Continuity Lemma). Assume that f ∈ L2(X) and that h ∈ L2(X)
satisfies

P
(
h(X)t = f(X)t

)
= 0, ∀ t. (6.18)

Let gn : Ω∞ → L2(X) a sequence of random elements, such that for all s ≥ t,
gn(X)s → h(X)s in probability, P-almost sure for n →∞, that is for every ε > 0,

limn→∞ P
(|gn(X)s − h(X)s| > ε

)
= 0, (6.19)

P-almost sure. Then

limn→∞ ‖ygn,t(X)− yh,t(X)‖2,P = 0 (6.20)

P-almost sure.

Proof. Integrate the point-wise estimate (2.23).

‖ygn,t(X)− yh,t(X)‖2,P ≤
T−1∑
s=t

T−1∑
r=s

‖f(X)r 1{|f(X)s−h(X)s|≤|gn(X)s−h(X)s|}‖2,P . (6.21)

To proceed further, let a > 0 be arbitrary. Then,

P
(
f2(X)r 1{|f(X)s−h(X)s|≤|gn(X)s−h(X)s|}

) ≤
aP

(|f(X)s − h(X)s| ≤ |gn(X)s − h(X)s|
)

+ P
(
f2(X)r 1{f2(X)r>a}

)
. (6.22)

Let η > 0. Choose a large enough such that the last term in (6.22) is smaller than
η. Now for ε > 0 arbitrary

aP
(|f(X)s − h(X)s| ≤ |gn(X)s − h(X)s|

) ≤
aP

(|f(X)s − h(X)s| ≤ ε
)

+ aP
(|gn(X)s − h(X)s| > ε

)
. (6.23)

By (6.18), one can choose ε > 0 small enough such that the first term is less than
η and then select n0 large enough such the last term in (6.23) is bounded by η for
all n > n0, P-almost sure. Consequently,

P
(
f2(X)r 1{|f(X)s−h(X)s|≤|gn(X)s−h(X)s|}

) ≤ 3η

for n > n0, P-almost sure. ¤
Remark 6.7. The conclusion of lemma 6.6 holds in particular if

‖gn(X)s − h(X)s‖2,P → 0,

P-almost sure.

Theorem 6.8. Assume that the payoff f is in L2(X) and that

P
(
qH(X)t = f(X)t

)
= 0, ∀ t. (6.24)

Then, the sequence of random elements q̂n,H : Ω∞ → H ⊂ L2(X) converges P-
almost surely to qH ∈ H in the norm of L2(X) for n →∞.

Proof. The proof follows by induction. Noting that q∗H,T−1(h) is constant in h, the
case of t = T − 1 is already established by (6.16). Let t < T − 1 and make use of
the recursions qH,t = q∗H,t(qH) and q̂n,H,t = q∗n,H,t(q̂n,H). Then

‖qH(X)t − q̂n,H(X)t‖2,P ≤ ‖q∗H,t(qH)(Xt)− q∗H,t(q̂n,H)(Xt)‖2,P +

‖q∗H,t(q̂n,H)(Xt)− q∗n,H,t(q̂n,H)(Xt)‖2,P .

For the first term,

‖q∗H,t(qH)(Xt)− q∗H,t(q̂n,H)(Xt)‖2,P = ‖prHt

(
yqH,t+1(X)− yq̂n,H,t+1(X)

)‖2,P .

By lemma 6.6 and the induction hypothesis, this converges to zero almost surely as
well. The second term converges to zero almost surely by lemma 6.4 and proposition
6.5. ¤
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6.2. Convergence of Stopping Times. In section 2.8 it has been noted that the
functionals τq,t are not continuous on all of R. However, conditions like

P
(
qH(X)t = f(X)t

)
= P

(
q(X)t = f(X)t

)
= 0, ∀ t. (6.25)

enforce that the set of discontinuities have P -measure zero, hence weak convergence
of τqH,t(X) to τq,t(X) for dimH → ∞ follows from the generalized continuous
mapping theorem. Proposition 2.4 allows a refined analysis.

