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Abstract. In the two parts of this paper we prove that the Reidemeister torsion invariants
determine topological equivalence of G-representations, for G a finite cyclic group.
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1 Introduction

Let G be a finite group and V ;V 0 finite dimensional real orthogonal representations
of G. Then V is said to be topologically equivalent to V 0 (denoted V @t V 0) if there
exists a homeomorphism h : V ! V 0 which is G-equivariant. If V ;V 0 are topologi-
cally equivalent, but not linearly isomorphic, then such a homeomorphism is called a
non-linear similarity. These notions were introduced and studied by de Rham [24],
[25], and developed extensively in [1], [2], [15], [16], and [5]. In the two parts of this
paper, referred to as [I] and [II], we complete de Rham’s program by showing that
Reidemeister torsion invariants and number theory determine non-linear similarity
for finite cyclic groups.

A G-representation is called free if each element 10 g A G fixes only the zero
vector. Every representation of a finite cyclic group has a unique maximal free sub-
representation.

Theorem. Let G be a finite cyclic group and V1;V2 be free G-representations. For

any G-representation W, the existence of a non-linear similarity V1 lW @t V2 lW is

entirely determined by explicit congruences in the weights of the free summands V1;V2,

and the ratio DðV1Þ=DðV2Þ of their Reidemeister torsions, up to an algebraically de-

scribed indeterminacy.

The notation and the indeterminacy are given in Section 2 and a detailed statement of
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results in Theorems A–E. This part of the paper contains the foundational results
and calculations in bounded algebraic K- and L-theory needed to prove the main
results on non-linear similarity. The study of non-linear similarities V1 lW @t V2 l
W increases in di‰culty with the number of isotropy types in W . We introduce a new
method using excision in bounded surgery theory, based on the orbit type filtration, to
organize and deal with these di‰culties. We expect that this technique will be useful
for other applications. Our most general results about non-linear similarity for arbi-
trary cyclic groups are Theorem C and its extensions (see Sections 9 and 10).

In Sections 3 and 13 we study the group RTopðGÞ of G-representations modulo
stable topological equivalences (see [2] where RTopðGÞnQ is computed). As an ap-
plication of our general results, we determine the structure of the torsion in RTopðGÞ,
for G any cyclic group (see Theorem 13.1), and in Theorem D we give the calculation
of RTopðGÞ for G ¼ Cð4qÞ, for q odd, correcting [5, Thm. 2]. One interesting feature
is that Corollary 2.4 and Theorem D indicate a connection between the orders of the
ideal class groups for cyclotomic fields and topological equivalence of linear repre-
sentations.
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2 Statement of results

For the reader’s convenience, we recall some notation from Part I, and then give the
main results of both parts. Theorems A and B are proved in Part I and Theorems C
and D are proved in Part II. The proof of Theorem E is divided between the two
parts.

Let G ¼ Cð4qÞ, where q > 1, and let H ¼ Cð2qÞ denote the subgroup of index
2 in G. The maximal odd order subgroup of G is denoted Godd. We fix a gen-
erator G ¼ hti and a primitive 4qth-root of unity z ¼ exp 2pi=4q. The group G has
both a trivial 1-dimensional real representation, denoted Rþ, and a non-trivial 1-
dimensional real representation, denoted R�.
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A free G-representation is a sum of faithful 1-dimensional complex representations.
Let ta, a A Z, denote the complex numbers C with action t � z ¼ zaz for all z A C. This
representation is free if and only if ða; 4qÞ ¼ 1, and the coe‰cient a is well-defined
only modulo 4q. Since ta G t�a as real G-representations, we can always choose the
weights a1 1 mod 4. This will be assumed unless otherwise mentioned.

Now suppose that V1 ¼ ta1 þ � � � þ tak is a free G-representation. The Reidemeister
torsion invariant of V1 is defined as

DðV1Þ ¼
Qk
i¼1

ðtai � 1Þ A Z½t�=fGtmg:

Let V2 ¼ tb1 þ � � � þ tbk be another free representation, such that SðV1Þ and SðV2Þ
are G-homotopy equivalent. This just means that the products of the weightsQ

ai 1
Q

bi mod 4q. Then the Whitehead torsion of any G-homotopy equivalence is
determined by the element

DðV1Þ=DðV2Þ ¼
Q
ðtai � 1ÞQ
ðtbi � 1Þ

since WhðZGÞ ! WhðQGÞ is monic [18, p. 14].
Let W be a finite-dimensional G-representation. A necessary condition for a non-

linear similarity V1 lW @t V2 lW is the existence of a G-homotopy equivalence
f : SðV2Þ ! SðV1Þ such that f � id : SðV2 lUÞ ! SðV1 lUÞ is freely G-normally
cobordant to the identity map on SðV1 lUÞ, for all free G-representations U (see
[I], Section 3). If V1 and V2 satisfy this condition, we say that SðV1Þ and SðV2Þ are
s-normally cobordant. This condition for non-linear similarity can be decided by ex-
plicit congruences in the weights of V1 and V2 (see [31, Thm. 1.2]).

This quantity, DðV1Þ=DðV2Þ is the basic invariant determining non-linear similar-
ity. It represents a unit in the group ring ZG, explicitly described for G ¼ Cð2rÞ by
Cappell and Shaneson in [3, §1] using a pull-back square of rings. To state concrete
results we need to evaluate this invariant modulo suitable indeterminacy.

The involution t 7! t�1 induces the identity on WhðZGÞ, so we get an element

fDðV1Þ=DðV2Þg A H 0ðWhðZGÞÞ

where we use H iðAÞ to denote the Tate cohomology H iðZ=2;AÞ of Z=2 with co-
e‰cients in A.

Let WhðZG�Þ denote the Whitehead group WhðZGÞ together with the involution

induced by t 7! �t�1. Then for tðtÞ ¼
Q

ðt ai�1ÞQ
ðt bi�1Þ

, we compute

tðtÞtð�tÞ ¼
Q
ðtai � 1Þ

Q
ðð�tÞai � 1ÞQ

ðtbi � 1Þ
Q
ðð�tÞbi � 1Þ

¼
Q ðt2Þai � 1

ððt2Þbi � 1Þ
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which is clearly induced from WhðZHÞ. Hence we also get a well defined element

fDðV1Þ=DðV2Þg A H 1ðWhðZG�Þ=WhðZHÞÞ:

This calculation takes place over the ring L2q ¼ Z½t�=ð1 þ t2 þ � � � þ t4q�2Þ, but the
result holds over ZG via the involution-invariant pull-back square

ZG ���! L2q???y
???y

Z½Z=2� ���! Z=2q½Z=2�

Consider the exact sequence of modules with involution:

K1ðZHÞ ! K1ðZGÞ ! K1ðZH ! ZGÞ ! ~KK0ðZHÞ ! ~KK0ðZGÞð2:1Þ

and define WhðZH ! ZGÞ ¼ K1ðZH ! ZGÞ=fGGg. We then have a short exact
sequence

0 ! WhðZGÞ=WhðZHÞ ! WhðZH ! ZGÞ ! k ! 0

where k ¼ kerð ~KK0ðZHÞ ! ~KK0ðZGÞÞ. Such an exact sequence of Z=2-modules induces
a long exact sequence in Tate cohomology. In particular, we have a coboundary map

d : H 0ðkÞ ! H 1ðWhðZG�Þ=WhðZHÞÞ:

Our first result deals with isotropy groups of index 2, as is the case for all the non-
linear similarities constructed in [1].

Theorem A. Let V1 ¼ ta1 þ � � � þ tak and V2 ¼ tb1 þ � � � þ tbk be free G-representations,

with ai 1 bi 1 1 mod 4. There exists a topological similarity V1 lR� @t V2 lR� if

and only if

(i)
Q

ai 1
Q

bi mod 4q,

(ii) ResH V1 GResH V2, and

(iii) the element fDðV1Þ=DðV2Þg A H 1ðWhðZG�Þ=WhðZHÞÞ is in the image of the

coboundary d : H 0ðkÞ ! H 1ðWhðZG�Þ=WhðZHÞÞ.

Remark 2.2. The proof of this result is in Part I, but note that Condition (iii) sim-
plifies for G a cyclic 2-group since H 0ðkÞ ¼ 0 in that case (see [I], Lemma 9.1). The-
orem A should be compared with [1, Cor. 1], where more explicit conditions are given
for ‘‘first-time’’ similarities of this kind under the assumption that q is odd, or a 2-
power, or 4q is a ‘‘tempered’’ number. See also Theorem 9.2 for a more general result
concerning similarities without Rþ summands. The case dim V1 ¼ dim V2 ¼ 4 gives
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a reduction to number theory for the existence of 5-dimensional similarities (see [I],
Remark 7.2).

Our next result uses a more elaborate setting for the invariant. Let

F ¼

ZH ���! ẐZ2H???y
???y

ZG ���! ẐZ2G

0
BBB@

1
CCCA

and consider the exact sequence

0 ! K1ðZH ! ZGÞ ! K1ðẐZ2H ! ẐZ2GÞ ! K1ðFÞ ! ~KK0ðZH ! ZGÞ ! 0:ð2:3Þ

Again we can define the Whitehead group versions by dividing out trivial units fGGg,
and get a double coboundary

d2 : H 1ð ~KK0ðZH ! ZG�ÞÞ ! H 1ðWhðZH ! ZG�ÞÞ:

There is a natural map H 1ðWhðZG�Þ=WhðZHÞÞ ! H 1ðWhðZH ! ZG�ÞÞ. We will
use the same notation

fDðV1Þ=DðV2Þg A H 1ðWhðZH ! ZG�ÞÞ

to denote the image of our Reidemeister torsion invariant. The non-linear similarities
handled by the next result have isotropy of indexa 2.

Theorem B. Let V1 ¼ ta1 þ � � � þ tak and V2 ¼ tb1 þ � � � þ tbk be free G-representations.

There exists a topological similarity V1 lR� lRþ �t V2 lR� lRþ if and only if

(i)
Q

ai 1
Q

bi mod 4q,

(ii) ResH V1 GResH V2, and

(iii) the element fDðV1Þ=DðV2Þg is in the image of the double coboundary

d2 : H 1ð ~KK0ðZH ! ZG�ÞÞ ! H 1ðWhðZH ! ZG�ÞÞ:

This result can be applied to 6-dimensional similarities.

Corollary 2.4. Let G ¼ Cð4qÞ, with q odd, and suppose that the fields QðzdÞ have odd

class number for all d j 4q. Then G has no 6-dimensional non-linear similarities.

Remark 2.5. For example, the class number condition is satisfied for qa 11, but not
for q ¼ 29. The proof of the Corollary 2.4 is given in Section 11 assuming Theorem
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B, which is proved in Part I. This result corrects [5, Thm. 1(i)], and shows that the
computations of RTopðGÞ given in [5, Thm. 2] are incorrect.

Our final example of the computation of bounded transfers is suitable for determining
stable non-linear similarities inductively, with only a minor assumption on the iso-
tropy subgroups. To state the algebraic conditions, we must again generalize the in-
determinacy for the Reidemeister torsion invariant to include bounded K-groups (see
Section 5). In this setting ~KK0ðZH ! ZGÞ ¼ ~KK0ðCR�;GðZÞÞ and WhðZH ! ZGÞ ¼
WhðCR�;GðZÞÞ. We consider the analogous double coboundary

d2 : H 1ð ~KK0ðCW�R�;GðZÞÞÞ ! H 1ðWhðCW�R�;GðZÞÞÞ

and note that there is a map WhðCR�;GðZÞÞ ! WhðCW�R�;GðZÞÞ induced by the in-
clusion on the control spaces. We will again use the same notation

fDðV1Þ=DðV2Þg A H 1ðWhðCW�R�;GðZÞÞÞ

for the image of the Reidemeister torsion invariant in this new domain.

Theorem C. Let V1 ¼ ta1 þ � � � þ tak and V2 ¼ tb1 þ � � � þ tbk be free G-representations.

Let W be a complex G-representation with no Rþ summands. Then there exists a topo-

logical similarity V1 lW lR� lRþ @t V2 lW lR� lRþ if and only if

(i) SðV1Þ is s-normally cobordant to SðV2Þ,

(ii) ResHðV1 lWÞlRþ @t ResHðV2 lWÞlRþ, and

(iii) the element fDðV1Þ=DðV2Þg is in the image of the double coboundary

d2 : H 1ð ~KK0ðCWmax�R�;GðZÞÞÞ ! H 1ðWhðCWmax�R�;GðZÞÞÞ;

where 0JWmax JW is a complex subrepresentation of real dimensiona 2, with

maximal isotropy group among the isotropy groups of W with 2-power index.

Remark 2.6. The existence of a similarity V1 lW @t V2 lW implies that SðV1Þ and
SðV2Þ are s-normally cobordant. In particular, SðV1Þ must be freely G-normally co-
bordant to SðV2Þ and this (unstable) normal invariant condition is enough to give us
a surgery problem. Crossing with W defines the bounded transfer map

trfW : Lh
2kðZGÞ ! Lh

2kþdim W ðCW ;GðZÞÞ

introduced in [10]. The vanishing of the surgery obstruction is equivalent to the exis-
tence of a similarity (see [I], Theorem 3.5). The computation of the bounded transfer
in L-theory leads to condition (iii), and an expression of the obstruction purely in
terms of bounded K-theory. To carry out this computation we may need to stabilize
in the free part, and this uses the s-normal cobordism condition.
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Remark 2.7. Note that Wmax ¼ 0 in condition (iii) if W has no isotropy subgroups of
2-power index. Theorem C su‰ces to handle stable topological similarities, but leaves
out cases where W has an odd number of R� summands (handled in Theorem 9.2
and the results of Section 10). Simpler conditions can be given when G ¼ Cð2rÞ (see
[I], Section 9).

The double coboundary in (iii) can also be expressed in more ‘‘classical’’ terms by
using the short exact sequence

0 ! WhðCR�;GðZÞÞ ! WhðCWmax�R�;GðZÞÞ ! K1ðC>R�
Wmax�R�;G

ðZÞÞ ! 0ð2:8Þ

derived in Corollary 6.9. We have K1ðC>R�
Wmax�R�;G

ðZÞÞ ¼ K�1ðZKÞ, where K is the

isotropy group of Wmax, and WhðCR�;GðZÞÞ ¼ WhðZH ! ZGÞ. The indeterminacy
in Theorem C is then generated by the double coboundary

d2 : H 1ð ~KK0ðZH ! ZG�ÞÞ ! H 1ðWhðZH ! ZG�ÞÞ

used in Theorem B and the coboundary

d : H 0ðK�1ðZKÞÞ ! H 1ðWhðZH ! ZG�ÞÞ

from the Tate cohomology sequence of (2.8).

Finally, we apply these results to RTopðGÞ. Since its rank is known (see [2] or Section
4), it remains to determine its torsion subgroup. In Section 3, we will define a filtra-
tion

RtðGÞJRnðGÞJRhðGÞJRðGÞð2:9Þ

on the real representation ring RðGÞ, inducing a filtration on RTopðGÞ ¼ RðGÞ=
RtðGÞ. Here the subgroup

RtðGÞ ¼ fðV1 � V2Þ jV1 lW @t V2 lW for some Wg

is generated by stable topological similarity. Note that RðGÞ has the following nice
basis: fti; d; � j 1e i e 2q � 1g, where d ¼ ½R�� and � ¼ ½Rþ� (although we do not
have i 1 1 mod 4 for all the weights).

Let R freeðGÞ ¼ fta j ða; 4qÞ ¼ 1gHRðGÞ be the subgroup generated by the free rep-
resentations. To complete the definition, we let R freeðCð2ÞÞ ¼ fR�g and R freeðeÞ ¼
fRþg. Then inflation and fixed sets of representations defines an isomorphism

RðGÞ ¼
L

KJG

R freeðG=KÞ

and this direct sum splitting can be intersected with RtðGÞ to define R free
t ðGÞ. We let
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R free
TopðGÞ ¼ R freeðGÞ=R free

t ðGÞ. Since inflation and fixed sets preserve topological sim-
ilarities, we obtain an induced splitting

R free
TopðGÞ ¼

L
KJG

R free
TopðG=KÞ:

By induction on the order of G, we see that it su‰ces to study the summand R free
TopðGÞ.

