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Topological equivalence of linear
representations for cyclic groups: I

By Ian Hambleton and Erik K. Pedersen*

Abstract

In the two parts of this paper we prove that the Reidemeister torsion
invariants determine topological equivalence of G-representations, for G a finite
cyclic group.

1. Introduction

Let G be a finite group and V , V ′ finite dimensional real orthogonal rep-
resentations of G. Then V is said to be topologically equivalent to V ′ (denoted
V ∼t V ′) if there exists a homeomorphism h : V → V ′ which is G-equivariant.
If V , V ′ are topologically equivalent, but not linearly isomorphic, then such
a homeomorphism is called a nonlinear similarity. These notions were intro-
duced and studied by de Rham [31], [32], and developed extensively in [3], [4],
[22], [23], and [8]. In the two parts of this paper, referred to as [I] and [II], we
complete de Rham’s program by showing that Reidemeister torsion invariants
and number theory determine nonlinear similarity for finite cyclic groups.

A G-representation is called free if each element 1 �= g ∈ G fixes only the
zero vector. Every representation of a finite cyclic group has a unique maximal
free subrepresentation.

Theorem. Let G be a finite cyclic group and V1, V2 be free G-represen-
tations. For any G-representation W , the existence of a nonlinear similarity
V1⊕W ∼t V2⊕W is entirely determined by explicit congruences in the weights
of the free summands V1, V2, and the ratio ∆(V1)/∆(V2) of their Reidemeister
torsions, up to an algebraically described indeterminacy.
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support.
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The notation and the indeterminacy are given in Section 2 and a detailed
statement of results in Theorems A–E. For cyclic groups of 2-power order, we
obtain a complete classification of nonlinear similarities (see Section 11).

In [3], Cappell and Shaneson showed that nonlinear similarities V ∼t V ′

exist for cyclic groups G = C(4q) of every order 4q � 8. On the other
hand, if G = C(q) or G = C(2q), for q odd, Hsiang-Pardon [22] and Madsen-
Rothenberg [23] proved that topological equivalence of G-representations im-
plies linear equivalence (the case G = C(4) is trivial). Since linear G-equivalence
for general finite groups G is detected by restriction to cyclic subgroups, it is
reasonable to study this case first. For the rest of the paper, unless otherwise
mentioned, G denotes a finite cyclic group.

Further positive results can be obtained by imposing assumptions on
the isotropy subgroups allowed in V and V ′. For example, de Rham [31]
proved in 1935 that piecewise linear similarity implies linear equivalence for free
G-representations, by using Reidemeister torsion and the Franz Independence
Lemma. Topological invariance of Whitehead torsion shows that his method
also rules out nonlinear similarity in this case. In [17, Th. A] we studied “first-
time” similarities, where ResK V ∼= ResK V ′ for all proper subgroups K � G,
and showed that topological equivalence implies linear equivalence if V , V ′

have no isotropy subgroup of index 2. This result is an application of bounded
surgery theory (see [16], [17, §4]), and provides a more conceptual proof of the
Odd Order Theorem. These techniques are extended here to provide a neces-
sary and sufficient condition for nonlinear similarity in terms of the vanishing
of a bounded transfer map (see Theorem 3.5). This gives a new approach to
de Rham’s problem. The main work of the present paper is to establish meth-
ods for effective calculation of the bounded transfer in the presence of isotropy
groups of arbitrary index.

An interesting question in nonlinear similarity concerns the minimum
possible dimension for examples. It is easy to see that the existence of a
nonlinear similarity V ∼t V ′ implies dim V = dimV ′ � 5. Cappell, Shaneson,
Steinberger and West [8] proved that 6-dimensional similarities exist for G =
C(2r), r � 4 and referred to the 1981 Cappell-Shaneson preprint (now pub-
lished [6]) for the complete proof that 5-dimensional similarities do not exist
for any finite group. See Corollary 9.3 for a direct argument using the criterion
of Theorem A in the special case of cyclic 2-groups.

In [4], Cappell and Shaneson initiated the study of stable topological
equvalence for G-representations. We say that V1 and V2 are stably topologi-
cally similar (V1 ≈t V2) if there exists a G-representation W such
that V1 ⊕ W ∼t V2 ⊕ W . Let RTop(G) = R(G)/Rt(G) denote the quotient
group of the real representation ring of G by the subgroup Rt(G) =
{[V1] − [V2] | V1 ≈t V2}. In [4], RTop(G) ⊗ Z[1/2] was computed, and the
torsion subgroup was shown to be 2-primary. As an application of our general
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results, we determine the structure of the torsion in RTop(G), for G any cyclic
group (see [II, §13]). In Theorem E we give the calculation of RTop(G) for
G = C(2r). This is the first complete calculation of RTop(G) for any group
that admits nonlinear similarities.
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2. Statement of results

We first introduce some notation, and then give the main results. Let
G = C(4q), where q > 1, and let H = C(2q) denote the subgroup of index 2 in
G. The maximal odd order subgroup of G is denoted Godd. We fix a generator
G = 〈t〉 and a primitive 4qth-root of unity ζ = exp 2πi/4q. The group G has
both a trivial 1-dimensional real representation, denoted R+, and a nontrivial
1-dimensional real representation, denoted R−.

A free G-representation is a sum of faithful 1-dimensional complex repre-
sentations. Let ta, a ∈ Z, denote the complex numbers C with action t·z = ζaz

for all z ∈ C. This representation is free if and only if (a, 4q) = 1, and the coeffi-
cient a is well-defined only modulo 4q. Since ta ∼= t−a as real G-representations,
we can always choose the weights a ≡ 1 mod 4. This will be assumed unless
otherwise mentioned.

Now suppose that V1 = ta1 + · · · + tak is a free G-representation. The
Reidemeister torsion invariant of V1 is defined as

∆(V1) =
k∏

i=1

(tai − 1) ∈ Z[t]/{±tm} .



64 IAN HAMBLETON AND ERIK K. PEDERSEN

Let V2 = tb1 + · · · + tbk be another free representation, such that S(V1) and
S(V2) are G-homotopy equivalent. This just means that the products of the
weights

∏
ai ≡

∏
bi mod 4q. Then the Whitehead torsion of any G-homotopy

equivalence is determined by the element

∆(V1)/∆(V2) =
∏

(tai − 1)∏
(tbi − 1)

since Wh(ZG) → Wh(QG) is monic [26, p. 14]. When there exists a
G-homotopy equivalence f : S(V2) → S(V1) which is freely G-normally cobor-
dant to the identity map on S(V1), we say that S(V1) and S(V2) are freely
G-normally cobordant. More generally, we say that S(V1) and S(V2) are
s-normally cobordant if S(V1 ⊕U) and S(V2 ⊕U) are freely G-normally cobor-
dant for all free G-representations U . This is a necessary condition for non-
linear similarity, which can be decided by explicit congruences in the weights
(see [35, Th. 1.2] and [II, §12]).

This quantity, ∆(V1)/∆(V2) is the basic invariant determining nonlinear
similarity. It represents a unit in the group ring ZG, explicitly described for
G = C(2r) by Cappell and Shaneson in [5, §1] using a pull-back square of rings.
To state concrete results we need to evaluate this invariant modulo suitable
indeterminacy.

The involution t �→ t−1 induces the identity on Wh(ZG), so we get an
element

{∆(V1)/∆(V2)} ∈ H0(Wh(ZG))

where we use H i(A) to denote the Tate cohomology H i(Z/2;A) of Z/2 with
coefficients in A.

Let Wh(ZG−) denote the Whitehead group Wh(ZG) together with the
involution induced by t �→ −t−1. Then for τ(t) =

∏
(tai−1)∏
(tbi−1) , we compute

τ(t)τ(−t) =
∏

(tai − 1)
∏

((−t)ai − 1)∏
(tbi − 1)

∏
((−t)bi − 1)

=
∏ (t2)ai − 1

((t2)bi − 1)

which is clearly induced from Wh(ZH). Hence we also get a well defined
element

{∆(V1)/∆(V2)} ∈ H1(Wh(ZG−)/ Wh(ZH)) .

This calculation takes place over the ring Λ2q = Z[t]/(1 + t2 + · · ·+ t4q−2), but
the result holds over ZG via the involution-invariant pull-back square

ZG → Λ2q

↓ ↓
Z[Z/2] → Z/2q[Z/2]

Consider the exact sequence of modules with involution:

K1(ZH) → K1(ZG) → K1(ZH→ZG) → K̃0(ZH) → K̃0(ZG)(2.1)
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and define Wh(ZH → ZG) = K1(ZH → ZG)/{±G} . We then have a short
exact sequence

0 → Wh(ZG)/ Wh(ZH) → Wh(ZH→ZG) → k → 0

where k = ker(K̃0(ZH) → K̃0(ZG)). Such an exact sequence of Z/2-modules
induces a long exact sequence in Tate cohomology. In particular, we have a
coboundary map

δ : H0(k) → H1(Wh(ZG−)/ Wh(ZH)) .

Our first result deals with isotropy groups of index 2, as is the case for all the
nonlinear similarities constructed in [3].