Theorem 6.9. Assume that f ∈ L2(X) and that (6.25) holds for a sequence of
approximation architectures Hk of dimension k. If qHk → q in probability for
k →∞, then

limk→∞ ‖τ∗t − τqHk ,t(X)‖2,P = 0. (6.26)

If q̂n,Hk → qHk in probability for k →∞, P-almost sure, that is for all ε > 0,

limn→∞ P
(|q̂n,Hk(X)s − qHk(X)s| > ε

)
= 0

P-almost sure, then for every k

limn→∞ ‖τqHk ,t(X)− τq̂
n,Hk ,t(X)‖2,P = 0. (6.27)

P-almost sure.

Proof. Note that τ∗t = τq,t(X). From proposition 2.4

‖τq,t(X)− τqHk ,t(X)‖2,P ≤
T−1∑
s=t

(
s + . . . + T

)
P

(|f(X)s − q(X)s| ≤ |q(X)s − qHk(X)s|
)
.

But for ε > 0

P
(|f(X)s − q(X)s| ≤ |q(X)s − qHk(X)s|

) ≤
P

(|f(X)s − q(X)s| ≤ ε
)

+ P
(|q(X)s − qHk(X)s| > ε

)
,

which can be made arbitrarily small for ε small enough and k large enough, (6.26)
follows. The reasoning for (6.27) is similar as the above estimates hold P-almost
sure for qHk in place of q and q̂n,Hk in place of qHk . ¤

6.3. Error Probabilities and Sample Complexity. Let H be a linear approx-
imation architecture of dimension k. The sample complexity function n(k, ε, η) is
defined as

n(k, ε, η) = inf{n | P(‖q̂n,H − qH‖22,X > ε
) ≤ η}. (6.28)

It provides a worst case measure for the number of samples required to achieve a
small sampling error with high confidence.

To efficiently estimate the error probabilities P
(‖q̂n,H − qH‖22,X > ε

)
in terms of

exponential inequalities we impose the following stronger assumption on the payoff
function and the approximation architecture.

Hypothesis 6.10. Assume f ∈ L∞(X), that H is a finite dimensional linear
approximation architecture satisfying H ⊂ L∞(X), and that for all t,

P
(|qH(X)t − f(X)t| ≤ x

)
= o(x) (6.29)

as x → 0.

Note that in view of proposition 2.1, restricting to bounded payoff functions
is feasible. It can be verified that condition (6.29) holds if the random variable
|qH(X)t − f(X)t| has a bounded density near 0. This is the case for the relevant
practical examples. However, a stronger decay rate is typically false as can be seen
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even in the simplest case of an American put option and a polynomial approxima-
tion architecture.

Under hypothesis 6.10 there exists r > 0 such that lt(u, h) ∈ Lt(r) for u ∈
Ht ∩ K, h ∈ K and Lt(r) is uniformly bounded by some constant L = (H + Y )2,
where Y = ‖f‖∞,X and H is an uniform bound for Ht(r). Note that the bound H
is not explicit. We therefore may want to restrict the approximation architecture
explicitly to a compact domain. This compact domain is required to grow with
increasing sample size. This leads to sieve estimators, see section 8.

The following recursive error probability estimate can now be proved.

Proposition 6.11. Impose hypothesis 6.10. Then there exists a constant C(H),
depending on H, such that for all ε > 0

P
(‖q̂n,H(X)t − qH(X)t‖22,P > ε

) ≤
T−1∑

s=t+1

P
(‖q̂n,H(X)s − qH(X)s‖22,P >

ε2

C(H)‖f‖4∞,X

)
+

P
(
supu∈Ht∩K,h∈K|Lt,n(u, h)− Lt(u, h)| > ε

2
)
. (6.30)

Proof. As in the proof of theorem 6.8

P
(‖q̂n,H(X)t − qH(X)t‖2,P >

√
ε
) ≤

P
(‖q∗H,t(qH)(X)t − q∗H,t(q̂n,H)(X)t‖2,P >

√
ε
)

+

P
(‖q∗H,t(q̂n,H)(X)t − q∗n,H,t(q̂n,H)(X)t‖2,P >

√
ε
)

= I1 + I2

For the first term by the definition of q∗H,t, proposition 2.4 and the triangle inequality

I1 ≤ P
(‖yqH,t+1(X)t − yq̂n,H,t+1(X)t‖2,P >

√
ε
) ≤

T−1∑
s=t+1

P
(‖f‖∞,XP (|f(X)s − qH(X)s| ≤ |q̂n,H(X)s − qH(X)s|)1/2 >

√
ε
)

But

P
(|f(X)s − qH(X)s| ≤ |q̂n,H(X)s − qH(X)s|

) ≤ c
(‖q̂n,H(X)s − qH(X)s‖∞,P

)
.

