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Abstract. In the two parts of this paper we prove that the Reidemeister torsion invariants
determine topological equivalence of G-representations, for G a finite cyclic group.
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1 Introduction

Let G be a finite group and V', V' finite dimensional real orthogonal representations
of G. Then V is said to be topologically equivalent to V' (denoted V' ~, V') if there
exists a homeomorphism /4 : V' — V' which is G-equivariant. If V', V' are topologi-
cally equivalent, but not linearly isomorphic, then such a homeomorphism is called a
non-linear similarity. These notions were introduced and studied by de Rham [24],
[25], and developed extensively in [1], [2], [15], [16], and [5]. In the two parts of this
paper, referred to as [I] and [II], we complete de Rham’s program by showing that
Reidemeister torsion invariants and number theory determine non-linear similarity
for finite cyclic groups.

A G-representation is called fiee if each element 1 # g € G fixes only the zero
vector. Every representation of a finite cyclic group has a unique maximal free sub-
representation.

Theorem. Let G be a finite cyclic group and Vi, V, be free G-representations. For
any G-representation W, the existence of a non-linear similarity Vi ®@ W ~, V, @ W' is
entirely determined by explicit congruences in the weights of the free summands V., V>,
and the ratio A(V1)/A(V>) of their Reidemeister torsions, up to an algebraically de-
scribed indeterminacy.

The notation and the indeterminacy are given in Section 2 and a detailed statement of
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results in Theorems A—E. This part of the paper contains the foundational results
and calculations in bounded algebraic K- and L-theory needed to prove the main
results on non-linear similarity. The study of non-linear similarities V) @ W ~, V, @
W increases in difficulty with the number of isotropy types in . We introduce a new
method using excision in bounded surgery theory, based on the orbit type filtration, to
organize and deal with these difficulties. We expect that this technique will be useful
for other applications. Our most general results about non-linear similarity for arbi-
trary cyclic groups are Theorem C and its extensions (see Sections 9 and 10).

In Sections 3 and 13 we study the group Rrop(G) of G-representations modulo
stable topological equivalences (see [2] where Rrop(G) ® Q is computed). As an ap-
plication of our general results, we determine the structure of the torsion in Ryop(G),
for G any cyclic group (see Theorem 13.1), and in Theorem D we give the calculation
of Rrop(G) for G = C(4q), for q odd, correcting [5, Thm. 2]. One interesting feature
is that Corollary 2.4 and Theorem D indicate a connection between the orders of the
ideal class groups for cyclotomic fields and topological equivalence of linear repre-
sentations.

Contents

I INtrodUuCtion ..........ooouiiiii e e 959
2 Statement of 1eSULS .......ouiiniii e 960
3 A splitting of Rrop(G) < vt 967
4 A rational cOmpPULAtioN ..........c.uiiineiieiiieeieeieeineieerineennn, 969
5 Excision in bounded surgery theory .............ooviiiiiiiiiiiiiinainn... 973
6 Calculations in bounded K-theory ..............ccoiiiiiiiiiiiiiiiiiiann., 979
7 The double coboundary ...........ccooiiiiiiiiiiii 985
8 Calculations in bounded L-theory ...............ccoiiiiiiiiiiiiiiiii.. 988
9 The proof of Theorem C .........coiiiiiiiiiii i i 995
10 Tterated R_ transfers .............ooiuiiiiiiiii i 997
11 The proof of Corollary 2.4 ... ..o 1001
12 The normal INVATIANT ... ...cou ittt 1003
13 The proof of Theorem D ....... ... 1007
REfOreNCes ..ottt e 1008

2 Statement of results

For the reader’s convenience, we recall some notation from Part I, and then give the
main results of both parts. Theorems A and B are proved in Part I and Theorems C
and D are proved in Part II. The proof of Theorem E is divided between the two
parts.

Let G = C(4q), where ¢ > 1, and let H = C(2¢q) denote the subgroup of index
2 in G. The maximal odd order subgroup of G is denoted G,qq. We fix a gen-
erator G = {t) and a primitive 4¢”-root of unity { = exp2zi/4q. The group G has
both a trivial 1-dimensional real representation, denoted R, and a non-trivial 1-
dimensional real representation, denoted R _.
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A free G-representation is a sum of faithful 1-dimensional complex representations.
Let t%, a € Z, denote the complex numbers C with action ¢ - z = {“z for all z € C. This
representation is free if and only if (a,4¢q) = 1, and the coefficient « is well-defined
only modulo 4¢q. Since t* =~ ¢ as real G-representations, we can always choose the
weights ¢ = 1 mod4. This will be assumed unless otherwise mentioned.

Now suppose that V) =t 4 - - - + t% is a free G-representation. The Reidemeister
torsion invariant of V] is defined as

=~

A(T) = ] l(l”" —1)eZ[f]/{+"}.

Let ¥, = t!' 4 ... 4t be another free representation, such that S(¥7;) and S(¥>)
are G-homotopy equivalent. This just means that the products of the weights
[1a: = ] b; mod4q. Then the Whitehead torsion of any G-homotopy equivalence is
determined by the element

AA)/AW) =1 =)

since Wh(ZG) — Wh(QG) is monic [18, p. 14].

Let W be a finite-dimensional G-representation. A necessary condition for a non-
linear similarity V), @ W ~, V, @ W is the existence of a G-homotopy equivalence
f:S(V2) — S(V) such that fxid: S(V2@® U) — S(V1 @ U) is freely G-normally
cobordant to the identity map on S(V; @ U), for all free G-representations U (see
[I], Section 3). If 77 and V; satisfy this condition, we say that S(V}) and S(7V>) are
s-normally cobordant. This condition for non-linear similarity can be decided by ex-
plicit congruences in the weights of V7 and V5 (see [31, Thm. 1.2]).

This quantity, A(V1)/A(V>) is the basic invariant determining non-linear similar-
ity. It represents a unit in the group ring ZG, explicitly described for G = C(2") by
Cappell and Shaneson in [3, §1] using a pull-back square of rings. To state concrete
results we need to evaluate this invariant modulo suitable indeterminacy.

The involution ¢ — ¢~! induces the identity on Wh(ZG), so we get an element

{A(")/A(V2)} € H'(Wh(ZG))

where we use H'(A4) to denote the Tate cohomology H'(Z/2; A) of Z/2 with co-
efficients in A.
Let Wh(ZG™) denote the Whitehead group Wh(ZG) together with the involution

[T
H(tb,-71)

induced by 7+ —¢~!. Then for 7(f) = , we compute

()"~ 1
()" 1)

SONPRPN o (et 1) (e KtV
0= iy - - U




962 I. Hambleton, E. K. Pedersen

which is clearly induced from Wh(ZH ). Hence we also get a well defined element
{A(M)/A(V2)} € H'(Wh(ZG™)/Wh(ZH)).

This calculation takes place over the ring Ay, = Z[f]/(1 4 1> +--- +1*~2), but the
result holds over ZG via the involution-invariant pull-back square

726 —— Aoy

| l

Z[Z)2] — Z/2q[Z/2]
Consider the exact sequence of modules with involution:
(2.1)  K(ZH) — K\(ZG) — K\(ZH — ZG) — Ko(ZH) — Ky(ZG)

and define Wh(ZH — ZG) = K,(ZH — Z.G)/{+G}. We then have a short exact
sequence

0 — Wh(ZG)/Wh(ZH) — Wh(ZH — ZG) -k — 0

where k = ker(Ko(ZH) — Ko(ZG)). Such an exact sequence of Z/2-modules induces
a long exact sequence in Tate cohomology. In particular, we have a coboundary map

0: H'(k) — H'(Wh(ZG~)/Wh(ZH)).

Our first result deals with isotropy groups of index 2, as is the case for all the non-
linear similarities constructed in [1].

Theorem A. Let Vi = t“ + - - -+ t% and Vy = t" + - - - 4 t% be free G-representations,
with a; = b; = 1 mod4. There exists a topological similarity Vi @ R_ ~, V, @ R_ if
and only if

() Tla = [1bi modg,
(i) Resy V1 = Resy V>, and

(iil) the element {A(V1)/A(V>)} € H'(Wh(ZG~)/Wh(ZH)) is in the image of the
coboundary § : H°(k) — H'(Wh(ZG~)/Wh(ZH)).

Remark 2.2. The proof of this result is in Part I, but note that Condition (iii) sim-
plifies for G a cyclic 2-group since H°(k) = 0 in that case (see [I], Lemma 9.1). The-
orem A should be compared with [1, Cor. 1], where more explicit conditions are given
for “first-time” similarities of this kind under the assumption that ¢ is odd, or a 2-
power, or 4¢ is a “‘tempered” number. See also Theorem 9.2 for a more general result
concerning similarities without R, summands. The case dim V; = dim V, = 4 gives
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a reduction to number theory for the existence of 5-dimensional similarities (see [I],
Remark 7.2).

Our next result uses a more elaborate setting for the invariant. Let

ZH —— 7,H

I

26 —— 1,G
and consider the exact sequence
(23) 0 — K{(ZH — ZG) — K|(ZoH — Z,G) — K| (®) — Ko(ZH — Z.G) — 0.

Again we can define the Whitehead group versions by dividing out trivial units {+G},
and get a double coboundary

6% : HY(Ky(ZH — 2.G™)) — H'(Wh(ZH — ZG")).

There is a natural map H'(Wh(ZG~)/Wh(ZH)) — H'(Wh(ZH — Z.G)). We will
use the same notation

{A(V)/A(V3)} e HY(Wh(ZH — Z.G™))

to denote the image of our Reidemeister torsion invariant. The non-linear similarities
handled by the next result have isotropy of index < 2.

Theorem B. Let Vi = t% + - -+ t% and V, = t" + - - - + t% be free G-representations.
There exists a topological similarity Vi ® R_ @R, ~, Vo @ R_ @ R if and only if

(i) JJa = []b; mod4q,

(11) Resy V1 =~ Resy V>, and

(iii) the element {A(V1)/A(V>)} is in the image of the double coboundary
0% HY(Ky(ZH — 2.G™)) — H'(Wh(ZH — ZG")).

This result can be applied to 6-dimensional similarities.

Corollary 2.4. Let G = C(4q), with q odd, and suppose that the fields Q((;) have odd
class number for all d | 4q. Then G has no 6-dimensional non-linear similarities.

Remark 2.5. For example, the class number condition is satisfied for ¢ < 11, but not
for ¢ = 29. The proof of the Corollary 2.4 is given in Section 11 assuming Theorem
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B, which is proved in Part I. This result corrects [5, Thm. 1(i)], and shows that the
computations of Rrop(G) given in [5, Thm. 2] are incorrect.

Our final example of the computation of bounded transfers is suitable for determining
stable non-linear similarities inductively, with only a minor assumption on the iso-
tropy subgroups. To state the algebraic conditions, we must again generalize the in-
determinacy for the Reidemeister torsion invariant to include bounded K-groups (see
Section 5). In this setting Ko(ZH — Z.G) = Ko(¥x_.¢(Z)) and Wh(ZH — ZG) =
Wh(%r_,6(Z)). We consider the analogous double coboundary

&> H'(Ko(6wxr . 6(Z))) — H' (Wh(%w.r 6(Z)))

and note that there is a map Wh(%r_ ¢(Z)) — Wh(%w«r _,¢(Z)) induced by the in-
clusion on the control spaces. We will again use the same notation

{A(M)/A(12)} € H' (Wh(%wxr_6(Z)))
for the image of the Reidemeister torsion invariant in this new domain.

Theorem C. Let V; =t + --- + t% and Vy = t"' + - .. + 1% be free G-representations.
Let W be a complex G-representation with no R summands. Then there exists a topo-
logical similarity VI @ W ®R_@® R, ~, V, ® W ®R_ @R, ifand only if

(i) S(N) is s-normally cobordant to S(V>),
(iii) the element {A(V1)/A(V>2)} is in the image of the double coboundary

6% H' (Ko(%wpxr_,6(Z))) — H' (Wh(%w,.xr_.c(Z))),

where 0 S Wax S W is a complex subrepresentation of real dimension < 2, with
maximal isotropy group among the isotropy groups of W with 2-power index.

Remark 2.6. The existence of a similarity V; @ W ~, V, @ W implies that S(7) and
S(V>) are s-normally cobordant. In particular, S(7;) must be freely G-normally co-
bordant to S(V>) and this (unstable) normal invariant condition is enough to give us
a surgery problem. Crossing with W defines the bounded transfer map

trfw + Ly(ZG) = Ly gimw(%w.6(Z))

introduced in [10]. The vanishing of the surgery obstruction is equivalent to the exis-
tence of a similarity (see [I], Theorem 3.5). The computation of the bounded transfer
in L-theory leads to condition (iii), and an expression of the obstruction purely in
terms of bounded K-theory. To carry out this computation we may need to stabilize
in the free part, and this uses the s-normal cobordism condition.
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Remark 2.7. Note that Wy,.x = 0 in condition (iii) if 7 has no isotropy subgroups of
2-power index. Theorem C suffices to handle stable topological similarities, but leaves
out cases where W has an odd number of R_ summands (handled in Theorem 9.2
and the results of Section 10). Simpler conditions can be given when G = C(2") (see
(1], Section 9).