Theorem A. Let V1 = ta1 + · · · + tak and V2 = tb1 + · · · + tbk be free
G-representations, with ai ≡ bi ≡ 1 mod 4. There exists a topological similarity
V1 ⊕ R− ∼t V2 ⊕ R− if and only if

(i)
∏

ai ≡
∏

bi mod 4q,

(ii) ResH V1
∼= ResH V2, and

(iii) the element {∆(V1)/∆(V2)} ∈ H1(Wh(ZG−)/ Wh(ZH)) is in the image
of the coboundary δ : H0(k) → H1(Wh(ZG−)/ Wh(ZH)).

Remark 2.2. The condition (iii) simplifies for G a cyclic 2-group since
H0(k) = 0 in that case (see Lemma 9.1). Theorem A should be compared with
[3, Cor.1], where more explicit conditions are given for “first-time” similarities
of this kind under the assumption that q is odd, or a 2-power, or 4q is a
“tempered” number. See also [II, Th. 9.2] for a more general result concerning
similarities without R+ summands. The case dim V1 = dimV2 = 4 gives a
reduction to number theory for the existence of 5-dimensional similarities (see
Remark 7.2).

Our next result uses a more elaborate setting for the invariant. Let

Φ =

ZH → Ẑ2H

↓ ↓
ZG → Ẑ2G


and consider the exact sequence

0 → K1(ZH→ZG) → K1(Ẑ2H→Ẑ2G) → K1(Φ) → K̃0(ZH→ZG) → 0 .

(2.3)

Again we can define the Whitehead group versions by dividing out trivial units
{±G}, and get a double coboundary

δ2 : H1(K̃0(ZH→ZG−)) → H1(Wh(ZH→ZG−)) .
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There is a natural map H1(Wh(ZG−)/ Wh(ZH)) → H1(Wh(ZH → ZG−)),
and we will use the same notation {∆(V1)/∆(V2)} for the image of the
Reidemeister torsion invariant in this new domain. The nonlinear similari-
ties handled by the next result have isotropy of index � 2.

Theorem B. Let V1 = ta1 + · · · + tak and V2 = tb1 + · · · + tbk be free
G-representations. There exists a topological similarity V1 ⊕ R− ⊕ R+ ∼t

V2 ⊕ R− ⊕ R+ if and only if

(i)
∏

ai ≡
∏

bi mod 4q,

(ii) ResH V1
∼= ResH V2, and

(iii) the element {∆(V1)/∆(V2)} is in the image of the double coboundary

δ2 : H1(K̃0(ZH→ZG−)) → H1(Wh(ZH→ZG−)) .

This result can be applied to 6-dimensional similarities.

Corollary 2.4. Let G = C(4q), with q odd, and suppose that the fields
Q(ζd) have odd class number for all d | 4q. Then G has no 6-dimensional
nonlinear similarities.

Remark 2.5. For example, the class number condition is satisfied for
q � 11, but not for q = 29. The proof is given in [II, §11]. This result
corrects [8, Th. 1(i)], and shows that the computations of RTop(G) given in [8,
Th. 2] are incorrect. We explain the source of these mistakes in Remark 6.4.

Our final example of the computation of bounded transfers is suitable
for determining stable nonlinear similarities inductively, with only a minor as-
sumption on the isotropy subgroups. To state the algebraic conditions, we
must again generalize the indeterminacy for the Reidemeister torsion invari-
ant to include bounded K-groups (see [II, §5]). In this setting K̃0(ZH →
ZG) = K̃0(CR−,G(Z)) and Wh(ZH→ZG) = Wh(CR−,G(Z)). We consider the
analogous double coboundary

δ2 : H1(K̃0(CW×R−,G(Z))) → H1(Wh(CW×R−,G(Z)))

and note that there is a map Wh(CR−,G(Z) → Wh(CW×R−,G(Z)) induced
by the inclusion on the control spaces. We will use the same notation
{∆(V1)/∆(V2)} for the image of our Reidemeister torsion invariant in this
new domain.

Theorem C. Let V1 = ta1 + · · · + tak and V2 = tb1 + · · · + tbk be free
G-representations. Let W be a complex G-representation with no R+ sum-
mands. Then there exists a topological similarity V1 ⊕ W ⊕ R− ⊕ R+ ∼t

V2 ⊕ W ⊕ R− ⊕ R+ if and only if



SIMILARITIES OF CYCLIC GROUPS: I 67

(i) S(V1) is s-normally cobordant to S(V2),

(ii) ResH(V1 ⊕ W ) ⊕ R+ ∼t ResH(V2 ⊕ W ) ⊕ R+, and

(iii) the element {∆(V1)/∆(V2)} is in the image of the double coboundary

δ2 : H1(K̃0(CWmax×R−,G(Z))) → H1(Wh(CWmax×R−,G(Z))) ,

where 0 ⊆ Wmax ⊆ W is a complex subrepresentation of real dimension
� 2, with maximal isotropy group among the isotropy groups of W with
2-power index.

Remark 2.6. The existence of a similarity implies that S(V1) and S(V2)
are s-normally cobordant. In particular, S(V1) must be freely G-normally
cobordant to S(V2) and this unstable normal invariant condition is enough
to give us a surgery problem. The computation of the bounded transfer in
L-theory leads to condition (iii), and an expression of the obstruction to the
existence of a similarity purely in terms of bounded K-theory. To carry out
this computation we may need to stabilize in the free part, and this uses the
s-normal cobordism condition.

Remark 2.7. Theorem C is proved in [II, §9]. Note that Wmax = 0 in
condition (iii) if W has no isotropy subgroups of 2-power index. Theorem C
suffices to handle stable topological similarities, but leaves out cases where W

has an odd number of R− summands (handled in [II, Th. 9.2] and the results
of [II, §10]). Simpler conditions can be given when G = C(2r) (see §9 in this
part, [I]).

The double coboundary in (iii) can also be expressed in more “classical”
terms by using the short exact sequence

0 → Wh(CR−,G(Z)) → Wh(CWmax×R−,G(Z)) → K1(C>R−
Wmax×R−,G(Z)) → 0

(2.8)

derived in [II, Cor. 6.9]. We have K1(C>R−
Wmax×R−,G(Z)) = K−1(ZK), where K

is the isotropy group of Wmax, and Wh(CR−,G(Z)) = Wh(ZH → ZG). The
indeterminacy in Theorem C is then generated by the double coboundary

δ2 : H1(K̃0(ZH→ZG−)) → H1(Wh(ZH→ZG−))

used in Theorem B and the coboundary

δ : H0(K−1(ZK)) → H1(Wh(ZH→ZG−))

from the Tate cohomology sequence of (2.8).

Finally, we will apply these results to RTop(G). In Part [II, §3], we will
define a subgroup filtration

Rt(G) ⊆ Rn(G) ⊆ Rh(G) ⊆ R(G)(2.9)
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on the real representation ring R(G), inducing a filtration on

RTop(G) = R(G)/Rt(G) .

Here Rh(G) consists of those virtual elements with no homotopy obstruction to
similarity, and Rn(G) the virtual elements with no normal invariant obstruction
to similarity (see [II, §3] for more precise definitions). Note that R(G) has the
nice basis {ti, δ, ε | 1 � i � 2q − 1}, where δ = [R−] and ε = [R+].

Let Rfree(G) = {ta | (a, 4q) = 1} ⊂ R(G) be the subgroup generated by
the free representations. To complete the definition, we let Rfree(C(2)) = {R−}
and Rfree(e) = {R+}. Then

R(G) =
⊕
K⊆G

Rfree(G/K)

and this direct sum splitting intersected with the filtration above gives the sub-
groups Rfree

h (G), Rfree
n (G) and Rfree

t (G). In addition, we can divide out Rfree
t (G)

and obtain subgroups Rfree
h,Top(G) and Rfree

n,Top(G) of Rfree
Top(G)=Rfree(G)/Rfree

t (G).
By induction on the order of G, we see that it suffices to study the summand
Rfree

Top(G).
Let R̃free(G) = ker(Res : Rfree(G) → Rfree(Godd)), and then project into

RTop(G) to define

R̃free
Top(G) = R̃free(G)/Rfree

t (G) .

In [II, §4] we prove that R̃free
Top(G) is precisely the torsion subgroup of Rfree

Top(G),
and in [II, §13] we show that the subquotient R̃free

n,Top(G) = R̃free
n (G)/Rfree

t (G)
always has exponent two.

Here is a specific computation (correcting [8, Th. 2]), proved in [II, §13].

Theorem D. Let G = C(4q), with q > 1 odd, and suppose that the fields
Q(ζd) have odd class number for all d | 4q. Then R̃free

Top(G) = Z/4 generated by
(t − t1+2q).

For any cyclic group G, both Rfree(G)/Rfree
h (G) and Rfree

h (G)/Rfree
n (G)

are torsion groups which can be explicitly determined by congruences in the
weights (see [II, §12] and [35, Th. 1.2]).

We conclude this list of sample results with a calculation of RTop(G) for
cyclic 2-groups.

Theorem E. Let G = C(2r), with r � 4. Then

R̃free
Top(G) =

〈
α1, α2, . . . , αr−2, β1, β2, . . . , βr−3

〉
subject to the relations 2sαs = 0 for 1 � s � r − 2, and 2s−1(αs + βs) = 0 for
2 � s � r − 3, together with 2(α1 + β1) = 0.
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The generators for r � 4 are given by the elements

αs = t − t5
2r−s−2

and βs = t5 − t5
2r−s−2+1

.

