Math 3D03
 Short answers to assignment \#2

1. (8 marks) Evaluate the following definite (real-valued) integrals:

$$
\begin{aligned}
\text { (i) } \int_{0}^{\infty} \frac{(\log (x))^{2}}{1+x^{2}} d x & \text { (ii) } \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x \quad \text { for } 0<a<1 \\
\text { (iii) } \int_{0}^{\infty} \frac{\log (x)}{x^{\frac{3}{4}}(1+x)} d x & \text { (iv) } \int_{0}^{\infty} \frac{d x}{1+x^{n}} \quad \text { where } n \geq 2 \text { is an integer }
\end{aligned}
$$

(i) This is problem 24.21 in the textbook. Use a large semicircle of radius R in the upper half plane and the real line with a small semicircular dent of radius ϵ around the origin. Log is well-defined there. There is a simple pole at $z=i$ inside ythe contour with residue $\frac{(\log (i))^{2}}{2 i}=i \frac{\pi^{2}}{8}$. The integrals on the semicircular pieces go to zero when $R \rightarrow \infty$ and $\epsilon \rightarrow 0$. On the left part of the real axis, the \log is phase-shifted: $\left(\log \left(x e^{i \pi}\right)\right)^{2}=(\log x)^{2}+2 i \pi \log x-\pi^{2}$, so we get:

$$
2 \int_{0}^{\infty} \frac{(\log (x))^{2}}{1+x^{2}} d x+2 \pi i \int_{0}^{\infty} \frac{\log (x)}{1+x^{2}} d x-\pi^{2} \int_{0}^{\infty} \frac{d x}{1+x^{2}}=-\frac{\pi^{3}}{4}
$$

Equating real and imaginary parts we get:

$$
\int_{0}^{\infty} \frac{(\log (x))^{2}}{1+x^{2}} d x=\frac{\pi^{3}}{8} \quad \int_{0}^{\infty} \frac{\log (x)}{1+x^{2}} d x=0
$$

(ii) Use a long horizontal strip $[-R,+R] \times[0,2 \pi]$ above the x-axis as your contour The integral on the two vertical lines $\rightarrow 0$, as $R \rightarrow \infty$ since the integrand is bounded from above in amplitude by $\frac{e^{a R}}{e^{R}}$ (on the right vertical line) and by $e^{-a R}$ (on the left vertical) and $0<a<1$. On the upper horizontal line the integral is a phase shift by $e^{i a 2 \pi}$ of the integral on the x - axis (in the opposite direction). There is exactly one simple pole at $i \pi$ within the strip with residue $=\frac{e^{i a \pi}}{e^{i \pi}}=-e^{i a \pi}$. Therefore $\left(1-e^{i 2 a \pi}\right) \int_{-\infty}^{\infty} \frac{e^{a x} d x}{1+e^{x}}=-2 \pi i e^{i a \pi}$ and hence the answer is

$$
\int_{-\infty}^{\infty} \frac{e^{a x} d x}{1+e^{x}}=\frac{\pi}{\sin (a \pi)}
$$

(iii) This is problem 24.20 in the textbook. Use a key hole contour around the origin with a cut along the positive real axis.
There is exactly one simple pole at $z=\exp (i \pi)$ with residue $=i \pi \exp \left(-i \frac{3 \pi}{4}\right)=$.
Both circular integrals (around the little circle around zero and the big circle around ∞) go to 0 when you let the radii go to zero and ∞ respectively. The integral along the cut (the positive real axis) undergoes a phase shift when it comes back from ∞ :

$$
\int_{\infty}^{0} \frac{\log (x)+2 \pi i}{\exp \left(i \frac{3 \pi}{2}\right) x^{\frac{3}{4}}(1+x)} d x=-i \int_{0}^{\infty} \frac{\log (x)}{x^{\frac{3}{4}}(1+x)} d x+2 \pi \int_{0}^{\infty} \frac{d x}{x^{\frac{3}{4}}(1+x)}
$$