The double coboundary in (iii) can also be expressed in more “classical” terms by
using the short exact sequence

(2.8) 0 — Wh(%r_6(Z)) = Wh(Gw,,«r_6(Z)) = Ki(€p~ x_6(Z)) =0

derived in Corollary 6.9. We have Kl((g;Vi;xR,.G(Z)) = K_|(ZK), where K is the
isotropy group of Wpnax, and Wh(%r_ ¢(Z)) = Wh(ZH — ZG). The indeterminacy
in Theorem C is then generated by the double coboundary

6% H'(Ky(ZH — 2G™)) — H' (Wh(ZH — ZG™))
used in Theorem B and the coboundary
0:HY(K ((ZK)) — H'(Wh(ZH — Z.G"))

from the Tate cohomology sequence of (2.8).

Finally, we apply these results to Rrop(G). Since its rank is known (see [2] or Section
4), it remains to determine its torsion subgroup. In Section 3, we will define a filtra-
tion

(2.9)  R,(G) S R,(G) < Ry(G) < R(G)

on the real representation ring R(G), inducing a filtration on Rrep(G) = R(G)/
R,(G). Here the subgroup

R(G)={("1 =) |Vi®W ~, V@ W for some W}

is generated by stable topological similarity. Note that R(G) has the following nice
basis: {¢/,0,e|1 <i<2g— 1}, where = [R_] and ¢ = [R,] (although we do not
have i = 1 mod 4 for all the weights).

Let R™(G) = {t“| (a,4q) = 1} = R(G) be the subgroup generated by the free rep-
resentations. To complete the definition, we let R¢(C(2)) = {R_} and R™*¢(e) =
{R.}. Then inflation and fixed sets of representations defines an isomorphism

R(G) = @ R"(G/K)

and this direct sum splitting can be intersected with R,(G) to define R™°(G). We let
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R%g;(G) = R'™(G)/R™(G). Since inflation and fixed sets preserve topological sim-

ilarities, we obtain an induced splitting

Ri(G) = KEBGR%E(G/ K).

By induction on the order of G, we see that it suffices to study the summand R?gE(G).
Let R™(G) = ker(Res : R™(G) — R™(Goq4)), and then project into Rrop(G) to

define

RIS (G) = R™(G)/RI™(G).

In Section 4 we prove that ﬁ?g;

Here is a specific computation (correcting [5, Thm. 2]).

(G) is precisely the torsion subgroup of R%g;(G).

Theorem D. Let G = C(4q), with g > 1 odd, and suppose that the fields Q({;) have odd

class number for all d|4q. Then R?g;(G) = Z./4 generated by (t — t'724).
For any cyclic group G, we use normal cobordism and homotopy equivalence to
define a filtration

R[free(G) c erlree(G) c R/Eree(G) c Rfree(G)

leading by direct sum to the filtration of R(G) mentioned above. Both
R'™(G)/RI*(G) and RI™*(G)/R™(G) are torsion groups which can be explicitly
determined by congruences in the weights (see Section 12 and [31, Thm. 1.2]). The
subquotient R™(G)/R/™¢(G) always has exponent two (see Section 13).

We conclude this list of sample results with a calculation of Rrep(G) for cyclic 2-
groups (see [I] for the proof).

Theorem E. Let G = C(27), with r = 4. Then

fe_{_rgg(G) = <O{1’OC2? e '7“7—27ﬁ17ﬁ27 s aﬁr73>

subject to the relations 2%0s = 0 for 1 £ s <r—2, and 2 (o + ;) =0 for 2 < s <
r — 3, together with 2(a; + ;) = 0.

The generators for r = 4 are given by the elements

or—s=2 2r—s=24

wy=1—1 and f, =1 -1

We remark that ﬁ?g;(C(S)) = Z./4 generated by ¢ — #°. In [I], Theorem 11.6 we use

this information to give a complete topological classification of linear representations
for cyclic 2-groups.
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oy, and y, ..., ¥,_, where the order of the cyclic group generated by a basis ele-

ment with subscript i is 27. This basis displays the group structure explicitly.

3 A splitting of Rrqp(G)

In this section we point out an elementary splitting of Rrop(G), and some useful fil-
trations. For G any finite group, we denote by R(G) the real representation ring of G.
Elements in R(G) can be given as formal differences (7, — V3) of G-representations,
and (V] — V,) ~ 0 if and only if there exists a representation W such that V} @ W =~
V,® W.

Notice that for K any normal subgroup of G, taking fixed sets gives a retraction of
the inflation map

infx : R(G/K) — R(G)

defined by pulling back a G/K representation using the composition with the quo-
tient map G — G/K. More explicitly,

Fixg : R(G) — R(G/K)

is defined by Fixx (V) — V2) = (V| — VX) for each normal subgroup K < G. Then
Fix o infx = id : R(G/K) — R(G/K).

Definition 3.1. A G-representation V is fiee if VX = {0} for all non-trivial normal
subgroups 1 # K < G.

This is the same as the usual definition (no non-identity element of G fixes any non-
zero vector) for cyclic groups. We let

(3.2)  R™(G) ={kerFixg |1 # K < G}

denote the subgroup of R(G) such that there is a representative of the stable equiva-
lence class (V) — V>) with Vy, V; free representations.

Proposition 3.3. There is a direct sum splitting

R(G) = KGBGRﬁee(G/K)

indexed by the normal subgroups K in G.
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Proof. Let V(K) denote the G-invariant subspace given by the sum of all the irre-
ducible sub-representations of V" with kernel exactly K. This is a free G/K represen-
tation. The decomposition above is given by mapping (¥; — V) to the elements
(Mi(K) = V2(K)). O

Inside R(G) we have the subgroup of stably topologically similar representations
(34) R(G)={(N-N) |V ®@W ~, V,® W for some W}

and the quotient group is Rrop(G) by definition. We define R™(G) = R™(G) n
R,(G). Since R,(G) is preserved by inflation and taking fixed sets, we obtain

Corollary 3.5. There is a direct sum decomposition

Rrop(G) = 1§BGR¥§E(G/K)

where the summands are the quotients R™(G/K) /R (G/K).
We will also need a certain filtration of R(G). First we define
(3.6)  RI™(G) = {(V1 — V)| S(V1) ~¢ S(V3) for V; and V; free}

where ~ denotes G-homotopy equivalence. This is a subgroup of R™(G), in fact a
sub-Mackey functor since it has induction and restriction for subgroups of G. We
define

(3.7)  Ru(G) = @ R™(G/K)

K<G

If there exists a G-homotopy equivalence f : S(¥;) — S(V>) such that

fx1
SMelU)=S()«S(U) — S(V2)«S(U)=S(T,® U)
is freely G-normally cobordant to the identity for all free G-representations U, then

we say that S(7)) and S(V,) are s-normally cobordant, and we write S(V)=¢
S(V>). Define

(3.8) Rﬁree(G) ={ae R,fr“(G) |30, Vo with a = (V] — V) and S(V)) =6 S(V2)}

and note that R(G) is also a subgroup of R™¢(G). Indeed, if (V; — V) and
(V{ — V3) are in R™(G), there exist G-homotopy equivalences f : S(V;) — S(V>)
and f':S(V{) — S(V5) with f 1 and f'*1 normally cobordant to the identity
under any stabilization. But f x f/ ~g (1 % f’) o (f % 1), so we just glue together the
normal cobordisms for f x 1 (after stabilizing by U = V{) and for 1 f” (after sta-
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bilizing by U = V>) along the common boundary id : S(V> @ V{). As above, we
define

(3.9) R,(G)= IEBG Ri*e(G/K)

Since R™°(G) = R™(G), we have defined a filtration
(3.10) R,(G) < R,(G) = Ry(G) < R(G)

of R(G), natural with respect to restriction of representations. All the terms except
possibly R,(G) are also natural with respect to induction of representations.

Remark 3.11. It follows from the proof of [31, 3.1] that S(7} @ Up) is s-normally
cobordant to S(V, @ Uy), for some free G-representation Uy, if and only if S(77) is
s-normally cobordant to S(V7>). It follows that we could have used the latter condi-
tion to define R™(G).

4 A rational computation

In this section we use [I], Theorem 3.5 and the splitting of the last section to describe
the torsion subgroup of R?g;(G). We also give a new proof of Cappell and Shane-
son’s result computing Rrop(G) ® Q for all finite groups G.

First we consider cyclic groups. Let G = C(2"¢) be a cyclic group, where ¢ = 1 is
odd. The Odd Order Theorem [15], [16] gives R(G) = Rrop(G) if r < 1, and we recall

the definition

RIS (G) = R™(G)/RI™(G)

where  R™(G) = ker{Res : R™(G) — R™(Goga)}.  Here  R™(C(2q)) =
R'™(C(q)) =0, for ¢ = 1 odd.

Theorem 4.1. For G cyclic, the kernel and cokernel of

Res : RIS (G) — RIS (Goaa) = R™(Goaa)

are 2-primary torsion groups.

Corollary 4.2. Let G = C(2'q), q odd, be a finite cyclic group.

(i)  The torsion subgroup of R%rgg(G) is R%fg(G)

(i) The rank ofR%g;(G) is p(q)/2 (resp. 1) if ¢ > 1 (resp. g =1).

(iit) We have the formula
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rank(Rrop(G)) = {E:i i;{ZI;éde(d)/Z—f' 1}, ;Z:Z: 1

where ¢(d) is the Euler function.

Proof. The first part follows directly from Theorem 4.1. For parts (ii) and (iii) count
the free representations of Gyqq. O

Now let F be the composite of all subfields of R of the form Q({ + C_l) where { € C
is an odd root of unity.

Lemma 4.3. For G cyclic, the composition of the natural map Rp(G) — R(G) and
Res : R(G) — R(Goqa) induces a p-local isomorphism R¥(G) — R™(Goqa), for any
odd prime p.

Proof. According to a result of Brauer [26, Thm. 24] Rr(Goad) = R(Godd), and any
representation of G can be realized over the field Q({s). In addition, the restriction
map

Res : Rp(G) — Rp(Godd)

is a p-local surjection (since Resg,,, o Indg,,, is just multiplication by 2”). But the
rank of Rr(G) given in [26, 12.4] equals the rank of R(Goaq), SO we are done. O

Corollary 4.4. For G cyclic and any odd prime p, the natural map Rp(G) — Rrop(G)
induces a p-local isomorphism.

Proof. This follows from the Lemma 4.3 and Theorem 4.1. O

In [2], Cappell and Shaneson obtained the following result by a different argument. It
computes the rank of Rrop(G) ® Q for any finite group G.

Theorem 4.5. Let F be the composite of all subfields of C of the form Q({ + { _1) where
( € C is an odd root of unity. Then for any finite group G, the natural map Rp(G) —
R(G) induces an isomorphism Rr(G) ® Z(p) = Rrop(G) @ Z(y) for any odd prime p.

Proof. The result holds for cyclic groups G by Corollary 4.4, and we apply induction
theory to handle general finite groups.

First we observe that the Mackey functors R(G) ® Z,) and Rr(G) ® Z, are
generated by induction from p-elementary subgroups (see [26, Thm. 27] and note
that I'r = {+1}). Therefore, by [18, 11.2] they are p-elementary computable in
the sense of Dress induction theory [9]. We may therefore assume that G is p-
elementary.

Now if G is p-elementary, it is a product of a p-group and a cyclic group prime to
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p. Any irreducible complex representation of G is then induced from a linear repre-
sentation on a subgroup [26, Thm. 16].

It follows that Rrop(G) is generated by generalized induction (i.e. inflation fol-
lowed by induction) from cyclic subquotients. Consider the following commutative
diagram

Rr(G) —— R(G) —— Rrep(G)

o[- I

D Rr(C) — DR(C) —— D Rrop(C)
c c c

It follows from Corollary 4.4 that the top composite map Rrp(G)® Z(, —
Rrop(G) ® Z,) is surjective.

The sum of the (ordinary) restriction maps to cyclic subgroups induces a rational
injection on Rp(G) (see [28, 2.5, 2.10]). Since Rr(G) is torsion-free, it follows again
from Corollary 4.4 that the map Rr(G) ® Z(,) — Rrop(G) ® Zp) is injective. ]

The proof of Theorem 4.1. Since an F-representation is free if and only if it is the sum
of Galois conjugates of free G-representations, we can decompose Rr(G) as in Sec-
tion 3, and conclude that R*(Goga) = R™(Goaa). It remains to show that RS (G)
is a torsion group with 2-primary exponent. For this we use the filtration of §3.

For R™(G)/RI*(G) this is easy since the k-invariant gives a homomorphism (via
joins of free G-spheres) to (Z/2")” and this is a 2-group. The next quotient is also 2-
primary torsion, by results of [31]: a sufficiently large 2-power join of a G-homotopy
equivalence between two free G-spheres, which are linearly equivalent over Goqq, be-
comes s-normally cobordant to the identity. The point is that the normal invariant
is detected by a finite number of 2-power congruences conditions among the Hirze-
bruch L-classes of the tangent bundles of the lens spaces, and this can be satisfied
after sufficiently many joins.

Finally, the last quotient R™(G)/R™(G) is shown to be 2-primary torsion in the
next proposition. OJ

Proposition 4.6. Let G = C(2'q), q odd, and assume
o eker(Res : L} (ZG) — L} (ZGoga))-

Then there exists a complex representation W with WY = 0 such that trfw(2"a) = 0.