We remark that R̃free
Top(C(8)) = Z/4 is generated by t − t5. In Theorem 11.6

we use this information to give a complete topological classification of linear
representations for cyclic 2-groups.

Acknowledgement. The authors would like to express their appreciation
to the referee for many constructive comments and suggestions.

3. A criterion for nonlinear similarity

Our approach to the nonlinear similarity problem is through bounded
surgery theory (see [11], [16], [17]): first, an elementary observation about
topological equivalences for cyclic groups.

Lemma 3.1. If V1⊕W ∼t V2⊕W ′, where V1, V2 are free G-representations,
and W and W ′ have no free summands, then there is a G-homeomorphism
h : V1 ⊕ W → V2 ⊕ W such that

h
∣∣ ⋃

1 �=H≤G

WH

is the identity.

Proof. Let h be the homeomorphism given by V1 ⊕ W ∼t V2 ⊕ W ′. We
will successively change h, stratum by stratum. For every subgroup K of G,
consider the homeomorphism of K-fixed sets

hK : WK → W ′K .

This is a homeomorphism of G/K, hence of G-representations. As G-represen-
tations we can split

V2 ⊕ W ′ = U ⊕ W ′K ∼t U ⊕ WK = V2 ⊕ W ′′

where the similarity uses the product of the identity and (hK)−1. Notice that
the composition of h with this similarity is the identity on the K-fixed set.
Rename W ′′ as W ′ and repeat this successively for all subgroups. We end up
with W = W ′ and a G-homeomorphism inducing the identity on the singular
set.

One consequence is

Lemma 3.2. If V1 ⊕W ∼t V2 ⊕W , then there exists a G-homotopy equiv-
alence S(V2) → S(V1).
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Proof. We may assume that W contains no free summand, since a
G-homotopy equivalence S(V2 ⊕ U) → S(V1 ⊕ U), with U a free G-represen-
tation, is G-homotopic to f × 1, where f : S(V2) → S(V1) is a G-homotopy
equivalence. If we 1-point compactify h, we obtain a G-homeomorphism

h+ : S(V1 ⊕ W ⊕ R) → S(V2 ⊕ W ⊕ R).

After an isotopy, the image of the free G-sphere S(V1) may be assumed to lie in
the complement S(V2⊕W ⊕R)−S(W ⊕R) of S(W ⊕R) which is G-homotopy
equivalent to S(V2).

Any homotopy equivalence f : S(V2)/G → S(V1)/G defines an element
[f ] in the structure set Sh(S(V1)/G). We may assume that n = dimVi � 4.
This element must be nontrivial; otherwise S(V2)/G would be topologically
h-cobordant to S(V1)/G, and Stallings infinite repetition of h-cobordisms trick
would produce a homeomorphism V1 → V2 contradicting [1, 7.27] (see also [24,
12.12]), since V1 and V2 are free representations. More precisely, we use Wall’s
extension of the Atiyah-Singer equivariant index formula to the topological
locally linear case [34]. If dimVi = 4, we can cross with CP2 to avoid low-
dimensional difficulties. Crossing with W and parametrizing by projection on
W defines a map from the classical surgery sequence to the bounded surgery
exact sequence (where k = dimW ):

Lh
n(ZG) ��

��

Sh(S(V1)/G) ��

��

[S(V1)/G, F/Top]

��
Lh

n+k(CW,G(Z)) �� Sh
b

(
S(V1)×W/G

↓
W/G

)
�� [S(V1) ×G W, F/Top]

(3.3)

The L-groups in the upper row are the ordinary surgery obstruction groups
for oriented manifolds and surgery up to homotopy equivalence. In the lower
row, we have bounded L-groups (see [II, §5]) corresponding to an orthogonal
action ρW : G → O(W ), with orientation character given by det(ρW ). Our
main criterion for nonlinear similarities is:

Theorem 3.4. Let V1 and V2 be free G-representations with dimVi � 2.
Then, there is a topological equivalence V1 ⊕ W ∼t V2 ⊕ W if and only if
there exists a G-homotopy equivalence f : S(V2) → S(V1) such that the element
[f ] ∈ Sh(S(V1)/G) is in the kernel of the bounded transfer map

trfW : Sh(S(V1)/G) → Sh
b

(
S(V1)×GW

↓
W/G

)
.

Proof. For necessity, we refer the reader to [17] where this is proved using
a version of equivariant engulfing. For sufficiency, we notice that crossing with
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R gives an isomorphism of the bounded surgery exact sequences parametrized
by W to simple bounded surgery exact sequences parametrized by W × R.
By the bounded s-cobordism theorem, this means that the vanishing of the
bounded transfer implies that

S(V2) × W × R
f×1 �� S(V1) × W × R

��
W × R

is within a bounded distance of an equivariant homeomorphism h, where dis-
tances are measured in W × R. We can obviously complete f × 1 to the map

f ∗ 1: S(V2) ∗ S(W × R) → S(V1) ∗ S(W × R)

and since bounded in W × R means small near the subset

S(W × R) ⊂ S(Vi) ∗ S(W × R) = S(Vi ⊕ W ⊕ R),

we can complete h by the identity to get a G-homeomorphism

S(V2 ⊕ W ⊕ R) → S(V1 ⊕ W ⊕ R).

Taking a point out we have a G-homeomorphism V2 ⊕ W → V2 ⊕ W .

By comparing the ordinary and bounded surgery exact sequences (3.3),
and noting that the bounded transfer induces the identity on the normal in-
variant term, we see that a necessary condition for the existence of any stable
similarity f : V2 ≈t V1 is that f : S(V2) → S(V1) has s-normal invariant zero.
Assuming this, under the natural map

Lh
n(ZG) → Sh(S(V1)/G),

where n = dimV1, the element [f ] is the image of σ(f) ∈ Lh
n(ZG), ob-

tained as the surgery obstruction (relative to the boundary) of a normal cobor-
dism from f to the identity. The element σ(f) is well-defined in L̃h

n(ZG) =
Coker(Lh

n(Z) → Lh
n(ZG)). Since the image of the normal invariants

[S(V1)/G × I, S(V1)/G × ∂I,F/Top] → Lh
n(ZG)

factors through Lh
n(Z) (see [15, Th. A, 7.4] for the image of the assembly

map), we may apply the criterion of 3.4 to any lift σ(f) of [f ]. This reduces
the evaluation of the bounded transfer on structure sets to a bounded L-theory
calculation.

Theorem 3.5. Let V1 and V2 be free G-representations with dimVi � 2.
Then, there is a topological equivalence V1 ⊕ W ∼t V2 ⊕ W if and only if
there exists a G-homotopy equivalence f : S(V2) → S(V1), which is G-normally
cobordant to the identity, such that trfW (σ(f)) = 0, where trfW : Lh

n(ZG) →
Lh

n+k(CW,G(Z)) is the bounded transfer.
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The rest of the paper is about the computation of these bounded transfer
homomorphisms in L-theory. We will need the following result (proved for K0

in [17, 6.3]).

Theorem 3.6. Let W be a G-representation with WG = 0. For all i ∈ Z,
the bounded transfer trfW : Ki(ZG) → Ki(CW,G(Z)) is equal to the cone point
inclusion c∗ : Ki(ZG) = Ki(Cpt,G(Z)) → Ki(CW,G(Z)).

Proof. Let G be a finite group and V a representation. Crossing with V

defines a transfer map in K-theory Ki(RG) → Ki(CV,G(R)) for all i, where
R is any ring with unit [16, p. 117]. To show that it is equal to the map
Ki(C0,G(R)) → Ki(CV,G(R)) induced by the inclusion 0 ⊂ V , we need to choose
models for K-theory.

For RG we choose the category of finitely generated free RG modules,
but we think of it as a category with cofibrations and weak equivalences with
weak equivalence isomorphisms and cofibration split inclusions. For CV,G(R)
we use the category of finite length chain complexes, with weak equivalence
chain homotopy equivalences and cofibrations sequences that are split short
exact at each level. The K-theory of this category is the same as the K-theory
of CV,G(R). For an argument working in this generality see [9].

Tensoring with the chain complex of (V, G) induces a map of categories
with cofibrations and weak equivalences, hence a map on K-theory. It is ele-
mentary to see that this agrees with the geometric definition in low dimensions,
since identification of the K-theory of chain complexes of an additive category
with the K-theory of the additive category is an Euler characteristic (see e.g.
[9]).

