
Math 3D03
Short answers to assignment #2

1. (8 marks) Evaluate the following definite (real-valued) integrals:

(i)

∫ ∞
0

(log(x))2

1 + x2
dx (ii)

∫ ∞
−∞

eax

1 + ex
dx for 0 < a < 1

(iii)

∫ ∞
0

log(x)

x
3
4 (1 + x)

dx (iv)

∫ ∞
0

dx

1 + xn
where n ≥ 2 is an integer

(i) This is problem 24.21 in the textbook. Use a large semicircle of radius R in the upper half plane
and the real line with a small semicircular dent of radius ε around the origin. Log is well-defined

there. There is a simple pole at z = i inside ythe contour with residue (log(i))2

2i = iπ
2

8 . The integrals
on the semicircular pieces go to zero when R→∞ and ε→ 0. On the left part of the real axis, the
log is phase-shifted: (log(xeiπ))2 = (log x)2 + 2iπ log x− π2, so we get:

2

∫ ∞
0

(log(x))2

1 + x2
dx+ 2πi

∫ ∞
0

log(x)

1 + x2
dx− π2

∫ ∞
0

dx

1 + x2
= −π

3

4

Equating real and imaginary parts we get:∫ ∞
0

(log(x))2

1 + x2
dx =

π3

8

∫ ∞
0

log(x)

1 + x2
dx = 0

(ii) Use a long horizontal strip [−R,+R] × [0, 2π] above the x−axis as your contour The integral
on the two vertical lines → 0, as R → ∞ since the integrand is bounded from above in amplitude
by eaR

eR
(on the right vertical line) and by e−aR (on the left vertical) and 0 < a < 1. On the upper

horizontal line the integral is a phase shift by eia2π of the integral on the x− axis (in the opposite

direction). There is exactly one simple pole at iπ within the strip with residue = eiaπ

eiπ
= −eiaπ.

Therefore (1− ei2aπ)
∫∞
−∞

eaxdx
1+ex = −2πieiaπ and hence the answer is∫ ∞

−∞

eaxdx

1 + ex
=

π

sin(aπ)

(iii) This is problem 24.20 in the textbook. Use a key hole contour around the origin with a cut
along the positive real axis.
There is exactly one simple pole at z = exp(iπ) with residue = iπ exp(−i3π4 ) =.
Both circular integrals (around the little circle around zero and the big circle around ∞) go to 0
when you let the radii go to zero and ∞ respectively. The integral along the cut (the positive real
axis) undergoes a phase shift when it comes back from ∞:∫ 0

∞

log(x) + 2πi

exp(i3π2 )x
3
4 (1 + x)

dx = −i
∫ ∞
0

log(x)

x
3
4 (1 + x)

dx+ 2π

∫ ∞
0

dx

x
3
4 (1 + x)

1



Hence

(1− i)
∫ ∞
0

log(x)

x
3
4 (1 + x)

dx+ 2π

∫ ∞
0

dx

x
3
4 (1 + x)

= −2π2 exp(−i3π
4

) = π2
√

2(1 + i)

Therefore: ∫ ∞
0

log(x)

x
3
4 (1 + x)

dx = −π2
√

2

∫ ∞
0

dx

x
3
4 (1 + x)

= π
√

2

(iv) This is problem 24.18 in the textbook but here is how you can do it:∮
C

1
1+zndz, where the contour C is the 2π

n −sector (of radius R →∞) in the first quadrant. There

is a single simple pole at ei
π
n inside C with residue = 1

ne
−i (n−1)π

n = − 1
ne

iπ
n . The integral along the

ray z = rei
2π
n is a phase shift by ei

2π
n of the integral on the x−axis (in the opposite direction). The

integral on the circular arc tends to zero as R →∞, since n ≥ 2. Therefore (1− ei
2π
n )
∫∞
0

dx
1+xn =

−2πi
n e

iπ
n and hence ∫ ∞

0

dx

1 + xn
dx =

π

n
csc(

π

n
)

.

2. (2 marks) How many zeros of the polynomial z4 − 5z + 1 lie in the annulus 1 ≤ |z| ≤ 2?