Proof. We will take W =R_ @ R_ @ W,, where W is the sum of all the irreducible
2-dimensional representations of G with isotropy of 2-power index. Note that the R_-
transfer is just the compact /_ transfer of one-sided codimension 1 surgery followed
by adding rays to infinity, so whenever the 7_ transfer is 0, the R _-transfer will have
to be 0. This was discussed in more detail in [I], Section 4.
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Step 1: If G has odd order, there is nothing to prove. Otherwise, let H = G be of
index 2. If Resy(c) =0, then #rfg (o) € Im(L}(ZG~) — L}(ZH — Z.G™)). But
L(ZG™) has exponent 2 [14, 12.3], so #rfg (20) = 0. Then take W =R_ @ R_.
Note that this case applies to G = C(2¢g), so we can always get started.
Step 2: We may assume that r = 2. If Resy(g) # 0 note that

Resy (20 — Indy Resy (o)) = 2Resy (o) — 2Resy (o) = 0.
By induction Resy W, works for Resy(o): say

lVfResH W‘,(Z“l RCSH(G)) =0

and W{T = 0. Let dim W, = m and consider the commutative diagram

L(ZG) aa Loy(ZH) ———— Lx(ZG)

trfiv, J tfResyy Wy J, irfw, J

R Ind
Loksim(6wy 6(Z)) —— Logim(Greswy 11(Z)) —— Logsm(Gw,.c(Z)).

From this we get

21 trfy, (Indyy Resy (o)) = 0.
The first step implies that frfg2 (201) = 0, where g1 = 20 — Indy Resy (o). Let W =
R_ @ R_® W, so that we have W complex and W ¢ = 0. Note that trfy = trfp: o
trfw, = trfw, o trfg> . But

2" trfw (o) = 2"V irfy (20 — Indy Resy () + 2" erfy (Indy Resy ()
and both terms vanish (because r = 2 and by the property of W respectively). [
A similar argument to that in Step 2 above gives:
Proposition 4.7. If Resy (trfw(x)) = 0 for x € LIZG), then 4 - trfyy«r_(x) = 0.
Proof. Since

4 trfwxr_(0) =2 - trfwtrfr_(20 — Indy Resy(0))

+2 - trfr_trfw(Indy Resy (o))

we conclude as above that both terms vanish. O
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5 Excision in bounded surgery theory

A small additive category with involution .7 is a small additive category together
with a contravariant endofunctor * such that > = 1_,. Ranicki defines algebraic L-
theory L"(.«7) for such categories and corresponding spectra IL"(.«7) with L"(.«7) =
n.(IL"(.7)) [22]. The obstruction groups for bounded surgery are obtained this way
for appropriately chosen additive categories. We shall also need a simple version of
such groups. For this, the additive category must come equipped with a system of
stable isomorphisms and a subgroup s = K (<), such that any composition resulting
in an automorphism defines an element in s. The point here is that whenever two
objects are stably isomorphic, there is a canonically chosen stable isomorphism, ca-
nonical up to automorphisms defining elements of s. In this situation Ranicki refines
the definition of IL"(.«7) to give the simple L-theory spectrum IL*(.«Z), by requiring
appropriate isomorphisms to give elements of K;(.«/) belonging to the subgroup s.
More generally, we also get the IL“(.«/)-spectra for any involution invariant subgroup
a with s  a = K; (<), coinciding with IL"(.«7) when a = K; (.+7).

Example 5.1. Let .o/ be the category of free ZG-modules with a G-invariant Z-basis,
and ZG-module morphisms. Two objects are stably isomorphic if and only if they
have the same rank. The preferred isomorphisms are chosen to be the ones sending a
Z-basis to a Z-basis, so automorphisms define elements of {+G} < K;(ZG). In this
situation one obtains Wall’s L*-groups.

The theory of projective L-groups fits into the scheme as follows: one defines
IL? (/) = IL"(7"), where ./ is the idempotent completion of .. The objects of ./"
are pairs (4, p) with 4 an object of ./ and p?> = p. The morphisms ¢ : (4, p) —
(B,q) are the .o/-morphisms ¢ : A — B with g¢p = ¢. Again it is possible to “par-
tially” complete 7. If Ky(o/) = k = Ky(o/") is an involution invariant subgroup,
we define ./ to be the full subcategory of /" with objects defining elements of
k = Ko(/"). This way we may define IL¥(.«7) = IL(.#"*). Similarly to the above,
for k = Ko(.o/) = Ko(#"), L¥(.o7) is naturally isomorphic to L”(.7). The quotient
Ko(#) = Ko(#")/Ko(#) is called the reduced projective class group of .Z.

Example 5.2. If .o/ is the category of free ZG-modules then .«/” is isomorphic to the
category of projective ZG-modules and the L?(.o7) are Novikov’s original L?-groups.

Suppose M is a metric space with the finite group G acting by isometries, R a ring
with involution. In [10, 3.4] we defined an additive category %, ¢(R) with involution
as follows:

Definition 5.3. An object A is a left R(G)-module together with a map f: 4 —
F(M), where F(M) is the set of finite subsets of M, satisfying
(i) f is G-equivariant.

(il) Ay ={aed|f(a) = {x}}is a finitely generated free sub R-module
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(iii) As an R-module 4 =P, _,, A«

(iv) fla+b) < fla)v f(b)
(v) Foreachball Bc M, {xe B| A, # 0} is finite.

A morphism ¢ : A — B is a morphism of RG-modules, satisfying the following con-
dition: there exists k so that the components ¢, : 4,, — B, (which are R-module
morphisms) are zero when d(m, n) > k. Then %y ¢(R) is an additive category in an
obvious way. The full subcategory of %y, ¢(R), for which all the object modules are
required to be free left RG-modules, is denoted %y g(R).

Given an object 4, an R-module homomorphism ¢ : A — R is said to be locally
finite if the set of x € M for which ¢(A4,) # 0 is finite. We define 4* = Homg(A7 R),
the set of locally finite R-homomorphisms. We want to make * a functor from
Yu (R) to itself to make %y ¢(R) a category with involution. We define f*: 4™ —
FM by f*(¢) = {x|¢#(A4y) # 0} which is finite by assumption. 4* has an obvious
right action of G turning it into a right RG module given by ¢g(a) = ¢(ga), and
f* is equivariant with respect to the right action on M given by xg = g~ 'x. To
make x an endofunctor of %, ¢(R) we need to replace the right action by a left
action. We do this by the standard way in surgery theory by letting g act on the left
by letting g~! act on the right. In the unoriented case, given a homomorphism
w: G — {+1}, we let g act on the left of 4* by w(g) - g~' on the right. The involution
* induces a functor on the subcategory %y, ¢(R), so that €y g(R) is also a category
with involution.

Example 5.4. Let py, : G — O(W) be an orthogonal action of G on a finite dimen-
sional real vector space W. We take M = W with the action through py,, and ori-
entation character det(py;,). This will be called the standard orientation on Gy g(Z).

Remark 5.5. We will need to find a system of stable isomorphisms for the category
%um,c(R) to be able to do simple L-theory. To do this we choose a point x in each
G-orbit, and an RG,-basis for 4., where G, is the isotropy subgroup of x. We then
extend that by equivariance to an R-basis of the module. Having a basis allows de-
fining an isomorphism in the usual fashion. In each case we need to describe the inde-
terminacy in the choices coming from the choice of R-basis and points in the orbit.
For our particular choices of M it will be easy to determine the subgroup s, so we will
not formulate a general statement.

We will study the L-theory of the categories %, ¢(R) using excision. Let N be a G-
invariant metric subspace of M. Denoting %y, ¢(R) by %, let </ be the full subcate-
gory on modules 4 so that 4, = 0 except for x in some bounded neighborhood of N.
The category o7 is isomorphic to %y ¢(R) in an obvious fashion. The quotient cate-
gory %/ </, which we shall denote by %;;";(R), has the same objects as % but two
morphisms are identified if the difference factors through .7, or in other words, if
they differ in a bounded neighborhood of N. This is a typical example of an additive
category % which is .«/-filtered in the sense of Karoubi. We recall the definition.
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Definition 5.6. Let .o/ be a full subcategory of an additive category %. Denote
objects of .7 by the letters A through F and objects of % by the letters U through
W. We say that % is .o/-filtered, if every object U has a family of decompositions
{U=E,® U,}, so that

(i) Foreach U, the decompositions form a filtered poset under the partial order that
E,® U, < Eg ® Uy, whenever Up = U, and E, = Ep.

(i) Every map 4 — U, factors 4 — E, — E, ® U, = U for some «.

(iii) Every map U — A factors U = E, ® U, — E, — A for some a.

(iv) For each U, V' the filtration on U @ V is equivalent to the sum of filtrations
{U=E,@U,}and {V=F;®@ Vp}ie.toUDV =(E,® Fp) ® (U, ® Vp).

The main excision results were proved in [19], [6], [7], [23]. We give a slight gener-
alization of the L-theory results. Let K denote the Quillen K-theory spectrum, and
K™* its non-connective delooping (with the K_;-groups as homotopy groups).

Theorem 5.7. Let U be an o/ -filtered additive category with involution. Consider the
map i: Ko(4") — Ko(U") induced by inclusion, and let k = i~V (Ko(%)). There are
fibrations of spectra

K (/™) — K(U) — K(U ) )

and
K™ (o) — K= (U) — K=" (U ) )

If U and </ admit compatible involutions there is a fibration of spectra
L¥(ot) — LM u) — LU ) A).

More generally, if

i) ac K(,;af), b Ki(U"), and ¢ = K;((%]<4)"), fori £ 1,

ii) a=i"'(b) and b — c is onto,

(
(iii) a,b, and ¢ contain Ky(.of), Ko(U) and Ko(U ] /) respectively, if i = 0, and
(

iv) a,b and ¢ contain the indeterminacy subgroup given by the system of stable iso-
morphisms in the case i = 1,

then we have a fibration of spectra
L(ot) — LE(u) — (U ) A)

Proof. The K-theory statements are implicitly contained in [19]. A simpler, more
modern proof and explicit statements are given in [6]. The first L-theory statement
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was proved in [7], and the other L-theory statements follow by the following argu-
ment: we have an exact sequence

Ko(™) — Ko(U) — Ko(U /1) — 0,

where the map from Ko(%) — Ko(%/</) is onto because the categories have the
same objects. Letting I denote the image of K (%/.</) in Ky(«#"¥), we consider the
diagram of short exact sequences:

0 —— I —— Ko(" —— Ko(%) —— Ko(U)A) —— 0

| |

0O — I —— a —_— b — Ky(U/d) —— 0
0O —— 7 — a _ b — ¢ — 0

0 —— I —— Ko(") —— Ko(U") —— Ko((%/)")

The vertical arrows are either equalities or inclusions. We define b’ simultaneously
as the pullback of /I — b — ¢ and as the pushout of 0 — Ko(./"*)/I — Ko(U) —
Ko(% /<) — 0. We have

a/Ko(4™) = b | Ko(U),
so using the Ranicki-Rothenberg fibrations of spectra [23]

LK(ot) —— LYoA) —— H(a/Ko(#"*))

| l

L'%) —— LY (%) —— H(b'/Ko(%))
we get a fibration
LY(o) — L2 (U) — LU ).

We now repeat this argument using the isomorphisms b/b" =~ ¢/ Ko (% /</) to obtain
the desired fibration of spectra. Since L’-groups may be understood as simple L-
groups with all of K| as allowed torsions, the above bootstrapping argument extends
to fibrations of the L-spectra stated, using the isomorphism



Similarities of cyclic groups 977
Ky (/<) /ker(0) = image(0)
where 0 is the boundary map 0 : Ky (%/</) — Ko(/"). O

In Section 10 we need to use bounded surgery groups with geometric anti-structure
generalizing the definition of [I], Section 4 (see [10]). The new ingredient is a coun-
terpart to the automorphism 6 : H — H at the metric space level.

Let 0y : H — H be a group automorphism so that the data (H, 0y, w,b) gives a
geometric anti-structure on RH. Let 0, : M — M be an isometry with the properties
O (g -m) = 0u(g) - Orr(m), 03,(m) = bm, and 0%,(g) = bgh™".

Given an object 4 € %y y(R), we have the functor x from %y y(R) to itself so
that %y g (R) is a category with involution. We may then twist the involution * by
composing with the functor sending (4, f) to (4%, f?) where 47 is the same R-
module, but g acts on the left by multiplication by 0(g) and f¢ = 6;,,' - f. This defines
the bounded anti-structure on %y i (R) and on the subcategory %, y(R) of free RH
modules.

Example 5.8. Bounded geometric anti-structures arise geometrically as above. The
bounded R_ transfer sits in the long exact sequence

(5.8) LN, (Gwxr .6(Z),wp) — L!NGw 6(Z),w) — LI | (wxr_ (Z),ws)
— LN,1(6wxr_,6(Z),wp) — LI | (6w c(Z),w) — -

where w = det(py;) is the standard orientation (see Example 5.4). The bounded LN-
group

LNn((gWXRﬂg(Z), W¢) = Ln((gW’H(Z), o, u)

where Oy (x) = ¢ x and 0y (h) = tht™! for a fixed te G — H.

Conversely, given a bounded geometric antistructure (Op,0,b,w), we can
define G = (H,t|t"'ht = Oy (h),> = by and t-m = 0y (m). Then €y c(R) induces
(0n,0x,b,w) as above, showing that all geometric antistructures arise by twisting
and restricting to an index two subgroup.

The L-theory of these bounded geometric anti-structures also has a useful vanishing
property which we now wish to formulate. We first give a basic construction.