By abuse of notation we denote the category of finite chain complexes
in CV,G(R) simply by CV,G(R). We need to study various related categories.
First there is Ciso

V,G(R) where we have replaced the weak equivalences by isomor-
phisms. Obviously the transfer map, tensoring with the chains of (V, G) factors
through this category. Also the transfer factors through the category Diso

V,G(R)
with the same objects, and isomorphisms as weak equivalences but the control
condition is 0-control instead of bounded control. The category Diso

V,G(R) is
the product of the full subcategories on objects with support at 0 and the full
subcategory on objects with support on V − 0, Diso

0,G(R)×Diso
V −0,G(R), and the

transfer factors through chain complexes concentrated in degree 0 in Diso
0,G(R)

crossed with chain complexes in the other factor.
But the subcategory of chain complexes concentrated in degree zero of

Diso
0,G(R) is precisely the same as C0,G(R) and the map to CV,G(R) is induced

by inclusion. So to finish the proof we have to show that the other factor
Diso

V −0,G(R) maps to zero. For this we construct an intermediate category
E iso

V −0,G(R) with the same objects, but where the morphisms are bounded
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radially and 0-controlled otherwise (i.e. a nontrivial map between objects at
different points is only allowed if the points are on the same radial line, and
there is a bound on the distance independent of the points). This category has
trivial K-theory since we can make a radial Eilenberg swindle toward infinity.
Since the other factor Diso

V −0,G(R) maps through this category, we find that the
transfer maps through the corner inclusion as claimed.

Remark 3.7. It is an easy consequence of the filtering arguments based
on [16, Th. 3.12] that the bounded L-groups are finitely generated abelian
groups with 2-primary torsion subgroups. We will therefore localize all the
L-groups by tensoring with Z(2) (without changing the notation); this loses no
information for computing bounded transfers.

One concrete advantage of working with the 2-local L-groups is that
we can use the idempotent decomposition [13, §6] and the direct sum
splitting Lh

n(CW,G(Z)) = ⊕d|qL
h
n(CW,G(Z))(d). Since the “top component”

Lh
n(CW,G(Z))(q) is just the kernel of the restriction map to all odd index sub-

groups of G, the use of components is well-adapted to inductive calculations.

A first application of these techniques was given in [17, 5.1].

Theorem 3.8. For any G-representation W , let W = W1⊕W2 where W1

is the direct sum of the irreducible summands of W with isotropy subgroups of
2-power index. If G = C(2rq), q odd, and WG = 0, then

(i) the inclusion Lh
n(CW1,G(Z))(q) → Lh

n(CW,G(Z))(q) is an isomorphism on
the top component,

(ii) the bounded transfer

trfW2
: Lh

n(CW1,G(Z))(q) → Lh
n(CW,G(Z))(q)

is an injection on the top component, and

(iii) ker(trfW ) = ker(trfW1
) ⊆ Lh

n(ZG)(q).

Proof. In [17] we localized at an odd prime p � |G| in order to use the
Burnside idempotents for all cyclic subgroups of G. The same proof works
for the L-groups localized at 2, to show that trfW2

is injective on the top
component.

Lemma 3.9. For any choice of normal cobordism between f and the iden-
tity, the surgery obstruction σ(f) is a nonzero element of infinite order in
L̃h

n(ZG).

Proof. See [17, 4.5].
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The following result (combined with Theorem 3.5) shows that there are no
nonlinear similarities between semi-free G-representations, since Lh

n+1(CR,G(Z))
= Lp

n(ZG) and the natural map Lh
n(ZG) → Lp

n(ZG) may be identified with
the bounded transfer trfR : Lh

n(ZG) → Lh
n+1(CR,G(Z)) [30, §15].

Corollary 3.10. Under the natural map Lh
n(ZG) → Lp

n(ZG), the image
of σ(f) is nonzero.

Proof. The kernel of the map Lh
n(ZG) → Lp

n(ZG) is the image of
Hn(K̃0(ZG)) which is a torsion group.

4. Bounded R− transfers

Let G denote a finite group of even order, with a subgroup H < G of
index 2. We first describe the connection between the bounded R− transfer
and the compact line bundle transfer of [34, 12C] by means of the following
diagram:

Lh
n(ZG, w)

trfR−
��

trfI− �� Lh
n+1(ZH→ZG, wφ)

j∗
��

Lh
n+1(CR−,G(Z), wφ) Lk,h

n+1(ZH→ZG, wφ)r∗
��

where w : G → {±1} is the orientation character for G and φ : G → {±1} has
kernel H. On CR−,G(Z) we start with the standard orientation defined in [II,
Ex. 5.4], and then twist by w or wφ. Note that the (untwisted) orientation
induced on Cpt(ZG) via the cone point inclusion c : Cpt(ZG) → CR−,G(Z) is
nontrivial. The homomorphism

r∗ : Lk,h
n+1(ZH→ZG, wφ) → Lh

n+1(CR−,G(Z), wφ)

is obtained by adding a ray [1,∞) to each point of the boundary double cover
in domain and range of a surgery problem. Here k in the decoration means
that we are allowing projective ZH-modules that become free when induced
up to ZG

Theorem 4.1. The map r∗ : Lk,h
n+1(ZH→ZG, wφ) → Lh

n+1(CR−,G(Z), wφ)
is an isomorphism, and under this identification, the bounded R− transfer cor-
responds to the line bundle transfer, followed by the relaxation of the projectivity
map j∗ given by k.

Proof. Let A be the full subcategory of U = CR−,G(Z) with objects
that are only nontrivial in a bounded neighborhood of 0. Then CR−,G(Z) is
A-filtered. The category A is equivalent to the category of free ZG-modules
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(with the nonorientable involution). The quotient category U/A is equivalent
to C>0

[0,∞),H(Z), which has the same L-theory as CR(ZH), so we get a fibration
of spectra

Lk(ZH) → Lh(ZG) → Lh(CR−,G(Z)) .

This shows that

Lh(CR−,G(Z)) � Lk,h(ZH → ZG) .

The line bundle transfer can be studied by the long exact sequence

(4.2) · · · → LNn(ZH→ZG, wφ) → Lh
n(ZG, w) → Lh

n+1(ZH→ZG, wφ)

→ LNn−1(ZH→ZG, wφ) → Lh
n−1(ZG, w) → . . .

given in [34, 11.6]. The obstruction groups LNn(ZH→ZG, wφ) for codimen-
sion 1 surgery have an algebraic description

LNn(ZH→ZG, wφ) ∼= Lh
n(ZH, α, u)(4.3)

given by [34, 12.9]. The groups on the right-hand side are the algebraic
L-groups of the “twisted” anti-structure defined by choosing some element
t ∈ G−H and then setting α(x) = w(x)t−1x−1t for all x ∈ H, and u = w(t)t−2.
Another choice of t ∈ G − H gives a scale equivalent anti-structure on ZH.
The same formulas also give a “twisted” anti-structure (ZG, α, u) on ZG, but
since the conjugation by t is now an inner automorphism of G, this is scale
equivalent to the standard structure (ZG, w). We can therefore define the
twisted induction map

ĩ∗ : Lh
n(ZH, α, u) → Lh

n(ZG, w)

and the twisted restriction map

γ̃∗ : Lh
n(ZG, w) → Lh

n(ZH, α, u)

as the composites of the ordinary induction or restriction maps (induced by
the inclusion (ZH, w) → (ZG, w)) with the scale isomorphism.

The twisted anti-structure on ZH is an example of a “geometric anti-
structure” [20, p. 110]:

α(g) = w(g)θ(g−1), u = ±b ,

where θ : G → G is a group automorphism with θ2(g) = bgb−1, w ◦ θ = w,
w(b) = 1 and θ(b) = b.

Example 4.4. For G cyclic, the orientation character restricted to H is
trivial, θ(g) = tgt−1 = g and u = w(t)t2. Choosing t ∈ G a generator we get
b = t2, which is a generator for H.
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There is an identification [12, Th. 3], [19, 50–53] of the exact sequence (4.2)
for the line bundle transfer, extending the scaling isomorphism Lh

n(ZG, w) ∼=
Lh

n(ZG, α, u) and (4.3), with the long exact sequence of the “twisted” inclusion

. . . Lh
n(ZH, α, u) ĩ∗−→ Lh

n(ZG, α, u) → Lh
n(ZH→ZG, α, u)

→ Lh
n−1(ZH, α, u) → . . . .

These identifications can then be substituted into the following “twisting dia-
gram” in order to compute the various maps (see [19, App. 2] for a complete
tabulation in the case of finite 2-groups).

LNn(ZH→ZG, wφ)

������������

ĩ∗

��
Ln(ZG, w)

������������

γ∗

��
Ln(ZH, w)

Ln+1(γ∗)

������������

������������
Ln+1(ZH→ZG, wφ)

������������

������������

Ln+1(ZH, w)

������������

i∗

��
Ln+1(ZG, wφ)

������������

γ̃∗

��
LNn−1(ZH→ZG, wφ)

(4.5)

The existence of the diagram depends on the identifications Ln+1(γ∗) ∼=
Ln(γ̃∗) and Ln+1(i∗) ∼= Ln(̃i∗) obtained geometrically in [12] and algebraically
in [29].

5. Some basic facts in K- and L-theory

In this section we record various calculational facts from the literature
about K- and L-theory of cyclic groups. A general reference for K-theory
is [26], and for L-theory computations is [21]. Recall that K̃0(A) =
K0(A∧)/K0(A) for any additive category A, and Wh(A) is the quotient of
K1(A) by the subgroup defined by the system of stable isomorphisms.

Theorem 5.1. Let G be a cyclic group, K a subgroup. Then

(i) K1(ZG) = (ZG)∗ ⊂ K1(QG). Here (ZG)∗ denotes the units of ZG.

