## Math 3D03 <br> Short solutions to assignment \#1

1. Compute the Taylor, respectively Laurent series expansion and determine the region of convergence of the following functions around the point $z=0$ :

$$
\text { (a) } f(z)=\frac{1}{2 i} \log \left(\frac{1+i z}{1-i z}\right) \quad \text { (b) } f(z)=\frac{e^{\frac{1}{z}}}{1-z}
$$

(a) $\frac{1}{2 i}(\log (1+i z)-\log (1-i z))=\frac{1}{2 i} \sum_{k=1}^{\infty}\left(\frac{(-1)^{k-1}(i z)^{k}}{k}+\frac{(i z)^{k}}{k}\right)=\sum_{k=1}^{\infty} \frac{(-1)^{k-1}}{2 k-1} z^{2 k-1}(=\arctan (z))$.

This Taylor series converges for $|z|<1$.
(b) $\frac{e^{\frac{1}{z}}}{1-z}=\left(\sum_{k=0}^{\infty} \frac{z^{-k}}{k!}\right)\left(\sum_{l=0}^{\infty} z^{l}\right)=\sum_{n=1}^{\infty} a_{-n} z^{-n}+e \sum_{n=0}^{\infty} z^{n}$, where $a_{-n}=\sum_{j=n}^{\infty} \frac{1}{j!}$.
(by multiplying the two series and collecting terms). This Laurent series converges for $0<|z|<1$.
2. Classify all the singular points and compute the residues at the poles of the following functions:
(a) $f(z)=\frac{\pi z}{\sin (\pi z)}$
(b) $f(z)=\frac{z}{1-z^{2}} \sinh \frac{1}{1-z}$
(c) $f(z)=\frac{z}{1-e^{-z}}$
(a) The singular point at $z=0$ is a removable singularity since $\lim _{z \rightarrow 0} \frac{\pi z}{\sin \pi z}=1$.

The other singular points $z_{k}=k$, where $k \neq 0$ is an integer, are all simple poles with residue given by $\frac{k \pi}{\pi \cos (k \pi)}=(-1)^{k}$
(b) $z=-1$ is a simple poles with residue $=-\sinh \left(\frac{1}{2}\right) . z=1$ is an essential singularity with residue $=+\sinh \left(\frac{1}{2}\right)$
Laurent series around the point $z=1$ :
$\frac{1}{1-z} \sinh \left(\frac{1}{1-z}\right)=\frac{1}{z-1} \sum_{k=0}^{\infty} \frac{1}{(2 k+1)!}(z-1)^{-(2 k+1)}$ and $\frac{z}{1+z}=\frac{1}{2}\left(1+\sum_{l=1}^{\infty}(-1)^{l-1} \frac{1}{(2(z-1))^{l}}\right)$ and so the coefficient of $\frac{1}{z-1}$ in the Laurent expansion is $\sum_{n=1}^{\infty} \frac{1}{2^{2 n+1}(2 n+1)!}=\sinh \left(\frac{1}{2}\right)$
Another way to compute the residue at $z=1$ is to compute the residue at $\infty$ which happens to be 0
(c) $z=0$ is a removable singularity and $z_{k}=i k \pi$ for $k \in \mathbb{Z}, k \neq 0$ are all simple poles with residues $=i k \pi$.
3. Evaluate the following complex contour integrals:
(a) $\oint_{C} \frac{d z}{1+z^{4}}$
(b) $\oint_{C} \frac{e^{i z} d z}{1-z^{2}}$
(c) $\oint_{C} \frac{z^{3} d z}{(z+1)^{2}\left(z^{2}+4\right)}$
where $C$ is the ellipse defined by: $3 x^{2}+4 y^{2}=10^{10}$
(a) 0

The residues at the four poles: $\pm \exp \left( \pm \frac{i \pi}{4}\right)$ cancel in pairs. The residue at $z=\exp \left(\frac{i \pi}{4}\right)$ is $\frac{1}{4} \exp \left(\frac{-3 i \pi}{4}\right)$ at $z=-\exp \left(\frac{i \pi}{4}\right)$ is $-\frac{1}{4} \exp \left(\frac{-3 i \pi}{4}\right)$ at $\exp \left(\frac{-i \pi}{4}\right)$ is $\frac{1}{4} \exp \left(\frac{3 i \pi}{4}\right)$ at $z=-\exp \left(\frac{-i \pi}{4}\right)$ is $-\frac{1}{4} \exp \left(\frac{3 i \pi}{4}\right)$
an easier way to see this is to compute the residue at $\infty$ which happens to be 0
(b) $2 \pi \sin (1)$

