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SDE model for vortex filaments

• Start with inviscid model of Klein et al. (1995):

Linearized self-induction of filament

+
Nonlinear potential vortex interaction in layers

• Assumes that point vortex interaction dominates
self-induction nonlinearity and nonlocal induction terms:

valid for nearly parallel vortex filaments with filament
separation much greater than width of vortex core.

• Topology change is impossible in this approximation.
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SDE model for vortex filaments

Idea: extend model to include viscosity and topology change
by using a stochastic differential equation (SDE).

SDE model for N interacting viscous vortex filaments:

∂Xj

∂t
= J

[
Γj
∂2Xj

∂z2

]

︸ ︷︷ ︸
linear

self-induction

+ J




N∑

k 6=j
2Γk

(Xj −Xk)

|Xj −Xk|2




︸ ︷︷ ︸
point vortex

interaction

+
√

2νbj(z, t)︸ ︷︷ ︸
white noise

where Xj(z, t) = (xj(z, t), yj(z, t)) are the coordinates of

the vortex centrelines, Γj are their circulations, J =

2
4 0 −1

1 0

3
5,

and bj(z, t) are independent Gaussian random variables.
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SDE model for vortex filaments

We now consider the case of two filaments:

∂ψ1

∂t
=

∂2ψ1

∂z2
+ 2Γ

ψ1 − ψ2

|ψ1 − ψ2|2
+
√

2ν ′b1

∂ψ2

∂t
=

∂2ψ2

∂z2
− 2

ψ1 − ψ2

|ψ1 − ψ2|2
+
√

2ν ′b2

where ψj = xj(z, t) + i yj(z, t), bj(z, t) = bj1 + i bj2, we have
set Γ1 = 1, Γ = Γ2/Γ1, and time has been re-scaled by 4π so
ν ′ = 4πν.

• The curvature term is not present in two dimensions.
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SDE model for vortex filaments
Properties of the SDE model:

• Model can be analyzed mathematically (Agullo & Verga
have given an exact solution in the special case they
considered)
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SDE model for vortex filaments

Question:

• How does the SDE model weak solution differ from the
strong solution of the vorticity equation?

• What is the main source of error?

→ Analyze symmetric vortex merging interactions in 2D and

symmetric vortex reconnection in 3D.
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Numerical method

1. Solve exactly for point vortex motion in layers.

2. Add white noise via Euler approximation for stochastic
term.

3. Transform to Fourier space in z and use exact
integration to solve for effect of curvature term:

ψ̂1(t+ ∆t) = ψ̂1(t) exp[−i∆t k2]

ψ̂2(t+ ∆t) = ψ̂2(t) exp[−iΓ∆t k2]

and transform back.

4. Repeat for each realization to build up pdf.
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2D vortex merging

Case:

• N = 2, Γ = 1, initial separation r = 2.

• Re = Γ/ν = 1 000.

• Point vortices never merge.

• Compare SDE model with high resolution adaptive
wavelet numerical solution of full 2D vorticity equations.
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2D vortex merging

Vortex merging at Re = 1 000, full adaptive wavelet solution
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2D vortex merging

Vortex merging at Re = 1 000, weak stochastic solution
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2D vortex merging

SDE model is qualitatively and quantitatively incorrect
(although it does eventually produce merging).

How could it be improved?

• Use velocity field of Gaussian vortices at point vortex
positions.

• Use a single Gaussian vortex at centre of rotation once
Gaussian vortices overlap sufficiently.

• This correction models the continuous vorticity
distribution.
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2D vortex merging

Vortex merging at Re = 1 000, Gaussian velocity field
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2D vortex merging

exact neither other self both

Gaussian Gaussian Gaussian Gaussian

Effect of continuous vorticity on merging: which part of the
continuous vorticity field is most important?
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3D vortex reconnection

Case:

• N = 2, Γ = −1, Re = 1 500, ∆t = 10−3, initial
separation r = 1, 2× 106 realizations

• Symmetrical sinusoidal perturbation at angles of ±45◦

with amplitude A = 0.2 and wavelength λ = 7.3

• Periodic boundary conditions in z, Nz = 128, length of
domain = λ

−0.5

0
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0

0.2 0

1
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Z 

Initial condition
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3D vortex reconnection

Comparison of SDE and inviscid models at t = 0.51
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5
SDE
inviscid

Only positive vortex is shown. Inviscid solution breaks down at

t ≈ 0.522 as vortices develop kinks and touch.
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3D vortex reconnection

SDE model simulation of vortex reconnection at Re = 1 5000.
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3D vortex reconnection

t = 0.54

t = 0.27

t = 0.92

t = 1.26

DNS (Marshall et al. 2001) SDE model
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3D vortex reconnection

Vorticity contours in z = λ/2 plane

SDE

DNS

t = 0.27 t = 0.59 t = 0.92

(At t = 0 the DNS vortices have a finite radius σ0 = 0.2.)
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Conclusions
2D Vortex Merging

• uncorrected SDE model is incorrect qualitatively and
quantitatively

• most important source of error is absence of
self-interaction

• simple correction to velocity field gives good qualitative
and quantitative agreement

3D Vortex Reconnection

• complete reconnection is impossible (self-induction
approximation constrains vorticity to z−direction)

• qualitative agreement is reasonable for times
t� tc ≈ 0.522 where inviscid theory fails

• 3D model is much better than uncorrected 2D
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