(ii) The torsion in K1(ZG)) is precisely {±G}, so that Wh(ZG) is torsion
free.

(iii) The maps K1(ZK) → K1(ZG) and

Wh(ZG)/ Wh(ZK) → Wh(QG)/ Wh(QK)

are injective.
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(iv) K̃0(ZG) is a torsion group and the map K̃0(ZG) → K̃0(Z(p)G) is the
zero map for all primes p.

(v) K−1(ZG) is torsion free, and sits in an exact sequence

0 → K0(Z) → K0(ẐG) ⊕ K0(QG) → K0(Q̂G) → K−1(ZG) → 0 .

(vi) K−1(ZK) → K−1(ZG) is an injection.

(vii) K−j(ZG) = 0 for j � 2.

Proof. The proof mainly consists of references. See [26, pp.6,14] for the
first two parts. Part (iii) follows from (i) and the relation (ZG)∗ ∩ (QK)∗ =
(ZK)∗. Part (iv) is due to Swan [33], and part (vii) is a result of Bass and
Carter [10]. Part (v) gives the arithmetic sequence for computing K−1(ZG),
and the assertion that K−1(ZG) is torsion free is easy to deduce (see also [10]).
Since ResK ◦ IndK is multiplication by the index [G : K], part (vi) follows
from (v).

Tate cohomology of Ki-groups plays an important role. The involution
on K-theory is induced by duality on modules. It is conventionally chosen to
have the boundary map

K1(Q̂(G) → K̃0(ZG)

preserve the involution, and so to make this happen we choose to have the
involution on K0 be given by sending [P ] to −[P ∗], and the involution on K1

be given by sending τ to τ∗. This causes a shift in dimension in Ranicki-
Rothenberg exact sequences

. . . → H0(K̃0(A)) → Lh
2k(A) → Lp

2k(A) → H1(K̃0(A)) → . . .

compared to

. . . → H1(Wh(A)) → Ls
2k(A) → Lh

2k(A) → H0(Wh(A)) → . . .

and

. . . → H1(K−1(A)) → Lp
2k(A) → L〈−1〉

2k (A) → H0(K−1(A)) → . . . .

Theorem 5.2. Let G be a cyclic group, K a subgroup.

(i) Ls
2k(ZG), Lp

2k(ZG), and L〈−1〉
2k (ZG) are torsion-free when k is even, and

when k is odd the only torsion is a Z/2-summand generated by the Arf
invariant element.

(ii) The groups Lh
2k+1(ZG) = Ls

2k+1(ZG) = Lp
2k+1(ZG) are zero (k even), or

Z/2 (if k is odd and |G| is even), detected by projection G → C(2).

(iii) L〈−1〉
2k+1(ZG) = H1(K−1(ZG)) (k even), or Z/2 ⊕ H1(K−1(ZG)) (k odd).
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(iv) The Ranicki-Rothenberg exact sequence gives

0 → H0(K̃0(ZG)) → Lh
2k(ZG) → Lp

2k(ZG) → H1(K̃0(ZG)) → 0

so that Lh
2k(ZG) has the torsion subgroup H0(K̃0(ZG)) (⊕Z/2 if k is

odd).

(v) The double coboundary δ2 : H0(K̃0(ZG)) → H0(Wh(ZG)) is injective.

(vi) The maps Ls
2k(ZK) → Ls

2k(ZG), Lp
2k(ZK) → Lp

2k(ZG), and L〈−1〉
2k (ZK) →

L〈−1〉
2k (ZG) are injective when k is even or [G : K] is odd. For k odd and

[G : K] even, the kernel is generated by the Arf invariant element.

(vii) In the oriented case, Wh(ZG) has trivial involution and H1(Wh(ZG))
= 0.

Proof. See [21, §3, §12] for the proof of part (i) for Ls or Lp. Part (ii) is
due to Bak for Ls and Lh [2], and is proved in [21, 12.1] for Lp. We can now
substitute this information into the Ranicki-Rothenberg sequences above to
get part (iv). Furthermore, we see that the maps L〈−1〉

n (ZG) → Hn(K−1(ZG))
are all surjective, and the extension giving L〈−1〉

2k+1(ZG) actually splits. This
gives part (iii). For part (v) we use the fact that the double coboundary
δ2 : H0(K̃0(ZG)) → H0(Wh(ZG)) can be identified with the composite

H0(K̃0(ZG)) → Lh
0(ZG) → H0(Wh(ZG))

(see [II, §7]). Part (vii) is due to Wall [26].
For L〈−1〉

2k (ZG) we use the exact sequence

0 → L〈−1〉
2k (ZG) → Lp

2k(ẐG) ⊕ Lp
2k(QG) → Lp

2k(Q̂G)

obtained from the braid of exact sequences given in [13, 3.11] by substituting
the calculation Lp

2k+1(Q̂G) = 0 from [14, 1.10]. It is also convenient to use the
idempotent decomposition (as in [13, §7]) for G = C(2rq), q odd:

L〈−1〉
2k (ZG) =

⊕
d|q

L〈−1〉
2k (ZG)(d)

where the d-component, d �= q, is mapped isomorphically under restriction to
Lp

2k+1(ZK, w)(d) for K = C(2rd). This decomposition extends to a decompo-
sition of the arithmetic sequence above. The summand corresponding to d = 1
may be neglected since Lp = L〈−1〉 for a 2-group (since K−1 vanishes in that
case).

We now study Lp
2k(QG) by comparing it to Lp

2k(Q̂G) ⊕ Lp
2k(RG) as in

[14, 1.13]. Let CLp
n(S) = Lp

n(S→SA), where S is a factor of QG, and SA =
Ŝ ⊕ (S ⊗ R). If S has type U , we obtain CLp

2k+1(S) = 0, and we have an
extension 0 → Z/2 → CLp

2k(S) → H1(K0(SA)/K0(S)) → 0. We may now
assume that q > 1, implying that all the factors in the q-component of QG
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have type U . By induction on q it is enough to consider the q-component of
the exact sequence above. It can be re-written in the form

0 → L〈−1〉
2k (ZG)(q) → Lp

2k(ẐG)(q) ⊕ Lp
2k(RG)(q) → CLp

2k(QG)(q) .

But Lp
2k(ẐG)(q) ∼= H1(K0(ẐG)(q)) by [14, 1.11], and the group H1(K0(ẐG)(q))

injects into CLp
2k(QG)(q). To see this we use the exact sequence in Theo-

rem 5.1 (v), and the fact that the involution on K0(QG) is multiplication
by −1. We conclude that L〈−1〉

2k (ZG)(q) injects into Lp
2k(RG)(q) which is

torsion-free by [14, 1.9]. Part (vi) now follows from part (i) and the prop-
erty ResK ◦ IndK = [G : K].

6. The computation of Lp
1(ZG, w)

Here we correct an error in the statement of [14, 5.1]. (Notice however
that Table 2 [14, p. 553] has the correct answer.)

Proposition 6.1. Let G = σ × ρ, where σ is an abelian 2-group and
ρ has odd order. Then Lp

n(ZG, w) = Lp
n(Zσ, w) ⊕ Lp

n(Zσ → ZG, w) where
w : G → {±1} is an orientation character. For i = 2k, the second summand
is free abelian and detected by signatures at the type U(C) representations of
G which are nontrivial on ρ. For n = 2k + 1, the second summand is a direct
sum of Z/2’s, one for each type U(GL) representation of G which is nontrivial
on ρ.

Remark 6.2. Note that type U(C) representations of G exist only when
w ≡ 1, and type U(GL) representations of G exist only when w �≡ 1. In both
cases, the second summand is computed by transfer to cyclic subquotients of
order 2rq, q > 1 odd, with r � 2.

Proof. The given direct sum decomposition follows from the existence of
a retraction of the inclusion σ → G compatible with w. It also follows that

Lp,h
n+1(ZG→Ẑ2G, w) ∼= Lp,h

n+1(Zσ→Ẑ2σ, w) ⊕ Lp
n(Zσ→ZG, w)

since the map Lh
n(Ẑ2σ, w) → Lh

n(Ẑ2G, w) is an isomorphism. The computation
of the relative groups for Z→ Ẑ2 can be read off from [14, Table 2, Remark
2.14]: for each centre field E of a type U(GL) representation, the contribution
is H0(C(E)) ∼= Z/2 if i ≡ 1 mod 2.

The detection of Lp
i (Zσ→ZG, w) by cyclic subquotients is proved in [20,

1.B.7, 3.A.6, 3.B.2].

Corollary 6.3. Let G = C(2rq), for q > 1 odd and r � 2. Then the
group

Lp
2k+1(ZG, w) =

⊕
d|q

Lp
2k+1(ZG, w)(d)
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where the d-component, d �= q, is mapped isomorphically under restriction to
Lp

2k+1(ZK, w)(d) for K = C(2rd). The q-component is given by the formula

Lp
2k+1(ZG, w)(q) =

r⊕
i=2

CLK
2 (Ei) ∼= (Z/2)r−1

when w �≡ 1, where the summand CLK
2 (Ei) = H0(C(Ei)), 2 � i � r, cor-

responds to the type U(GL) rational representation with centre field Ei =
Q(ζ2iq).