Definition 5.9. If .o is an additive category, then the opposite category o/ °P is the
category with the same objects as .o/ but hom o (A4, B) = hom (B, A). The prod-
uct category .o x .o/°P is an additive category with involution given by * : (4, B) =
(B, A) on objects and x : (a, f) = (5, ) on morphisms.

Clearly K;(.o/°P) = K;(.o7), so we can identify K;(.o/ x o/ °P) = K;(.of) X K;(.of).



978 I. Hambleton, E. K. Pedersen

Lemma 5.10. Let b = K;(o/) for some i £ 1, and g =b x b = K;(of x o/P). Then
Li(of x AP) =0 forall n.

Proof. Let ?(/) denote the category with the same objects as <7, but with mor-
phisms given by .o7-isomorphisms. Then it suffices to prove that the quadratic cate-
gory 2(of X o/ °P) ~ P(.o/) via the hyperbolic map (see [30, p. 122]). This shows that
L(o/ x o/°P) = 0 and other decorations follow trivially from the Ranicki Rothen-
berg exact sequences (note that the Tate cohomology H*(¢) = 0). The result for
lower L-groups follows by replacing .o/ by €r(.</).

Suppose (vi,v2) : (4,B) — (B, A) is a non-singular quadratic form representing an
element in 2(.<Z x o/°). This means that the bilinearization v; + v, is an isomor-
phism, and we are allowed to change (v;, v,) by terms of the form (o, f) — (f, ). We
have

(vi,12) + (v2,0) = (0,v2) = (v1 + v2,0)
and the right hand side is a hyperbolic form. O

We encounter the .7 x .o7°P situation in the following setting:

Example 5.11. Let M = M, U M, be a metric space given as the union of two sub-
metric spaces M| and M,, where we denote M; n M, by N. Suppose that

(i) G acts by isometries on M, such that each g € G preserves or switches M| and
M, in this decomposition,

(i) H={ge G|g(M;)= M} is an index two subgroup of G,

(iii) for every k > 0 there exists an / > 0 such that, if x € M| (resp. x € M) with
d(x,N) > [, then d(x, M») > k (resp. d(x, M) > k).

The category % m(R) has a bounded geometric antistructure (o, u) given by
(01,0 ,b,w) as in Example 5.8, with 0y, (m) = t-m and 0y (h) = tht™! for a fixed
t € G — H. Next, observe that the category

(g;[NH(R) = (g/\>/1]]vH(R) X %Aiivﬂ(R)

because of our separation condition (iii). Moreover, the functor 7 : %;/lv y(R) —
% ;7 (R)* defined by T(4, f) = (4*,0,; o f*) on objects and T(¢) = ¢* on mor-
phisms is an equivalence of categories. We are thus in the .o7 x .7°P situation de-
scribed above and Lf((gﬁj{VH(R), o,u) = 0 by Lemma 5.10.

For any bounded geometric antistructure, notice that the action of 8); on M takes
H-orbits to H-orbits since Oy (g - m) = 0y (g) - Op(m). Let My g) denote the subset
consisting of H-orbits in M which are fixed by the 0-action. Then My g = {m e M |
Oy (m) € H - m}. Note that My ¢) is a H-invariant subspace of M.
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Theorem 5.12. Suppose that (6u, u(R),o,u) has a bounded geometric antistructure
(o, ) given by (O, Oy, b, w), such that:

(i) M = O(K), where K is a finite H-CW complex and M has the cone of the given
H-action on K,

(i) Ou is induced by a simplicial map on K,

(i) M9 < O(L) := N for some H-invariant subcomplex L < K, and
(iv) for somei < 1,1 c Ki(‘g;,{v,_,(R)) is a subgroup with H*(I) = 0.
Then L,{(%;,NH (R),o,u) =0 for all n.

Corollary 5.13. Let G = C(2'q), q odd, be a cyclic group and H = G the subgroup
of index 2. Let W be a G-representation, and N = |J{WX|[G : K] is odd}. Then
L,{(%I?V/YH(Z), o, u)(q) = 0 on the top component, where (o, u) is the antistructure given
above.

The proof of Theorem 5.12. We extend the given H-action on M to a simplicial action
of G=<H, t|t"'ht = 0y (h), > = b) as described above. The proof is by induction
on cells, so suppose that K is obtained from L by attaching exactly one G-equivariant
k-cell D¥ x G/Gy. Since My 9 < O(L) = N, it follows that Gy = H and we may
write G/Gy = H/Gy U tH/Gy. Now we define M; = O(L u (D* x H/G)) and con-
sider the category .of = %;?%)(R). By construction, we have

G (R) = of X AP

which has trivial L-theory by Lemma 5.10. Since the Tate cohomology of the K;
decoration 7 vanishes, we get L] (%AZ{VH(R), o,u) = 0. O

6 Calculations in bounded K-theory

We begin to compute the bounded transfers trfy, by considering the bounded K-
theory analogue. In this section, G = C(2"¢) is cyclic of order 2”¢, with r = 2 and
¢ = 1 odd. By [I], Theorem 3.8 we can restrict our attention to those W where the
isotropy subgroups have 2-power index. Let G; < G denote the subgroup of index
[G:G]=2fori=0,1,...,r. As above, we reserve the notation H < G for the sub-
group of index 2.

Any real, orthogonal G-representation W can be decomposed uniquely into iso-
typical direct summands indexed by the subgroups K = G, where in each summand
G operates with isotropy group K away from the origin. Since we assume that ¥ has
isotropy of 2-power index, we can write

W=woewle- - @ W[
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where W[i] is isotypic with isotropy group G;. Thus W[0] = R* is a trivial G-
representation, and W]l] is a sum of R_ factors. We say that W is complex if
dim W[0] and dim W[1] are even (in this case, W is the underlying real representa-
tion of a complex representation). If W is complex, then Wp,x = W denotes a com-
plex sub-representation of real dim < 2 with maximal proper isotropy subgroup. If
W = W0] then Wax = 0. Then Wiy is either irreducible or Wi = R- @ R_.

We study bounded K-theory by means of equivariant filtrations of the control
space. The basic sequence is (see [10]):

o K1 (679(2)) 25 K%, 6(2)) — Ki(%y,6(Z))
— Ki(%7G(2)) — -

valid for U < V a closed G-invariant subspace. If W) is a complex representation
with dim W, = 2 and isotropy group K # G, let U = ¢, be the union of [G : K]
rays from the origin in W, which are freely permuted by G/K. Then Wi\ 4, is
a disjoint union of open fundamental domains for the free G/K-action. If W =
W, @ W), we call W, = | 4, x Wa = W the orbit type filtration of W.

Recall that 7 denotes a generator of G, and thus acts as an isometry on the control
spaces M we use in the bounded categories €y, ¢(Z). Let ¢, denote the action of ¢ on
bounded K-theory induced by its action on the control space.

Lemma 6.1. Let W =W, ® W,, where W\ is a complex 2-dimensional sub-
representation of W with minimal isotropy subgroup K # G. Then

K1 (635" "(2)) = Ko 4 (ZK)

K€, 6(2) = Koy 4(ZK),

where k = dim W,. The boundary map 0,11 = 1 — t, in the long exact sequence of the
orbit type filtration for W.

Proof. The bounded category (66?/ 2. g(Z) of germs away from W) has effective
fundamental group K, as defined in [10, 3.13]. It therefore has the same K-theory as
@ i1 (6p(ZK)). The other case is similar. The identification of 0;;; with 1 — ¢, is
discussed in detail in the proof of Proposition 6.7. OJ

Since K_;(ZK) = 0 for j = 2 by [8], this Lemma gives vanishing results for bounded
K-theory as well.

Lemma 6.2. Suppose that W is complex, and W = 0. Then the inclusion map induces
an isomorphism
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Ki(Cwxr_.6(Z)) — Ki(6wxr_ 6(Z))
fori< 1.

Proof. This is an argument using the orbit type filtration. Let W = W,x @ W, and
suppose that W, # 0 or equivalently dim W, = 2, since W is complex. Write W =
W'e® W"” with W' < W,, dim W’ =2 and Iso(W’) = K minimal. We choose W”
containing Whax, and by induction we assume the result holds for W”.

Then applying the first part of Lemma 6.1, we get the calculations

(6.3) K30 50r 6(Z) = Ko jwn (ZK)

and

Lx W xR _
(64) K %yin' s " (2) = Kisyw (ZK).

Since dim W"” = 2, we get the vanishing results Ki((gGZlﬁ%fo,,G(Z)) =0fori<2

by [8], and Ki((g;,gﬁivg”m’(l)) =0 for i < 3. From the filtration sequence, it fol-

lows that Ki(%ffgf% (Z)) = 0 for i <2, and therefore

Ki(Gwrwr_c(Z)) = Ki(Gwxr_,c(Z))
for i < 1. We are done, by induction. O
Corollary 6.5. K;(¢;,//w "8 (Z)) =0 fori £ 2.

Proof. We continue the notation from above, and look at part of the filtration se-
quence

Ki( @6 (2)) — K@% 76 () — Kl %3506 (2).

The first term is zero for i < 2 by induction on dimension, and the third term is zero
for i £ 2 as above. O

We can obtain a little sharper result with some additional work. First a useful ob-
servation:

Lemma 6.6. Let .o/ be an additive category (with involution). Then the map R — R
sending x to —x induces minus the identity on K-theory (and L-theory) of €r ().

Proof. The category @r(.<7) is filtered by the full subcategory whose objects have
support in a bounded neighborhood of 0. This subcategory is equivalent to .o/ and
the quotient category may be identified with ‘g[ﬁf)oc)(d ) x (g(i 00070](,9{ ) via the projec-
tion maps in an obvious way.
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Consider the diagram

A ——  Gr(A) —— G5l (A) X C0, ()

| J

A —— G, 0\ (A)

where the vertical map is induced by x — |x|. In the lower horizontal row, K and L-
theory of the middle term is trivial, so the boundary map will be an isomorphism.
The lower row splits off the upper row in two different ways, one induced by includ-
ing [0, o0) = R and the other by sending x € [0, c0) to —x € R. Under these two split-
tings we may identify K or L-theory of the quotient fg[g?oc)(&i) X fﬁ@% o(:«7) with
(5[3?30) X (6[3?30) and under this identification, the flip map of R corresponds to inter-
changing the two factors. On K-theory (or L-theory) we conclude that the exact se-
quence is of the form

0 A, — A, xA. 5 4, —0.

The flip action on the last term is trivial, and on the middle term it interchanges the
two factors, so the inclusion must send a to (a, —a). Hence the flip action on the first
term must be a — —a. O

As above, 1. denotes the induced action of a generator 1 € G on K-theory, and ¢ :
G — {£1} the non-trivial action of G on R_.

Proposition 6.7. Let W be a complex 2-dimensional G-representation with W = 0,
and isotropy subgroup K. Then under the isomorphisms of (6.3) and (6.4) the complex

£y xR_ Ou B 0
K (6,597 16 () = K65 w_6(2) = Kii(65° 4(2)
with 0p 0 0, = 0 is isomorphic to
Ki 2(ZK) % Ki 2(ZK) 2% K;_»(ZH)
where 0! =1 —t, =2 and 0, = Indy o (1 — 1.) = 0.

Proof. The orbit type filtration is based on a G-equivariant simplicial model for
W, where G acts through the projection to G/K. The third term in the complex is
Ki_1(%3" ¢(Z)) = Ki_»(ZH) and the identification of the boundary maps follows
from the definition of the germ categories.

To compute J,, we use the isomorphisms between the domain of ¢, and K;_»(ZK)
obtained by noticing that every element is induced from an element of

Kin(65RK (7)),
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where C is the region between two adjacent half-lines of | J Z,. This follows since the
regions in the complement of | J 7, x R_ are disjoint and the boundedness condition
ensures there is no interference. Similarly the isomorphism of the range of d, with
K;_»(Z) is obtained by noticing that every element is induced from %[}, x where / is
just one half-line in | Z,, and we can think of 0C = & U th. To compute the boundary
we first take the standard boundary to %scxr x(Z) which is an isomorphism, and
then map away from 0 x R. It follows from the proof of Lemma 6.6 above that this
map is of the form a — (a, —a) in K or L-theory. In this picture, the support of one
of the boundary components is along # and the other along th. We need to use the
group action to associate both elements to the same ray. Since ¢ flips the R-factor, we
get a change of sign before adding, so ¢, = &(f) = —1 and ¢, sends « to 2a.

To compute Jp, we start with an element in the source of 0, which as above is
identified via induction with K;(%,% x ¢(Z)). The boundary first sends this isomor-
phically to & x(Z), then by induction to ¥r_ ¢(Z), and then via the natural map to
the range of 0, which is 43" ;. We have a commutative square

Ind
K ((g/?XRRJ((Z)) — Kl((gD];;xR,‘,G(Z))

| |

Ko(63%(2Z) % Ko(%R’.4(Z))

where %ﬁ?K(Z) = %R k(Z) x Gr x(Z). Under this identification, the natural map to
the germ category Ko(%r x(Z)) — Ko((éﬁf)K(Z)) is just a — (a, —a), and the induc-
tion map

Ind : Ko(¢3'x(2)) — Ko(4R’ 4(Z))

is given by (a,b) — Indy(a + ¢.b). In this case the action of t on Gr  ¢(Z) is the
identity since any element is invariant under the action of G, hence under the action
of ¢. It follows that Ind(a, —a) = Indy (a — t.a) = 0 as required. O

Lemma 6.8. Let W be a complex 2-dimensional G-representation with proper isotropy
group K. The boundary map

K1 (65 6(Z) — Ki(%r_6(Z))
is zero for i < 1.