Let ~RR freeðGÞ ¼ kerðRes : R freeðGÞ ! R freeðGoddÞÞ, and then project into RTopðGÞ to
define

~RR free
TopðGÞ ¼ ~RR freeðGÞ=R free

t ðGÞ:

In Section 4 we prove that ~RR free
TopðGÞ is precisely the torsion subgroup of R free

TopðGÞ.
Here is a specific computation (correcting [5, Thm. 2]).

Theorem D. Let G ¼ Cð4qÞ, with q > 1 odd, and suppose that the fields QðzdÞ have odd

class number for all d j 4q. Then ~RR free
TopðGÞ ¼ Z=4 generated by ðt � t1þ2qÞ.

For any cyclic group G, we use normal cobordism and homotopy equivalence to
define a filtration

R free
t ðGÞJR free

n ðGÞJR free
h ðGÞJR freeðGÞ

leading by direct sum to the filtration of RðGÞ mentioned above. Both
~RR freeðGÞ= ~RR free

h ðGÞ and ~RR free
h ðGÞ= ~RR free

n ðGÞ are torsion groups which can be explicitly
determined by congruences in the weights (see Section 12 and [31, Thm. 1.2]). The
subquotient ~RR free

n ðGÞ=R free
t ðGÞ always has exponent two (see Section 13).

We conclude this list of sample results with a calculation of RTopðGÞ for cyclic 2-
groups (see [I] for the proof ).

Theorem E. Let G ¼ Cð2 rÞ, with rf 4. Then

~RR free
TopðGÞ ¼ ha1; a2; . . . ; ar�2; b1; b2; . . . ; br�3i

subject to the relations 2sas ¼ 0 for 1e se r � 2, and 2 s�1ðas þ bsÞ ¼ 0 for 2e se

r � 3, together with 2ða1 þ b1Þ ¼ 0.

The generators for rf 4 are given by the elements

as ¼ t � t52 r�s�2

and bs ¼ t5 � t52 r�s�2þ1

:

We remark that ~RR free
TopðCð8ÞÞ ¼ Z=4 generated by t � t5. In [I], Theorem 11.6 we use

this information to give a complete topological classification of linear representations
for cyclic 2-groups.
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for many constructive comments and suggestions. In particular, the referee pointed
out an improvement to the statement of Theorem E. If we let ci ¼ aiþ1 þ biþ1 for
1a ia r � 4, then ~RR free

TopðCð2 rÞÞ is a direct sum of cyclic groups generated by a1; . . . ;
ar�2; b1 and c1; . . . ;cr�4 where the order of the cyclic group generated by a basis ele-
ment with subscript i is 2 i. This basis displays the group structure explicitly.

3 A splitting of RTop(G )

In this section we point out an elementary splitting of RTopðGÞ, and some useful fil-
trations. For G any finite group, we denote by RðGÞ the real representation ring of G.
Elements in RðGÞ can be given as formal di¤erences ðV1 � V2Þ of G-representations,
and ðV1 � V2Þ@ 0 if and only if there exists a representation W such that V1 lW G
V2 lW .

Notice that for K any normal subgroup of G, taking fixed sets gives a retraction of
the inflation map

infK : RðG=KÞ ! RðGÞ

defined by pulling back a G=K representation using the composition with the quo-
tient map G ! G=K . More explicitly,

FixK : RðGÞ ! RðG=KÞ

is defined by FixKðV1 � V2Þ ¼ ðV K
1 � V K

2 Þ for each normal subgroup K / G. Then
FixK � infK ¼ id : RðG=KÞ ! RðG=KÞ.

Definition 3.1. A G-representation V is free if V K ¼ f0g for all non-trivial normal
subgroups 10K / G.

This is the same as the usual definition (no non-identity element of G fixes any non-
zero vector) for cyclic groups. We let

R freeðGÞ ¼
T
fker FixK j 10K / Ggð3:2Þ

denote the subgroup of RðGÞ such that there is a representative of the stable equiva-
lence class ðV1 � V2Þ with V1;V2 free representations.

Proposition 3.3. There is a direct sum splitting

RðGÞ ¼
L
K/G

R freeðG=KÞ

indexed by the normal subgroups K in G.
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Proof. Let VðKÞ denote the G-invariant subspace given by the sum of all the irre-
ducible sub-representations of V with kernel exactly K . This is a free G=K represen-
tation. The decomposition above is given by mapping ðV1 � V2Þ to the elements
ðV1ðKÞ � V2ðKÞÞ. r

Inside RðGÞ we have the subgroup of stably topologically similar representations

RtðGÞ ¼ fðV1 � V2Þ jV1 lW @t V2 lW for some Wgð3:4Þ

and the quotient group is RTopðGÞ by definition. We define R free
t ðGÞ ¼ R freeðGÞX

RtðGÞ. Since RtðGÞ is preserved by inflation and taking fixed sets, we obtain

Corollary 3.5. There is a direct sum decomposition

RTopðGÞ ¼
L
K/G

R free
TopðG=KÞ

where the summands are the quotients R freeðG=KÞ
�

R free
t ðG=KÞ.

We will also need a certain filtration of RðGÞ. First we define

R free
h ðGÞ ¼ fðV1 � V2Þ jSðV1ÞFG SðV2Þ for V1 and V2 freegð3:6Þ

where FG denotes G-homotopy equivalence. This is a subgroup of R freeðGÞ, in fact a
sub-Mackey functor since it has induction and restriction for subgroups of G. We
define

RhðGÞ ¼
L
K/G

R free
h ðG=KÞð3:7Þ

If there exists a G-homotopy equivalence f : SðV1Þ ! SðV2Þ such that

SðV1 lUÞ ¼ SðV1Þ � SðUÞ �!f �1
SðV2Þ � SðUÞ ¼ SðV2 lUÞ

is freely G-normally cobordant to the identity for all free G-representations U , then
we say that SðV1Þ and SðV2Þ are s-normally cobordant, and we write SðV1ÞwG

SðV2Þ. Define

R free
n ðGÞ ¼ fa A R free

h ðGÞ j pV1;V2 with a ¼ ðV1 � V2Þ and SðV1ÞwG SðV2Þgð3:8Þ

and note that R free
n ðGÞ is also a subgroup of R freeðGÞ. Indeed, if ðV1 � V2Þ and

ðV 0
1 � V 0

2Þ are in R free
n ðGÞ, there exist G-homotopy equivalences f : SðV1Þ ! SðV2Þ

and f 0 : SðV 0
1 Þ ! SðV 0

2Þ with f � 1 and f 0 � 1 normally cobordant to the identity
under any stabilization. But f � f 0 FG ð1 � f 0Þ � ð f � 1Þ, so we just glue together the
normal cobordisms for f � 1 (after stabilizing by U ¼ V 0

1 ) and for 1 � f 0 (after sta-
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bilizing by U ¼ V2) along the common boundary id : SðV2 lV 0
1 Þ. As above, we

define

RnðGÞ ¼
L
K/G

R free
n ðG=KÞð3:9Þ

Since R free
t ðGÞJR free

n ðGÞ, we have defined a filtration

RtðGÞJRnðGÞJRhðGÞJRðGÞð3:10Þ

of RðGÞ, natural with respect to restriction of representations. All the terms except
possibly RnðGÞ are also natural with respect to induction of representations.

Remark 3.11. It follows from the proof of [31, 3.1] that SðV1 lU0Þ is s-normally
cobordant to SðV2 lU0Þ, for some free G-representation U0, if and only if SðV1Þ is
s-normally cobordant to SðV2Þ. It follows that we could have used the latter condi-
tion to define R free

n ðGÞ.

4 A rational computation

In this section we use [I], Theorem 3.5 and the splitting of the last section to describe
the torsion subgroup of R free

TopðGÞ. We also give a new proof of Cappell and Shane-

son’s result computing RTopðGÞnQ for all finite groups G.
First we consider cyclic groups. Let G ¼ Cð2rqÞ be a cyclic group, where qf 1 is

odd. The Odd Order Theorem [15], [16] gives RðGÞ ¼ RTopðGÞ if re 1, and we recall
the definition

~RR free
TopðGÞ ¼ ~RR freeðGÞ=R free

t ðGÞ

where ~RR freeðGÞ ¼ kerfRes : R freeðGÞ ! R freeðGoddÞg. Here ~RR freeðCð2qÞÞ ¼
~RR freeðCðqÞÞ ¼ 0, for qf 1 odd.

Theorem 4.1. For G cyclic, the kernel and cokernel of

Res : R free
TopðGÞ ! R free

TopðGoddÞ ¼ R freeðGoddÞ

are 2-primary torsion groups.

Corollary 4.2. Let G ¼ Cð2rqÞ, q odd, be a finite cyclic group.

(i) The torsion subgroup of R free
TopðGÞ is ~RR free

TopðGÞ:

(ii) The rank of R free
TopðGÞ is jðqÞ=2 (resp. 1) if q > 1 (resp. q ¼ 1).

(iii) We have the formula
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rankðRTopðGÞÞ ¼ ðr þ 1Þ
�P

10djq jðdÞ=2 þ 1g; for q > 1

ðr þ 1Þ for q ¼ 1:

(

where jðdÞ is the Euler function.

Proof. The first part follows directly from Theorem 4.1. For parts (ii) and (iii) count
the free representations of Godd. r

Now let F be the composite of all subfields of R of the form Qðzþ z�1Þ where z A C

is an odd root of unity.

Lemma 4.3. For G cyclic, the composition of the natural map RF ðGÞ ! RðGÞ and

Res : RðGÞ ! RðGoddÞ induces a p-local isomorphism R free
F ðGÞ ! R freeðGoddÞ, for any

odd prime p.

Proof. According to a result of Brauer [26, Thm. 24] RF ðGoddÞ ¼ RðGoddÞ, and any
representation of G can be realized over the field QðzjGjÞ. In addition, the restriction
map

Res : RF ðGÞ ! RF ðGoddÞ

is a p-local surjection (since ResGodd
� IndGodd

is just multiplication by 2r). But the
rank of RF ðGÞ given in [26, 12.4] equals the rank of RðGoddÞ, so we are done. r

Corollary 4.4. For G cyclic and any odd prime p, the natural map RF ðGÞ ! RTopðGÞ
induces a p-local isomorphism.

Proof. This follows from the Lemma 4.3 and Theorem 4.1. r

In [2], Cappell and Shaneson obtained the following result by a di¤erent argument. It
computes the rank of RTopðGÞnQ for any finite group G.

Theorem 4.5. Let F be the composite of all subfields of C of the form Qðzþ z�1Þ where

z A C is an odd root of unity. Then for any finite group G, the natural map RF ðGÞ !
RðGÞ induces an isomorphism RF ðGÞnZðpÞ GRTopðGÞnZð pÞ for any odd prime p.

Proof. The result holds for cyclic groups G by Corollary 4.4, and we apply induction
theory to handle general finite groups.

First we observe that the Mackey functors RðGÞnZðpÞ and RF ðGÞnZðpÞ are
generated by induction from p-elementary subgroups (see [26, Thm. 27] and note
that GF ¼ fG1g). Therefore, by [18, 11.2] they are p-elementary computable in
the sense of Dress induction theory [9]. We may therefore assume that G is p-
elementary.

Now if G is p-elementary, it is a product of a p-group and a cyclic group prime to
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p. Any irreducible complex representation of G is then induced from a linear repre-
sentation on a subgroup [26, Thm. 16].

It follows that RTopðGÞ is generated by generalized induction (i.e. inflation fol-
lowed by induction) from cyclic subquotients. Consider the following commutative
diagram

RF ðGÞ ���! RðGÞ ���! RTopðGÞ

Ind

x???4���??yRes

x???
???y x??x???

???yL
C

RF ðCÞ ���! L
C

RðCÞ ���! L
C

RTopðCÞ

It follows from Corollary 4.4 that the top composite map RF ðGÞnZðpÞ !
RTopðGÞnZðpÞ is surjective.

The sum of the (ordinary) restriction maps to cyclic subgroups induces a rational
injection on RF ðGÞ (see [28, 2.5, 2.10]). Since RF ðGÞ is torsion-free, it follows again
from Corollary 4.4 that the map RF ðGÞnZðpÞ ! RTopðGÞnZðpÞ is injective. r

The proof of Theorem 4.1. Since an F -representation is free if and only if it is the sum
of Galois conjugates of free G-representations, we can decompose RF ðGÞ as in Sec-
tion 3, and conclude that R free

F ðGoddÞ ¼ R freeðGoddÞ. It remains to show that ~RR free
TopðGÞ

is a torsion group with 2-primary exponent. For this we use the filtration of §3.
For ~RR freeðGÞ= ~RR free

h ðGÞ this is easy since the k-invariant gives a homomorphism (via
joins of free G-spheres) to ðZ=2rÞ� and this is a 2-group. The next quotient is also 2-
primary torsion, by results of [31]: a su‰ciently large 2-power join of a G-homotopy
equivalence between two free G-spheres, which are linearly equivalent over Godd, be-
comes s-normally cobordant to the identity. The point is that the normal invariant
is detected by a finite number of 2-power congruences conditions among the Hirze-
bruch L-classes of the tangent bundles of the lens spaces, and this can be satisfied
after su‰ciently many joins.

Finally, the last quotient ~RR free
n ðGÞ= ~RR free

t ðGÞ is shown to be 2-primary torsion in the
next proposition. r

Proposition 4.6. Let G ¼ Cð2rqÞ, q odd, and assume

s A kerðRes : Lh
2kðZGÞ ! Lh

2kðZGoddÞÞ:

Then there exists a complex representation W with W G ¼ 0 such that trfW ð2rsÞ ¼ 0.

Proof. We will take W ¼ R� lR� lW0, where W0 is the sum of all the irreducible
2-dimensional representations of G with isotropy of 2-power index. Note that the R�-
transfer is just the compact I� transfer of one-sided codimension 1 surgery followed
by adding rays to infinity, so whenever the I� transfer is 0, the R�-transfer will have
to be 0. This was discussed in more detail in [I], Section 4.
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Step 1: If G has odd order, there is nothing to prove. Otherwise, let H HG be of
index 2. If ResHðsÞ ¼ 0, then trfR�ðsÞ A ImðLh

1 ðZG�Þ ! Lh
1 ðZH ! ZG�ÞÞ. But

Lh
1 ðZG�Þ has exponent 2 [14, 12.3], so trfR�ð2sÞ ¼ 0. Then take W ¼ R� lR�.

Note that this case applies to G ¼ Cð2qÞ, so we can always get started.

Step 2: We may assume that rf 2. If ResHðsÞ0 0 note that

ResHð2s� IndH ResHðsÞÞ ¼ 2 ResHðsÞ � 2 ResHðsÞ ¼ 0:

By induction ResH W0 works for ResHðsÞ: say

trfResH W0
ð2 r�1 ResHðsÞÞ ¼ 0

and W H
0 ¼ 0. Let dim W0 ¼ m and consider the commutative diagram

L2kðZGÞ L2kðZHÞ L2kðZGÞ

trfW0

???y trfResH W0

???y trfW0

???y
L2kþmðCW0;GðZÞÞ ���!Res

L2kþmðCRes W0;HðZÞÞ ���!Ind
L2kþmðCW0;GðZÞÞ:

�����������!Res �����������!Ind

From this we get

2r�1 � trfW0
ðIndH ResHðsÞÞ ¼ 0:

The first step implies that trfR2
�
ð2s1Þ ¼ 0, where s1 ¼ 2s� IndH ResHðsÞ. Let W ¼

R� lR� lW0, so that we have W complex and W G ¼ 0. Note that trfW ¼ trfR2
�
�

trfW0
¼ trfW0

� trfR2
�
. But

2r � trfW ðsÞ ¼ 2r�1trfW ð2s� IndH ResHðsÞÞ þ 2 r�1trfW ðIndH ResHðsÞÞ

and both terms vanish (because rf 2 and by the property of W0 respectively). r

A similar argument to that in Step 2 above gives:

Proposition 4.7. If ResHðtrfW ðxÞÞ ¼ 0 for x A Lh
0 ðZGÞ, then 4 � trfW�R�ðxÞ ¼ 0.