Remark 6.4. The calculation of Lp
1 contradicts the assertion in [8, p. 733,

l.-8] that the projection map G → C(2r) induces an isomorphism on Lp
1 in the

nonoriented case. In fact, the projection detects only the q = 1 component.
This error invalidates the proofs of the main results of [8] for cyclic groups
not of 2-power order, so that the reader should not rely on the statements. In
particular, we have already noted that [8, Th. 1(i)] and [8, Th. 2] are incorrect.
On the other hand, the conclusions of [8, Th. 1] are correct for 6-dimensional
similarities of G = C(2r). We will use [8, Cor. (iii)] in Example 9.8 and in
Section 10.

Remark 6.5. The q = 1 component, Lp
2k+1((ZG, w)(1), is isomorphic via

the projection or restriction map to Lp
2k+1((Z[C(2r)], w). In this case, the

representation with centre field Q(i) has type OK(C) and contributes (Z/2)2

to Lp
3; hence Lp

1(ZG, w)(1) ∼= (Z/2)r−2 and Lp
3(ZG, w)(1) ∼= (Z/2)r.

We now return to our main calculational device for determining nonlinear
similarities of cyclic groups, namely the “double coboundary”

δ2 : H1(K̃0(ZG−)) → H1(Wh(ZG−))

from the exact sequence

0 → Wh(ZG) → Wh(ẐG) ⊕ K1(QG) → K1(Q̂G) → K̃0(ZG) → 0 .

We recall that the discriminant induces an isomorphism

Lh
1(ZG, w) ∼= H1(Wh(ZG), w)

since Ls
i (ZG, w) ∼= L′

i(ZG, w) = 0 for i ≡ 0, 1 mod 4 by the calculations of
[34, 3.4.5, 5.4].

Proposition 6.6. The kernel of the map Lh
1(ZG, w) → Lp

1(ZG, w) is
isomorphic to the image of the double coboundary

δ2 : H1(K̃0(ZG−)) → H1(Wh(ZG−))

under the isomorphism Lh
1(ZG, w) ∼= H1(Wh(ZG−)) induced by the discrimi-

nant .
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Proof. We will use the commutative braid

H1(K̃0(ZG−))

�����������

δ2

��
H1(Wh(ZG−))

������������

��
Ls

0(ZG, w)

Lh
1 (ZG, w)

������������

������������

H1(∆)

�����������

������������

Ls
1(ZG, w)

������������

��
Lp

1(ZG, w)

������������

��
H0(K̃0(ZG−))

(6.7)

relating the Lh to Lp and the Ls to Lh Rothenberg sequences. The term
H1(∆) is the Tate cohomology of the relative group for the double coboundary
defined in [II, §7]. The braid diagram is constructed by diagram chasing using
the interlocking K and L-theory exact sequences, as in, for example, [13, §3],
[14, p. 560], [27, p. 3] and [28, 6.2]. We see that the discriminant of an element
σ ∈ Lh

1(ZG, w) lies in the image of the double coboundary if and only if
σ ∈ ker(Lh

1(ZG, w) → Lp
1(ZG, w)).

The braid diagram in this proof also gives:

Corollary 6.8. There is an isomorphism Lp
1(ZG, w) ∼= H1(∆).

Remark 6.9. It follows from Corollary 6.3 that H1(∆) is fixed by the
induced maps from group automorphisms of G. We will generalize this result
in the next section.

Remark 6.10. There is a version of these results for Lp
3(ZG, w) as well, on

the kernel of the projection map Lp
3(ZG, w) → Lp

3(ZK, w), where K = C(4).
The point is that Ls

i (ZG, w) ∼= Ls
i (ZK, w) is an isomorphism for i ≡ 2, 3

mod 4 as well [34, 3.4.5, 5.4]. There is also a corresponding braid [II, (9.1)] for
Ls

2k+1(CW×R−,G(Z)), Lh
2k+1(CW×R−,G(Z)) and Lp

2k+1(CW×R−,G(Z)) involving
the double coboundary in bounded K-theory. The cone point inclusion

Cpt(ZG, w) = Cpt,G−(Z) → CW×R−,G(Z)

induces a natural transformation between the two braid diagrams.

In Section 7 we will need the following calculation. We denote by

LWh(ZH)
n (ZG−)

the L-group of ZG with the nonoriented involution, and Whitehead torsions
allowed in the subgroup Wh(ZH) ⊂ Wh(ZG).
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Lemma 6.11. L
Wh(ZH)
1 (ZG−) = 0, and the map

L
Wh(ZH)
0 (ZG−) → H0(Wh(ZH))

induced by the discriminant is an injection.

Proof. The Rothenberg sequence gives

Ls
n(ZG−) → LWh(ZH)

n (ZG−) → Hn(Wh(ZH)) .

For n ≡ 1 mod 4 the outside terms are zero, and hence L
Wh(ZH)
1 (ZG−) = 0.

For n ≡ 0 mod 4, Ls
0(ZG−) = 0 as noted above and the injectivity follows.

In later sections, it will be convenient to stabilize with trivial representa-
tions and use the identification

Lp
n+k(CW×Rk,G(Z)) ∼= L〈−k〉

n (CW,G(Z)).

The composite with the transfer

trfRk : Lp
n(ZG) → Lp

n+k(CW×Rk,G(Z))

is just the usual “change of K-theory” map, which may be analysed by the
Ranicki-Rothenberg sequences [30]. For G a finite group, K−j(ZG) = 0 if j � 2
so only the first stabilization is needed.

Lemma 6.12. For G = C(2rq) and w : G → {±1} nontrivial, the map

Lp
2k+1(ZG, w) → L〈−1〉

2k+1(ZG, w)

is injective.

Proof. The group K−1(ZG) is a torsion free quotient of K0(Q̂G), and has
the involution induced by [P ] �→ −[P ∗] on K0(Q̂G) [13, 3.6]. This implies first
that H0(K0(Q̂G)) = 0, and so the image of the coboundary

H0(K−1(ZG)) → H1(K0(ẐG)) ⊕ H1(K0(QG))

consists of the classes (0, [E]) where E splits at every finite prime dividing 2q.
We need to compare the exact sequences in the following diagram (see [14],
[21]):

LK
2k+2(ẐG, w) ⊕ LK

2k+2(QG, w) ��

��

LK
2k+2(Q̂G, w)

��
0 �� L〈−1〉

2k+2(ZG, w) ��

��

Lp
2k+2(ẐG, w) ⊕ Lp

2k+2(QG, w) ��

��

Lp
2k+2(Q̂G, w)

��
0 �� H0(K−1(ZG)) �� H1(K0(ẐG)) ⊕ H1(K0(QG)) �� H1(K0(Q̂G)).
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The groups LK
2k+2(ẐG, w) reduce to the L-groups of finite fields, which are

zero in type U , and the map Lp
2k+2(QG, w) → H1(K0(QG)) is surjective.

For each involution invariant field E in the top component of QG, the group
LK

2k+2(E) = H0(E×) which maps injectively into LK
2k+2(Ê) = H0(Ê×), [14]. It

follows that the images of LK
2k+2(E) and L〈−1〉

2k+2(ZG, w) in Lp
2k+2(E) have zero

intersection , and so the composite map L〈−1〉
2k+2(ZG, w) → H1(K0(QG)) is an

isomorphism onto the classes which split at all primes dividing 2q. Therefore
the map L〈−1〉

2k+2(ZG, w) → H0(K−1(ZG)) is surjective, and we conclude that
the map Lp

2k+1(ZG, w) → L〈−1〉
2k+1(ZG, w) is injective.

Corollary 6.13. Let G = C(2rq) and w : G → {±1} be the nontrivial
orientation. If W is a G-representation with WG = 0, then the map

Lp
2k+1(CW,G(Z), w) → L〈−1〉

2k+1(CW,G(Z), w)

is injective.

Proof. We first note that the cone point maps K0(RG) → K0(CW,G(R))
are surjective for R = Ẑ,Q or Q̂ since for these coefficients RG has van-
ishing K−1 groups. This shows that K−1(CW,G(Z)) is again a quotient of
K0(Q̂G). To see that K−1(CW,G(Z)) is also torsion free, consider the bound-
ary map K1(C>0

W,G(Q̂)) → K0(CW (Q̂)) which is just a sum of induction maps

K0(Q̂K) → K0(Q̂G) from proper subgroups of K ⊂ G. But for G cyclic, these
induction maps are split injective. We now complete the argument by compar-
ing the diagram above with the corresponding diagram for the bounded the-
ory, concluding that H0(K−1(ZG)) → H0(K−1(CW,G(Z))) is surjective. Since
L〈−1〉

2k+2(ZG, w) → H0(K−1(ZG)) is also surjective, we are done.