Answer: 3 zeros by Rouche’s theorem:
On the outer circle |z| = 2, |z4| > | − 5z + 1| so there are exactly 4 roots in |z| ≤ 2. On the other
hand, |z4| < | − 5z + 1| so there is exactly one root in |z| ≤ 1

3. (6 marks) Sum the following infinite series:

(a)
∞∑
n=1

1

n2 + 9
(b)

∞∑
n=1

(−1)n+1

n4
(c)

∞∑
n=−∞

n2

n4 − π4

(a) The two residues of π cot(πz)
z2+9

dz at the two poles z = ±3i add up to

∞∑
n=1

1

n2 + 9
= −1

2

(
π cot(3πi)

6i
+
π cot(−3πi)

−6i

)
=
π

6
coth(3π)− 1

18

(b)
∞∑
n=1

(−1)n+1

n4
=

1

2
Res

(
π csc(πz)dz

z4
; 0

)
=

1

2

(−1)32(23 − 1)π4

4!
B4 =

7π4

720

(c)

∞∑
n=−∞

n2

n4 − π4
= sum of residues

(
π cot(πz)z2dz

z4 − π4
;±π,±iπ

)
=

1

2
(coth(π2)− cot(π2))

2



4. (4 marks) Do problem 25.14 on page 922 - 923 in the text book.
Here you use a Bromwich contour with a branch cut from+i to −i. Since there are no poles outside
a closed contour containing that cut we are left with integrating around the ”double key hole”.
The function log(z+ i)− log(z− i) is well defined around that contour and measures the difference
of the arguments around the two pints ±i.There is a phase shift of 2π for the angle difference after
going around +i. The upshot is that the inverse Laplace transform is the sinc function f(t) = sin t

t .
You can check that also by differentiation since F ′(s) = − 1

s2+1
.

5. (5 marks) Show that the map

w =
1

2

(
z +

1

z

)
maps circles centered at the origin in the z-plane to ellipses in the w-plane. Draw some images.
What happens to other circles? Find the image of the circle centered at the point z0 = −1

5(1− i)
with radius 1

5

√
37 (Use Matlab or some other software to plot the graphs)

w = u+ iv = reiθ + 1
re
−iθ = (r+ 1

r ) cos θ+ (r− 1
r ) sin θ when z = reiθ r 6= 1. So the image of a

circle centered at the origin is the curve in the w plane defined by:

u2

(r + r−1)2
+

v2

(r − r−1)2
= 1

This is an ellipse for r > 1 and is a hyperbola for r < 1. For r = 1 we get w = 2 cos θ, so the image
is the line segment [−2,+2]
For the pictures see Diego’s lecture on Tuesday (posted on the course home page).

6. (bonus question)

(i) Suppose that f(z) is a non-constant analytic function defined for all z ∈ C . Show that for
every R > 0 and for every M > 0 there exists a z such that |z| > R and |f(z)| > M .

(ii) Suppose that f(z) is a non-constant polynomial. Show that for every M > 0 there exists an
R > 0 , such that |f(z)| > M for all |z| > R .

(iii) Show that there exists an M > 0 , such that for every R > 0 , there exists a z satisfying |z| > R
and |ez| ≤M .

(i) Arguing by contradiction, let us assume that there exists R > 0 and M > 0 such that f(z) ≤M
for every |z| > R. Let a ∈ C. By the Cauchy integral formula : f ′(a) = 1

2πi

∮
C

f(z)
(z−a)2dz, where

we choose C to be a circle of very large radius r (say r = 100(R + |a|)). The integral is bounded
from above in absolute value by the product of the length of that circle and the maximum absolute
value of the integrand which is ≤ 2πrM

r2
= 2πM

r and so |f ′(a)| ≤ M
r for any r sufficiently large.

This proves that f ′(a) = 0 for any a and hence f is a constant function.

(ii) By factoring out the top coefficient, we may assume that p(z) = zn + q(z), where q(z) is a

polynomial of degree ≤ n− 1 (n ≥ 1). Since limz→∞
q(z)
zn = 0, we see that for |z| sufficiently large

|q(z)| < 0.1|zn| and so |p(z)| ≥ 0.9|z|n ≥ 0.9Rn for |z| ≥ R So for any given M > 0, we can find R
such that |p(z)| > M for every z with |z| > R.

(iii) For every R > 0, z = 2iR satisfies |z| > R and |ez| ≤ 1 .
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