(6.31)
Therefore

I1 ≤
T−1∑

s=t+1

P
(
‖q̂n,H(X)s − qH(X)s‖∞,P >

ε

‖f‖2∞,X

)

Now on a finite dimensional vector space all norms are equivalent. The bound for
I2 follows directly from (6.17). ¤

Remark 6.12. For specific linear approximation architectures H the L2-norm and
the L∞ norm are connected by an inequality of the form

‖h(X)t‖∞,P ≤ c
√

k‖h(X)t‖2,P (6.32)

for all h ∈ Ht, where k = dim(Ht). Examples are architectures generated by
uniformly bounded basis functions such as trigonometric systems, piecewise poly-
nomials, splines but also wavelets. This makes the constant C(H) appearing in
more explicit.

It is important to note that in the first term on the right hand side of (6.30)
deteriorates the estimate by an additional power in ε. The second term can be
bounded by the uniform deviation inequality (5.33) of Talagrand.
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Proposition 6.13.

P
(
supl∈Lt(r)|Pnl − Pl| > ε

) ≤
(

C(V )
√

n ε√
D L

)D

exp
(
−2nε2

L2

)
(6.33)

where
D = 4

(
dHt

+ dYt

)
, V =

(
e2(dHt

+ 1)(dYt
+ 1)

)1/D(
213e

)1/4
.

Proof. From lemma (5.3) and theorem 5.6

N(εL,Lt(r), d2,P ) ≤ N(
ε

2
(H + Y ),Ht − Yt, d4,P ) ≤

N(
ε

4
(H + Y ),Ht(r), d4,P )N(

ε

4
(H + Y ),Yt, d4,P ) ≤

N(
ε

4
H,Ht(r), d4,P )N(

ε

4
Y,Yt, d4,P ) ≤ e2(dHt

+ 1)(dYt
+ 1)

(
213e

ε4

)dHt+dYt

Then apply (5.33). ¤

It is possible to lower d to 2(dHt + dYt) by using d2,P in place of d4,P . However,
in this case the constant V would depend on ‖f‖∞,X and on the bound L.

Remark 6.14. Vapnik [45, 46] provides uniform onesided deviation inequalities as
well. However, they require that the classes of functions are so called VC major
classes. He also proved deviation inequalities for classes of nonnegative functions
satisfying some moment inequalities. We only showed that the classes L are VC
subgraph classes. This is why we prefer to apply Talagrand’s estimate. For basic
relation between the two concepts see [13] and [42].

We can now combine propositions 6.12 and 6.13 to obtain an exponential error
probability estimate.

Theorem 6.15. Assume hypothesis 6.10 holds. Then

P
(‖q̂n,H(X)t − qH(X)t‖22,P > ε

) ≤

≤ (T − t)2T−t

(
C(V )

√
n ε√
D L

)D

exp
(
− n

2L2

( ε

C(H)‖f‖4∞,P

)2T−t−1)
(6.34)

where D and V are as in proposition 6.13 and C(H) is from proposition 6.12.

Proof. Set at(n) = ‖q̂n,H(X)t− qH(X)t‖22,P and bt(n) = supl∈Lt(r)|Pnl−Pl|. From
proposition 6.12

P
(
at(n) > ε

) ≤ P(
bt(n) >

ε

2
)

+ P
(
bt+1(n) >

εt+1

2
)
+

T−1∑
s=t+2

(
P
(
as(n) > εt+1

)
+ P

(
as(n) >

ε2
t+1

C(H)‖f‖4∞,P

))
,

where εt = ε and εs+1 = ε2
s/(C(H)‖f‖4∞,P ) is defined recursively for s > t. Without

restriction we may assume that C(H)‖f‖4∞,X ≥ 1, hence

P
(
at(n) > ε

) ≤ P(
bt(n) >

ε

2
)

+ P
(
bt+1(n) >

εt+1

2
)
+

2
T−1∑

s=t+2

P
(
as(n) > εt+2

) ≤

P
(
bt(n) >

ε

2
)

+
T−1∑

s=t+1

2s−t−1P
(
bs(n) >

εs

2
)
,
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and from proposition 6.13

P
(
at(n) > ε

) ≤ (T − t)2T−t

(
C(V )

√
n ε√
dL

)d

exp
(
− nε2

T−1

2L2

)
.