Proof. If i £ —1 the domain of this boundary map is zero, so the result is trivial. For
i = 1 we use the injection Wh(%r_ (Z)) — Wh(%gr_ (Z3)), which follows from the
vanishing of SK(ZG). But Wh(%x_.¢(Z,)) = Wh(Z,G)/Wh(Z,H) and the group
Wh(Z,G) = [uq Z,(¢4)G,, where G, < G is the 2-Sylow subgroup and g is the odd
part of the order of G. Now Oliver [18, Thm. 6.6] constructed a short exact sequence
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1 = Wh(Z2[(,]Ga) — Zo[(4)Gr — {—1) x Gy — 1

by means of the integral 2-adic logarithm. This sequence is natural with respect to
inclusion of subgroups, so we may use it to compare Wh(Z,G) and Wh(Z,H). Since
each corresponding term injects, and the middle quotient is Z-torsion free, we con-
clude that Wh(%x__¢(Z,)) is also Z-torsion free. Since KZ((gGl};}R,,G(Z)) = Ko(ZK)
is torsion (except for Z = K((Z) which is detected by projection to the trivial group),
the given boundary map is zero.

For i =0, we use the surjection Ko(QK) — K_j(ZK), and compute with Q co-
efficients and i = 1. We will list the steps, and leave the details to the reader. First,
compute that K(%r_ 6(Q)) = Ki(QG)/K\(QH) surjects onto Ki(6js,xr_ c(Q)),
by means of a braid containing the cone point inclusions into %gr_ G(Q) and
CrxR G(Q) Second, prove that Kl(‘/U/XR G(Q)) fits into a short exact se-
quence

0 — Ki(6yn.u(Q) — Ki(%4.6(Q)) = Ki(€rxr_.6(Q)) — 0

by means of a braid containing the inclusion Uss U4 xR_ - Finally, compute the

first two terms K ((gU/% (Q)) K (QG)/Kl (QK) and K; ((KU/X (Q)) K (QH)/
K1(QK) by comparing the groups under the inclusion H < G. We conclude that

Ki(%x_6(Q)) = Ki(%/xr_6(Q))
under the inclusion map, and hence 0 = 0. O

Corollary 6.9. Let W be a complex G-representation with W = 0. Then the inclusion
induces an isomorphism K;(6r_¢(Z)) — Ki(wxr_,6(Z)) for i £0, and an injec-
tion for i = 1. If K_1(ZK) = 0 for the maximal proper isotropy groups K of W, then
Ki(%wr ,6(Z)) = Ki(Cwxr_c(Z)).

Proof- We may assume that dim W = 2, and apply the filtering argument again. By
(6.3) and (6. 4)I§ve get Ki(68% (Z)) =0fori <0, and Ki(¢,;5x (Z)) is a quo-
tient of K; (%G/;R ¢(Z)) = K_1(ZK). Since the composition

Ki(5m 6 D) = K@i 6(Z) = Ko(%r_6(Z))

is zero by Lemma 6.8, the result follows for i < 0.

Similarly, K>(6;8x (Z)) isa quotlent of Kz(%GE*XR o(2) = KO(ZK) because
the boundary map K»(%,;05 % (Z)) = K1(ZK) to K, (65 r_6(Z) = K1(ZK)
is multiplication by 2, and hence injective. Then we make the same argument, using
Lemma 6.8.

If we also assume K_|(ZK) = 0, then K, Gvrs 6(Z)) =0 so we get the isomor-
phism K (%Rﬂg(Z)) — K ((gwa G(Z)) O
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7 The double coboundary

The composite A of maps from the L" — L? and L* — L" Rothenberg sequences

H(Ry(2G)) —— LNZG)
|
H(Wh(ZG))

(see [14]) has an algebraic description by means of a “double coboundary” homo-
morphism

6% : H(Ky(ZG)) — H'(Wh(ZG))
In this section, we will give a brief description due to Ranicki [20] of this homomor-
phism (see also [21, §6.2] for related material on “interlocking” exact sequences in K

and L-theory).
Let X be a space with a Z/2 action T : X — X, and define homomorphisms

A H(my(X)) = H'(my1 (X))
by sending g : S" — X to
ho(=1)'Th: " = D" Ugu D" — X
for any null-homotopy 4 : D"™! — X of the map g + (—1)""' Ty : S" — X.
The maps A lead to a universal description of double coboundary maps, as follows.

Let f: X — Y be a Z/2-equivariant map of spaces with Z/2 action, and consider
the long exact sequence

o 1 (X) D (V) = () = Tt (X) = 7 (V) e

We define I, = ker(f : n,(X) — 7,(Y)) and J, = Im(z,(Y) — 7,(f)), and get an
exact sequence

0— nﬂ(X)/In - nn(Y) - nn(f) — 1,1 —0

which can be spliced together from the short exact sequences
0—m,(X)/ I, = 7, (Y)— J, — 0

(7.1)
0~>Jn~>7z,,(f)% —1 — 0.

Then it follows directly from the definitions that the double coboundary
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O HI(I_) > HH (J) S Hi(my(X)/1,)
from the Tate cohomology sequences induced by (7.1) is given by the composite
0% H(I,1) 2 Hi(m, 1 (X)) =2 Hi(my(X)) 22 Hi(m,(X)/1,).
If we can pick the map f: X — Y appropriately, say with [, =0 and [, | =
7,1 (X), this gives an algebraic description of A.

In later sections we will use the relative Tate cohomology groups H'(A), which are
just (by definition) the relative Tate cohomology groups [21, p. 166] of the map
7,(Y) — m,(f) in the long exact sequence above. These groups fit into the commu-
tative braids given in [20] which will be used in the proofs of Theorems A—C.

We now give some examples, with G denoting a finite cyclic group as usual. These

arise from homotopy groups of certain fibrations of algebraic K-theory spectra.

Example 7.2. There is an exact sequence [14]
0 — Wh(ZG) — Wh(Z,G) — Wh(ZG — Z,G) — Ko(ZG) — 0

of Z /2 modules and the associated double coboundary in Tate cohomology equals
A: H(Ky(ZG)) — H (Wh(ZG)).

The point here is that ker(Wh(ZG) — Wh(Z,G)) = 0 [18], and the map Ko(ZG) —
Ko(Z,G) is zero by a result of Swan [27]. We could also use the exact sequence

0 — Wh(ZG) — Wh(ZG) ® Wh(QG) — Wh(QG) — Ky(ZG) — 0
to compute the same map A.

Example 7.3. There is an exact sequence
0 — Wh(%r_,6(Z)) — Wh(%r_6(Z®Q))

— Wh(%r_.6(Q)) — Ko(ér_.6(Z)) — 0
where Wh(%r_ (Z)) = Wh(ZH — ZG) and Ky(%x_ 6(Z)) = Ko(ZH — ZG). The
injectivity on the left follows because K»(%r ,¢(Q)) is a quotient of K>(QG),
mapping trivially through K;(ZG) into Wh(%r_ ¢(Z)) (since SK;(ZG) =0 [18]).
We therefore get an algebraic description of 6°: H!(Ko(ZH — ZG™)) — H'-
(Wh(ZH — Z.G7)) as used in the statement of Theorem B.

Example 7.4. There is an exact sequence
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(74) 0 — Wh(Gwwr_.6(Z) = Wh(@wxr_ ¢(Z®Q))

— Wh((gWXRﬂG(Q)) — KO(%WXR,,G(Z)) -0

for any complex G-representation W with WY = 0. We therefore get an algebraic de-
scription of 0% : H!(Ko(6wxr_.6(Z))) — H' (Wh(€w.r_.c(Z))) as used in the state-
ment of Theorem C.

Lemma 7.5. For complex G-representations Wi < W with WY = 0, there is a com-
mutative diagram

Hi(Ro(Gwer_6(Z)) —— HI(Wh(Gwir 6(Z)))

I

H(Ky(wxr 6(Z) —— H'(Wh(wxr 6(Z)))
where the vertical maps are induced by the inclusion W, < W.

For our applications, the main point of the double coboundary description is that it
permits these maps induced by cone point inclusions to be computed using bounded
K-theory, instead of bounded L-theory.

The double coboundary maps also commute with restriction to subgroups of G.

Proposition 7.6. Let Gy < G be a subgroup of odd index, and H, < G| have index 2,
then there are twisted restriction maps

H{(Ro(ZH — 2.G™)) 2% H(Ro(ZH, — Z.Gy))

and

H(Wh(ZH — ZG7)) & HI((Wh(ZH; — Z.Gy))

such that the diagram

H(Ro(ZH — ZG-)) —>— HI(Wh(ZH — ZG"))

ResJ{ lRes
52

H(Ro(ZH, — ZGy)) —— HI(Wh(ZH, — ZGy))
commutes.

Proof. The vertical maps are twisted restriction maps given by composing the
twisting isomorphisms
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H'(Ko(ZH — 2.G™)) =~ H*'(Ko(ZH — ZG)) and

H'(Wh(ZH — 2.G™)) =~ H*Y(Wh(ZH — ZG)),
discussed in [I], Section 4, with the restriction maps induced by the inclusion
7.G| — Z.G of rings with involution. Since G| < G has odd index, H; = H n G| and

the composition Resg, o Indy lands in the image of Indy, by the double coset
formula. O

This can be generalized to the double coboundary maps used in the statement of
Theorem C, under certain conditions.

Proposition 7.7. Let Gi < G be an odd index subgroup, and H, < Gy have index 2.

Suppose that W only has proper isotropy subgroups of 2-power index. Then there

are a twisted restriction maps H'(Ko(€wxr_6(Z))) — H'(Ko(Creswxr_.6,(Z))) and

H (Wh(6wxr .6(Z))) — H' (Wh(Gres wxr_.c,(Z))) which commute with the corre-
; 2

sponding double coboundary maps 5y, and gy -

8 Calculations in bounded L-theory

Suppose that ¢ = o(f) € L{(ZG) is the surgery obstruction arising from a normal
cobordism between S(V}) and S(7>), as in the statement of [I], Theorem 3.5. In this
section, we establish two important properties of #rfy (o) in preparation for the proof
of Theorem C. Unless otherwise mentioned, all bounded categories will have the
standard orientation (see Example 5.4).

For a complex G-representation W the standard orientation is trivial, and the cone
point inclusion 0 € W induces the map

¢, : LMZ.G) — LN %w ¢(Z)).

Note that the presence of an R_ factor introduces a non-trivial orientation at the
cone point

et LI ((ZG,w) — L | (6wxr_6(Z))
where w : G — {41} is the non-trivial projection. The properties are:

Theorem 8.1. Suppose W is a complex G-representation with no R summands. If
trfwxr_(0) € Lé’kﬂ (Gwxr_,6(Z)) is a torsion element, then

(i) there exists a torsion element 6 € L%, | (6r_ c(Z)) such that
c.(6) = trfwxr_(0) € Ly, (6wxr_6(Z))

(ii) there exists a torsion element 6 € Lé’k 1 (ZG,w) such that

(

C*(&) = trfoR,(G) € L§k+1((gW><R,,G Z))

where dim W = 2k.
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We remark that the condition “frfy«r_(0) is a torsion element” follows from the
assumption Resy (V1 @ W)@ R, ~, Resy(V, @ W) @R, in Theorem C, as an
immediate consequence of Proposition 4.7. Before giving the proof, we need some

preliminary results. When the L-theory decoration is not explicitly given, we mean
L&,

Lemma 8.2. Let W be a complex G-representation. Then
Loi1(6w.6(Z)) ®Q =0

fork = 0.

Proof. We argue by induction on dim W, starting with
Ly 1(ZG)=7)2® H'(K_|(ZG))

which is all 2-torsion. It is enough to prove the result for the top component
Lok1(w.¢(Z))(q), and therefore by [I], Theorem 3.8 we may assume that the iso-
tropy groups of W all have 2-power index. Since we are working with L{%?, we may
ignore R, summands of .

Let W= W’'@® W" where dim W' = 2 and W’ has minimal isotropy group K. We
assume the result for W, and let | J 4/, = W' be a G-invariant set of rays from the
origin, dividing W' into fundamental domains for the free G/K-action.

Then

L3 o 6(2)) = Luct (610, 6(Z)) = L1y (ZK),
which is torsion for n even, and
A w"
Lu(&,2" " (2)) = Lis(wn,6(Z)) = Ly jwn(ZK),

which is torsion for n odd. Moreover, we have a long exact sequence

’

= LG L 6(2) = L(%3)(2)) — Lu(%,50 " (2)) — -

We claim that the first map in this sequence is rationally injective. The previous map
in the long exact sequence is

). /1 w" "
L (635" (2)) = L% Ly 6(2)),

which may be identified (using the isomorphisms above and Proposition 6.7) with a
geometrically induced map

1—
Lnflf‘W”l(ZK) —u> Lnflf‘W”l(ZK)
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“multiplication by 1 —w(#)”, where 7= w(z)r"! from the action of # in the anti-
structure used to define the L-group.

In the oriented case, w(#) = +1 and this boundary map is zero. Therefore, we con-
clude that

L2k+1((562/; wr (L)) = Lot (6575 (Z))
is a rational isomorphism and so
Lo (637G (Z)) = Loy (ZK).