Proof. Since

4 � trfW�R�ðsÞ ¼ 2 � trfW trfR�ð2s� IndH ResHðsÞÞ

þ 2 � trfR� trfW ðIndH ResHðsÞÞ

we conclude as above that both terms vanish. r
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5 Excision in bounded surgery theory

A small additive category with involution A is a small additive category together
with a contravariant endofunctor � such that �2 ¼ 1A. Ranicki defines algebraic L-
theory Lh

� ðAÞ for such categories and corresponding spectra LhðAÞ with Lh
� ðAÞ ¼

p�ðLhðAÞÞ [22]. The obstruction groups for bounded surgery are obtained this way
for appropriately chosen additive categories. We shall also need a simple version of
such groups. For this, the additive category must come equipped with a system of
stable isomorphisms and a subgroup sHK1ðAÞ, such that any composition resulting
in an automorphism defines an element in s. The point here is that whenever two
objects are stably isomorphic, there is a canonically chosen stable isomorphism, ca-
nonical up to automorphisms defining elements of s. In this situation Ranicki refines
the definition of LhðAÞ to give the simple L-theory spectrum LsðAÞ, by requiring
appropriate isomorphisms to give elements of K1ðAÞ belonging to the subgroup s.
More generally, we also get the LaðAÞ-spectra for any involution invariant subgroup
a with sH aHK1ðAÞ, coinciding with LhðAÞ when a ¼ K1ðAÞ.

Example 5.1. Let A be the category of free ZG-modules with a G-invariant Z-basis,
and ZG-module morphisms. Two objects are stably isomorphic if and only if they
have the same rank. The preferred isomorphisms are chosen to be the ones sending a
Z-basis to a Z-basis, so automorphisms define elements of fGGgHK1ðZGÞ. In this
situation one obtains Wall’s Ls-groups.

The theory of projective L-groups fits into the scheme as follows: one defines
LpðAÞ ¼ LhðA5Þ, where A5 is the idempotent completion of A. The objects of A5

are pairs ðA; pÞ with A an object of A and p2 ¼ p. The morphisms f : ðA; pÞ !
ðB; qÞ are the A-morphisms f : A ! B with qfp ¼ f. Again it is possible to ‘‘par-
tially’’ complete A. If K0ðAÞH kHK0ðA5Þ is an involution invariant subgroup,
we define A5k to be the full subcategory of A5 with objects defining elements of
kHK0ðA5Þ. This way we may define LkðAÞ ¼ LðA5kÞ. Similarly to the above,
for k ¼ K0ðAÞHK0ðA5Þ, Lk

� ðAÞ is naturally isomorphic to Lh
� ðAÞ. The quotient

~KK0ðAÞ ¼ K0ðA5Þ=K0ðAÞ is called the reduced projective class group of A.

Example 5.2. If A is the category of free ZG-modules then A5 is isomorphic to the
category of projective ZG-modules and the L p

� ðAÞ are Novikov’s original L p-groups.

Suppose M is a metric space with the finite group G acting by isometries, R a ring
with involution. In [10, 3.4] we defined an additive category GM;GðRÞ with involution
as follows:

Definition 5.3. An object A is a left RðGÞ-module together with a map f : A !
F ðMÞ, where F ðMÞ is the set of finite subsets of M, satisfying

(i) f is G-equivariant.

(ii) Ax ¼ fa A A j f ðaÞJ fxgg is a finitely generated free sub R-module
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(iii) As an R-module A ¼
L

x AM Ax

(iv) f ða þ bÞJ f ðaÞW f ðbÞ

(v) For each ball BHM, fx A B jAx 0 0g is finite.

A morphism f : A ! B is a morphism of RG-modules, satisfying the following con-
dition: there exists k so that the components fm

n : Am ! Bn (which are R-module
morphisms) are zero when dðm; nÞ > k. Then GM;GðRÞ is an additive category in an
obvious way. The full subcategory of GM;GðRÞ, for which all the object modules are
required to be free left RG-modules, is denoted CM;GðRÞ.

Given an object A, an R-module homomorphism f : A ! R is said to be locally
finite if the set of x A M for which fðAxÞ0 0 is finite. We define A� ¼ Hom lf

R ðA;RÞ,
the set of locally finite R-homomorphisms. We want to make � a functor from
GM;GðRÞ to itself to make GM;GðRÞ a category with involution. We define f � : A� !
FM by f �ðfÞ ¼ fx j fðAxÞ0 0g which is finite by assumption. A� has an obvious
right action of G turning it into a right RG module given by fgðaÞ ¼ fðgaÞ, and
f � is equivariant with respect to the right action on M given by xg ¼ g�1x. To
make � an endofunctor of GM;GðRÞ we need to replace the right action by a left
action. We do this by the standard way in surgery theory by letting g act on the left
by letting g�1 act on the right. In the unoriented case, given a homomorphism
w : G ! fG1g, we let g act on the left of A� by wðgÞ � g�1 on the right. The involution
� induces a functor on the subcategory CM;GðRÞ, so that CM;GðRÞ is also a category
with involution.

Example 5.4. Let rW : G ! OðWÞ be an orthogonal action of G on a finite dimen-
sional real vector space W . We take M ¼ W with the action through rW , and ori-
entation character detðrW Þ. This will be called the standard orientation on CW ;GðZÞ.

Remark 5.5. We will need to find a system of stable isomorphisms for the category
CM;GðRÞ to be able to do simple L-theory. To do this we choose a point x in each
G-orbit, and an RGx-basis for Ax, where Gx is the isotropy subgroup of x. We then
extend that by equivariance to an R-basis of the module. Having a basis allows de-
fining an isomorphism in the usual fashion. In each case we need to describe the inde-
terminacy in the choices coming from the choice of R-basis and points in the orbit.
For our particular choices of M it will be easy to determine the subgroup s, so we will
not formulate a general statement.

We will study the L-theory of the categories CM;GðRÞ using excision. Let N be a G-
invariant metric subspace of M. Denoting CM;GðRÞ by U, let A be the full subcate-
gory on modules A so that Ax ¼ 0 except for x in some bounded neighborhood of N.
The category A is isomorphic to CN;GðRÞ in an obvious fashion. The quotient cate-
gory U=A, which we shall denote by C>N

M;GðRÞ, has the same objects as U but two
morphisms are identified if the di¤erence factors through A, or in other words, if
they di¤er in a bounded neighborhood of N. This is a typical example of an additive
category U which is A-filtered in the sense of Karoubi. We recall the definition.
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Definition 5.6. Let A be a full subcategory of an additive category U. Denote
objects of A by the letters A through F and objects of U by the letters U through
W. We say that U is A-filtered, if every object U has a family of decompositions
fU ¼ Ea lUag, so that

(i) For each U , the decompositions form a filtered poset under the partial order that
Ea lUa aEb lUb, whenever Ub JUa and Ea JEb.

(ii) Every map A ! U , factors A ! Ea ! Ea lUa ¼ U for some a.

(iii) Every map U ! A factors U ¼ Ea lUa ! Ea ! A for some a.

(iv) For each U ;V the filtration on U lV is equivalent to the sum of filtrations
fU ¼ Ea lUag and fV ¼ Fb lVbg i.e. to U lV ¼ ðEa lFbÞl ðUa lVbÞ.

The main excision results were proved in [19], [6], [7], [23]. We give a slight gener-
alization of the L-theory results. Let K denote the Quillen K-theory spectrum, and
K�y its non-connective delooping (with the K�i-groups as homotopy groups).

Theorem 5.7. Let U be an A-filtered additive category with involution. Consider the

map i : K0ðA5Þ ! K0ðU5Þ induced by inclusion, and let k ¼ i�1ðK0ðUÞÞ. There are

fibrations of spectra

KðA5kÞ ! KðUÞ ! KðU=AÞ

and

K�yðAÞ ! K�yðUÞ ! K�yðU=AÞ

If U and A admit compatible involutions there is a fibration of spectra

LkðAÞ ! LhðUÞ ! LhðU=AÞ:

More generally, if

(i) aHKiðAÞ, bHKiðU5Þ, and cHKiððU=AÞ5Þ, for ie 1,

(ii) a ¼ i�1ðbÞ and b ! c is onto,

(iii) a; b, and c contain K0ðAÞ;K0ðUÞ and K0ðU=AÞ respectively, if i ¼ 0, and

(iv) a; b and c contain the indeterminacy subgroup given by the system of stable iso-

morphisms in the case i ¼ 1,

then we have a fibration of spectra

LaðAÞ ! LbðUÞ ! LcðU=AÞ

Proof. The K-theory statements are implicitly contained in [19]. A simpler, more
modern proof and explicit statements are given in [6]. The first L-theory statement
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was proved in [7], and the other L-theory statements follow by the following argu-
ment: we have an exact sequence

K0ðA5kÞ ! K0ðUÞ ! K0ðU=AÞ ! 0;

where the map from K0ðUÞ ! K0ðU=AÞ is onto because the categories have the
same objects. Letting I denote the image of K1ðU=AÞ in K0ðA5kÞ, we consider the
diagram of short exact sequences:

0 ���! I ���! K0ðA5kÞ ���! K0ðUÞ ���! K0ðU=AÞ ���! 0����
???y

???y
����

0 ���! I ���! a ���! b 0 ���! K0ðU=AÞ ���! 0����
����

???y
???y

0 ���! I ���! a ���! b ���! c ���! 0����
???y

???y
???y

0 ���! I ���! K0ðA5Þ ���! K0ðU5Þ ���! K0ððU=AÞ5Þ

The vertical arrows are either equalities or inclusions. We define b 0 simultaneously
as the pullback of a=I ! b ! c and as the pushout of 0 ! K0ðA5kÞ=I ! K0ðUÞ !
K0ðU=AÞ ! 0. We have

a=K0ðA5kÞG b 0=K0ðUÞ;

so using the Ranicki-Rothenberg fibrations of spectra [23]

LkðAÞ ���! LaðAÞ ���! Hða=K0ðA5kÞÞ???y
???y

???y
LhðUÞ ���! Lb 0 ðUÞ ���! Hðb 0=K0ðUÞÞ

we get a fibration

LaðAÞ ! Lb 0 ðUÞ ! LhðU=AÞ:

We now repeat this argument using the isomorphisms b=b 0 G c=K0ðU=AÞ to obtain
the desired fibration of spectra. Since Lh-groups may be understood as simple L-
groups with all of K1 as allowed torsions, the above bootstrapping argument extends
to fibrations of the L-spectra stated, using the isomorphism
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K1ðU=AÞ=kerðqÞG imageðqÞ

where q is the boundary map q : K1ðU=AÞ ! K0ðA5Þ. r

In Section 10 we need to use bounded surgery groups with geometric anti-structure
generalizing the definition of [I], Section 4 (see [10]). The new ingredient is a coun-
terpart to the automorphism y : H ! H at the metric space level.

Let yH : H ! H be a group automorphism so that the data ðH; yH ;w; bÞ gives a
geometric anti-structure on RH. Let yM : M ! M be an isometry with the properties
yMðg � mÞ ¼ yHðgÞ � yMðmÞ, y2

MðmÞ ¼ bm, and y2
HðgÞ ¼ bgb�1.

Given an object A A GM;HðRÞ, we have the functor � from GM;HðRÞ to itself so
that GM;HðRÞ is a category with involution. We may then twist the involution � by
composing with the functor sending ðA; f Þ to ðAy; f yÞ where Ay is the same R-
module, but g acts on the left by multiplication by yðgÞ and f y ¼ y�1

M � f . This defines
the bounded anti-structure on GM;HðRÞ and on the subcategory CM;HðRÞ of free RH

modules.

Example 5.8. Bounded geometric anti-structures arise geometrically as above. The
bounded R� transfer sits in the long exact sequence

ð5:8Þ LNnðCW�R�;GðZÞ;wfÞ ! Lh
n ðCW ;GðZÞ;wÞ ! Lh

nþ1ðCW�R�;GðZÞ;wfÞ

! LNn�1ðCW�R�;GðZÞ;wfÞ ! Lh
n�1ðCW ;GðZÞ;wÞ ! � � �

where w ¼ detðrW Þ is the standard orientation (see Example 5.4). The bounded LN-
group

LNnðCW�R�;GðZÞ;wfÞGLnðCW ;HðZÞ; a; uÞ

where yW ðxÞ ¼ t � x and yHðhÞ ¼ tht�1 for a fixed t A G � H.
Conversely, given a bounded geometric antistructure ðyH ; yM ; b;wÞ, we can

define G ¼ hH; t j t�1ht ¼ yHðhÞ; t2 ¼ bi and t � m ¼ yMðmÞ. Then CM;GðRÞ induces
ðyH ; yM ; b;wÞ as above, showing that all geometric antistructures arise by twisting
and restricting to an index two subgroup.

The L-theory of these bounded geometric anti-structures also has a useful vanishing
property which we now wish to formulate. We first give a basic construction.

Definition 5.9. If A is an additive category, then the opposite category Aop is the
category with the same objects as A but homAopðA;BÞ ¼ homAðB;AÞ. The prod-
uct category A�Aop is an additive category with involution given by � : ðA;BÞ ¼
ðB;AÞ on objects and � : ða; bÞ ¼ ðb; aÞ on morphisms.

Clearly KiðAopÞ ¼ KiðAÞ, so we can identify KiðA�AopÞ ¼ KiðAÞ � KiðAÞ.
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Lemma 5.10. Let bJKiðAÞ for some i e 1, and q ¼ b � bJKiðA�AopÞ. Then

Lq
n ðA�AopÞ ¼ 0 for all n.

Proof. Let PðAÞ denote the category with the same objects as A, but with mor-
phisms given by A-isomorphisms. Then it su‰ces to prove that the quadratic cate-
gory QðA�AopÞFPðAÞ via the hyperbolic map (see [30, p. 122]). This shows that
Lh
� ðA�AopÞ ¼ 0 and other decorations follow trivially from the Ranicki Rothen-

berg exact sequences (note that the Tate cohomology H �ðqÞ ¼ 0). The result for
lower L-groups follows by replacing A by CRðAÞ.

Suppose ðn1; n2Þ : ðA;BÞ ! ðB;AÞ is a non-singular quadratic form representing an
element in QðA�AopÞ. This means that the bilinearization n1 þ n2 is an isomor-
phism, and we are allowed to change ðn1; n2Þ by terms of the form ða; bÞ � ðb; aÞ. We
have

ðn1; n2Þ þ ðn2; 0Þ � ð0; n2Þ ¼ ðn1 þ n2; 0Þ

and the right hand side is a hyperbolic form. r

We encounter the A�Aop situation in the following setting:

Example 5.11. Let M ¼ M1 WM2 be a metric space given as the union of two sub-
metric spaces M1 and M2, where we denote M1 XM2 by N. Suppose that

(i) G acts by isometries on M, such that each g A G preserves or switches M1 and
M2 in this decomposition,

(ii) H ¼ fg A G j gðM1Þ ¼ M1g is an index two subgroup of G,

(iii) for every k > 0 there exists an l > 0 such that, if x A M1 (resp. x A M2) with
dðx;NÞ > l, then dðx;M2Þ > k (resp. dðx;M1Þ > k).

The category CM;HðRÞ has a bounded geometric antistructure ða; uÞ given by
ðyH ; yM ; b;wÞ as in Example 5.8, with yMðmÞ ¼ t � m and yHðhÞ ¼ tht�1 for a fixed
t A G � H. Next, observe that the category

C>N
M;HðRÞ ¼ C>N

M1;H
ðRÞ � C>N

M2;H
ðRÞ

because of our separation condition (iii). Moreover, the functor T : C>N
M1;H

ðRÞ !
C>N

M2;H
ðRÞop defined by TðA; f Þ ¼ ðA�; y�1

M � f �Þ on objects and TðfÞ ¼ f� on mor-
phisms is an equivalence of categories. We are thus in the A�Aop situation de-
scribed above and Lh

� ðC>N
M;HðRÞ; a; uÞ ¼ 0 by Lemma 5.10.