Hence

$$
(1-i) \int_{0}^{\infty} \frac{\log (x)}{x^{\frac{3}{4}}(1+x)} d x+2 \pi \int_{0}^{\infty} \frac{d x}{x^{\frac{3}{4}}(1+x)}=-2 \pi^{2} \exp \left(-i \frac{3 \pi}{4}\right)=\pi^{2} \sqrt{2}(1+i)
$$

Therefore:

$$
\int_{0}^{\infty} \frac{\log (x)}{x^{\frac{3}{4}}(1+x)} d x=-\pi^{2} \sqrt{2} \quad \int_{0}^{\infty} \frac{d x}{x^{\frac{3}{4}}(1+x)}=\pi \sqrt{2}
$$

(iv) This is problem 24.18 in the textbook but here is how you can do it:
$\oint_{C} \frac{1}{1+z^{n}} d z$, where the contour C is the $\frac{2 \pi}{n}$-sector (of radius $R \rightarrow \infty$) in the first quadrant. There is a single simple pole at $e^{i \frac{\pi}{n}}$ inside C with residue $=\frac{1}{n} e^{-i \frac{(n-1) \pi}{n}}=-\frac{1}{n} e^{i \frac{\pi}{n}}$. The integral along the ray $z=r e^{i \frac{2 \pi}{n}}$ is a phase shift by $e^{i \frac{2 \pi}{n}}$ of the integral on the x-axis (in the opposite direction). The integral on the circular arc tends to zero as $R \rightarrow \infty$, since $n \geq 2$. Therefore $\left(1-e^{i \frac{2 \pi}{n}}\right) \int_{0}^{\infty} \frac{d x}{1+x^{n}}=$ $-\frac{2 \pi i}{n} e^{i \frac{\pi}{n}}$ and hence

$$
\int_{0}^{\infty} \frac{d x}{1+x^{n}} d x=\frac{\pi}{n} \csc \left(\frac{\pi}{n}\right)
$$

2. (2 marks) How many zeros of the polynomial $z^{4}-5 z+1$ lie in the annulus $1 \leq|z| \leq 2$?

Answer: 3 zeros by Rouche's theorem:
On the outer circle $|z|=2,\left|z^{4}\right|>|-5 z+1|$ so there are exactly 4 roots in $|z| \leq 2$. On the other hand, $\left|z^{4}\right|<|-5 z+1|$ so there is exactly one root in $|z| \leq 1$
3. (6 marks) Sum the following infinite series:
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+9}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}$
(c) $\sum_{n=-\infty}^{\infty} \frac{n^{2}}{n^{4}-\pi^{4}}$
(a) The two residues of $\frac{\pi \cot (\pi z)}{z^{2}+9} d z$ at the two poles $z= \pm 3 i$ add up to

$$
\sum_{n=1}^{\infty} \frac{1}{n^{2}+9}=-\frac{1}{2}\left(\frac{\pi \cot (3 \pi i)}{6 i}+\frac{\pi \cot (-3 \pi i)}{-6 i}\right)=\frac{\pi}{6} \operatorname{coth}(3 \pi)-\frac{1}{18}
$$

$$
\begin{equation*}
\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}=\frac{1}{2} \operatorname{Res}\left(\frac{\pi \csc (\pi z) d z}{z^{4}} ; 0\right)=\frac{1}{2} \frac{(-1)^{3} 2\left(2^{3}-1\right) \pi^{4}}{4!} B_{4}=\frac{7 \pi^{4}}{720} \tag{b}
\end{equation*}
$$

(c)

$$
\sum_{n=-\infty}^{\infty} \frac{n^{2}}{n^{4}-\pi^{4}}=\text { sum of residues }\left(\frac{\pi \cot (\pi z) z^{2} d z}{z^{4}-\pi^{4}} ; \pm \pi, \pm i \pi\right)=\frac{1}{2}\left(\operatorname{coth}\left(\pi^{2}\right)-\cot \left(\pi^{2}\right)\right)
$$

4. (4 marks) Do problem 25.14 on page 922 - 923 in the text book.

