Math 3D03
 M. Min-Oo
 Assignment \#2

Due: Tuesday, February 4th, 2014 in class (at the beginning of the lecture period)
Note: You can use symbolic software only to check your answers (for the integrals for example) and to plot graphs, but you are required to show your calculations

1. (8 marks) Evaluate the following definite (real-valued) integrals:

$$
\begin{aligned}
& \text { (i) } \int_{0}^{\infty} \frac{(\log (x))^{2}}{1+x^{2}} d x \\
& \text { (iii) } \int_{-\infty}^{\infty} \frac{e^{a x}}{1+e^{x}} d x \quad \text { for } 0<a<1 \\
& \int_{0}^{\infty} \frac{\log (x)}{x^{\frac{3}{4}}(1+x)} d x \text { (iv) } \int_{0}^{\infty} \frac{d x}{1+x^{n}} \quad \text { where } n \geq 2 \text { is an integer }
\end{aligned}
$$

2. (2 marks) How many zeros of the polynomial $z^{4}-5 z+1$ lie in the annulus $1 \leq|z| \leq 2$?
3. (6 marks) Sum the following infinite series:
(a) $\sum_{n=1}^{\infty} \frac{1}{n^{2}+9}$
(b) $\sum_{n=1}^{\infty} \frac{(-1)^{n+1}}{n^{4}}$
(c) $\sum_{n=-\infty}^{\infty} \frac{n^{2}}{n^{4}-\pi^{4}}$
4. (4 marks) Do problem 25.14 on page 922 - 923 in the text book.
5. (5 marks) Show that the map

$$
w=\frac{1}{2}\left(z+\frac{1}{z}\right)
$$

maps circles centered at the origin in the z-plane to ellipses in the w-plane. Draw some images. What happens to other circles? Find the image of the circle centered at the point $z_{0}=-\frac{1}{5}(1-i)$ with radius $\frac{1}{5} \sqrt{37}$ (Use Matlab or some other software to plot the graphs)
6. (bonus question)
(i) Suppose that $f(z)$ is a non-constant analytic function defined for all $z \in \mathbb{C}$. Show that for every $R>0$ and for every $M>0$ there exists a z such that $|z|>R$ and $|f(z)|>M$.
(ii) Suppose that $f(z)$ is a non-constant polynomial. Show that for every $M>0$ there exists an $R>0$, such that $|f(z)|>M$ for all $|z|>R$.
(iii) Show that there exists an $M>0$, such that for every $R>0$, there exists a z satisfying $|z|>R$ and $\left|e^{z}\right| \leq M$.