Simple poles at $z= \pm 1$ with residues $-\frac{1}{2} e^{i}$ and $+\frac{1}{2} e^{-i}$ respectively
(c) $2 \pi i$

Simple poles at $z= \pm 2 i$ with residues $\frac{1}{25}(6 \pm 8 i)$ and a double pole at $z=-1$ with residue $=\frac{13}{25}$ you can instead compute the residue at $\infty$ which happens to be -1
4. Let $a$ be a positive real number. Compute (using an appropriate contour)

$$
\int_{0}^{\infty} \cos \left(a x^{2}\right) d x
$$

This is Exercise 24.10 on page 868 in the text book. You can just follow the hints given there. We evaluate $\oint_{C} e^{i z^{2}} d z$, where the contour $C$ is a $\frac{\pi}{4}$-sector (of radius $R \rightarrow \infty$ ) in the first quadrant. There are no poles, since $e^{i z^{2}}$ is analytic everywhere on $\mathbb{C}$. The integral along the ray $z=r e^{i \frac{\pi}{4}}$ is a phase-shifted Gaussian integral given by $-e^{i \frac{\pi}{4}} \int_{0}^{\infty} e^{-x^{2}} d x=-e^{i \frac{\pi}{4}} \frac{\sqrt{\pi}}{2}$. The integral on the circular $\operatorname{arc} \int_{0}^{\frac{\pi}{4}} e^{i R^{2}(\cos 2 \theta+i \sin 2 \theta)} d \theta$ tends to zero as $R \rightarrow \infty$, since $\int_{0}^{\frac{\pi}{4}} e^{-R^{2} \sin 2 \theta} d \theta \leq \int_{0}^{\frac{\pi}{4}} e^{-R^{2}\left(\frac{2}{\pi} 2 \theta\right)} d \theta=$ $\frac{\pi}{4 R^{2}}\left(1-e^{-R^{2}}\right) \rightarrow 0$, using the elementary inequality $\sin x \geq \frac{2}{\pi} x$ for $0 \leq x \leq \frac{\pi}{2}$ (just look at the graph of the sine function!). Therefore

$$
\int_{0}^{\infty} e^{i x^{2}} d x=e^{i \frac{\pi}{4}} \frac{\sqrt{\pi}}{2}
$$

and hence

$$
\int_{0}^{\infty} \sin \left(x^{2}\right) d x=\int_{0}^{\infty} \cos \left(x^{2}\right) d x=\sqrt{\frac{\pi}{8}}
$$

A simple scaling gives:

$$
\int_{0}^{\infty} \sin \left(a x^{2}\right) d x=\int_{0}^{\infty} \cos \left(a x^{2}\right) d x=\sqrt{\frac{\pi}{8 a}}
$$

## 5. Compute

$$
\int_{0}^{\pi} \sin ^{n} \theta d \theta
$$

What happens when $n \rightarrow \infty$ ?
The integral is obviously zero for odd $n$, $\operatorname{since} \sin (\theta)=-\sin (2 \pi-\theta)$. For even $n$, we have, using the binomial formula:

$$
\begin{gathered}
\int_{0}^{2 \pi}(\sin \theta)^{2 n} d \theta=\oint_{|z|=1}\left(\frac{z-z^{-1}}{2 i}\right)^{2 n} \frac{d z}{i z}=\frac{1}{(2 i)^{n}} \oint_{|z|=1} \frac{z^{2 n}}{i z}\left(1-z^{-2}\right)^{2 n} d z \\
=\frac{1}{2^{2 n} i^{2 n+1}} \sum_{k=0}^{2 n} \oint_{|z|=1}(-1)^{k}\binom{2 n}{k} z^{2 n-2 k-1} d z=\frac{2 \pi}{2^{2 n}}\binom{2 n}{n}
\end{gathered}
$$

As $n \rightarrow \infty$, the integral goes to zero. This can be seen, for example, by using Stirling's formula: $\lim _{N \rightarrow \infty} \sqrt{2 \pi N}\left(\frac{N}{e}\right)^{N} \frac{1}{N!}=1$ or by looking at the graph of the function $(\sin \theta)^{2 n}$ for large $n$.
6. (bonus question) Consider the $n-1$ diagonals connecting one fixed vertex to all the other vertices of a regular $n$-gon inscribed in a unit circle. Prove that the products of their lengths is equal to $n$.

The $n^{\text {th }}$ roots of unity $z_{1}, z_{2}, \ldots, z_{n-1}$ which are $\neq 1$ satisfy the equation

$$
\prod_{k=1}^{n-1}\left(z-z_{k}\right)=\frac{z^{n}-1}{z-1}=z^{n-1}+\cdots+z+1
$$

Now put $z=1$ and take the modulus (absolute value).
LOL