Here you use a Bromwich contour with a branch cut from $+i$ to $-i$. Since there are no poles outside a closed contour containing that cut we are left with integrating around the "double key hole". The function $\log (z+i)-\log (z-i)$ is well defined around that contour and measures the difference of the arguments around the two pints $\pm i$. There is a phase shift of 2π for the angle difference after going around $+i$. The upshot is that the inverse Laplace transform is the sinc function $f(t)=\frac{\sin t}{t}$. You can check that also by differentiation since $F^{\prime}(s)=-\frac{1}{s^{2}+1}$.
5. (5 marks) Show that the map

$$
w=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

maps circles centered at the origin in the z-plane to ellipses in the w-plane. Draw some images. What happens to other circles? Find the image of the circle centered at the point $z_{0}=-\frac{1}{5}(1-i)$ with radius $\frac{1}{5} \sqrt{37}$ (Use Matlab or some other software to plot the graphs)
$w=u+i v=r e^{i \theta}+\frac{1}{r} e^{-i \theta}=\left(r+\frac{1}{r}\right) \cos \theta+\left(r-\frac{1}{r}\right) \sin \theta$ when $z=r e^{i \theta} \quad r \neq 1$. So the image of a circle centered at the origin is the curve in the w plane defined by:

$$
\frac{u^{2}}{\left(r+r^{-1}\right)^{2}}+\frac{v^{2}}{\left(r-r^{-1}\right)^{2}}=1
$$

This is an ellipse for $r>1$ and is a hyperbola for $r<1$. For $r=1$ we get $w=2 \cos \theta$, so the image is the line segment $[-2,+2]$
For the pictures see Diego's lecture on Tuesday (posted on the course home page).

6. (bonus question)

(i) Suppose that $f(z)$ is a non-constant analytic function defined for all $z \in \mathbb{C}$. Show that for every $R>0$ and for every $M>0$ there exists a z such that $|z|>R$ and $|f(z)|>M$.
(ii) Suppose that $f(z)$ is a non-constant polynomial. Show that for every $M>0$ there exists an $R>0$, such that $|f(z)|>M$ for all $|z|>R$.
(iii) Show that there exists an $M>0$, such that for every $R>0$, there exists a z satisfying $|z|>R$ and $\left|e^{z}\right| \leq M$.
(i) Arguing by contradiction, let us assume that there exists $R>0$ and $M>0$ such that $f(z) \leq M$ for every $|z|>R$. Let $a \in \mathbb{C}$. By the Cauchy integral formula : $f^{\prime}(a)=\frac{1}{2 \pi i} \oint_{C} \frac{f(z)}{(z-a)^{2}} d z$, where we choose C to be a circle of very large radius r (say $r=100(R+|a|)$). The integral is bounded from above in absolute value by the product of the length of that circle and the maximum absolute value of the integrand which is $\leq 2 \pi r \frac{M}{r^{2}}=\frac{2 \pi M}{r}$ and so $\left|f^{\prime}(a)\right| \leq \frac{M}{r}$ for any r sufficiently large. This proves that $f^{\prime}(a)=0$ for any a and hence f is a constant function.
(ii) By factoring out the top coefficient, we may assume that $p(z)=z^{n}+q(z)$, where $q(z)$ is a polynomial of degree $\leq n-1(n \geq 1)$. Since $\lim _{z \rightarrow \infty} \frac{q(z)}{z^{n}}=0$, we see that for $|z|$ sufficiently large $|q(z)|<0.1\left|z^{n}\right|$ and so $|p(z)| \geq 0.9|z|^{n} \geq 0.9 R^{n}$ for $|z| \geq R$ So for any given $M>0$, we can find R such that $|p(z)|>M$ for every z with $|z|>R$.
(iii) For every $R>0, z=2 i R$ satisfies $|z|>R$ and $\left|e^{z}\right| \leq 1$.