Finally, we will substitute this computation and our inductive assumption into the
long exact sequence

- = Lo 1(6wr,6(Z)) — Loy 1(6w,6(Z))
— Lz/c+1(‘€V>V%I(Z)) — Lo (6wr, (L)) — ---
and obtain an exact sequence
0 = Lo1(6w,6(Z)) = Lai1 (63 (Z)) = Lo (Gwr 6(Z)).
However, the second map in this sequence can be identified with the inclusion map
Indg : Lok (Gwr k(Z)) — Lox(Cwr (L))

and the composition Resg o Indg is multiplication by [G : K|, which is a rational
isomorphism. Therefore Indy is injective and Lox+1 (6w, 6(Z)) = 0. O

Another computation we will need is
Lemma 8.3. Ln((éfVRﬁ{ﬂ ¢(Z)) ® Q=0 for Wa complex G-representation.

Proof. We may assume that W ¢ = 0 and argue by induction on the dimension of W.
We write W = W’ @ W", where Iso(W') = K is minimal (2-power index isotropy
subgroups may be assumed as usual). We have 2 long exact sequences (all L-groups
are tensored with Q):

(i) from the inclusion W”@®R_ < W @R_. For short, let 4 = %EVRX]LG(Z),
B= %;VB;K’G(Z), and then 4/B = %;VV:RT% (Z). We need the piece of the L-group
sequence:

(84) - — L,(B)— L,(A) — L,(A/B)---

and note that L,(B) = 0 by induction.
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(i) we study L,(A4/B) by looking at the usual rays | J £, = W’ which divide the 2-
dim representation W' into G/K chambers. Let

Dy = (gGIZX;IB’FXR,,G(Z)
and
LX W SR
Dl = %%J/XE,,GX (Z)
Then we need the L-group sequence

(8.5)  — Ly(Do) — Ly(A/B) — Ly(Dy) — Ly (Do).

But the groups L,(D;) are the ones we have been computing by using the chamber
structure. In particular,

Ly(Do) = Ly—2(Cwr k(Z))
and
L,(Dy) = L,_3(6wr x(Z)).

But since K is the minimal isotropy group in W, it acts trivially on W and these L-
groups are just

L,(Do) = Ly wn (ZK)
and

Ly(D1) = Ly—3-wn(ZK).
Now the boundary map

(86) Ln(Dl) - Lnfl(DO)

in the sequence is just multiplication by 1 —w(f) =2 (w(f) = —1 since R_ is non-
oriented), and this is a rational isomorphism. Therefore, L,(4/B) = 0 by (8.5) and
substituting back into (8.4), the L,(4) = 0. O

Now a more precise result in a special case:

Lemma 8.7. Let W be a complex 2-dimensional G-representation with W ¢ = 0. Then
L%k 6(2) =0

Proof- We have an exact sequence
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Sl Lg((gGI;[xR,,G(Z)) - Lg((g;Vka,,G(Z))
= L6l T (2) = L€ w o(2) =
arising from the orbit type filtration. Here
I=Im(Kx(6555_o(Z) = Ko, (2)))

£y xR _ _
= ker(Ka(%,5% 6 (2) = Ki(67%n_6(2))

— ker(K_1(ZK) 2> K_(ZK))

by Proposition 6.7, where K is the isotropy subgroup of W. But K_;(ZK) is torsion-
free, so I = {0} = K,. Now substitute the computations

LYER x (Z) = LI(ZK) =0
£, xR _

LI@9%% (2)) = L (ZK)

Ly (6% 6(Z) = LY(ZK)

into the exact sequence. The boundary map

;xR X B
LI 6 () = L6 6(2)
is multiplication by 2 so Lg(%;‘ikﬂc(Z)) =0. 0

Remark 8.8. The same method shows that Lf((g;VlikﬂG(Z)) = L{(ZK) =Z/2 for
dim W = 2 as above, assuming that K # 1.

Our final preliminary result is a Mayer-Vietoris sequence:

Lemma 8.9. Let W be a complex G-representation with W = 0. Let W = W @ W,
be a direct sum decomposition, where Wi = Wiax.

(i) There is a long exact sequence

!

L (@R R (7)) D s giR e 4(2)

— L6 (2) © L6555 (2) — LI (2)

of bounded L-groups, where
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I = Im[K> (633 56(2) = Ka( 630 562" (2)

is the decoration subgroup.

(i) For n =3 mod4, the boundary map 0,41 = 0.

Proof. The Mayer-Vietoris sequence in L<™%?
= Lo (63767 (2)) — La(€376" (2))
— Lu(3,'6(2)) ® La(%31 6(Z)) — La(%316" ()

where U, V are nice G-invariant subspaces of the control space M, follows from an
excision isomorphism

L, ((655V, G (Z>) =L, (%;,UGm V(Z))

and standard diagram-chasing. We apply thisto M = W xR_, U = W x R_ and
V =W, x R_, where U n V= R_. The decorations follow from Section 5 and Cor-
ollary 6.5.

To see that 0y = 0, note that this boundary map is the composition of

W/ xR_UW"xR_ : WaxR
0: Ly(pag 6" N (2) = L€ R  Swor_ 6(2))
and an excision isomorphism

L;(%;V%é?g W”XR,ﬁG(Z)) = L;(%;V]};R,,G(Z))'
But L§(%¢},% x_ (Z)) =0 by Lemma 8.7. O

Corollary 8.10. Suppose W is a complex G-representation with no R summands. Then
the image of trfw«r_(0) is zero in L5k+1((g;VI§<k,,G(Z))J where dim W = 2k.

Proof. First recall from [I], Theorem 3.6 that trfy«r_(0) € Ly, | (6wxr_,6(Z)) where
c1 = Im(Wh(ZG) — Wh(%w«r_.¢(Z))) under the cone point inclusion. Therefore,
the image of trfy«r () “away from R_" lands in L3, (4, x (Z)). We may
therefore apply the Mayer-Vietoris sequence from Lemma 8.9.

As usual, we may assume that W has only 2-power isotropy subgroups, and we
will argue by induction on dim W and on the orbit type filtration of W. The result
is true for dim W =2 (by Lemma 8.7) or for W a free representation (by a direct
calculation following the method of Lemma 8.3). For sets of 2-power index sub-
groups (ordered by inclusion, with repetitions allowed), we say that {K7,..., K/} <
{Ki,...,K}if s<tors=1¢ K/ =K;for1 £i<j<s, and K/ ¢ K;. Let Iso(W) =
{Ki,...,K;} denote the set of isotropy subgroups of W ordered by inclusion.
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Define an ordering by W' < W if (i) dim W' < dim W or (ii) dim W’ = dim W but
Iso(W') < Iso(W).

Let W = W) @ W,, where W, has maximal isotropy subgroup K, and suppose the
result holds for all W/ < W. If dim W = 2 mod 4, we get an injection

L6558k 6(Z) — Ly(60R0(2) @ Ly(6, 3" (2))

from Lemma 8.9, where W, < W and W, < W. If dim W = 0 mod 4, we get an in-
jection

Ly 3 6(2) = Li(@3000% 6(2) ® L3451 6 (2)

again from Lemma 8.9, where U is any 2-dimensional free G-representation. Notice
that W, ®@ U < W in the ordering above. Consider the following commutative dia-
gram (with dim W = 2 mod 4):

1wy xR

LY(ZG) —— L{'(6wr_.6(Z)) —— L{(Gpir_(2))

m l fw, l’ "y

L (Gwwr 6(Z) —— L%k "6(2))

This diagram, and our inductive assumption shows that the image of trf«r_(0) is

zero in Lg(%;}:{%(l)). Similarly, by reversing the roles of W) and W, in the dia-

gram, we see that the image of #rfjy«r (o) is zero in Lj (%EVV:Q%(Z)). Therefore the
image of trfiy«xr_(0) is zero in Lg’((éfVi]LG(Z)). If dim W = 0 mod 4, we replace W
by W @ U and make a similar argument, using the observation that W, @ U < W

to justify the inductive step. O

The proof of Theorem 8.1. Part (i) follows from Corollary 8.10: we know that the
image of our obstruction frfy«r_(0) is zero “away from R_"’, so comes from a tor-
sion element in 6 € L%, | (¥r_ ¢(Z)) (by Lemma 8.3, L2k+2((gV>VinL‘G(Z)) is torsion).

For part (ii) observe that L%, +1((gﬁ?’G(Z)) = L} (ZH) is torsion-free (except for
the Arf invariant Z/2 which is detected by the trivial group, so does not matter).
Hence the image of 71/ «r_(c) vanishes in L}, | (63°«r_G(Z)). The exact sequence

B Lng(ZG’ w) — Lngrl((gWXRﬂG(Z)) - LélkJrl((gI?VOxR,,G(Z))v

with U = ker(Ko(ZG) — Ko(6wxr_.6(Z))), now shows that there exists a torsion
element

6 eIm(Ly,.(ZG,w) — L, ., (ZG,w))

with ¢.(6) = trfwxr_(0) € LY (Gwxr_ 6(Z)). O
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Remark 8.11. In Theorem 10.7 we use the sharper result 6 € LY, , | (ZG, w) to improve
our unstable similarity results by removing extra R_ factors. The L-group decoration
U is independent of W, since Ko(6r_ ¢(Z)) — Ko(wxr_ c(Z)) is injective by Cor-
ollary 6.9, and hence U = Im(Ky(ZH) — Ko(ZG)).

9 The proof of Theorem C

By replacing V; by V; @ U if necessary, where U is free and 2-dimensional, we may
assume that dim V; @ W = 0 mod 4. This uses the s-normal cobordism condition. By
the top component argument (see [I], Theorem 3.8) and Proposition 7.7, we may also
assume that W has only 2-power isotropy. We have a commutative diagram analo-
gous to [I] (8.1).

(52

/’\/’\

H'(Ko(Cwxr_6(2)))  H'(Wh(Gwxr_.6(Z))) Ly(Gwxr_6(Z))

O LI @wr 6(Z)) H' (Awer )
(Cwxr_6(Z)) LY (%wxr_,c(Z)) H°(Ko(6wxr_.6(Z)))

where H'(Ay . r_) denotes the relative group of the double coboundary map.

This diagram for W can be compared with the one for W) = Wy via the inclu-
sion maps, and we see that the K-theory terms map isomorphically by Lemma 6.2.
Now by Theorem 8.1 there exists a torsion element

6eIm(L (6r_G(Z) — LY (6w, xr_.6(Z)))

which hits #rfy«g_ under the cone point inclusion. In particular, ¢ vanishes “away
from R_". The main step in the proof of Theorem C is to show that the torsion
subgroup of Lf’ (€w,xr_.¢(Z)) essentially injects into the relative group H 1 (Aw,xr_)
of the double coboundary.

We have the exact sequence

L3 (@ir_6(Z) = L{ (6r_,6(Z) = Li(w,xr_.6(Z)) = L} (€p55r_ 6(2)

and Y = ker(Wh(%R G(Z ))) — Wh(%w,«xr_,c(Z)) is zero, by Corollary 6.9. But the
first term L3 ((5;/ <R G( )) is a torsion group, by Lemma 8.3, and the next term in

the sequence LY (%xr (Z)) = L{(%r_.6(Z)) is torsion-free by [I], Lemma 7.1 so the
middle map LY(%r_.G(Z)) = L{(%w,xr_.G(Z)) is an injection.
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Since Lf(%;}};m‘ ¢(Z)) =7Z/2 by Remark 8.8 we conclude that the previous
group L;(6w,«r_.(Z)) is torsion-free modulo this Z/2, which injects into Lf*1>-
(%;VFQR,,G(Z)) =7/2® H'(K_|(ZK)). Since 6 vanishes away from R_, this extra
Z./2 may be ignored.

By substituting this computation into the exact sequence

Li(®wixr ,6(Z)) = LY (€wyxr_6(Z)) — H'(Awxr )
of (9.1), we see that the torsion subgroup of

ker(LY (6w, r_.(Z)) = LY (655 x_ 6(Z)))
injects into the relative group H'!'(Aw,r_) of the double coboundary. Therefore
6 € LY(w,xr_,6(Z)) vanishes if and only if the element {A(V})/A(V>)} is in the
image of the double coboundary

6% : H' (Ko(6w,xr_.6(Z))) = H' (Wh(Gw,,.«r_.¢(Z)))
This completes the proof of Theorem C.
A very similar argument can be used to give an inductive criterion for non-linear sim-
ilarity without the R summand (generalizing Theorem A). In the statement we will
use the analogue to k = ker(Ky(ZH) — K¢(ZG)), namely

Ky = ker(Wh((g;VOxR,,G(Z)) — Ko(ZG)).
By Corollary 6.9

ker(Wh(ZG) — Wh(Gw«r ,¢(Z)) = Im(Wh(ZH) — Wh(ZG)) ~ Wh(ZH)
so we have a short exact sequence

0 — Wh(ZG)/Wh(ZH) — Wh(€wwr_.¢(Z)) — ky — 0.

It follows from our K-theory calculations that ky = kyy,

. and that ky = k when-
ever K_j(ZK) = 0 for all K € Iso(W).