For any bounded geometric antistructure, notice that the action of yM on M takes
H-orbits to H-orbits since yMðg � mÞ ¼ yHðgÞ � yMðmÞ. Let MðH;yÞ denote the subset
consisting of H-orbits in M which are fixed by the y-action. Then MðH;yÞ ¼ fm A M j
yMðmÞ A H � mg. Note that MðH;yÞ is a H-invariant subspace of M.
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Theorem 5.12. Suppose that ðCM;HðRÞ; a; uÞ has a bounded geometric antistructure

ða; uÞ given by ðyH ; yM ; b;wÞ, such that:

(i) M ¼ OðKÞ, where K is a finite H-CW complex and M has the cone of the given

H-action on K,

(ii) yM is induced by a simplicial map on K,

(iii) MðH;yÞ JOðLÞ :¼ N for some H-invariant subcomplex LHK, and

(iv) for some i e 1, I HKiðC>N
M;HðRÞÞ is a subgroup with H �ðIÞ ¼ 0.

Then LI
nðC>N

M;HðRÞ; a; uÞ ¼ 0 for all n.

Corollary 5.13. Let G ¼ Cð2rqÞ, q odd, be a cyclic group and H HG the subgroup

of index 2. Let W be a G-representation, and N ¼
S
fW K j ½G : K � is oddg. Then

LI
nðC>N

W ;HðZÞ; a; uÞðqÞ ¼ 0 on the top component, where ða; uÞ is the antistructure given

above.

The proof of Theorem 5.12. We extend the given H-action on M to a simplicial action
of G ¼ hH; t j t�1ht ¼ yHðhÞ; t2 ¼ bi as described above. The proof is by induction
on cells, so suppose that K is obtained from L by attaching exactly one G-equivariant
k-cell Dk � G=G0. Since MðH;yÞ HOðLÞ ¼ N, it follows that G0 HH and we may
write G=G0 ¼ H=G0 t tH=G0. Now we define M1 ¼ OðLW ðDk � H=G0ÞÞ and con-

sider the category A ¼ C
>OðLÞ
M1;H

ðRÞ. By construction, we have

C>N
M;HðRÞ ¼ A�Aop

which has trivial L-theory by Lemma 5.10. Since the Tate cohomology of the K1

decoration I vanishes, we get LI
nðC>N

M;HðRÞ; a; uÞ ¼ 0. r

6 Calculations in bounded K-theory

We begin to compute the bounded transfers trfW by considering the bounded K-
theory analogue. In this section, G ¼ Cð2rqÞ is cyclic of order 2rq, with rf 2 and
qf 1 odd. By [I], Theorem 3.8 we can restrict our attention to those W where the
isotropy subgroups have 2-power index. Let Gi JG denote the subgroup of index
½G : Gi� ¼ 2 i for i ¼ 0; 1; . . . ; r. As above, we reserve the notation H < G for the sub-
group of index 2.

Any real, orthogonal G-representation W can be decomposed uniquely into iso-
typical direct summands indexed by the subgroups K JG, where in each summand
G operates with isotropy group K away from the origin. Since we assume that W has
isotropy of 2-power index, we can write

W ¼ W ½0�lW ½1�l � � �lW ½r�
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where W ½i� is isotypic with isotropy group Gi. Thus W ½0� ¼ Rk is a trivial G-
representation, and W ½1� is a sum of R� factors. We say that W is complex if
dim W ½0� and dim W ½1� are even (in this case, W is the underlying real representa-
tion of a complex representation). If W is complex, then Wmax JW denotes a com-
plex sub-representation of real dima 2 with maximal proper isotropy subgroup. If
W ¼ W ½0� then Wmax ¼ 0. Then Wmax is either irreducible or Wmax ¼ R� lR�.

We study bounded K-theory by means of equivariant filtrations of the control
space. The basic sequence is (see [10]):

� � � �! Kiþ1ðC>U
V ;GðZÞÞ �!qiþ1

KiðCU ;GðZÞÞ �! KiðCV ;GðZÞÞ

�! KiðC>U
V ;GðZÞÞ �!� � �

valid for U JV a closed G-invariant subspace. If W1 is a complex representation
with dim W1 ¼ 2 and isotropy group K 0G, let U ¼

S
la be the union of ½G : K �

rays from the origin in W1, which are freely permuted by G=K . Then W1n
S

la is
a disjoint union of open fundamental domains for the free G=K-action. If W ¼
W1 lW2, we call W2 H

S
la � W2 HW the orbit type filtration of W .

Recall that t denotes a generator of G, and thus acts as an isometry on the control
spaces M we use in the bounded categories CM;GðZÞ. Let t� denote the action of t on
bounded K-theory induced by its action on the control space.

Lemma 6.1. Let W ¼ W1 lW2, where W1 is a complex 2-dimensional sub-
representation of W with minimal isotropy subgroup K 0G. Then

Kiþ1ðC
>
S
la�W2

W ;G ðZÞÞGKi�1�kðZKÞ

KiðC>W2S
la�W2;G

ðZÞÞGKi�1�kðZKÞ;

where k ¼ dim W2. The boundary map qiþ1 ¼ 1 � t� in the long exact sequence of the

orbit type filtration for W.

Proof. The bounded category C>W2S
la�W2;G

ðZÞ of germs away from W2 has e¤ective

fundamental group K , as defined in [10, 3.13]. It therefore has the same K-theory as
CR kþ1ðCptðZKÞÞ. The other case is similar. The identification of qiþ1 with 1 � t� is
discussed in detail in the proof of Proposition 6.7. r

Since K�jðZKÞ ¼ 0 for j f 2 by [8], this Lemma gives vanishing results for bounded
K-theory as well.

Lemma 6.2. Suppose that W is complex, and W G ¼ 0. Then the inclusion map induces

an isomorphism
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KiðCWmax�R�;GðZÞÞ ! KiðCW�R�;GðZÞÞ

for ie 1.

Proof. This is an argument using the orbit type filtration. Let W ¼ Wmax lW2, and
suppose that W2 0 0 or equivalently dim W2 f 2, since W is complex. Write W ¼
W 0 lW 00 with W 0 JW2, dim W 0 ¼ 2 and IsoðW 0Þ ¼ K minimal. We choose W 00

containing Wmax, and by induction we assume the result holds for W 00.
Then applying the first part of Lemma 6.1, we get the calculations

KiðC>W 00�R�S
la�W 00�R�;G

ðZÞÞ ¼ Ki�2�jW 00 jðZKÞð6:3Þ

and

KiðC
>
S
la�W 00�R�

W�R�;G
ðZÞÞ ¼ Ki�3�jW 00 jðZKÞ:ð6:4Þ

Since dim W 00 f 2, we get the vanishing results KiðC>W 00�R�S
la�W 00�R�;G

ðZÞÞ ¼ 0 for ie 2

by [8], and KiðC
>
S
la�W 00�R�

W�R�;G
ðZÞÞ ¼ 0 for i e 3. From the filtration sequence, it fol-

lows that KiðC>W 00�R�
W�R�;G

ðZÞÞ ¼ 0 for i e 2, and therefore

KiðCW 00�R�;GðZÞÞ !A KiðCW�R�;GðZÞÞ

for i e 1. We are done, by induction. r

Corollary 6.5. KiðC>Wmax�R�
W�R�;G

ðZÞÞ ¼ 0 for i e 2.

Proof. We continue the notation from above, and look at part of the filtration se-
quence

KiðC>Wmax�R�
W 00�R�;G

ðZÞÞ ! KiðC>Wmax�R�
W�R�;G

ðZÞÞ ! KiðC>Wmax�R�
W�R�;G

ðZÞÞ:

The first term is zero for i e 2 by induction on dimension, and the third term is zero
for i e 2 as above. r

We can obtain a little sharper result with some additional work. First a useful ob-
servation:

Lemma 6.6. Let A be an additive category (with involution). Then the map R ! R

sending x to �x induces minus the identity on K-theory (and L-theory) of CRðAÞ.

Proof. The category CRðAÞ is filtered by the full subcategory whose objects have
support in a bounded neighborhood of 0. This subcategory is equivalent to A and
the quotient category may be identified with C>0

½0;yÞðAÞ � C>0
ð�y;0�ðAÞ via the projec-

tion maps in an obvious way.
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Consider the diagram

A ���! CRðAÞ ���! C>0
½0;yÞðAÞ � C>0

ð�y;0�ðAÞ����
???y

???y
A ���! C½0;yÞðAÞ C>0

½0;yÞ����������!
where the vertical map is induced by x 7! jxj. In the lower horizontal row, K and L-
theory of the middle term is trivial, so the boundary map will be an isomorphism.
The lower row splits o¤ the upper row in two di¤erent ways, one induced by includ-
ing ½0;yÞHR and the other by sending x A ½0;yÞ to �x A R. Under these two split-
tings we may identify K or L-theory of the quotient C>0

½0;yÞðAÞ � C>0
ð�y;0�ðAÞ with

C>0
½0;yÞ � C>0

½0;yÞ and under this identification, the flip map of R corresponds to inter-

changing the two factors. On K-theory (or L-theory) we conclude that the exact se-
quence is of the form

0 ! A� ! A� � A� !
þ

A� ! 0:

The flip action on the last term is trivial, and on the middle term it interchanges the
two factors, so the inclusion must send a to ða;�aÞ. Hence the flip action on the first
term must be a 7! �a. r

As above, t� denotes the induced action of a generator t A G on K-theory, and e :
G ! fG1g the non-trivial action of G on R�.

Proposition 6.7. Let W be a complex 2-dimensional G-representation with W G ¼ 0,

and isotropy subgroup K. Then under the isomorphisms of (6.3) and (6.4) the complex

Kiþ1ðC
>
S
la�R�

W�R�;G
ðZÞÞ !qa

KiðC>R�S
la�R�;G

ðZÞÞ !qb
Ki�1ðC>0

R�;G
ðZÞÞ

with qb � qa ¼ 0 is isomorphic to

Ki�2ðZKÞ !
q 0

a
Ki�2ðZKÞ !

q 0
b

Ki�2ðZHÞ

where q 0
a ¼ 1 � t� ¼ 2 and q 0

b ¼ IndH � ð1 � t�Þ ¼ 0.

Proof. The orbit type filtration is based on a G-equivariant simplicial model for
W , where G acts through the projection to G=K . The third term in the complex is
Ki�1ðC>0

R�;G
ðZÞÞ ¼ Ki�2ðZHÞ and the identification of the boundary maps follows

from the definition of the germ categories.
To compute qa, we use the isomorphisms between the domain of qa and Ki�2ðZKÞ

obtained by noticing that every element is induced from an element of

Kiþ1ðC>qC�R
C�R;K ðZÞÞ;
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where C is the region between two adjacent half-lines of
S

la. This follows since the
regions in the complement of

S
la � R� are disjoint and the boundedness condition

ensures there is no interference. Similarly the isomorphism of the range of qa with
Ki�2ðZÞ is obtained by noticing that every element is induced from C>R

h�R;K where h is

just one half-line in
S

la, and we can think of qC ¼ hW th. To compute the boundary
we first take the standard boundary to CqC�R;KðZÞ which is an isomorphism, and
then map away from 0 � R. It follows from the proof of Lemma 6.6 above that this
map is of the form a 7! ða;�aÞ in K or L-theory. In this picture, the support of one
of the boundary components is along h and the other along th. We need to use the
group action to associate both elements to the same ray. Since t flips the R-factor, we
get a change of sign before adding, so t� ¼ eðtÞ ¼ �1 and qa sends a to 2a.

To compute qb, we start with an element in the source of qb which as above is
identified via induction with KiðC>R

h�R;K ;GðZÞÞ. The boundary first sends this isomor-
phically to CR;KðZÞ, then by induction to CR�;GðZÞ, and then via the natural map to
the range of qb, which is C>0

R�;G
. We have a commutative square

K1ðC>R
h�R;KðZÞÞ ���!Ind

K1ðC>R�S
la�R�;G

ðZÞÞ

q

???y
???yqb

K0ðC>0
R;KðZÞÞ ���!Ind

K0ðC>0
R�;G

ðZÞÞ

where C>0
R;KðZÞ ¼ CR;KðZÞ � CR;KðZÞ. Under this identification, the natural map to

the germ category K0ðCR;KðZÞÞ ! K0ðC>0
R;KðZÞÞ is just a 7! ða;�aÞ, and the induc-

tion map

Ind : K0ðC>0
R;KðZÞÞ ! K0ðC>0

R�;G
ðZÞÞ

is given by ða; bÞ 7! IndHða þ t�bÞ. In this case the action of t on CR�;GðZÞ is the
identity since any element is invariant under the action of G, hence under the action
of t. It follows that Indða;�aÞ ¼ IndHða � t�aÞ ¼ 0 as required. r

Lemma 6.8. Let W be a complex 2-dimensional G-representation with proper isotropy

group K. The boundary map

Kiþ1ðC>R�S
la�R�;G

ðZÞÞ ! KiðCR�;GðZÞÞ

is zero for i e 1.

Proof. If i e�1 the domain of this boundary map is zero, so the result is trivial. For
i ¼ 1 we use the injection WhðCR�;GðZÞÞ ! WhðCR�;GðẐZ2ÞÞ, which follows from the

vanishing of SK1ðZGÞ. But WhðCR�;GðẐZ2ÞÞ ¼ WhðẐZ2GÞ=WhðẐZ2HÞ and the group

WhðẐZ2GÞ ¼
Q

djq ẐZ2½zd �G2, where G2 HG is the 2-Sylow subgroup and q is the odd
part of the order of G. Now Oliver [18, Thm. 6.6] constructed a short exact sequence
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1 ! WhðẐZ2½zd �G2Þ ! ẐZ2½zd �G2 ! h�1i� G2 ! 1

by means of the integral 2-adic logarithm. This sequence is natural with respect to
inclusion of subgroups, so we may use it to compare WhðẐZ2GÞ and WhðẐZ2HÞ. Since
each corresponding term injects, and the middle quotient is Z-torsion free, we con-
clude that WhðCR�;GðẐZ2ÞÞ is also Z-torsion free. Since K2ðC>R�S

la�R�;G
ðZÞÞ ¼ K0ðZKÞ

is torsion (except for Z ¼ K0ðZÞ which is detected by projection to the trivial group),
the given boundary map is zero.

For i ¼ 0, we use the surjection K0ðQ̂QKÞ ! K�1ðZKÞ, and compute with Q̂Q co-
e‰cients and i ¼ 1. We will list the steps, and leave the details to the reader. First,
compute that K1ðCR�;GðQ̂QÞÞ ¼ K1ðQ̂QGÞ=K1ðQ̂QHÞ surjects onto K1ðCSla�R�;GðQ̂QÞÞ,
by means of a braid containing the cone point inclusions into CR�;GðQ̂QÞ and
CSla�R�;GðQ̂QÞ. Second, prove that K1ðCSla�R�;GðQ̂QÞÞ fits into a short exact se-
quence

0 ! K1ðCSla;HðQ̂QÞÞ ! K1ðCSla;GðQ̂QÞÞ ! K1ðCSla�R�;GðQ̂QÞÞ ! 0

by means of a braid containing the inclusion
S

la J
S

la � R�. Finally, compute the

first two terms K1ðCSla;GðQ̂QÞÞ ¼ K1ðQ̂QGÞ=K1ðQ̂QKÞ, and K1ðCSla;HðQ̂QÞÞ ¼ K1ðQ̂QHÞ=
K1ðQ̂QKÞ by comparing the groups under the inclusion H < G. We conclude that

K1ðCR�;GðQ̂QÞÞGK1ðCSla�R�;GðQ̂QÞÞ

under the inclusion map, and hence q ¼ 0. r

Corollary 6.9. Let W be a complex G-representation with W G ¼ 0. Then the inclusion

induces an isomorphism KiðCR�;GðZÞÞ ! KiðCW�R�;GðZÞÞ for i e 0, and an injec-

tion for i ¼ 1. If K�1ðZKÞ ¼ 0 for the maximal proper isotropy groups K of W, then

K1ðCR�;GðZÞÞGK1ðCW�R�;GðZÞÞ.