Now apply the defining recursion for εs to derive the final estimate (6.34). ¤

Consequently, increasing the number of time steps causes arbitrarily slow ex-
ponential convergence of the error probability. This unpleasant feature of the
Longstaff-Schwartz algorithm is primarily a consequence of the lack of smooth-
ness of the functional yt,h in h, which leads to a non-negligible error propagation in
the backward recursion. A potential improvement is sketched in section 9.

7. Central Limit Theorem

The advantage of the empirical process setup is that Central Limit Theorems can
be proved by a delta method, which builds on a first order Taylor expansion of the
criterion function. It turns out that the regularity condition required for the remain-
der term is a sort of stochastic equicontinuity condition, which is typically verified
by empirical process techniques. The following result for sequences that come close
enough to sample minimizers is particularly convenient for our application.

Theorem 7.1 (Pollard, [35, Section VII.1, Theorem 5]). Let (Ω, P ) be a probability
space, V a finite dimensional vector space with scalar product 〈·, ·〉, and K ⊂ V a
parameter set. Let l : K × Ω → R and define L(h) = Pl(·, h), Ln(h) = Pnl(·, h).
Introduce the minimizers by h∗ = argminh∈KL(h) and h∗n = argminh∈HLn(h).
Assume that the function l satisfies in a neighborhood of h∗ the expansion

l(h, ·) = l(h∗, ·) + 〈∆h∗(·), h− h∗〉+ ‖h− h∗‖ rh∗(h, ·) (7.1)

for some functions ∆ = ∆h∗ : Ω → V and rh∗(h, ·) : Ω → R. Let hn ∈ K be a
sequence such that

Ln(hn) = inf
h∈K

Ln(h) + oP (n−1). (7.2)

Assume furthermore
(i) h∗ is an interior point of K,
(ii) L has a non-singular 2nd derivative matrix Γ at h∗.
(iii) ∆h∗(·) ∈ L2(Ω, P ),
(iv) En indexed by {rh∗(h, ·) | h ∈ K} is stochastically equicontinuous at h∗.

Then, the Central Limit Theorem holds, i.e.,
√

n
(
hn − h∗

) w−→ N
(
0,Γ−1(P (∆∆t)− P (∆)P (∆)t)Γ−1

)
. (7.3)

Arcones investigated in a series of papers approximate M -estimators and their
limit behavior. In particular he determined the rate for (7.2), such that the ap-
proximate M -estimator is asymptotically normal with rate n1/2. We refer to [1] for
more details.

Corollary 7.2. Let ‖ · ‖ be a norm on V . Then

‖hn − h∗‖ = OP (n−1/2). (7.4)

Proof. Abbreviate Γ−1(P (∆∆t) − P (∆)P (∆)t)Γ−1 by G. Let ε > 0 and take Mε

such that P
(‖N(0, G)‖ > Mε

)
< ε. But by weak convergence (7.3)

|P (
n1/2‖hn − h∗‖ > Mε

)− P
(‖N(0, G)‖ > Mε

)| < ε,

for n sufficiently large, hence

P
(
n1/2‖hn − h∗‖ > Mε

)
< 2ε,

which proves (7.4) by definition of OP . ¤
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For every fixed t, theorem 7.1 applies to the Longstaff-Schwartz algorithm via
the translation

l(h, ω) = lt(h, qH)(X(ω)),

and L(h) = Lt(h, qH), Ln(h) = Lt,n(h, qH). Consequently, the roles of h∗n and hn

are taken by

h∗n = q̄n,H,t = q∗n,H,t(qH),

hn = q̂n,H,t = q∗n,H,t(q̂n,H).
(7.5)