7. The proof of Theorem A

The condition (i) is equivalent to assuming that S(V1) and S(V2) are freely
G-homotopy equivalent. Condition (ii) is necessary by Corollary 3.10 which
rules out nonlinear similarities of semifree representations. Condition (ii) also
implies that S(V1) is s-normally cobordant to S(V2) by [3, Prop. 2.1], which is
another necessary condition for topological similarity. Thus under conditions
(i) and (ii), there exists a homotopy equivalence f : S(V2) → S(V1), and an
element σ = σ(f) ∈ Lh

0(ZG) such that trfR−(σ) = 0 ∈ Lh
1(CR−,G(Z)) if and

only if V1 ⊕ R− ∼t V2 ⊕ R−.
Comparing the h- and s- surgery exact sequences we see easily that the

image of σ in H0(Wh(ZG)) is given by the Whitehead torsion {τ(f)} =
{∆(V1)/∆(V2)} ∈ Wh(ZG) of the homotopy equivalence S(V2)/G � S(V1)/G.

In Section 2 we gave the short exact sequence

0 → Wh(ZG)/ Wh(ZH) → Wh(ZH→ZG) → k → 0
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where K1(CR−,G(Z))/{±G}) is denoted by Wh(CR−,G(Z)) = Wh(ZH → ZG)
and k = ker(K̃0(ZH) → K̃0(ZG)). We proved in Theorem 3.6 that the transfer
of the torsion element in Wh(ZG) in Wh(ZH → ZG) is given by the same
element under the map induced by inclusion Wh(ZG) → Wh(ZH→ZG).

It follows that the image of trfW (σ) in

H1(Wh(CR−,G(Z))) = H1(Wh(ZH→ZG−))

is given by the image of our well-defined element

{∆(V1)/∆(V2)} ∈ H1(Wh(ZG−)/ Wh(ZH))

under the cone point inclusion into H1(Wh(ZH→ZG−)).
The necessity of the condition is now easy. To have a nonlinear similarity

we must have

trfR−(σ) = 0 ∈ Lh
1(CR−,G(Z)) .

Hence

trfR−(∆(V1)/∆(V2)) = 0 ∈ H1(Wh(ZH→ZG−))

must vanish by naturality of the transfer in the Rothenberg sequence. This ele-
ment comes from H1(Wh(ZG−)/ Wh(ZH)), and so to vanish in H1(Wh(ZH→
ZG−)) it must be in the image from

H0(k) → H1(Wh(ZG−/ Wh(ZH))

under the coboundary.
To prove sufficiency, we assume that the image of the transferred element

{∆(V1)/∆(V2)} ∈ H1(Wh(ZH→ZG−))

is zero. Consider the long exact sequence derived from the inclusion of filtered
categories

Cpt(ZG) ⊂ CR−,G(Z)

where CR−,G(Z) has the standard orientation [II, Ex. 5.4], inducing the non-
trivial orientation at the cone point. The quotient category C>0

R−,G(Z) of germs
away from 0 is canonically isomorphic to C>0

[0,∞),H(Z) , since by equivariance
what happens on the positive half line has to be copied on the negative half
line, and what happens near 0 does not matter in the germ category. Since
the action of H on [0,∞) is trivial, this category is precisely C>0

[0,∞)(ZH) which
has the same K- and L-theory as C>

R(ZH) by the projection map. By [II, Th.
5.7] we thus get a long exact sequence

. . . → Lk
n(ZH) → Lh

n(ZG−) → Lh
n(CR−,G(Z)) → Lk

n−1(ZH) → . . .
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where the map is induced by induction. Comparing this sequence with the long
exact sequence for the pair Lh,k

n (ZH → ZG−) (see Theorem 4.1) it follows that

Lh
n(CR−,G(Z)) ∼= Lk,h

n (ZH → ZG−) .

Consider the following diagram with exact rows and columns:

L
Wh(ZH)
1 (ZG−) ��

��

L
h,Wh(ZH)
1 (ZH→ZG−) ��

��

Lh
0(ZH)

��
Lh

1(ZG−) ��

��

Lk,h
1 (ZH→ZG−)

��

�� Lk
0(ZH)

��
H1(Wh(G−)/ Wh(H)) �� H1(Wh(ZH→ZG−)) �� H1(k) .

We need to show that trfR−(σ) vanishes in order to produce the nonlinear
similarity. We know that the image of ResH(σ) = 0, and our assumption is
that the image

{∆(V1)/∆(V2)} ∈ H1(Wh(ZH→ZG−))

vanishes. We will finish the argument by showing:

Lemma 7.1. Suppose that σ ∈ Lh
0(ZG).

(i) L
h,Wh(ZH)
1 (ZH→ZG−) is torsion-free.

(ii) The torsion subgroup of Lk,h
1 (ZH → ZG−) injects into H1(Wh(ZH →

ZG−)), or equivalently, the torsion subgroup of Lh
1(CR−,G(Z)) injects into

H1(Wh(CR−,G(Z))).

(iii) If ResH(σ) = 0 ∈ Lh
0(ZH), then trfR−(σ) is a torsion element.

Proof. For assertion (i), we consider the diagram

Ls
0(ZH) ��

  

Ls
0(ZG−)

Lh
0 (ZH)

  

�� L
Wh(ZH)
0 (ZG−)

  
H0(Wh(ZH)) H0(Wh(ZH))

→

  

→

  

→

  

→

where Ls
0(ZG−) = 0. Since L

Wh(ZH)
1 (ZG−) = 0 as well (by Lemma 6.11), it

follows that

L
h,Wh(ZH)
1 (ZH→ZG−) = ker(Lh

0(ZH) → L
Wh(ZH)
0 (ZG−)) ∼= Ls

0(ZH)
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where Ls
0(ZH) is torsion-free. Part (ii) follows from part (i), since the previous

term in the exact sequence has exponent two. For assertion (iii) we refer to
part of the twisting diagram of Section 4, namely the commutative diagram:

Lh
0 (ZG)

trfR−
ResH

��������������

Lh
1 (ZG−) �� Lk,h

1 (ZH→ZG−) �� Lk
0(ZH)

→

and the fact that ResH(trfR−(σ)) = 0 since it factors through ResH : Lh
0(ZG) →

Lh
0(ZH). But Lh

1(ZG−) ∼= H1(Wh(ZG−)) has exponent 2.

Remark 7.2. Theorem A gives necessary and sufficient conditions for the
existence of 5-dimensional similarities. Consider the situation in dimensions
� 5. By character theory it suffices to consider a cyclic group G, which must
be of order divisable by 4, say 4q, with index 2 subgroup H. It suffices by
Lemma 3.1 to consider the following situation

V1 ⊕ W ∼t V2 ⊕ W

where Vi are free homotopy equivalent representations which become isomor-
phic once restricted to H. Therefore S(V1) is normally cobordant to S(V2).
If Vi are two-dimensional they are determined by one character, so homo-
topy equivalence implies isomorphism. We may thus assume Vi are at least
4-dimensional, and dimW = 1. According to Theorem 3.5, nonlinear similar-
ity is now determined by trfW (σ), where σ is an element of infinite order in
Lh

0(ZG) hitting the element in the structure set determined by the homotopy
equivalence of S(V2)/G � S(V1)/G. In case W is the trivial representation we
may identify trfW with the map

Lh
0(ZG) → Lp

0(ZG)

which we have seen (in Corollary 3.10) is injective on the elements of infinite or-
der. Hence we are left with the case where W is the nontrivial one-dimensional
representation R−, which is reduced to number theory by Theorem A. In Corol-
lary 9.3 we work out the number theory for G = C(2r) as an example, showing
that 5-dimensional similarities do not exist for these groups. The general case
was done by Cappell and Shaneson in 1981, and this preprint has recently been
published [6].

8. The proof of Theorem B

The new ingredient in Theorem B is the double coboundary. As in the last
section, we may assume that f : S(V2) → S(V1) is a G-homotopy equivalence
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which is freely G-normally cobordant to the identity, giving an element σ =
σ(f) ∈ Lh

0(ZG). Then V1 ⊕ R− ⊕ R+ ∼t V2 ⊕ R− ⊕ R+ if and only if

trfR−⊕R+
(σ) = 0 ∈ Lh

2(CR−⊕R+,G(Z))

by Theorem 3.5. But Lh
2(CR−⊕R+,G(Z)) = Lp

1(CR−,G(Z)), so we may regard
the criterion as the vanishing of trfR−(σ) ∈ Lp

1(CR−,G(Z)) instead.

The main commutative diagram is:

H1(K̃0(CR− ,G(Z)))

		���������

δ2

��
H1(Wh(CR− ,G(Z)))

		���������

��
Ls

0(CR− ,G(Z))

Lh
1(CR− ,G(Z))

		���������



���������

H1(∆R− )

		���������



���������

Ls
1(CR− ,G(Z))



���������

��
Lp

1(CR− ,G(Z))



���������

��
H0(K̃0(CR− ,G(Z)))

(8.1)

where H1(∆R−) denotes the relative group of the double coboundary map.
Notice that some of the groups in this diagram already appeared as relative
L-groups in the last section. We have

Lh
1(CR−,G(Z)) = Lk,h

1 (ZH→ZG−)

and

Ls
1(CR−,G(Z)) = L

h,Wh(ZH)
1 (ZH→ZG−) .

By Lemma 7.1 (i) this group is torsion-free and the preceding term H0(∆R−)
is 2-torsion. Hence Ls

1(CR−,G(Z)) injects into Lp
1(CR−,G(Z)), and we conclude

that the torsion subgroup of Lp
1(CR−,G(Z)) injects into H1(∆R−).