Proof. We may assume that dim W ¼ 2, and apply the filtering argument again. By
(6.3) and (6.4) we get KiðC>R�

W�R�;G
ðZÞÞ ¼ 0 for i e 0, and K1ðC>R�

W�R�;G
ðZÞÞ is a quo-

tient of K1ðC>R�S
la�R�;G

ðZÞÞ ¼ K�1ðZKÞ. Since the composition

K1ðC>R�S
la�R�;G

ðZÞÞ ! K1ðC>R�
W�R�;G

ðZÞÞ ! K0ðCR�;GðZÞÞ

is zero by Lemma 6.8, the result follows for ie 0.
Similarly, K2ðC>R�

W�R�;G
ðZÞÞ is a quotient of K2ðC>R�S

la�R�;G
ðZÞÞ ¼ K0ðZKÞ, because

the boundary map K2ðC
>
S
la�R�

W�R�;G
ðZÞÞ ¼ K�1ðZKÞ to K1ðC>R�S

la�R�;G
ðZÞÞ ¼ K�1ðZKÞ

is multiplication by 2, and hence injective. Then we make the same argument, using
Lemma 6.8.

If we also assume K�1ðZKÞ ¼ 0, then K1ðC>R�
W�R�;G

ðZÞÞ ¼ 0 so we get the isomor-
phism K1ðCR�;GðZÞÞ !A K1ðCW�R�;GðZÞÞ. r
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7 The double coboundary

The composite D of maps from the Lh � L p and Ls � Lh Rothenberg sequences

H ið ~KK0ðZGÞÞ ����! Lh
i ðZGÞ

D

???y
H iðWhðZGÞÞ

���������!
(see [14]) has an algebraic description by means of a ‘‘double coboundary’’ homo-
morphism

d2 : H ið ~KK0ðZGÞÞ ! H iðWhðZGÞÞ

In this section, we will give a brief description due to Ranicki [20] of this homomor-
phism (see also [21, §6.2] for related material on ‘‘interlocking’’ exact sequences in K

and L-theory).
Let X be a space with a Z=2 action T : X ! X , and define homomorphisms

D : H iðpnðX ÞÞ ! H iðpnþ1ðX ÞÞ

by sending g : S n ! X to

hW ð�1Þ i
Th : S nþ1 ¼ Dnþ1

þ WS n Dnþ1
� ! X

for any null-homotopy h : Dnþ1 ! X of the map g þ ð�1Þ iþ1
Tg : S n ! X .

The maps D lead to a universal description of double coboundary maps, as follows.
Let f : X ! Y be a Z=2-equivariant map of spaces with Z=2 action, and consider
the long exact sequence

� � � ! pnðXÞ !f
pnðY Þ ! pnð f Þ ! pn�1ðXÞ ! pn�1ðYÞ ! � � �

We define In ¼ kerð f : pnðX Þ ! pnðYÞÞ and Jn ¼ ImðpnðY Þ ! pnð f ÞÞ, and get an
exact sequence

0 ! pnðX Þ=In ! pnðY Þ ! pnð f Þ ! In�1 ! 0

which can be spliced together from the short exact sequences

0 ! pnðX Þ=In ! pnðY Þ ! Jn ! 0

0 ! Jn ! pnð f Þ ! In�1 ! 0:
ð7:1Þ

Then it follows directly from the definitions that the double coboundary
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d2 : H iðIn�1Þ !
d

H iþ1ðJnÞ !
d

H iðpnðX Þ=InÞ

from the Tate cohomology sequences induced by (7.1) is given by the composite

d2 : H iðIn�1Þ ��!inc�
H iðpn�1ðXÞÞ ��!D H iðpnðX ÞÞ ��!proj�

H iðpnðXÞ=InÞ:

If we can pick the map f : X ! Y appropriately, say with In ¼ 0 and In�1 ¼
pn�1ðX Þ, this gives an algebraic description of D.

In later sections we will use the relative Tate cohomology groups H iðDÞ, which are
just (by definition) the relative Tate cohomology groups [21, p. 166] of the map
pnðYÞ ! pnð f Þ in the long exact sequence above. These groups fit into the commu-
tative braids given in [20] which will be used in the proofs of Theorems A–C.

We now give some examples, with G denoting a finite cyclic group as usual. These
arise from homotopy groups of certain fibrations of algebraic K-theory spectra.

Example 7.2. There is an exact sequence [14]

0 ! WhðZGÞ ! WhðẐZ2GÞ ! WhðZG ! ẐZ2GÞ ! ~KK0ðZGÞ ! 0

of Z=2 modules and the associated double coboundary in Tate cohomology equals

D : H ið ~KK0ðZGÞÞ ! H iðWhðZGÞÞ:

The point here is that kerðWhðZGÞ ! WhðẐZ2GÞÞ ¼ 0 [18], and the map ~KK0ðZGÞ !
~KK0ðẐZ2GÞ is zero by a result of Swan [27]. We could also use the exact sequence

0 ! WhðZGÞ ! WhðẐZGÞlWhðQGÞ ! WhðQ̂QGÞ ! ~KK0ðZGÞ ! 0

to compute the same map D.

Example 7.3. There is an exact sequence

0 ! WhðCR�;GðZÞÞ ! WhðCR�;GðẐZlQÞÞ

! WhðCR�;GðQ̂QÞÞ ! ~KK0ðCR�;GðZÞÞ ! 0

where WhðCR�;GðZÞÞ ¼ WhðZH ! ZGÞ and ~KK0ðCR�;GðZÞÞ ¼ ~KK0ðZH ! ZGÞ. The

injectivity on the left follows because K2ðCR�;GðQ̂QÞÞ is a quotient of K2ðQ̂QGÞ,
mapping trivially through K1ðZGÞ into WhðCR�;GðZÞÞ (since SK1ðZGÞ ¼ 0 [18]).

We therefore get an algebraic description of d2 : H ið ~KK0ðZH ! ZG�ÞÞ ! H i �
ðWhðZH ! ZG�ÞÞ as used in the statement of Theorem B.

Example 7.4. There is an exact sequence
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ð7:4Þ 0 ! WhðCW�R�;GðZÞÞ ! WhðCW�R�;GðẐZlQÞÞ

! WhðCW�R�;GðQ̂QÞÞ ! ~KK0ðCW�R�;GðZÞÞ ! 0

for any complex G-representation W with W G ¼ 0. We therefore get an algebraic de-
scription of d2 : H ið ~KK0ðCW�R�;GðZÞÞÞ ! H iðWhðCW�R�;GðZÞÞÞ as used in the state-
ment of Theorem C.

Lemma 7.5. For complex G-representations W1 JW with W G ¼ 0, there is a com-

mutative diagram

H ið ~KK0ðCW1�R�;GðZÞÞÞ ���!d2

H iðWhðCW1�R�;GðZÞÞÞ

c�

???y
???yc�

H ið ~KK0ðCW�R�;GðZÞÞÞ ���!d2

H iðWhðCW�R�;GðZÞÞÞ

where the vertical maps are induced by the inclusion W1 JW .

For our applications, the main point of the double coboundary description is that it
permits these maps induced by cone point inclusions to be computed using bounded
K-theory, instead of bounded L-theory.

The double coboundary maps also commute with restriction to subgroups of G.

Proposition 7.6. Let G1 < G be a subgroup of odd index, and H1 < G1 have index 2,

then there are twisted restriction maps

H ið ~KK0ðZH ! ZG�ÞÞ ��!Res
H ið ~KK0ðZH1 ! ZG�

1 ÞÞ

and

H iðWhðZH ! ZG�ÞÞ ��!Res
H iðWhðZH1 ! ZG�

1 ÞÞ

such that the diagram

H ið ~KK0ðZH ! ZG�ÞÞ ���!d2

H iðWhðZH ! ZG�ÞÞ

Res

???y
???yRes

H ið ~KK0ðZH1 ! ZG�
1 ÞÞ ���!d2

1
H iðWhðZH1 ! ZG�

1 ÞÞ

commutes.

Proof. The vertical maps are twisted restriction maps given by composing the
twisting isomorphisms

Similarities of cyclic groups 987



H ið ~KK0ðZH ! ZG�ÞÞGH iþ1ð ~KK0ðZH ! ZGÞÞ and

H iðWhðZH ! ZG�ÞÞGH iþ1ðWhðZH ! ZGÞÞ,

discussed in [I], Section 4, with the restriction maps induced by the inclusion
ZG1 ! ZG of rings with involution. Since G1 < G has odd index, H1 ¼ H XG1 and
the composition ResG1

� IndH lands in the image of IndH1
by the double coset

formula. r

This can be generalized to the double coboundary maps used in the statement of
Theorem C, under certain conditions.

Proposition 7.7. Let G1 < G be an odd index subgroup, and H1 < G1 have index 2.

Suppose that W only has proper isotropy subgroups of 2-power index. Then there

are a twisted restriction maps H ið ~KK0ðCW�R�;GðZÞÞÞ ! H ið ~KK0ðCRes W�R�;G1
ðZÞÞÞ and

H iðWhðCW�R�;GðZÞÞÞ ! H iðWhðCRes W�R�;G1
ðZÞÞÞ which commute with the corre-

sponding double coboundary maps d2
W and d2

Res W .

8 Calculations in bounded L-theory

Suppose that s ¼ sð f Þ A Lh
0 ðZGÞ is the surgery obstruction arising from a normal

cobordism between SðV1Þ and SðV2Þ, as in the statement of [I], Theorem 3.5. In this
section, we establish two important properties of trfW ðsÞ in preparation for the proof
of Theorem C. Unless otherwise mentioned, all bounded categories will have the
standard orientation (see Example 5.4).

For a complex G-representation W the standard orientation is trivial, and the cone
point inclusion 0 A W induces the map

c� : Lh
n ðZGÞ ! Lh

n ðCW ;GðZÞÞ:

Note that the presence of an R� factor introduces a non-trivial orientation at the
cone point

c� : Lh
nþ1ðZG;wÞ ! Lh

nþ1ðCW�R�;GðZÞÞ

where w : G ! fG1g is the non-trivial projection. The properties are:

Theorem 8.1. Suppose W is a complex G-representation with no Rþ summands. If

trfW�R�ðsÞ A Lh
2kþ1ðCW�R�;GðZÞÞ is a torsion element, then

(i) there exists a torsion element ŝs A Lh
2kþ1ðCR�;GðZÞÞ such that

c�ðŝsÞ ¼ trfW�R�ðsÞ A Lh
2kþ1ðCW�R�;GðZÞÞ

(ii) there exists a torsion element ŝs A L
p
2kþ1ðZG;wÞ such that

c�ðŝsÞ ¼ trfW�R�ðsÞ A L
p
2kþ1ðCW�R�;GðZÞÞ

where dim W ¼ 2k.
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We remark that the condition ‘‘trfW�R�ðsÞ is a torsion element’’ follows from the
assumption ResHðV1 lWÞlRþ @t ResHðV2 lWÞlRþ in Theorem C, as an
immediate consequence of Proposition 4.7. Before giving the proof, we need some
preliminary results. When the L-theory decoration is not explicitly given, we mean
Lh�yi.

Lemma 8.2. Let W be a complex G-representation. Then

L2kþ1ðCW ;GðZÞÞnQ ¼ 0

for k f 0.

Proof. We argue by induction on dim W , starting with

L2kþ1ðZGÞ ¼ Z=2lH 1ðK�1ðZGÞÞ

which is all 2-torsion. It is enough to prove the result for the top component
L2kþ1ðCW ;GðZÞÞðqÞ, and therefore by [I], Theorem 3.8 we may assume that the iso-
tropy groups of W all have 2-power index. Since we are working with Lh�yi, we may
ignore Rþ summands of W .

Let W ¼ W 0 lW 00 where dim W 0 ¼ 2 and W 0 has minimal isotropy group K . We
assume the result for W 00, and let

S
la HW 0 be a G-invariant set of rays from the

origin, dividing W 0 into fundamental domains for the free G=K-action.
Then

LnðC>W 00S
la�W 00;GðZÞÞ ¼ Ln�1ðCW 00;GðZÞÞ ¼ Ln�1�jW 00 jðZKÞ;

which is torsion for n even, and

LnðC
>
S
la�W 00

W ;G ðZÞÞ ¼ Ln�2ðCW 00;GðZÞÞ ¼ Ln�2�jW 00 jðZKÞ;

which is torsion for n odd. Moreover, we have a long exact sequence

� � � ! LnðC>W 00S
la�W 00;GðZÞÞ ! LnðC>W 00

W ;G ðZÞÞ ! LnðC
>
S
la�W 00

W ;G ðZÞÞ ! � � �

We claim that the first map in this sequence is rationally injective. The previous map
in the long exact sequence is

Lnþ1ðC
>
S
la�W 00

W ;G ðZÞÞ ! LnðC>W 00S
la�W 00;GðZÞÞ;

which may be identified (using the isomorphisms above and Proposition 6.7) with a
geometrically induced map

Ln�1�jW 00 jðZKÞ ��!1�u
Ln�1�jW 00 jðZKÞ
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‘‘multiplication by 1 � wðtÞ’’, where t ¼ wðtÞt�1 from the action of t in the anti-
structure used to define the L-group.

In the oriented case, wðtÞ ¼ þ1 and this boundary map is zero. Therefore, we con-
clude that

L2kþ1ðC>W 00S
la�W 00;GðZÞÞ !A L2kþ1ðC>W 00

W ;G ðZÞÞ

is a rational isomorphism and so

L2kþ1ðC>W 00

W ;G ðZÞÞ ¼ L2k�jW 00 jðZKÞ:

Finally, we will substitute this computation and our inductive assumption into the
long exact sequence

� � � ! L2kþ1ðCW 00;GðZÞÞ ! L2kþ1ðCW ;GðZÞÞ

! L2kþ1ðC>W 00

W ;G ðZÞÞ ! L2kðCW 00;GðZÞÞ ! � � �

and obtain an exact sequence

0 ! L2kþ1ðCW ;GðZÞÞ ! L2kþ1ðC>W 00

W ;G ðZÞÞ ! L2kðCW 00;GðZÞÞ:

However, the second map in this sequence can be identified with the inclusion map

IndK : L2kðCW 00;KðZÞÞ ! L2kðCW 00;GðZÞÞ

and the composition ResK � IndK is multiplication by ½G : K �, which is a rational
isomorphism. Therefore IndK is injective and L2kþ1ðCW ;GðZÞÞ ¼ 0. r

Another computation we will need is

Lemma 8.3. LnðC>R�
W�R�;G

ðZÞÞnQ ¼ 0 for W a complex G-representation.