Expand every g ∈ Ht in a basis bi
t and identify g =

∑k
i=1 λi(g) bi

t with λ(g) ∈ Rk.
Then (6.2) can be expressed as

lt(g, u) = lt(h, u) + 〈∆h,u(x), λ(g − h)〉+
1
2
〈Γh,u(x)λ(g − h), λ(g − h)〉, (7.6)

where

∆h,u : R→ Rk, ∆h,u(x) = 2
(
h(xt)− yu,t+1(x)

)



b1(xt)
...

bk(xt)


 (7.7)

and
Γh,u : R→ Rk×k, Γh,u(x)i,j = 2bi(xt)bj(xt) (7.8)

corresponds to the gradient respectively Hessian and 〈·, ·〉 is the euclidian scalar
product. This establishes 7.1. Assumptions (i)-(iii) can be checked in a straightfor-
ward manner, whereas (iv) can be verified by empirical process techniques. Condi-
tion (7.2) is more involved and depends on the continuity of the functional q∗n,H,t.

Proposition 7.3. Assume that in addition to 6.10,

‖q̂n,H(X)s − qH(X)s‖2,P = OP(n−1/2) (7.9)

for s > t, then, condition (7.2) is satisfied for t, i.e., for every ε > 0,

P
(|Lt,n(q̄n,H,t, qH)− Lt,n(q̂n,H,t, qH)| ≥ ε

n

) → 0 (7.10)

for n →∞.

Proof. Integrating (6.2) with respect to Pn gives

Ln,t(q̂n,H,t, qH)− Ln,t(q̄n,H,t, qH) = Pn

(
q∗n,H,t(q̂n,H)(Xt)− q∗n,H,t(qH)(Xt)

)2
.

By the continuity lemma 6.6, if q̂n,H,s is close to qH,s, for s > t, the right hand
side is expected to be small as well. To make this precise, note that the sample
minimizers q∗n,H,t(h) are characterized by

D1Ln,t(q∗n,H,t(h), h) = 0,

which is equivalent to

Pn

(
(q∗n,H,t(h)(Xt)− yh,t+1(X)) vt(Xt)

)
= 0 ∀ vt ∈ Ht.

Apply this to obtain

Pn

(
(q̂n,H,t − q̄n,H,t)(Xt) vt(Xt)

)
= Pn

(
(yqH,t+1 − yq̂n,H,t+1)(X) vt(Xt)

)
.

Set vt = q̂n,H,t − q̄n,H,t ∈ Ht and apply the Cauchy-Schwarz inequality to get

‖(q̂n,H,t − q̄n,H,t)(Xt)‖2,Pn ≤ ‖(yqH,t+1 − yq̂n,H,t+1)(X)‖2,Pn .

The class Yt is Glivenko-Cantelli. Therefore

‖(yqH,t+1 − yq̂n,H,t+1)(X)‖2,Pn ≤ 2‖(yqH,t+1 − yq̂n,H,t+1)(X)‖2,P
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almost sure, as n →∞. The point-wise estimate (2.23) of proposition 2.4 yields

‖(yqH,t+1 − yq̂n,H,t+1)(X)‖2,P ≤

‖f‖∞,X

T−1∑
s=t+1

(T − s) P
(|f(X)s − qH(X)s| ≤ |q̂n,H(X)s − qH(X)s|

)
.

Note that on a finite dimensional vector space all norms are equivalent. Conse-
quently, if (7.9) holds for ‖ · ‖2,P it also holds for ‖ · ‖∞,P and hypotheses 6.10
imply

P
(|f(X)s − qH(X)s| ≤ |q̂n,H(X)s − qH(X)s|

) ≤
P

(|f(X)s − qH(X)s| ≤ ‖q̂n,H(X)s − qH(X)s‖∞,P

) ≤
o
(‖q̂n,H(X)s − qH(X)s‖∞,P

) ≤ oP(n−1/2),

hence

|Ln,t(q̂n,H,t, qH)− Ln,t(q̄n,H,t, qH)| ≤ ‖(q̂n,H,t − q̄n,H,t)(Xt)‖22,Pn
= oP(n−1),

proving (7.10). ¤

Proposition 7.4. Condition (i)-(iv) of theorem 7.1 are satisfied.