Theorem 9.2. Let Vi = t“ + - - +t% and Vo = t"" + - .. + 1% be free G-representations.
Let W be a complex G-representation with no R, summands. Then there exists a to-
pological similarity Vi @ W @ R_ ~, Vo, ® W ® R_ if and only if

(i) S(WN) is s-normally cobordant to S(V>),
(11) ResH(V1 &) W) &) R+ ~¢ ReSH(Vz &) W) &) R+, and
(iii) the element {A(V1)/A(V2)} is in the image of the coboundary
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0:Hky, ) — H'(Wh(ZG")/Wh(ZH)),

where 0 S Wiax S W is a complex subrepresentation of real dimension < 2 with
maximal isotropy group among the isotropy groups of W with 2-power index.

Proof. In this case, we have a torsion element 6 € LI (%w,xr_ ¢(Z)) which maps
to our surgery obstruction trfy«g_under the cone point inclusion. As in the
proof of Theorem C, the torsion subgroup of L{(%w,xr 6(Z)) injects into
H' (Wh(Gw,xr_.6(Z))) = H' (Wh(%w,xr_ 6(Z))). Therefore 6 e L (Gw,xr_ c(Z))
vanishes if and only if the element {A(V})/A(V>)} is in the image of the coboundary

0:Hky, ) — H'(Wh(ZG)/Wh(ZH))
as required. N

10 Iterated R_ transfers

We now apply Theorem 5.12 to show that iterated R_ transfers do not lead to any
new similarities.

Theorem 10.1. Suppose that W is a complex G-representation with no R summands.
Then Vi@ W ®R.®R, ~ V- ®@WOR. @R, for [ =1 implies Vi ®@ W @ R_
AR, ~ V>, ®WOR_DR,.

The first step in the proof is to show injectivity of certain transfer maps. For any
homomorphism w : G — {£1}, we will use the notation (%, ¢(Z),w) to denote the
antistructure where the involution is g — w(g)g~' at the cone point. The standard

orientation (5.4) has w = det(py;), but we will need others in this section. Let ¢ =
det(pg ) for short, and notice that ¢ : G — {+1} is non-trivial.

Lemma 10.2. The transfer map trfg_ : Ly, (ZG,w) — L3 _,(6r_,c(Z),w¢) is injec-
tive, where w is the non-trivial orientation.

Proof. Since Ly ,(6r_,6(Z),w) = L} ,(ZH — ZG), we just have to check that the
previous map in the L? version of (5.8) is zero (using the tables in [14]). O

Next, a similar result for the R? transfer.

Proposition 10.3. The bounded transfer
irfge : Ly (ZGow) — Ly 5(Cge (Z),w)

is injective, where w is the non-trivial orientation.
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Proof. We can relate the iterated R transfer #1f) o i1 to trf, = trfg> by means of the
braid diagram:

ufa

N

L.(ZG,w) Lui2(ZTy — Z.G, w) LNS,3(D)
Ne a7
(104) Ln+l(ZH - ZG» W¢) LSI1+3 ((I))
LNS,(®) LN, 3(ZH — Z.G, wj) Loi3(ZG,w)

where the new groups LNS, (®) are the relative groups of the transfer
trfi = trfg_: LY (Er_,6(Z),wg) — L}c’ﬂ(‘ngi_’G(Z)7 w).

The diagram @ of groups (as in [29, Chap. 11]) contains I'y = Z x H as the funda-
mental group of S(R- ®@R_)/G (see [11, 5.9]).

The groups LNS,(®) have a geometric bordism description in terms of triples
L"2 = N""! = M" where each manifold has fundamental group G, N is charac-
teristic in M, and L is characteristic in N, with respect to the index two inclusion
H < G. There is also an algebraic description for LNS,(®) in terms of “twisted
antistructures” [13] as for the other groups LN(ZH — ZG,w¢) [29, 12C] and for
LS(®,w) |21, 7.8.12]. Substituting these descriptions into the braid gives:

trf>

/’_—\/’—\

L2k+1 (ZG7 o, u) L2k+1 (ZFH — ZG, 5(, ﬁ) L2k (ZH — ZFH, 5(, L~l)

N n SN S

(105) L2k+](ZH — ZG, o, H) LZk(ZFH7&7a)
Lojst(ZH — ZTy,0,i)  Lo(ZH, o, u) Lok(ZG, o, u)

\_/\_/

The antistructure (ZG, o, u) is the twisted antistructure obtained by scaling with an
element a € G — H. The antistructure (ZI'y, &, ) is the one defined by Ranicki [21,
p- 805], then scaled by a € I'y, where @ maps to a under the projection I'y — G. Since
I'y =@ Z x H, we have an exact sequence (see [17, Theorem 4.1])
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—— LY(ZH,a,u) —— LI(ZI'y,a, )

I @H, ) 2

n—1

(ZH o, u)

and it follows that LY(ZH — ZI'y,d,u) = L< 1>(ZH o,u). It is not difficult to see
that L§k1>(ZH o,u) is torsion-free (except for the Arf invariant summand) by a
similar argument to [I], Theorem 5.2, using the L? to L{~!” Ranicki-Rothenberg
sequence. We first check that L} (ZH, o, u) is torsion-free (again except for the Arf
invariant summand) from the tables in [14, 14.21].

Now observe that L?(ZG, o, u) =~ L?(ZG,w), and

LY (ZH — Z.G,0,u) = L}, ,(ZH — ZG).

The transfer #rfg_: LY, (ZG,w) — L} ,(ZH — ZG) is injective by Lemma 10.2,
and since w(a) = —1, the map

1—w(a)

LSV (ZH o, u) —= LY (ZH o, u)

is also injective (except for the Arf invariant summand). Therefore L2, (ZG, w) must
inject into the relative group L}, |(ZI'y — ZG,a,it) = Ly (G2 (Z),w). a

The final step in the proof is to consider the following commutative square of spectra:
L(6,(ZG),w) —— L(6r.c(Z),w)
irfr_ l ltiﬁz
L(%r_6(Z),wd) —— L(Grxr_.c(Z),wd)
for any G-representation J with no R, summands.
Lemma 10.6. This is a pull-back square of L<~%? spectra.
Proof. The fibres of the vertical R_ transfers are
LN(r_.6(Z),wh) = L(%,(ZH,a,u),

and LIN(Gyxr_,¢(Z),wd) = IL(6y u(Z),a,u) respectively by (5.8), and the fibre of
the cone point inclusion

IL(6p(ZH), 0, u) — IL(Cy u(Z), o, u)
is ]L((g,if)H(Z), o, u). But Theorem 5.12 shows that ]L(%;?H(Z), o, u) is contractible,

and therefore the cone point inclusion is a homotopy equivalence. It follows that the
fibres of the horizontal maps are also homotopy equivalent. O
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The proof of Theorem 10.1. It is enough to prove that trfy, gri(o) =0, for [ =2 1,
implies #rfy«r_(6) =0 in the top component of L}, . (6wxr_.c(Z)). We may as-
sume that Iso(W) only contains subgroups of 2-power index, and let dim W = 2k.
We may also assume that / is even, by crossing with another R _ if necessary. Now by
Theorem C, trfy,, g2+ (o) = 0 implies trf},, g2-1(0) = 0, provided that s = 2. It there-
fore remains to study / = 2. )

The pullback squares provided by Lemma 10.6 can be combined as follows. Con-

sider the diagram of L<~*’-spectra

L(4u(2G),w) —— L(%r_c(Z),wh) —— L(Gy.p 6(Z),W)

tV/kJ trfin fr.fkl

IL(%R_,G(Z), W) 2 ]L((gRE,G(Z)aW) — ]L((gWxRE,G(Z)aW(ﬁ)

whose outer square (¥ = W x R?) and the left-hand square (V' = R_) are both pull-
back squares, and hence so is the right-hand square. Next consider the diagram of
L spectra

L(6u(ZG),w) —— IL(Gwxr_c(Z),wp)

t)_‘fkl trfr_ l

L(%r_6(Z),w) —— L(Gy,g2 6(Z),w)

lV/‘kl lr]kl

E(%RE,G(Z)’ w) S ]L((gWxRi,G(Z)a we)

The lower square was just shown to be a pull-back, and the upper square is another
special case of Lemma 10.6 (with ' = W x R_). Therefore the outer square is a pull-
back, and this is the one used for the case / = 2.

Now we apply homotopy groups to these pull-back squares (using the fact that
L2 = LD to obtain the lower squares in the commutative diagram:

L§k+2((€v>voxn,, ¢(Z) — L5 (ZG,w) — Ly (Gwxr_6(Z),w)

| | l

—1 —1 « —1
L35 @G e ¢(2) —  LS(2ZGw) —— LS (6wur_ c(Z)w)

2k+2
l; trfg2 J Jrrrsz

-1 —1 N Cy -1
LékJr?l((g;/ofo:G(Z)) - L§k+§((5k3,G(Z)"") — Léchr;((gWxRi,G(Z)’w)
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The vertical maps in the top row squares are induced by the change of K-theory dec-
oration. We need some information about the maps in this diagram.

(i) The upper left-hand vertical map is an isomorphism, since K_(% ;/Om,,c(z)) =0.
(i) The lower left-hand vertical map is an isomorphism, by Lemma 10.6.

(iif) The transfer map
tfee : Ly (ZG,w) — LY 5(Cge 6(Z),w)

is injective, from Proposition 10.3.

(iv) The map
L (e 6(2)w) = Ly 3(%ge 6(2).w)

is injective, by [I], Corollary 6.13.

(v) The composite of the middle two vertical maps in the diagram is injective, by
combining parts (iii)—(iv).

Suppose that 7y, g3 (o) = 0. We have proved that the transfer map
irfe + L (ZGow) — LS H (% (Z),w)

is injective in part (v). Since trfy«r_(0) = ¢.(6) for some 6 € LS, (ZG,w), it follows
by a diagram chase that #fy«r_(0) = 0 and we are done. O

We also have a version without R, summands.

Theorem 10.7. Suppose that W is a complex G-representation with W = 0. Then
VieoWoR ~ 1@ W R’ forl=3implies Vi ®W ®R> ~ V2 ® W @R,

Proof. This follows from a similar argument, using Theorem 9.2 instead of Theorem
C. The injectivity results of Lemma 10.2 and Proposition 10.3 also hold for #rf; and
trf> on LY, (ZG,w), where U = Im(Ko(ZH) — K((ZG)) as in Remark 8.11. This
L-group decoration fits in exact sequences with L?(ZH) so the previous calculations
for injectivity apply again. The details are left to the reader. O

11 The proof of Corollary 2.4

Suppose that G = C(4q), ¢ odd, and that V1 @ R_® R, ~, V>, ®R_ ® R, with
dim V; = 4. We will use Theorem B and the assumption about odd class numbers to
prove that ¥} = V5. This is the only case we need to discuss to prove Corollary 2.4.
If we started instead with ¥} @ R ~, V> @ R, then stabilizing with R, and apply-
ing Theorem 10.1 would reduce to the case above.
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We may assume that ¢ > 1 is a prime, and that the free representations have
the form V; =t + ¢ and V, = 1724 4 +1+24 where (i,2¢) = 1 (not all weights are
=1 mod4). The Reidemeister torsion invariant is A(V})/A(V>) = U;,; € Wh(ZG) in
the notation for units of ZG used in [5, p. 732]. With respect to the involution
“:t+— —17!, this element defines a class u; ; = {U; ;} € H'(Wh(ZG™)). Since the
map L{(ZG") — LY (%r_,¢(Z)) is injective, it is enough to show that the image of
uy,; is non-trivial in H'(A) (see diagram [I] (6.7)).

Let A = Z[{4,] be the ring of cyclotomic integers., and B = Z[(,,]. We will study
the top component Wh(ZG)(g) by comparing it to K;(.#), where .# = A x B x B
is the top component of an involution invariant maximal order in QG containing
Z.G. Notice that the two copies of B are interchanged under the involution, so
H(K(4)) = H'(A*). We have the exact sequence

0 — Wh(ZG)(q) — K1 (M) — K\(M)/Wh(ZG)(q) — D(ZG)(q) — 0.

where D(ZG) = ker(Ko(ZG) — Ko(.#)). Note that H(D(ZG)) = H'(Ky(ZG))
since 4 has odd class number.

Let i, : H'(Wh(ZG™)(q)) — H'(A*) denote the map on the Tate cohomology in-
duced by the inclusion i : Wh(ZG)(q) — A*.

Lemma 11.1. For (j,2q) = 1 and j = 1 mod 4, the image i.(u; ;) = {—1) € H'(A4*).

Proof. Let y; = £l € A%, and compute 7;/7; with respect to the non-oriented invo-

lution. We get 7;/y; = uy j/u1 1, 80 i(u1 ;) = ix(u1,1) for all i. Now let v = 4. Since
t = —11124_ this is a cyclotomic unit in 4 with vi = —1. But v/ = —uy 1, 50 i (1 ;) =
(~1% in H'(49). 0

Next we need a computation:
Lemma 11.2. 0 # (—1)> € H'(4).