Proof. We may assume that W G ¼ 0 and argue by induction on the dimension of W.
We write W ¼ W 0 lW 00, where IsoðW 0Þ ¼ K is minimal (2-power index isotropy
subgroups may be assumed as usual). We have 2 long exact sequences (all L-groups
are tensored with Q):

(i) from the inclusion W 00 lR� HW lR�. For short, let A ¼ C>R�
W�R�;G

ðZÞ,
B ¼ C>R�

W 00�R�;G
ðZÞ, and then A=B ¼ C>W 00�R�

W�R�;G
ðZÞ. We need the piece of the L-group

sequence:

� � � ! LnðBÞ ! LnðAÞ ! LnðA=BÞ � � �ð8:4Þ

and note that LnðBÞ ¼ 0 by induction.
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(ii) we study LnðA=BÞ by looking at the usual rays
S

la HW 0 which divide the 2-
dim representation W 0 into G=K chambers. Let

D0 ¼ C>W 00�R�S
la�W 00�R�;G

ðZÞ

and

D1 ¼ C
S
la�W 00�R�

W�R�;G
ðZÞ:

Then we need the L-group sequence

! LnðD0Þ ! LnðA=BÞ ! LnðD1Þ ! Ln�1ðD0Þ:ð8:5Þ

But the groups LnðDiÞ are the ones we have been computing by using the chamber
structure. In particular,

LnðD0Þ ¼ Ln�2ðCW 00;KðZÞÞ

and

LnðD1Þ ¼ Ln�3ðCW 00;KðZÞÞ:

But since K is the minimal isotropy group in W , it acts trivially on W 00 and these L-
groups are just

LnðD0Þ ¼ Ln�2�jW 00 jðZKÞ

and

LnðD1Þ ¼ Ln�3�jW 00 jðZKÞ:

Now the boundary map

LnðD1Þ ! Ln�1ðD0Þð8:6Þ

in the sequence is just multiplication by 1 � wðtÞ ¼ 2 (wðtÞ ¼ �1 since R� is non-
oriented), and this is a rational isomorphism. Therefore, LnðA=BÞ ¼ 0 by (8.5) and
substituting back into (8.4), the LnðAÞ ¼ 0. r

Now a more precise result in a special case:

Lemma 8.7. Let W be a complex 2-dimensional G-representation with W G ¼ 0. Then

Ls
3ðC

>R�
W�R�;G

ðZÞÞ ¼ 0

Proof. We have an exact sequence
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� � � ! Ls
3ðC

>R�S
la�R�;G

ðZÞÞ ! Ls
3ðC

>R�
W�R�;G

ðZÞÞ

! LI
3ðC

>
S
la�R�

W�R�;G
ðZÞÞ ! Ls

2ðC
>R�S
la�R�;G

ðZÞÞ ! � � �

arising from the orbit type filtration. Here

I ¼ ImðK2ðC>R�
W�R�;G

ðZÞÞ ! K2ðC
>
S
la�R�

W�R�;G
ðZÞÞÞ

¼ kerðK2ðC
>
S
la�R�

W�R�;G
ðZÞÞ ! K1ðC>R�S

la�R�;G
ðZÞÞÞ

¼ kerðK�1ðZKÞ !2 K�1ðZKÞÞ

by Proposition 6.7, where K is the isotropy subgroup of W . But K�1ðZKÞ is torsion-
free, so I ¼ f0gJK2. Now substitute the computations

Ls
3ðC

>R�S
la�R�;G

ðZÞÞ ¼ L
p
1 ðZKÞ ¼ 0

LI
3ðC

>
S
la�R�

W�R�;G
ðZÞÞ ¼ L

p
0 ðZKÞ

Ls
2ðC

>R�S
la�R�;G

ðZÞÞ ¼ L
p
0 ðZKÞ

into the exact sequence. The boundary map

LI
3ðC

>
S
la�R�

W�R�;G
ðZÞÞ ! Ls

2ðC
>R�S
la�R�;G

ðZÞÞ

is multiplication by 2 so Ls
3ðC

>R�
W�R�;G

ðZÞÞ ¼ 0. r

Remark 8.8. The same method shows that Ls
1ðC

>R�
W�R�;G

ðZÞÞ ¼ L
p
3 ðZKÞ ¼ Z=2 for

dim W ¼ 2 as above, assuming that K 0 1.

Our final preliminary result is a Mayer-Vietoris sequence:

Lemma 8.9. Let W be a complex G-representation with W G ¼ 0. Let W ¼ W1 lW2

be a direct sum decomposition, where W1 ¼ Wmax.

(i) There is a long exact sequence

� � � ��! LI
nþ1ðC

>W1�R� WW2�R�
W�R�;G

ðZÞÞ ��!qnþ1
Ls

nðC
>R�
W�R�;G

ðZÞÞ

��! Ls
nðC

>W1�R�
W�R�;G

ðZÞÞlLs
nðC

>W2�R�
W�R�;G

ðZÞÞ ��! LI
nðC

>W 0�R�WW 00�R�
W�R�;G

ðZÞÞ

of bounded L-groups, where
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I ¼ Im½K2ðC>W2�R�
W�R�;G

ðZÞÞ ! K2ðC>W 0�R�WW 00�R�
W�R�;G

ðZÞÞ�

is the decoration subgroup.

(ii) For n1 3 mod 4, the boundary map qnþ1 ¼ 0.

Proof. The Mayer-Vietoris sequence in Lh�yi

� � � ! Lnþ1ðC>UWV
M;G ðZÞÞ ! LnðC>UXV

M;G ðZÞÞ

! LnðC>U
M;GðZÞÞlLnðC>V

M;GðZÞÞ ! LnðC>UWV
M;G ðZÞÞ

where U , V are nice G-invariant subspaces of the control space M, follows from an
excision isomorphism

LnðC>U
UWV ;GðZÞÞ ¼ LnðC>UXV

V ;G ðZÞÞ

and standard diagram-chasing. We apply this to M ¼ W � R�, U ¼ W1 � R� and
V ¼ W2 � R�, where U XV ¼ R�. The decorations follow from Section 5 and Cor-
ollary 6.5.

To see that q0 ¼ 0, note that this boundary map is the composition of

q : LI
0ðC

>W 0�R�WW 00�R�
W�R�;G

ðZÞÞ ! Ls
3ðC

>W2�R�
W 0�R�WW 00�R�;G

ðZÞÞ

and an excision isomorphism

Ls
3ðC

>W2�R�
W 0�R�WW 00�R�;G

ðZÞÞGLs
3ðC

>R�
W1�R�;G

ðZÞÞ:

But Ls
3ðC

>R�
W1�R�;G

ðZÞÞ ¼ 0 by Lemma 8.7. r

Corollary 8.10. Suppose W is a complex G-representation with no Rþ summands. Then

the image of trfW�R�ðsÞ is zero in Ls
2kþ1ðC

>R�
W�R�;G

ðZÞÞ, where dim W ¼ 2k.

Proof. First recall from [I], Theorem 3.6 that trfW�R�ðsÞ A Lc1

2kþ1ðCW�R�;GðZÞÞ where
c1 ¼ ImðWhðZGÞ ! WhðCW�R�;GðZÞÞÞ under the cone point inclusion. Therefore,
the image of trfW�R�ðsÞ ‘‘away from R�’’ lands in Ls

2kþ1ðC
>R�
W�R�;G

ðZÞÞ. We may
therefore apply the Mayer-Vietoris sequence from Lemma 8.9.

As usual, we may assume that W has only 2-power isotropy subgroups, and we
will argue by induction on dim W and on the orbit type filtration of W . The result
is true for dim W ¼ 2 (by Lemma 8.7) or for W a free representation (by a direct
calculation following the method of Lemma 8.3). For sets of 2-power index sub-
groups (ordered by inclusion, with repetitions allowed), we say that fK 0

1; . . . ;K 0
sg <

fK1; . . . ;Ktg if s < t or s ¼ t, K 0
i ¼ Ki for 1e i < j e s, and K 0

j YKj. Let IsoðWÞ ¼
fK1; . . . ;Ktg denote the set of isotropy subgroups of W ordered by inclusion.
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Define an ordering by W 0 < W if (i) dim W 0 < dim W or (ii) dim W 0 ¼ dim W but
IsoðW 0Þ < IsoðWÞ.

Let W ¼ W1 lW2, where W1 has maximal isotropy subgroup K , and suppose the
result holds for all W 0 < W . If dim W 1 2 mod 4, we get an injection

Ls
3ðC

>R�
W�R�;G

ðZÞÞ ! Ls
3ðC

>W1�R�
W�R�;G

ðZÞÞlLs
3ðC

>W2�R�
W�R�;G

ðZÞÞ

from Lemma 8.9, where W2 < W and W1 < W . If dim W 1 0 mod 4, we get an in-
jection

Ls
3ðC

>R�
W�U�R�;G

ðZÞÞ ! Ls
3ðC

>W1�R�
W�U�R�;G

ðZÞÞlLs
3ðC

>W2�U�R�
W�U�R�;G

ðZÞÞ

again from Lemma 8.9, where U is any 2-dimensional free G-representation. Notice
that W2 lU < W in the ordering above. Consider the following commutative dia-
gram (with dim W 1 2 mod 4):

Lh
0 ðZGÞ ����!trfW2�R�

Lc1

1 ðCW2�R�;GðZÞÞ ����! Ls
1ðC

>R�
W2�R�;G

ðZÞÞ

trfW�R�

???ytrfW1

???ytrfW1

Lc3

3 ðCW�R�;GðZÞÞ ����! Ls
3ðC

>W1�R�
W�R�;G

ðZÞÞ

���������!
This diagram, and our inductive assumption shows that the image of trfW�R�ðsÞ is
zero in Ls

3ðC
>W1�R�
W�R�;G

ðZÞÞ. Similarly, by reversing the roles of W1 and W2 in the dia-
gram, we see that the image of trfW�R�ðsÞ is zero in Ls

3ðC
>W2�R�
W�R�;G

ðZÞÞ. Therefore the
image of trfW�R�ðsÞ is zero in Ls

3ðC
>R�
W�R�;G

ðZÞÞ. If dim W 1 0 mod 4, we replace W

by W lU and make a similar argument, using the observation that W2 lU < W

to justify the inductive step. r

The proof of Theorem 8.1. Part (i) follows from Corollary 8.10: we know that the
image of our obstruction trfW�R�ðsÞ is zero ‘‘away from R�’’, so comes from a tor-
sion element in ŝs A Lh

2kþ1ðCR�;GðZÞÞ (by Lemma 8.3, L2kþ2ðC>R�
W�R�;G

ðZÞÞ is torsion).
For part (ii) observe that Lh

2kþ1ðC>0
R�;G

ðZÞÞ ¼ L
p
2kðZHÞ is torsion-free (except for

the Arf invariant Z=2 which is detected by the trivial group, so does not matter).
Hence the image of trfW�R�ðsÞ vanishes in Lh

2kþ1ðC>0
W�R�;G

ðZÞÞ. The exact sequence

� � � ! LU
2kþ1ðZG;wÞ ! Lh

2kþ1ðCW�R�;GðZÞÞ ! Lh
2kþ1ðC>0

W�R�;G
ðZÞÞ;

with U ¼ kerð ~KK0ðZGÞ ! ~KK0ðCW�R�;GðZÞÞÞ, now shows that there exists a torsion
element

ŝs A ImðLU
2kþ1ðZG;wÞ ! L

p
2kþ1ðZG;wÞÞ

with c�ðŝsÞ ¼ trfW�R�ðsÞ A L
p
2kþ1ðCW�R�;GðZÞÞ. r
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Remark 8.11. In Theorem 10.7 we use the sharper result ŝs A LU
2kþ1ðZG;wÞ to improve

our unstable similarity results by removing extra R� factors. The L-group decoration
U is independent of W , since K0ðCR�;GðZÞÞ ! K0ðCW�R�;GðZÞÞ is injective by Cor-

ollary 6.9, and hence U ¼ Imð ~KK0ðZHÞ ! ~KK0ðZGÞÞ.

9 The proof of Theorem C

By replacing Vi by Vi lU if necessary, where U is free and 2-dimensional, we may
assume that dim Vi lW 1 0 mod 4. This uses the s-normal cobordism condition. By
the top component argument (see [I], Theorem 3.8) and Proposition 7.7, we may also
assume that W has only 2-power isotropy. We have a commutative diagram analo-
gous to [I] (8.1).

d2

H 1ð ~KK0ðCW�R�;GðZÞÞÞ H 1ðWhðCW�R�;GðZÞÞÞ Ls
0ðCW�R�;GðZÞÞ

ð9:1Þ

������! ������!
������! ������!

Lh
1 ðCW�R�;GðZÞÞ H 1ðDW�R�Þ

������!
������! ������!

������!
Ls

1ðCW�R�;GðZÞÞ L
p
1 ðCW�R�;GðZÞÞ H 0ð ~KK0ðCW�R�;GðZÞÞÞ

where H 1ðDW�R�Þ denotes the relative group of the double coboundary map.
This diagram for W can be compared with the one for W1 ¼ Wmax via the inclu-

sion maps, and we see that the K-theory terms map isomorphically by Lemma 6.2.
Now by Theorem 8.1 there exists a torsion element

ŝs A ImðL p
1 ðCR�;GðZÞÞ ! L

p
1 ðCW1�R�;GðZÞÞÞ

which hits trfW�R� under the cone point inclusion. In particular, ŝs vanishes ‘‘away
from R�’’. The main step in the proof of Theorem C is to show that the torsion
subgroup of L

p
1 ðCW1�R�;GðZÞÞ essentially injects into the relative group H 1ðDW1�R�Þ

of the double coboundary.
We have the exact sequence

Ls
2ðC

>R�
W1�R�;G

ðZÞÞ! LY
1 ðCR�;GðZÞÞ! Ls

1ðCW1�R�;GðZÞÞ! Ls
1ðC

>R�
W1�R�;G

ðZÞÞ

and Y ¼ kerðWhðCR�;GðZÞÞÞ ! WhðCW1�R�;GðZÞÞ is zero, by Corollary 6.9. But the
first term Ls

2ðC
>R�
W1�R�;G

ðZÞÞ is a torsion group, by Lemma 8.3, and the next term in

the sequence LY
1 ðCR�;GðZÞÞ ¼ Ls

1ðCR�;GðZÞÞ is torsion-free by [I], Lemma 7.1 so the

middle map LY
1 ðCR�;GðZÞÞ q Ls

1ðCW1�R�;GðZÞÞ is an injection.
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Since Ls
1ðC

>R�
W1�R�;G

ðZÞÞ ¼ Z=2 by Remark 8.8 we conclude that the previous

group Ls
1ðCW1�R�;GðZÞÞ is torsion-free modulo this Z=2, which injects into Lh�1i

1 �
ðC>R�

W1�R�;G
ðZÞÞ ¼ Z=2lH 1ðK�1ðZKÞÞ. Since ŝs vanishes away from R�, this extra

Z=2 may be ignored.
By substituting this computation into the exact sequence

Ls
1ðCW1�R�;GðZÞÞ ! L

p
1 ðCW1�R�;GðZÞÞ ! H 1ðDW1�R�Þ

of (9.1), we see that the torsion subgroup of

kerðLp
1 ðCW1�R�;GðZÞÞ ! L

p
1 ðC

>R�
W1�R�;G

ðZÞÞÞ

injects into the relative group H 1ðDW1�R�Þ of the double coboundary. Therefore
ŝs A L

p
1 ðCW1�R�;GðZÞÞ vanishes if and only if the element fDðV1Þ=DðV2Þg is in the

image of the double coboundary

d2 : H 1ð ~KK0ðCWmax�R�;GðZÞÞÞ ! H 1ðWhðCWmax�R�;GðZÞÞÞ

This completes the proof of Theorem C.

A very similar argument can be used to give an inductive criterion for non-linear sim-
ilarity without the Rþ summand (generalizing Theorem A). In the statement we will
use the analogue to k ¼ kerð ~KK0ðZHÞ ! ~KK0ðZGÞÞ, namely

kW ¼ kerðWhðC>0
W�R�;G

ðZÞÞ ! ~KK0ðZGÞÞ:

By Corollary 6.9

kerðWhðZGÞ ! WhðCW�R�;GðZÞÞG ImðWhðZHÞ ! WhðZGÞÞGWhðZHÞ

so we have a short exact sequence

0 ! WhðZGÞ=WhðZHÞ ! WhðCW�R�;GðZÞÞ ! kW ! 0:

It follows from our K-theory calculations that kW ¼ kWmax
and that kW ¼ k when-

ever K�1ðZKÞ ¼ 0 for all K A IsoðWÞ.

Theorem 9.2. Let V1 ¼ ta1 þ � � � þ tak and V2 ¼ tb1 þ � � � þ tbk be free G-representations.

Let W be a complex G-representation with no Rþ summands. Then there exists a to-

pological similarity V1 lW lR� @t V2 lW lR� if and only if

(i) SðV1Þ is s-normally cobordant to SðV2Þ,

(ii) ResHðV1 lWÞlRþ@t ResHðV2 lWÞlRþ, and

(iii) the element fDðV1Þ=DðV2Þg is in the image of the coboundary
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d : H 0ðkWmax
Þ ! H 1ðWhðZG�Þ=WhðZHÞÞ;

where 0JWmax JW is a complex subrepresentation of real dimensiona 2 with

maximal isotropy group among the isotropy groups of W with 2-power index.