Proof. Condition (i), (ii) are obviously satisfied by lemma 6.4 choosing K sufficiently
large. (iii) holds whenever f ∈ L2(X). As for condition (iv)

R =
{

rqH,t
(h) =

〈ΓqH,t,qH(x)λ(h− qH), λ(h− qH)〉
2‖λ(h− qH)‖ | h ∈ Ht

}
(7.11)

R is a subset of the linear finite dimensional space spanned by {1/2 bi
t bj

t | 1 ≤ i ≤
j ≤ k}. As such it is a VC subgraph class. The coefficients of r ∈ R are restricted
to euclidian length 1. Therefore, R has an envelope in L∞(X), hence in L2(X) and
is a Donsker class by corollary 5.13. Condition (iv) is satisfies by theorem 5.11. ¤

We can now derive a Central Limit Theorem for the Longstaff-Schwartz algo-
rithm.

Theorem 7.5. Assume that hypothesis 6.10 holds. Select for every approximation
space Ht a basis bi

t and set

∆ = ∆qH,t,qH , Γ = ΓqH,t,qH . (7.12)

Then
√

n
(
q̂n,H,t − qH,t

) w−→ N
(
0,Γ−1(P (∆∆t)− P (∆)P (∆)t)Γ−1

)
. (7.13)

Proof. The proof is by induction. For t = T − 1, condition (7.2) is void because,
q∗n,H,T−1(h) is constant in h, hence q̄n,H,T−1 = q̂n,H,T−1. Theorem 7.1 applies and
yields the desired weak convergence. As for t < T − 1, by corollary 7.2, (7.9) holds
for all s > t and proposition 7.3 implies (7.2). Theorem 7.1 applies again. ¤

8. A Sieved Longstaff-Schwartz Algorithm

A Uniform Law of Large Numbers may or may not hold, depending on the size
of the approximation architecture H, the structure of the loss functions lt, and on
the sampling distribution P . If the class of loss functions is too large, empirical
risk minimization may fail to converge. A rescue in such a case is a refinement of
empirical risk minimization called structural risk minimization or sieve estimation,
[46, 42]. Sieve estimation performs empirical risk minimization on a sequence of
approximation architectures H(n), called sieves, designed to grow with increasing
sample size in a suitable manner such that good approximation properties as well
as stable estimators can be guaranteed. This approach leads to a whole new family
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of algorithms for solving optimal stopping problems.

We provide one example of such a sieve estimator. Assume that H(n) is a
sequence of linear approximation architectures of dimension kn growing dense in
L2(X) for kn →∞. Let Hn > 0 and define the sieves

H(n)
t = H(n)

t (Hn) (8.1)

and define the classes Y(n)
t and L(n)

t as in (6.11) but with the compact approximation
architecture H(n). This amounts of truncating the coefficients relative to a basis. In
particular it enforces the compactness lemma 6.4 by construction of the algorithm.
This is also of importance for more general approximation architectures.

How do kn and Hn need to converge to ∞ such that we have convergence in
probability? Before we can proof such a consistency result, we need a version of
proposition 6.12 which does not depend on the approximation architecture.

Hypothesis 8.1. Let H(n) = H(n)
t (Hn) be a sequence of approximation architec-

tures, where H(n) ⊂ L∞(X) is a linear subspace of dimension kn. Assume that
∪nH(n) is dense in L2(X) and that

P
(|qH(n)(X)t − f(X)t| ≤ x

) ≤ Cx (8.2)

as x → 0, for a constant C independent of n.

Proposition 8.2. Let f ∈ L∞(X) and impose hypothesis 8.1. Then for all ε > 0

P
(‖q̂n,H(n)(X)t − qH(n)(X)t‖22,P > ε

) ≤
T−1∑

s=t+1

P
(‖q̂n,H(n)(X)s − qH(n)(X)s‖22,P >

4ε3

27C2‖f‖6∞,X

)
+

P
(
sup

l∈L(n)
t
|Pnl − Pl| > ε

2
)
. (8.3)

Proof. Fix n and let H = H(n). Start as in the proof of 6.12. Instead of apply now
the following estimate. For all η > 0,

P
(|f(X)s − qH(X)s| ≤ |q̂n,H(X)s − qH(X)s|

) ≤
P

(|f(X)s − qH(X)s| ≤ η) + P (|q̂n,H(X)s − qH(X)s| > η
) ≤

Cη + η−2‖q̂n,H(X)s − qH(X)s‖22,P (8.4)

where we used Chebyshev’s inequality to get the last line. Consequently

I1 ≤
T−1∑

s=t+1

P
(‖q̂n,H(X)s − qH(X)s‖22,P >

η2ε

‖f‖2∞,X

− Cη3
)

