Conformal Maps

Diego Ayala

Department of Mathematics and Statistics

February 4, 2014

э

(日) (同) (三) (

Outline

2 Further Examples

- 3 Flow Past an Airfoil
- Dirichlet Problem on a Strip

< ∰ ► < E ►

The Unit Disc and the Half Plane

The unit disc and the upper half-plane are defined as:

$$\begin{split} \mathbb{D} &= & \{z \in \mathbb{C} \colon |z| < 1\} \quad \text{and} \\ \mathbb{H} &= & \{z \in \mathbb{C} \colon \mathsf{Im}(z) > 0\} \,. \end{split}$$

Example

Consider F and G defined as:

$$F(z) = \frac{i-z}{i+z} \qquad G(w) = i\frac{1-w}{1+w}.$$

The map $F : \mathbb{H} \to \mathbb{D}$ is conformal, with inverse $F^{-1} = G : \mathbb{D} \to \mathbb{H}$.

イロト イポト イヨト イ

B 5

Unit Disc and the Half Plane

Notice that F(0) = 1 and

$$|F(z)|^2 = \frac{|i-z|^2}{|i+z|^2} = \frac{1+|z|^2 - 2\operatorname{Im}(z)}{1+|z|^2 + 2\operatorname{Im}(z)} < 1 \quad \text{for} \quad \operatorname{Im}(z) > 0$$

$$\operatorname{Im}(G(w)) = \operatorname{Re}\left(\frac{1-w}{1+w}\right) = \frac{1-|w|^2}{1+|w|^2} > 0 \quad \text{for} \quad |w|^2 < 1.$$

$$F(x+iy) = \frac{1-x^2-y^2}{x^2+(1+y)^2} + i\frac{2x}{x^2+(1+y)^2} \Rightarrow$$

$$F(iy) = \frac{1-y^2}{(1+y)^2} \Rightarrow \text{ y axis } \mapsto (-1,1) \text{ and}$$

$$|F(x)| = 1 \Rightarrow \text{ x axis } \mapsto \text{ boundary of unit circle.}$$

< □ > < □ > < □ > < □ > < □ > < □ >

Unit Disc and Half Plane

æ

イロト イポト イヨト イ

Unit Disc and Half Plane

イロト イポト イヨト イ

3 x 3

Example 1

For $\alpha \in (0,2)$, the map $f(z) = z^{\alpha}$ takes the upper half-plane \mathbb{H} into the sector $S = \{w \in \mathbb{C} : 0 < \arg(w) < \alpha \pi\}.$

< 17 > <

Example 2

The map f(z) = (1 + z)/(1 - z) takes $\mathbb{D}_+ = \{z = x + iy : |z| < 1, y > 0\}$ to $\mathsf{QI} = \{w = u + iv : u > 0, v > 0\}.$

э

イロト イポト イヨト イヨト

Example 3

The map $f(z) = \log_{\delta} z$, $\delta = \pi/2$, takes the upper half-plane \mathbb{H} to the strip $\{w = u + iv : u \in \mathbb{R}, v \in (0, \pi)\}.$

< ロト < 同ト < ヨト

Example 4

The function f(z) = 1/2(z+1/z) maps the exterior of \mathbb{D} to $\mathbb{C} \setminus [-1,1]$.

・ロト ・得ト ・ヨト ・

3 x 3

Flow Past an Airfoil

Velocity field $\mathbf{u} = (u_x, u_y)^T$ is tangent to the level curves of the stream function ψ . For incompressible $(\nabla \cdot \mathbf{u} = 0)$, irrotational $(\nabla \times \mathbf{u} = 0)$, ideal (no viscosity), steady (no time-dependance) flows, ψ is the imaginary part of the complex velocity potential, and it satisfies $\Delta \psi = 0$. The velocity is recovered from

$$\mathbf{u} = (\partial_y \psi, -\partial_x \psi)^{\mathsf{T}}$$

Example

The stream function $\psi(x, y) = y$ satisfies Laplace's equation in \mathbb{C} . The level curves are horizontal lines and $u_x = \partial_y \psi = 1$.

Flow Past an Airfoil

Flow Past an Airfoil

イロト イポト イヨト イヨト

Flow Past an Airfoil

Re(z)

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Flow Past an Airfoil

・ロト ・ 日 ・ ・ ヨ ・ ・ ヨ ・

Dirichlet Problem on a Strip

Proposition

Let $F: V \to U$ a holomorphic function. If $u: U \to \mathbb{R}$ is a harmonic function, then $u \circ F$ is also a harmonic function on V.

Consider, for $\Omega = \{z = x + iy : x \in \mathbb{R}, 0 < y < 1\}$, the Dirichlet problem:

$$\begin{cases} \Delta u = 0 \quad \text{in } \Omega \\ u = f \quad \text{on } \partial \Omega, \end{cases}$$
(1)

イロト イポト イヨト イ

The map $G: \Omega \to \mathbb{D}$ is conformal with inverse $G^{-1} = F: \mathbb{D} \to \Omega$.

$$G(z) = \frac{i - e^{\pi z}}{i + e^{\pi z}} \qquad F(w) = \frac{1}{\pi} \log \left(i \frac{1 - w}{1 + w} \right).$$

Dirichlet Problem on a Strip

Let
$$f(x + i0) = e^{-\alpha x^2}$$
 and $f(x + i1) = e^{-\alpha x^2}$.

(日)、

Dirichlet Problem on a Strip

Let
$$f(x + i0) = e^{-\alpha x^2}$$
 and $f(x + i1) = e^{-\alpha x^2}$.