Proof. In this case, we have a torsion element ŝs A Lh
1 ðCW1�R�;GðZÞÞ which maps

to our surgery obstruction trfW�R� under the cone point inclusion. As in the
proof of Theorem C, the torsion subgroup of Lh

1 ðCW1�R�;GðZÞÞ injects into
H 1ðWhðCW1�R�;GðZÞÞÞGH 1ðWhðCW1�R�;GðZÞÞÞ. Therefore ŝs A Lh

1 ðCW1�R�;GðZÞÞ
vanishes if and only if the element fDðV1Þ=DðV2Þg is in the image of the coboundary

d : H 0ðkWmax
Þ ! H 1ðWhðZG�Þ=WhðZHÞÞ

as required. r

10 Iterated RC transfers

We now apply Theorem 5.12 to show that iterated R� transfers do not lead to any
new similarities.

Theorem 10.1. Suppose that W is a complex G-representation with no Rþ summands.

Then V1 lW lR l
� lRþ @t V2 lW lR l

� lRþ for l f 1 implies V1 lW lR�
lRþ @t V2 lW lR� lRþ.

The first step in the proof is to show injectivity of certain transfer maps. For any
homomorphism w : G ! fG1g, we will use the notation ðCW ;GðZÞ;wÞ to denote the
antistructure where the involution is g 7! wðgÞg�1 at the cone point. The standard
orientation (5.4) has w ¼ detðrW Þ, but we will need others in this section. Let f ¼
detðrR�Þ for short, and notice that f : G ! fG1g is non-trivial.

Lemma 10.2. The transfer map trfR� : L
p
2kþ1ðZG;wÞ ! L

p
2kþ2ðCR�;GðZÞ;wfÞ is injec-

tive, where w is the non-trivial orientation.

Proof. Since L
p
2kþ2ðCR�;GðZÞ;wÞGL

p
2kþ2ðZH ! ZGÞ, we just have to check that the

previous map in the L p version of (5.8) is zero (using the tables in [14]). r

Next, a similar result for the R2
� transfer.

Proposition 10.3. The bounded transfer

trfR2
�
: L

p
2kþ1ðZG;wÞ ! L

p
2kþ3ðCR2

�;G
ðZÞ;wÞ

is injective, where w is the non-trivial orientation.
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Proof. We can relate the iterated R� transfer trf1 � trf1 to trf2 ¼ trfR2
�

by means of the
braid diagram:

trf2

LnðZG;wÞ Lnþ2ðZGH ! ZG;wÞ LNSnþ3ðFÞ

ð10:4Þ

trf1 trf1

������! ������!
������! ������!

Lnþ1ðZH ! ZG;wfÞ LSnþ3ðFÞ

������!
������! ������!

������!
LNSnðFÞ LNnþ3ðZH ! ZG;wfÞ Lnþ3ðZG;wÞ

where the new groups LNS�ðFÞ are the relative groups of the transfer

trf1 ¼ trfR� : L
p
k ðCR�;GðZÞ;wfÞ ! L

p
kþ1ðCR2

�;G
ðZÞ;wÞ:

The diagram F of groups (as in [29, Chap. 11]) contains GH GZ � H as the funda-
mental group of SðR� lR�Þ=G (see [11, 5.9]).

The groups LNS�ðFÞ have a geometric bordism description in terms of triples
Ln�2 HN n�1 HM n where each manifold has fundamental group G, N is charac-
teristic in M, and L is characteristic in N, with respect to the index two inclusion
H < G. There is also an algebraic description for LNS�ðFÞ in terms of ‘‘twisted
antistructures’’ [13] as for the other groups LNðZH ! ZG;wfÞ [29, 12C] and for
LSðF;wÞ [21, 7.8.12]. Substituting these descriptions into the braid gives:

trf2

L2kþ1ðZG; a; uÞ L2kþ1ðZGH ! ZG; ~aa; ~uuÞ L2kðZH ! ZGH ; ~aa; ~uuÞ

ð10:5Þ

trf1 trf1

������! ������!
������! ������!

L2kþ1ðZH ! ZG; a; uÞ L2kðZGH ; ~aa; ~uuÞ

������!
������! ������!

������!
L2kþ1ðZH ! ZGH ; ~aa; ~uuÞ L2kðZH; a; uÞ L2kðZG; a; uÞ

The antistructure ðZG; a; uÞ is the twisted antistructure obtained by scaling with an
element a A G � H. The antistructure ðZGH ; ~aa; ~uuÞ is the one defined by Ranicki [21,
p. 805], then scaled by ~aa A GH , where ~aa maps to a under the projection GH ! G. Since
GH GZ � H, we have an exact sequence (see [17, Theorem 4.1])
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���! L p
n ðZH; a; uÞ ���! L p

n ðZGH ; ~aa; ~uuÞ

���! L
h�1i
n�1 ðZH; a; uÞ ���!1�wðaÞ

L
p
n�1ðZH; a; uÞ

and it follows that L p
n ðZH ! ZGH ; ~aa; ~uuÞGLh�1i

n�1 ðZH; a; uÞ. It is not di‰cult to see
that Lh�1i

2k ðZH; a; uÞ is torsion-free (except for the Arf invariant summand) by a
similar argument to [I], Theorem 5.2, using the L p to Lh�1i Ranicki-Rothenberg
sequence. We first check that L

p
2kðZH; a; uÞ is torsion-free (again except for the Arf

invariant summand) from the tables in [14, 14.21].
Now observe that L p

n ðZG; a; uÞGL p
n ðZG;wÞ, and

L
p
2kþ1ðZH ! ZG; a; uÞGL

p
2kþ2ðZH ! ZGÞ:

The transfer trfR� : L
p
2kþ1ðZG;wÞ ! L

p
2kþ2ðZH ! ZGÞ is injective by Lemma 10.2,

and since wðaÞ ¼ �1, the map

L
h�1i
2k ðZH; a; uÞ ���!1�wðaÞ

L
p
2kðZH; a; uÞ

is also injective (except for the Arf invariant summand). Therefore L
p
2kþ1ðZG;wÞ must

inject into the relative group L
p
2kþ1ðZGH ! ZG; ~aa; ~uuÞGL

p
2kþ3ðCR2

�;G
ðZÞ;wÞ. r

The final step in the proof is to consider the following commutative square of spectra:

LðCptðZGÞ;wÞ ���!c� LðCV ;GðZÞ;wÞ

trfR�

???y
???ytrfR�

LðCR�;GðZÞ;wfÞ ���!c� LðCV�R�;GðZÞ;wfÞ

for any G-representation V with no Rþ summands.

Lemma 10.6. This is a pull-back square of Lh�yi spectra.

Proof. The fibres of the vertical R� transfers are

LNðCR�;GðZÞ;wfÞGLðCptðZH; a; uÞÞ;

and LNðCV�R�;GðZÞ;wfÞGLðCV ;HðZÞ; a; uÞ respectively by (5.8), and the fibre of
the cone point inclusion

LðCptðZHÞ; a; uÞ ! LðCV ;HðZÞ; a; uÞ

is LðC>0
V ;HðZÞ; a; uÞ. But Theorem 5.12 shows that LðC>0

V ;HðZÞ; a; uÞ is contractible,
and therefore the cone point inclusion is a homotopy equivalence. It follows that the
fibres of the horizontal maps are also homotopy equivalent. r
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The proof of Theorem 10.1. It is enough to prove that trfW�R lþ1
�
ðsÞ ¼ 0, for l f 1,

implies trfW�R�ðsÞ ¼ 0 in the top component of L
p
2kþ1ðCW�R�;GðZÞÞ. We may as-

sume that IsoðWÞ only contains subgroups of 2-power index, and let dim W ¼ 2k.
We may also assume that l is even, by crossing with another R� if necessary. Now by
Theorem C, trfW�R2sþ1

�
ðsÞ ¼ 0 implies trfW�R2s�1

�
ðsÞ ¼ 0, provided that sf 2. It there-

fore remains to study l ¼ 2.
The pullback squares provided by Lemma 10.6 can be combined as follows. Con-

sider the diagram of Lh�yi-spectra

LðCptðZGÞ;wÞ ���!c� LðCR�;GðZÞ;wfÞ ���!c� LðCW�R2
�;G

ðZÞ;wÞ

trfR�

???y trfR�

???y trfR�

???y
LðCR�;GðZÞ;wfÞ ���!c� LðCR2

�;G
ðZÞ;wÞ ���!c� LðCW�R3

�;G
ðZÞ;wfÞ

whose outer square (V ¼ W � R2
�) and the left-hand square (V ¼ R�) are both pull-

back squares, and hence so is the right-hand square. Next consider the diagram of
Lh�yi-spectra

LðCptðZGÞ;wÞ ���!c� LðCW�R�;GðZÞ;wfÞ

trfR�

???y trfR�

???y
LðCR�;GðZÞ;wfÞ ���!c� LðCW�R2

�;G
ðZÞ;wÞ

trfR�

???y trfR�

???y
LðCR2

�;G
ðZÞ;wÞ ���!c� LðCW�R3

�;G
ðZÞ;wfÞ

The lower square was just shown to be a pull-back, and the upper square is another
special case of Lemma 10.6 (with V ¼ W � R�). Therefore the outer square is a pull-
back, and this is the one used for the case l ¼ 2.

Now we apply homotopy groups to these pull-back squares (using the fact that
Lh�yi 1Lh�1i to obtain the lower squares in the commutative diagram:

L
p
2kþ2ðC>0

W�R�;G
ðZÞÞ ���! L

p
2kþ1ðZG;wÞ ���!c�

L
p
2kþ1ðCW�R�;GðZÞ;wÞ???yG

???y
???y

L
h�1i
2kþ2ðC

>0
W�R�;G

ðZÞÞ ���! L
h�1i
2kþ1ðZG;wÞ ���!c�

L
h�1i
2kþ1ðCW�R�;GðZÞwÞ???yG trf

R2�

???y
???ytrf

R2�

Lh�1i
2kþ4ðC

>0
W�R3

�;G
ðZÞÞ ���! Lh�1i

2kþ3ðCR2
�;G

ðZÞ;wÞ ���!c�
Lh�1i

2kþ3ðCW�R3
�;G

ðZÞ;wÞ
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The vertical maps in the top row squares are induced by the change of K-theory dec-
oration. We need some information about the maps in this diagram.

(i) The upper left-hand vertical map is an isomorphism, since K�1ðC>0
W�R�;G

ðZÞÞ ¼ 0.

(ii) The lower left-hand vertical map is an isomorphism, by Lemma 10.6.

(iii) The transfer map

trfR2
�
: L

p
2kþ1ðZG;wÞ ! L

p
2kþ3ðCR2

�;G
ðZÞ;wÞ

is injective, from Proposition 10.3.

(iv) The map

L
p
2kþ3ðCR2

�;G
ðZÞ;wÞ ! L

h�1i
2kþ3ðCR2

�;G
ðZÞ;wÞ

is injective, by [I], Corollary 6.13.

(v) The composite of the middle two vertical maps in the diagram is injective, by
combining parts (iii)–(iv).

Suppose that trfW�R3
�
ðsÞ ¼ 0. We have proved that the transfer map

trfR2
�
: L

p
2kþ1ðZG;wÞ ! L

h�1i
2kþ3ðCR2

�;G
ðZÞ;wÞ

is injective in part (v). Since trfW�R�ðsÞ ¼ c�ðŝsÞ for some ŝs A L
p
2kþ1ðZG;wÞ, it follows

by a diagram chase that trfW�R�ðsÞ ¼ 0 and we are done. r

We also have a version without Rþ summands.

Theorem 10.7. Suppose that W is a complex G-representation with W G ¼ 0. Then

V1 lW lR l
� @t V2 lW lR l

� for l f 3 implies V1 lW lR3
� @t V2 lW lR3

�.

Proof. This follows from a similar argument, using Theorem 9.2 instead of Theorem
C. The injectivity results of Lemma 10.2 and Proposition 10.3 also hold for trf1 and
trf2 on LU

2kþ1ðZG;wÞ, where U ¼ Imð ~KK0ðZHÞ ! ~KK0ðZGÞÞ as in Remark 8.11. This
L-group decoration fits in exact sequences with L p

n ðZHÞ so the previous calculations
for injectivity apply again. The details are left to the reader. r

11 The proof of Corollary 2.4

Suppose that G ¼ Cð4qÞ, q odd, and that V1 lR� lRþ @t V2 lR� lRþ with
dim Vi ¼ 4. We will use Theorem B and the assumption about odd class numbers to
prove that V1 GV2. This is the only case we need to discuss to prove Corollary 2.4.
If we started instead with V1 lR2

� @t V2 lR2
�, then stabilizing with Rþ and apply-

ing Theorem 10.1 would reduce to the case above.
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We may assume that q > 1 is a prime, and that the free representations have
the form V1 ¼ t þ ti and V2 ¼ t1þ2q þ t iþ2q where ði; 2qÞ ¼ 1 (not all weights are
11 mod 4). The Reidemeister torsion invariant is DðV1Þ=DðV2Þ ¼ U1; i A WhðZGÞ in
the notation for units of ZG used in [5, p. 732]. With respect to the involution
: t 7! �t�1, this element defines a class u1; i ¼ fU1; ig A H 1ðWhðZG�ÞÞ. Since the

map L
p
1 ðZG�Þ ! L

p
1 ðCR�;GðZÞÞ is injective, it is enough to show that the image of

u1; i is non-trivial in H 1ðDÞ (see diagram [I] (6.7)).
Let A ¼ Z½z4q� be the ring of cyclotomic integers., and B ¼ Z½z2q�. We will study

the top component WhðZGÞðqÞ by comparing it to K1ðMÞ, where M ¼ A � B � B

is the top component of an involution invariant maximal order in QG containing
ZG. Notice that the two copies of B are interchanged under the involution, so
H iðK1ðMÞÞ ¼ H iðA�Þ. We have the exact sequence

0 ! WhðZGÞðqÞ ! K1ðMÞ ! K1ðM̂MÞ=WhðẐZGÞðqÞ ! DðZGÞðqÞ ! 0:

where DðZGÞ ¼ kerð ~KK0ðZGÞ ! ~KK0ðMÞÞ. Note that H iðDðZGÞÞ ¼ H ið ~KK0ðZGÞÞ
since A has odd class number.

Let i� : H 1ðWhðZG�ÞðqÞÞ ! H 1ðA�Þ denote the map on the Tate cohomology in-
duced by the inclusion i : WhðZGÞðqÞ ! A�.

Lemma 11.1. For ð j; 2qÞ ¼ 1 and j 1 1 mod 4, the image i�ðu1; jÞ ¼ h�1i A H 1ðA�Þ.

Proof. Let gj ¼ t j�1
t�1 A A�, and compute gj=gj with respect to the non-oriented invo-

lution. We get gj=gj ¼ u1; j=u1;1, so i�ðu1; jÞ ¼ i�ðu1;1Þ for all i. Now let v ¼ tþ1
t�1 . Since

t ¼ �t1þ2q, this is a cyclotomic unit in A with vv ¼ �1. But v=v ¼ �u1;1, so i�ðu1; jÞ ¼
h�1i in H 1ðA�Þ. r

Next we need a computation:

Lemma 11.2. 00h�1i A H 1ðA�Þ.

Proof. Let E ¼ Qðz4qÞ be the quotient field of A. Since A has odd class number,

H iðE�=A�ÞGH iðÊE�=ÂA�Þ. Next, observe that the extension E=F is evenly ramified
at q, where F is the fixed field of the involution : E ! E. It follows that the map
H 0ðÊE�

q Þ ! H 0ðÊE�
q=ÂA�

q Þ is zero. We finish by considering the commutative diagram

H 0ðE�Þ ���! H 0ðE�=A�Þ ���!d H 1ðA�Þ???y
???yA

???y
H 0ðÊE�Þ ���! H 0ðÊE�=ÂA�Þ f���! H 1ðÂA�Þ

and the prime element w ¼ zq � z�1
q A E over q. Since w=w ¼ �1, o defines an ele-

ment in H 0ðE�=A�Þ and dðwÞ ¼ h�1i A H 1ðA�Þ. On the other hand, w maps under
the middle isomorphism to a non-zero element in H 0ðÊE�

q=ÂA�
q Þ so dðwÞ0 0. r
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Now we can complete the proof of Corollary 2.4 by considering the commutative
braid:

H 0ðA�Þ H 0 K1ðM̂MÞ
WhðẐZGÞðqÞ

 !
H 0ð ~KK0ðZG�ÞðqÞÞ

ð11:3Þ

������! ������!
������! ������!