Proof. Let E = Q({4,) be the quotient field of 4. Since A has odd class number,
H(E*/A¥) = H'(E*/A”). Next, observe that the extension E/F is evenly ramified
at ¢, where F is the fixed field of the involution = : £ — E. It follows that the map
H O(E;) — H O(E; / Af;) is zero. We finish by considering the commutative diagram

HYEX) —— HOE*/4") —— H'(4%)

| | |

HOEY) —— HO(E*/A¥) —— H'(4%)

and the prime element w = {, — e E over g. Since w/w = —1, w defines an ele-
ment in H(E*/A*) and 6(w) = (—1) € H'(4). On the other hand, w maps under
the middle isomorphism to a non-zero element in H 0(E; /A4y) sod(w) #0. ]
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Now we can complete the proof of Corollary 2.4 by considering the commutative
braid:

HO(4%) 0 (wﬁlgﬁ)@) H(Ro(ZG™)(q))
o " (Sacza) e
H'(Ro(ZG™)(q)  H'(Wh(ZG)(q)) H'(4%)

containing the double coboundary and its relative group H'(A). By commutativity
of the lower right triangle, the image of our obstruction element u; ; is non-zero in
H'(A4¥) and therefore non-zero in H'(A).

12 The normal invariant

In this section we collect some results about normal cobordisms of lens spaces with
cyclic fundamental group G. Recall that a necessary condition for the existence of
a similarity V1 @ W ~, V, @ W is that S(7}) and S(V>) must be s-normally co-
bordant. In [4, §1] it is asserted that their formula (4’) gives necessary and sufficient
conditions for homotopy equivalent lens spaces to be s-normally cobordant, when
G = C(2"). However in [31, 1.3] it is shown that the given conditions (4’) are suffi-
cient but not necessary. We only use the sufficiency here, and study the subgroups
R™(G) and R{™(G) of R(G) defined in Section 3. Recall that R™°(G) = ker(Res :
Rfree(G)*)Rfree(Godd)).

Lemma 12.1. Let G = C(2"q) be a finite cyclic group, and G, be the 2-Sylow subgroup.
If ¢ > 1 there is an exact sequence

0— Z/2—> Rfree(G)/Rhfree(G) HRfree(Gz)/Rhfree(Gz) =0

given by the restriction map Resg,. The kernel is generated by any element o € R™(G)
with k-invariant k(o) € (Z/|G|)*/{£1} in the coset k = 1 mod 2" and k = —1 mod q.

Proof. There is a short exact sequence

0 — R™(G) — R™(G) — (Z/2"q)"/{+1}
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given by the k-invariant. Moreover, the k-invariants of elements in R™(G) lie in

ker(Z/2'q) /{+1} — (Z/q)"/{£1}) = {lq+ 1|1 € Z} < (Z/2'q)"

which injects under reduction mod?2” into (Z/2")* if ¢ > 1. Restriction of the k-
invariant to G, detects only its value in (Z/2")*/{+1}, so the kernel has order 2.
Since the restriction map R™ G — R™(G,) is surjective, we have the required exact
sequence. ]

The situation for the normal invariant is simpler. Recall that we write V' =V" or
(V — V') =0 if there exists a homotopy equivalence f : S(V)/G — S(V')/G of lens
spaces, such that f is s-normally cobordant to the identity.

Lemma 12.2. Let G = C(27q) be a finite cyclic group. Then
ker(Res : R™(G) — R™(C(q)) ® R™(C(2"))) = RI™*(G).

Proof. We may assume that r > 2, since Res : R™(C(2q)) — R™¢(C(q)) is an iso-
morphism, and consider an element

Z 14— E Zb,- c ker(Rfree(G) N Rfree(c(q)) @ Rfree(C(2r>>>.
With a suitable ordering of the indices, @; = b; mod 2" and a; = b,(;) mod ¢ for some
permutation 7. Since the normal invariants of lens spaces are detected by a coho-

mology theory, we can check the condition at each Sylow subgroup separately. It
follows that >~ 1% = S b1, ]

Example 12.3. For G = C(24) we have R™(G) = {r — 1>,t — 17,1 — 1!} and the sub-
group ker Resc(s) " R"™(G) = {1 — 17,5 — ¢!},

Lemma 12.4. Let G = C(2"q) be a finite cyclic group, and G, be the 2-Sylow subgroup.
If r > 2 there is an isomorphism

Ri™(G)/Ry™(G) — R[**(G2)/R;**(G»)
given by the restriction map Resg, .
Proof. We first remark that if W = ¢ + - .- 4 % is a free G>-representation (here we
use the assumption that r > 2), then by choosing integers b; = @; mod 2" and b; =
1 mod g we obtain a free G-representation V' = " 4 ... 4+ ¢’ with Resg, (V) = W. It
follows that

Resg, : RI™(G) — RI™(G,)

is surjective, and therefore
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Resg, : Ri*(G)/R,*(G) — R;**(G2)/Ry™(Ga)

is also surjective.

Now suppose o € R™(G) and Resg,(2) € R™(G,). This means that Resg, (x) =
(W — W') for some free Gy-representation W, W’ such that W = W’'. By the con-
struction of the last paragraph, we can find free G-representations ¥, ¥’ such that
(i) Resg, (V) = W and Resg, (V') = W', and (i) o' = (V — V') € RI*(G). It follows
that /= I’ and so «’ € R™(G)), and

o — o € ker(RI™(G) — RI™(C(q)) ® RI*(C(2"))).

By Lemma 12.2, o — o’ € R™(G) and so « € R™(G). O
Our final result is a step towards determining R,(G)/R,(G) more explicitly.

Lemma 12.5. Let by = (t' — 2" '47) e R™(G) for 1 <i< 2 lg, 1 <s<r—1,
and (i,2q) = 1. Let I(i,s) = s for | <s<r—2,and [(i,r — 1) the order of i/(2q — i) €
(Z./27)*. Then b;  is an element of order 2'"*) in R(G)/Ry(G), and 2! . b; ¢ ==0.

Proof: If 1 < s <r—2 then k(b;,) =i/(2"*q—1i) e (Z/2"q)"/{£]1} is congruent to
—1mod4q. By Lemma 12.1 the linear span of these elements in R(G)/R;,(G) injects
into R(Gy)/Ry(G2), where G, is the 2-Sylow subgroup. By Lemma 12.4 the normal
invariant is also detected by restriction to G, so it is enough to prove the assertions
about these elements (s < r — 2) when G = C(2").

For the first part we must show that the k-invariant of b; ; has order 2°. We will use
the expression

() =r —ax(r),

where o, (r) is the number of non-zero coefficients in the 2-adic expansion of r, for the
2-adic valuation of r. Then

w3 ) =s -t

for 1 <k <2° These formulas and the binomial expansion show that k(b,fﬁs)z's =
I mod2" forl <s<r—2.

Next we consider the normal invariant. For 1 < s <r — 2 we will take ¢ =1 and
apply the criterion (A4’) of [4] to show that 2% - b; ; ~ 0. This amounts to a re-labelling
of our original elements b; ; without changing the order of their k-invariants.

We must now compute the elementary symmetric functions o (2°-i%) and
oc(25- (27 — i)?), where the notation 2 - i> means that the weight i% is repeated
2% times in the symmetric function. The formula (4') is
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25 —1

O'k(zs . (2)‘7.3‘ + 1)2) _ ak(2“' . l-2) = 2((2,,7“, _ l-)Zi _ iz:)( .

) mod 2"+3

so on the right-hand side we have

{ 42+ mod 23 if k odd
—2*1mod 23 if k even

The formula (A4’) assumes that the weights are congruent to 1 mod4, or in our case
i = 1 mod4. Therefore, if i = 3 mod4, we must use the equivalent weights —i and
(2" —).

To compute the left-hand side we use the Newton polynomials s; and their ex-
pressions in term of elementary symmetric functions. We need the property
sk (2% - i%) = 2%i% and the coefficient of oy in s which is (—1)*"'k. By induction, we
see that the left-hand side is just

(_1 k+1
(2 27 = 1)) - (20 %)
= (_1)kk+12s((2” — i) — %) mod 2"+

But by writing
(21'7s _ l-)Zk _ l-2k — (2r7s0 + I-Z)k _ l-2k
where 0 = 2"% — 2j = 2 mod 4, our expression becomes

k1
Ty l)k 2 (275k0) = (~1)"127 mod 273
If s=r—1, then k(b;5) =i/(2¢ —i) = —1 mod g, and k(b; ;) = 1 mod 2" whenever
i =¢qgmod2~!. This is for example always the case for G = C(4q). Such elements
bi,—1 lie in the kernel of the restriction map to R(C(2")). Moreover, if b;,_; €
ker(R(G) — R(C(2"))), then 2b; 1 € R,(G) and 2b;, 1 =0 by Lemma 12.2. Oth-
erwise, the order of b; ,_; € R(G)/R;(G) is the same as the order of its restriction
Res(b; ,—1) to the 2-Sylow subgroup, and Res(b; ,_1) = tRes(b; ) for /(i,r — 1) =
s <r—2and some j. O

Remark 12.6. As pointed out by the referee, Lemma 12.1 and Lemma 12.4 together
give a short exact sequence

0= Z/2 = R™(G)/RI*(G) — R™(Ga)/RI*(G2) — 0,
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assuming that G is not a cyclic 2-group. It is not difficult to see from the
proof of Theorem E (given in [I]), that for G, = C(2"), and r =4, the term

R™(G,)/R™(G,) is the quotient of R?g;(C(T)) by the subgroup <a; + f; .

13 The proof of Theorem D

We first summarize our information about Rro,(G), obtained by putting together
results from previous sections. If o € R,ffe]?op(G), we define the normal invariant order

of o to be the minimal 2-power such that 2’a € R};r_efop(G).

Theorem 13.1. Let G = C(27q), with q odd, and r = 2.

(i)  The torsion subgroup of R?g;(G) is ﬁ¥§g(G)

(ii) The rank ofR%fg(G) is p(q)/2 for g > 1 (resp. rank 1 for ¢ = 1), and the torsion

is at most 2-primary.

(iii) The subgroup R,flfquop(G) has exponent two, and the Galois action induced by group

automorphisms is the identity.

(iv) For any o€ f?,ﬁf‘?op(G), if the normal invariant order of Resy(a) is 27, then the

normal invariant order of o is 2",

Remark 13.2. In part (ii), ¢(q) is the Euler function. The precise number of Z/2
summands in R,f{eTeop(G) is determined by working out the conditions in Theorem
C on the basis elements of R™(G). In cases where the conditions in Theorem C
can actually be evaluated, the structure of Rro,(G) will thus be determined com-

pletely.

Proof. Parts (i) and (ii) of Theorem 13.1 have already been proved in Corollary 4.2,
so it remains to discuss parts (iii) and (iv). In fact, the assertion that Rifefop(G) has
exponent 2 is an immediate consequence of Theorem C. To see this, suppose that
(Vi — 1) is any element in R™(G). The obstruction to the existence of a stable
non-linear similarity ¥ =, V> is determined by the class {A(V1)/A(V>)} in the Tate
cohomology group H'(Wh(ZG~)/Wh(ZH)), which has exponent 2. Since the Re-
idemeister torsion is multiplicative, A(V; @ V;) = A(¥;)%, and we conclude that
V1 @ Vy =, V2, ® V, by Theorem C. Finally, suppose that o € R,ﬁfefop((;) and that o is
a group automorphism of G. By induction, we can assume that Resy (o — a(a)) = 0.
We now apply Theorem C to f = o — o(2), with W a complex G-representation such
that W ¢ = 0, containing all the non-trivial irreducible representations of G with
isotropy of 2-power index. Then f is detected by the image of its Reidemeister torsion
invariant in H'(Aw«gr_). But by [I], Lemma 8.2, the Galois action on this group is
trivial. Therefore f = o — (o) = 0.

For part (iv) we recall that the normal invariant for G lies in a direct sum of groups
H%(G;Zx)) = Z/2". Since the map Resy induces the natural projection Z/2" —
Z./2"~! on group cohomology, the result follows from [1, 2.6]. O
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It follows from our results that the structure of f%,ffff’op( G) is determined by working
out the criteria of Theorem C on a basis of R,ﬁr“(G). Suppose that V] is stably topo-
logically equivalent to V. Then there exists a similarity

VoW oR. &R, ~ 1, ®WaR. @R}

where W has no R, or R_ summands, and /,s = 1. But by [I], Corollary 6.13 we
may assume that s = 1, and by Theorem 10.1 that / = 1, so we are reduced to the
situation handled by Theorem C. The algebraic indeterminacy given there is com-
putable, but not very easily if the associated cyclotomic fields have complicated ideal
class groups. We carry out the computational details in one further case of interest
(Theorem D).

The proof of Theorem D. We have a basis
B={t — 17| (i,2¢q) = 1,i =1 mod4,1 < i< 4q}

for R™(G), so it remains to work out the relations given by topological similarity.
Notice that RI™(G) = R™(G), and that the sum of any two elements in 4 lies in
R™(G). Moreover, by Corollary 2.4 there are no 6-dimensional similarities for G.
Now suppose that V1@ W AR_DOR, ~, 1V, @ W DR_ DR, for some com-
plex G-representation W. Then Resy V] = Resy V> since ¢ is odd, and by Theorem
C we get a similarity of the form V; @ R’ @ R, ~1® R' @ R. . But by Theorem
10.1 this implies that V; @ R_ @ R, ~; V] @ R_ @ R... Therefore, for any element
a; = (' — 1'+24) € # we have 24; ¢ R™°(G) but 44, € R™(G). However, in Section
11 we determined the bounded surgery obstructions for all these elements. Since
i(u, ;) = <(—1)y e H'(4) for all j with (j,2¢) = 1 by Lemma 11.1, there are further
stable relations a; + a; = a; + ax, or a; = a; for all j. It follows that a basis for

RYE(G) is given by {a) |4a; ~ 0}. -
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