Optimizing over η, yields the optimal value of η = 2ε
3C‖f‖∞,X

. The bound for I2

follows directly from (6.17). ¤

Theorem 8.3. Let f ∈ L∞(X) and assume that hypothesis 8.1 holds. If kn,Hn →
∞ and

knH4
n log(Hn)

n
→ 0 (8.5)

then ‖q̂n,H(n)(X)t − q(X)t‖22,P
P−→ 0 for n →∞.

Proof. To derive our asymptotic result, (5.31) is preferred because the constants are
explicit. The reduction in the exponential decay factor is irrelevant for the purpose
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of our limit result. The class L(n)
t is uniformly bounded by Ln = (Hn + ‖f‖∞,P )2.

Bound the covering numbers

N(εLn,L(n)
t , d1,Pn

) ≤ N
(ε(Hn + ‖f‖∞,P )

2
,H(n)

t − Y(n)
t , d2,Pn

) ≤

N
(εHn

4
,H(n)

t , d2,Pn

)
N

(ε‖f‖∞,P

4
,Y(n)

t , d2,Pn

) ≤

e2(kn + 1)(knc + 1)

(
8
√

2e

ε

)2kn(1+c)

.

and apply (5.31)

P
(
sup

l∈L(n)
t
|Pnl − Pl| > ε

2
) ≤ 8E[N(

ε

16
,L(n)

t , d1,Pn)] exp
(
− nε2

512L2
n

)
≤

e2(kn + 1)(knc + 1)

(
128

√
2eLn

ε

)2kn(1+c)

exp
(
− nε2

512L2
n

)
.

where c = 2(T − t) log2(e(T − t)). Proceed as in in the proof of theorem 6.15 to
conclude that

P
(‖q̂n,H(n)(X)t − qH(n)(X)t‖22,P > ε

) ≤

(T − t)2T−te2(kn + 1)(knc + 1)

(
128

√
2eLn

ε

)2kn(1+c)

exp
(
− n

512L2
n

ε2
T−1

)

where εs satisfies the recursion εt = ε and εs+1 = 4ε3
s

27C2‖f‖6∞,X
. Inspecting the right

hand side shows that

P
(‖q̂n,H(n)(X)t − qH(n)(X)t‖22,P > ε

)

converges to zero if (8.5) holds. The convergence of the approximation error to zero
is clear. ¤

9. Outlook

Instead of using global linear approximation architectures, the algorithm could
be based on nonlinear architectures such as neural networks, radial basis functions
or n-term approximates. However solving the minimization problems (3.5) becomes
much harder because of the existence of many local extrema.

Another direction of generalization are local approximation schemes, such as k-
nearest neighbor and other kernel estimators like the Nadaraya-Watson estimator
or more generally local polynomial kernel regression estimators, [15]. These types
of architectures are appealing because their asymptotic optimality. Stone showed
in [38] that if the regression function m(x) = E[Y | X = x] is p-smooth, X, Y
are bounded and X has a density, then the L2-error of a local polynomial kernel
estimator converge to zero at a rate of n2p/(2p+d), and that this rate is optimal in
a minimax sense.

We would like to stress that both generalizations can be approached in the frame-
work of structural risk minimization.

Another improvement, which can be combined with the above extensions, is
obtained by replacing the stopping times τt,h of (2.18) with the fuzzy stopping
times

σt,α,h(x) = tθα(f(x)t − h(x)t) + σt+1,α,h(x)
(
1− θα(f(x)t − h(x)t)

)
(9.1)
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where θα(s) = (1+exp(−αs))−1 and α is a parameter. If α →∞, then θα converges
to the step function at 0, uniformly on the complement of every neighborhood of 0.
This smoothing approach is very similar to neural network models, where the hard
threshold function of the McCulloch–Pitts model is replaced by the sigmoidal acti-
vation function. The advantage of fuzzy stopping times is that the estimates (2.22),
(2.23) can be significantly improved. This leads to sharper exponential inequalities
for the sample error.

We plan to explore these extensions and refinements in a subsequent article.
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