H 0 K1ðMÞ
WhðZGÞðqÞ

� �
H 1ðDÞ

������!
������! ������!

������!
H 1ð ~KK0ðZG�ÞðqÞÞ H 1ðWhðZG�ÞðqÞÞ H 1ðA�Þ

d2 i�

containing the double coboundary and its relative group H 1ðDÞ. By commutativity
of the lower right triangle, the image of our obstruction element u1; j is non-zero in
H 1ðA�Þ and therefore non-zero in H 1ðDÞ.

12 The normal invariant

In this section we collect some results about normal cobordisms of lens spaces with
cyclic fundamental group G. Recall that a necessary condition for the existence of
a similarity V1 lW @t V2 lW is that SðV1Þ and SðV2Þ must be s-normally co-
bordant. In [4, §1] it is asserted that their formula ðA 0Þ gives necessary and su‰cient
conditions for homotopy equivalent lens spaces to be s-normally cobordant, when
G ¼ Cð2rÞ. However in [31, 1.3] it is shown that the given conditions ðA 0Þ are su‰-
cient but not necessary. We only use the su‰ciency here, and study the subgroups
~RR freeðGÞ and ~RR free

h ðGÞ of RðGÞ defined in Section 3. Recall that ~RR freeðGÞ ¼ kerðRes :
R freeðGÞ ! R freeðGoddÞÞ.

Lemma 12.1. Let G ¼ Cð2rqÞ be a finite cyclic group, and G2 be the 2-Sylow subgroup.

If q > 1 there is an exact sequence

0 ! Z=2 ! ~RR freeðGÞ= ~RR free
h ðGÞ ! ~RR freeðG2Þ= ~RR free

h ðG2Þ ! 0

given by the restriction map ResG2
. The kernel is generated by any element a A ~RR freeðGÞ

with k-invariant kðaÞ A ðZ=jGjÞ�=fG1g in the coset k 1 1 mod 2r and k 1�1 mod q.

Proof. There is a short exact sequence

0 ! ~RR free
h ðGÞ ! ~RR freeðGÞ ! ðZ=2rqÞ�=fG1g
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given by the k-invariant. Moreover, the k-invariants of elements in ~RR freeðGÞ lie in

kerððZ=2rqÞ�=fG1g ! ðZ=qÞ�=fG1gÞG flq þ 1 j l A ZgJ ðZ=2rqÞ�

which injects under reduction mod 2r into ðZ=2rÞ� if q > 1. Restriction of the k-
invariant to G2 detects only its value in ðZ=2 rÞ�=fG1g, so the kernel has order 2.
Since the restriction map ~RR freeG ! ~RR freeðG2Þ is surjective, we have the required exact
sequence. r

The situation for the normal invariant is simpler. Recall that we write V wV 0 or
ðV � V 0Þw 0 if there exists a homotopy equivalence f : SðVÞ=G ! SðV 0Þ=G of lens
spaces, such that f is s-normally cobordant to the identity.

Lemma 12.2. Let G ¼ Cð2 rqÞ be a finite cyclic group. Then

kerðRes : R freeðGÞ ! R freeðCðqÞÞlR freeðCð2rÞÞÞJR free
n ðGÞ:

Proof. We may assume that rb 2, since Res : R freeðCð2qÞÞ ! R freeðCðqÞÞ is an iso-
morphism, and consider an element

P
tai �

P
tbi A kerðR freeðGÞ ! R freeðCðqÞÞlR freeðCð2 rÞÞÞ:

With a suitable ordering of the indices, ai 1 bi mod 2r and ai 1 btðiÞ mod q for some
permutation t. Since the normal invariants of lens spaces are detected by a coho-
mology theory, we can check the condition at each Sylow subgroup separately. It
follows that

P
tai w

P
tbi . r

Example 12.3. For G ¼ Cð24Þ we have ~RR freeðGÞ ¼ ft � t5; t � t7; t � t11g and the sub-
group ker ResCð8Þ X ~RR freeðGÞ ¼ ft � t7; t5 � t11g.

Lemma 12.4. Let G ¼ Cð2rqÞ be a finite cyclic group, and G2 be the 2-Sylow subgroup.

If rb 2 there is an isomorphism

~RR free
h ðGÞ= ~RR free

n ðGÞ ! ~RR free
h ðG2Þ= ~RR free

n ðG2Þ

given by the restriction map ResG2
.

Proof. We first remark that if W ¼ ta1 þ � � � þ tan is a free G2-representation (here we
use the assumption that rb 2), then by choosing integers bi 1 ai mod 2r and bi 1
1 mod q we obtain a free G-representation V ¼ tb1 þ � � � þ tbn with ResG2

ðVÞ ¼ W . It
follows that

ResG2
: ~RR free

h ðGÞ ! ~RR free
h ðG2Þ

is surjective, and therefore
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ResG2
: ~RR free

h ðGÞ= ~RR free
n ðGÞ ! ~RR free

h ðG2Þ= ~RR free
n ðG2Þ

is also surjective.
Now suppose a A ~RR free

h ðGÞ and ResG2
ðaÞ A ~RR free

n ðG2Þ. This means that ResG2
ðaÞ ¼

ðW � W 0Þ for some free G2-representation W ;W 0 such that W wW 0. By the con-
struction of the last paragraph, we can find free G-representations V ;V 0 such that
(i) ResG2

ðVÞ ¼ W and ResG2
ðV 0Þ ¼ W 0, and (ii) a 0 ¼ ðV � V 0Þ A ~RR free

h ðGÞ. It follows
that V wV 0 and so a 0 A ~RR free

n ðGÞÞ, and

a� a 0 A kerðR free
h ðGÞ ! R free

h ðCðqÞÞlR free
h ðCð2rÞÞÞ:

By Lemma 12.2, a� a 0 A ~RR free
n ðGÞ and so a A ~RR free

n ðGÞ. r

Our final result is a step towards determining RhðGÞ=RnðGÞ more explicitly.

Lemma 12.5. Let bi; s ¼ ðti � t2 r�sq�iÞ A ~RR freeðGÞ for 1a i < 2 r�s�1q, 1a sa r � 1,

and ði; 2qÞ ¼ 1. Let lði; sÞ ¼ s for 1a sa r � 2, and lði; r � 1Þ the order of i=ð2q � iÞ A
ðZ=2rÞ�. Then bi; s is an element of order 2 lði; sÞ in RðGÞ=RhðGÞ, and 2 lði; sÞ � bi; s w 0.

Proof. If 1a sa r � 2 then kðbi; sÞ ¼ i=ð2r�sq � iÞ A ðZ=2 rqÞ�=fG1g is congruent to
�1 mod 4q. By Lemma 12.1 the linear span of these elements in RðGÞ=RhðGÞ injects
into RðG2Þ=RhðG2Þ, where G2 is the 2-Sylow subgroup. By Lemma 12.4 the normal
invariant is also detected by restriction to G2, so it is enough to prove the assertions
about these elements (sa r � 2) when G ¼ Cð2rÞ.

For the first part we must show that the k-invariant of bi; s has order 2s. We will use
the expression

n2ðr!Þ ¼ r � a2ðrÞ;

where a2ðrÞ is the number of non-zero coe‰cients in the 2-adic expansion of r, for the
2-adic valuation of r. Then

n2ð
2s

k

� �
Þ ¼ s � n2ðkÞ

for 1a k a 2s. These formulas and the binomial expansion show that kðbi; sÞ2 s

1
1 mod 2r for 1a sa r � 2.

Next we consider the normal invariant. For 1a sa r � 2 we will take q ¼ 1 and
apply the criterion ðA 0Þ of [4] to show that 2s � bi; sA0. This amounts to a re-labelling
of our original elements bi; s without changing the order of their k-invariants.

We must now compute the elementary symmetric functions skð2s � i2Þ and
skð2s � ð2r�s � iÞ2Þ, where the notation 2 s � i2 means that the weight i2 is repeated
2s times in the symmetric function. The formula ðA 0Þ is
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skð2s � ð2r�s þ iÞ2Þ � skð2s � i2Þ1 2ðð2 r�s � iÞ2 s

� i2 sÞ 2s � 1

k � 1

� �
mod 2rþ3

so on the right-hand side we have

þ2 rþ1 mod 2 rþ3 if k odd

�2rþ1 mod 2rþ3 if k even

�

The formula ðA 0Þ assumes that the weights are congruent to 1 mod 4, or in our case
i 1 1 mod 4. Therefore, if i1 3 mod 4, we must use the equivalent weights �i and
�ð2r�s � iÞ.

To compute the left-hand side we use the Newton polynomials sk and their ex-
pressions in term of elementary symmetric functions. We need the property
skð2s � i2Þ ¼ 2 si2k and the coe‰cient of sk in sk which is ð�1Þkþ1

k. By induction, we
see that the left-hand side is just

ð�1Þkþ1

k
ðskð2 s � ð2r�s � iÞ2Þ � skð2s � i2ÞÞ

1
ð�1Þkþ12s

k
ðð2r�s � iÞ2k � i2kÞ mod 2rþ3

But by writing

ð2r�s � iÞ2k � i2k ¼ ð2 r�syþ i2Þk � i2k

where y ¼ 2 r�s � 2i1 2 mod 4, our expression becomes

ð�1Þkþ12s

k
ð2r�skyÞ1 ð�1Þkþ12rþ1 mod 2rþ3

If s ¼ r � 1, then kðbi; sÞ ¼ i=ð2q � iÞ1�1 mod q, and kðbi; sÞ1 1 mod 2r whenever
i 1 q mod 2r�1. This is for example always the case for G ¼ Cð4qÞ. Such elements
bi; r�1 lie in the kernel of the restriction map to RðCð2rÞÞ. Moreover, if bi; r�1 A
kerðRðGÞ ! RðCð2rÞÞÞ, then 2bi; r�1 A RhðGÞ and 2bi; r�1 w 0 by Lemma 12.2. Oth-
erwise, the order of bi; r�1 A RðGÞ=RhðGÞ is the same as the order of its restriction
Resðbi; r�1Þ to the 2-Sylow subgroup, and Resðbi; r�1Þ ¼GResðbj; sÞ for lði; r � 1Þ ¼
sa r � 2 and some j. r

Remark 12.6. As pointed out by the referee, Lemma 12.1 and Lemma 12.4 together
give a short exact sequence

0 ! Z=2 ! ~RR freeðGÞ= ~RR free
n ðGÞ ! ~RR freeðG2Þ= ~RR free

n ðG2Þ ! 0;
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assuming that G is not a cyclic 2-group. It is not di‰cult to see from the
proof of Theorem E (given in [I]), that for G2 ¼ Cð2rÞ, and rf 4, the term
~RR freeðG2Þ= ~RR free

n ðG2Þ is the quotient of ~RR free
TopðCð2rÞÞ by the subgroup ha1 þ b1i.

13 The proof of Theorem D

We first summarize our information about RTopðGÞ, obtained by putting together
results from previous sections. If a A ~RR free

h;TopðGÞ, we define the normal invariant order

of a to be the minimal 2-power such that 2 ta A ~RR free
n;TopðGÞ.

Theorem 13.1. Let G ¼ Cð2rqÞ, with q odd, and rf 2.

(i) The torsion subgroup of R free
TopðGÞ is ~RR free

TopðGÞ.

(ii) The rank of R free
TopðGÞ is jðqÞ=2 for q > 1 (resp. rank 1 for q ¼ 1), and the torsion

is at most 2-primary.

(iii) The subgroup ~RR free
n;TopðGÞ has exponent two, and the Galois action induced by group

automorphisms is the identity.

(iv) For any a A ~RR free
h;TopðGÞ, if the normal invariant order of ResHðaÞ is 2 t, then the

normal invariant order of a is 2 tþ1.

Remark 13.2. In part (ii), jðqÞ is the Euler function. The precise number of Z=2
summands in ~RR free

n;TopðGÞ is determined by working out the conditions in Theorem
C on the basis elements of ~RR free

n ðGÞ. In cases where the conditions in Theorem C
can actually be evaluated, the structure of RTopðGÞ will thus be determined com-
pletely.

Proof. Parts (i) and (ii) of Theorem 13.1 have already been proved in Corollary 4.2,
so it remains to discuss parts (iii) and (iv). In fact, the assertion that ~RR free

n;TopðGÞ has
exponent 2 is an immediate consequence of Theorem C. To see this, suppose that
ðV1 � V2Þ is any element in ~RR free

n ðGÞ. The obstruction to the existence of a stable
non-linear similarity V1At V2 is determined by the class fDðV1Þ=DðV2Þg in the Tate
cohomology group H 1ðWhðZG�Þ=WhðZHÞÞ, which has exponent 2. Since the Re-
idemeister torsion is multiplicative, DðV1 lV1Þ ¼ DðV1Þ2, and we conclude that
V1 lV1At V2 lV2 by Theorem C. Finally, suppose that a A ~RR free

n;TopðGÞ and that s is
a group automorphism of G. By induction, we can assume that ResHða� sðaÞÞ ¼ 0.
We now apply Theorem C to b ¼ a� sðaÞ, with W a complex G-representation such
that W G ¼ 0, containing all the non-trivial irreducible representations of G with
isotropy of 2-power index. Then b is detected by the image of its Reidemeister torsion
invariant in H 1ðDW�R�Þ. But by [I], Lemma 8.2, the Galois action on this group is
trivial. Therefore b ¼ a� sðaÞ ¼ 0.

For part (iv) we recall that the normal invariant for G lies in a direct sum of groups
H 4iðG;Zð2ÞÞGZ=2r. Since the map ResH induces the natural projection Z=2 r !
Z=2r�1 on group cohomology, the result follows from [1, 2.6]. r
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It follows from our results that the structure of ~RR free
n;TopðGÞ is determined by working

out the criteria of Theorem C on a basis of ~RR free
n ðGÞ. Suppose that V1 is stably topo-

logically equivalent to V2. Then there exists a similarity

V1 lW lR l
� lRs

þ @t V2 lW lR l
� lRs

þ

where W has no Rþ or R� summands, and l; sf 1. But by [I], Corollary 6.13 we
may assume that s ¼ 1, and by Theorem 10.1 that l ¼ 1, so we are reduced to the
situation handled by Theorem C. The algebraic indeterminacy given there is com-
putable, but not very easily if the associated cyclotomic fields have complicated ideal
class groups. We carry out the computational details in one further case of interest
(Theorem D).

The proof of Theorem D. We have a basis

B ¼ fti � tiþ2q j ði; 2qÞ ¼ 1; i 1 1 mod 4; 1e i < 4qg

for ~RR freeðGÞ, so it remains to work out the relations given by topological similarity.
Notice that ~RR free

h ðGÞ ¼ ~RR free
n ðGÞ, and that the sum of any two elements in B lies in

~RR free
n ðGÞ. Moreover, by Corollary 2.4 there are no 6-dimensional similarities for G.
Now suppose that V1 lW lR� lRþ @t V2 lW lR� lRþ, for some com-

plex G-representation W . Then ResH V1 GResH V2 since q is odd, and by Theorem
C we get a similarity of the form V1 lR l

� lRþ @t V2 lR l
� lRþ. But by Theorem

10.1 this implies that V1 lR� lRþ @t V1 lR� lRþ. Therefore, for any element
ai ¼ ðti � tiþ2qÞ A B we have 2ai B R free

t ðGÞ but 4ai A R free
t ðGÞ. However, in Section

11 we determined the bounded surgery obstructions for all these elements. Since
i�ðu1; jÞ ¼ h�1i A H 1ðA�Þ for all j with ð j; 2qÞ ¼ 1 by Lemma 11.1, there are further
stable relations a1 þ aj Aa1 þ ak, or a1Aaj for all j. It follows that a basis for
~RR free

TopðGÞ is given by fa1 j 4a1A0g. r
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