
Math 3D03
Short solutions to assignment #1

1. Compute the Taylor, respectively Laurent series expansion and determine the region of con-
vergence of the following functions around the point z = 0:

(a) f(z) =
1

2i
log

(
1 + iz

1− iz

)
(b) f(z) =

e
1
z

1− z

(a) 1
2i (log(1 + iz)− log(1− iz)) = 1

2i

∑∞
k=1(

(−1)k−1(iz)k

k + (iz)k

k ) =
∑∞

k=1
(−1)k−1

2k−1 z2k−1(= arctan(z)).

This Taylor series converges for |z| < 1.

(b) e
1
z

1−z =
(∑∞

k=0
z−k

k!

) (∑∞
l=0 z

l
)

=
∑∞

n=1 a−nz
−n + e

∑∞
n=0 z

n , where a−n =
∑∞

j=n
1
j! .

(by multiplying the two series and collecting terms). This Laurent series converges for 0 < |z| < 1.

2. Classify all the singular points and compute the residues at the poles of the following functions:

(a) f(z) =
π z

sin(πz)
(b) f(z) =

z

1− z2
sinh

1

1− z
(c) f(z) =

z

1− e−z

(a) The singular point at z = 0 is a removable singularity since limz→0
πz

sinπz = 1.
The other singular points zk = k, where k 6= 0 is an integer, are all simple poles with residue given
by kπ

π cos(kπ) = (−1)k

(b) z = −1 is a simple poles with residue = − sinh(12). z = 1 is an essential singularity with residue
= + sinh(12)
Laurent series around the point z = 1:
1

1−z sinh( 1
1−z ) = 1

z−1
∑∞

k=0
1

(2k+1)!(z − 1)−(2k+1) and z
1+z = 1

2

(
1 +

∑∞
l=1(−1)l−1 1

(2(z−1))l

)
and so

the coefficient of 1
z−1 in the Laurent expansion is

∑∞
n=1

1
22n+1(2n+1)!

= sinh(12)

Another way to compute the residue at z = 1 is to compute the residue at ∞ which happens to be 0

(c) z = 0 is a removable singularity and zk = ikπ for k ∈ Z, k 6= 0 are all simple poles with residues
= ikπ.

3. Evaluate the following complex contour integrals:

(a)

∮
C

dz

1 + z4
(b)

∮
C

ei zdz

1− z2
(c)

∮
C

z3 dz

(z + 1)2(z2 + 4)

where C is the ellipse defined by: 3x2 + 4y2 = 1010

(a) 0
The residues at the four poles: ± exp(± iπ

4 ) cancel in pairs. The residue at z = exp( iπ4 ) is 1
4 exp(−3iπ4 )

at z = − exp( iπ4 ) is −1
4 exp(−3iπ4 ) at exp(−iπ4 ) is 1

4 exp(3iπ4 ) at z = − exp(−iπ4 ) is −1
4 exp(3iπ4 )

an easier way to see this is to compute the residue at ∞ which happens to be 0
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(b) 2π sin(1)
Simple poles at z = ±1 with residues −1

2e
i and +1

2e
−i respectively

(c) 2πi
Simple poles at z = ±2i with residues 1

25(6± 8i) and a double pole at z = −1 with residue = 13
25

you can instead compute the residue at ∞ which happens to be −1

4. Let a be a positive real number. Compute (using an appropriate contour)∫ ∞
0

cos(a x2) dx

This is Exercise 24.10 on page 868 in the text book. You can just follow the hints given there. We
evaluate

∮
C e

iz2dz, where the contour C is a π
4−sector (of radius R → ∞) in the first quadrant.

There are no poles, since eiz
2

is analytic everywhere on C. The integral along the ray z = rei
π
4 is a

phase-shifted Gaussian integral given by −ei
π
4

∫∞
0 e−x

2
dx = −ei

π
4

√
π
2 . The integral on the circular

arc
∫ π

4
0 eiR

2(cos 2θ+i sin 2θ)dθ tends to zero as R → ∞, since
∫ π

4
0 e−R

2 sin 2θdθ ≤
∫ π

4
0 e−R

2( 2
π
2θ)dθ =

π
4R2 (1 − e−R2

) → 0, using the elementary inequality sinx ≥ 2
πx for 0 ≤ x ≤ π

2 (just look at the
graph of the sine function!). Therefore∫ ∞

0
eix

2
dx = ei

π
4

√
π

2

and hence ∫ ∞
0

sin(x2)dx =

∫ ∞
0

cos(x2)dx =

√
π

8

A simple scaling gives: ∫ ∞
0

sin(ax2)dx =

∫ ∞
0

cos(ax2)dx =

√
π

8a

5. Compute ∫ π

0
sinn θ dθ

What happens when n→∞?

The integral is obviously zero for odd n, since sin(θ) = − sin(2π − θ). For even n, we have, using
the binomial formula:∫ 2π

0
(sin θ)2n dθ =

∮
|z|=1

(
z − z−1

2i

)2n
dz

iz
=

1

(2i)n

∮
|z|=1

z2n

iz
(1− z−2)2ndz

=
1

22ni2n+1

2n∑
k=0

∮
|z|=1

(−1)k
(

2n

k

)
z2n−2k−1 dz =

2π

22n

(
2n

n

)
As n → ∞ , the integral goes to zero. This can be seen, for example, by using Stirling’s formula:

limN→∞
√

2πN
(
N
e

)N 1
N ! = 1 or by looking at the graph of the function (sin θ)2n for large n .
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6. (bonus question) Consider the n − 1 diagonals connecting one fixed vertex to all the other
vertices of a regular n-gon inscribed in a unit circle. Prove that the products of their lengths is
equal to n.

The nth roots of unity z1, z2, . . . , zn−1 which are 6= 1 satisfy the equation

n−1∏
k=1

(z − zk) =
zn − 1

z − 1
= zn−1 + · · ·+ z + 1

Now put z = 1 and take the modulus (absolute value).
LOL
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