However, since ResH(σ) = 0 ∈ Lh
0(ZH), Lemma 7.1 (iii) states that

trfR−(σ) is a torsion element. Furthermore, its image in H1(∆R−) is zero
if and only if

{∆(V1)/∆(V2)} ∈ H1(Wh(ZH→ZG−))

lies in the image of the double coboundary, and this completes the proof of
Theorem B.

We conclude this section with an important property of the relative group
H1(∆W×R−) of the double coboundary

δ2 : H1(K̃0(CW×R−,G(Z))) → H1(Wh(CW×R−,G(Z)))
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which we will refer to as Galois invariance. For G a cyclic 2-group, we establish
a similar statement for the image of H1(Wh(ZG−)/ Wh(ZH)) in the relative
group H1(∆R−). This sharper version will be used in determining the nonlinear
similarities for cyclic 2-groups.

Lemma 8.2. Let W be a complex G-representation, with WG = 0, con-
taining all the nontrivial irreducible representations of G with isotropy of
2-power index.

(i) Automorphisms of G induce the identity on the image of

H1(Wh(ZG−)/ Wh(ZH))

in the relative group H1(∆W×R−) of the double coboundary.

(ii) If G is a cyclic 2-group, then automorphisms of G induce the identity on
the image of H1(Wh(ZG−)/ Wh(ZH)) in the relative group H1(∆R−).

Proof. The first step is to prove that the image of any

[u] ∈ H1(Wh(ZG−)/ Wh(ZH))

in H1(Wh(ZH→ZG−)) = H1(Wh(CR−,G(Z))) equals the discriminant

trfR−(σ) ∈ Lh
1(CR−,G(Z))

for some σ ∈ Lh
0(ZG). Consider the diagram

Lh
0(ZG) ��

trfR−
��

H0(Wh(ZG))

trfR−
��

Lh
1(CR−,G(Z)) �� H1(Wh(ZH→ZG−)).

By Theorem 3.6, the K-theory transfer factors through the map induced by the
cone point inclusion c∗ : H1(Wh(ZG−)/ Wh(ZH)) → H1(Wh(ZH → ZG−)).
Since Lh

0(ZG) → H0(Wh(ZG) is surjective, there exists σ ∈ Lh
0(ZG) with

given discriminant [u], and trfR−(σ) has discriminant c∗([u]). But the natural
map H0(Wh(ZG)) → H1(Wh(ZG−)/ Wh(ZH)) is also surjective, so that the
first step is complete. By naturality of the transfer

trfW : Lh
1(CR−,G(Z)) → Lh

2k+1(CW×R−,G(Z))

(dimW = 2k), it follows that the image of c∗([u]) in H1(Wh(CW×R−,G(Z)))
equals the discriminant of the element trfW×R−(σ).

Our assumption on W implies that trfW×R−(σ) is a torsion element (see
[II, §4]). We can therefore apply [II, Th. 8.1(i)]: there exists a torsion el-
ement σ̂ ∈ Lh

2k+1(CR−,G(Z)), such that c∗(σ̂) = trfW×R−(σ). Now from the
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commutative diagram comparing cone point inclusions:

Lh
2k+1(CR−,G(Z)) ��

c∗
��

H1(Wh(ZH→ZG−))

c∗

��
Lh

2k+1(CW×R−,G(Z)) �� H1(Wh(CW×R−,G(Z))

we conclude that the image of c∗([u]) in H1(Wh(CW×R−,G(Z))) equals the im-
age of the discriminant of σ̂ ∈ Lh

2k+1(CR−,G(Z)). The braid diagram used in the
proof of Theorem B above now shows that the image of c∗([u]) in H1(∆W×R−)
comes from the image of σ̂ ∈ Lp

2k+1(CR−,G(Z)) in H1(∆R−), via the natural
map H1(∆R−) → H1(∆W×R−).

Finally we consider the cone point inclusion sequence

Lh
2(C>0

R−,G(Z)) → Lp
1(ZG−) → Lp

1(CR−,G(Z)) → Lh
1(C>0

R−,G(Z)) → Lp
0(ZG−)

The K-theory decoration on the relative group is the image of

K̃0(CR−,G(Z)) → K̃0(C>0
R−,G(Z)) ∼= K−1(ZH)

but since K−1(ZH) → K−1(ZG) is injective, that image is zero and we get Lh.
Now Lh

2(C>0
R−,G(Z)) ∼= Lp

1(ZH) = 0 and Lh
1(C>0

R−,G(Z)) ∼= Lp
0(ZH) is torsion-

free. It follows that the cone point inclusion Lp
1(ZG−) → Lp

1(CR−,G(Z)) is
an isomorphism onto the torsion subgroup. But by Corollary 6.3 the group
Lp

1(ZG−) is fixed by group automorphisms of G. This completes the proof of
part (i).

In part (ii) we assume that G is a cyclic 2-group, so that K−1(ZK) = 0 for
all subgroups K ⊆ G. By [II, Cor. 6.9] we have an isomorphism H1(∆R−) ∼=
H1(∆W×R−) and the proof is complete.

9. Cyclic 2-Groups: preliminary results

For G = C(2r) a cyclic 2-group, we have stronger results because
K−1(ZG) = 0. The results of this section prepare for a complete classifica-
tion of stable and unstable nonlinear similarities for cyclic 2-groups, and the
computation of RTop(G) .

Lemma 9.1 (R. Oliver, [25]). For G = C(2r), the cohomology groups
H∗(k) = 0, where k = ker(K̃0(ZH) → K̃0(ZG)).

Proof. We are indebted to R. Oliver for pointing out that this result
follows from [25, Th. 2.6], which states (in his notation):

D(Z[C(2n+3)]) ∼= Im((5 − γ)ψ̂n)
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where D(ZG) is the kernel of the map induced by including ZG in a maximal
order M in QG. By Weber’s theorem, the ideal class groups of 2-power cyclo-
tomic fields have odd order; thus to prove that H∗(k) = 0 it is enough to show
that ker(D(ZH) → D(ZG)) = 0.

The map ψ̂ is the reduction mod 2n+1 of a map ψn : Mn → Mn given by
the formula

ψn(ei) =
i∑

j=0

2i−jγn−j
i−j en−j

for 0≤ i≤n, where {e0, . . . , en} is a basis for the direct sum Mn =
∑n

i=0 Ẑ2[Γi]ei

and Γi denotes the cyclic group of automorphisms of C(2i+2) generated by
γ(t) = t5.

To shorten Oliver’s notation, we let D[n + 3] := D(Z[C(2n+3)]) so that
D[n + 3] is identified with the subgroup Im((5 − γ)ψ̂n) of Mn/2n+1Mn. It is
enough to see that the map

Ind: D[n + 3] → D[n + 4]

given by the subgroup inclusion induces an injection on this subgroup
Im((5 − γ)ψ̂n).

However the map Ind corresponds under the identification in [25, Th. 2.4]
with the explicit map ind(ei) = γi+1

i ei+1 (see last paragraph of [25, §2]). Using
this explicit formula, we need to check that x ∈ ker(ψ̂n+1 ◦ ind) implies that
x ∈ ker ψ̂n. Suppose that x =

∑n
i=0 aiei ∈ Mn. Then

ψn+1(ind(x)) =

(
n∑

i=0

ai2i+1γi+1
i γn+1

i+1

)
en+1 +

n∑
j=0

 n∑
i=j

ai2i−jγi+1
i γn−j

i−j

 en−j

after re-arranging the summations, and

ψn(x) =
n∑

j=0

 n∑
i=j

ai2i−jγn−j
i−j

 en−j .

We can then use the formulas after [25, Lemma 1.1] to check that

γi+1
i γn−j

i−j = 2γn−j
i−j ∈ Ẑ2[Γn−j ]

for 0 � j � n. Since Mn+1/2n+2Mn+1 is a direct sum of the group
rings Z/2n+2[Γi], it follows that ψn+1(ind(x)) ≡ 0 mod 2n+2 implies ψn(x) ≡
0 mod 2n+1.

Our results for cyclic 2-groups can now be improved, starting with simi-
larities with an R− but no R+ summand.

Theorem 9.2. Let V1 = ta1 + · · · + tak and V2 = tb1 + · · · + tbk be free
G-representations, where G = C(2r). Let W be a complex G-representation
with no R+ or R− summands.
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(i) If ResH(V1 ⊕ W ) ⊕ R+ ∼t ResH(V2 ⊕ W ) ⊕ R+, then V1 ⊕ W ⊕ R− ∼t

V2 ⊕ W ⊕R− if and only if S(V1) is s-normally cobordant to S(V2) and
{∆(V1)/∆(V2)} = 0 in H1(Wh(ZG−)/ Wh(ZH)).

(ii) If ResH V1
∼= ResH V2, then V1 ⊕ W ⊕ R− ∼t V2 ⊕ W ⊕ R− if and only

if the class {∆(V1)/∆(V2)} = 0 in H1(Wh(ZG−)).

Proof. Consider first the situation in part (i). By [II, Th. 9.2], the image of
the final surgery obstruction trfW×R−(σ) in Lh

1(CW×R−,G(Z)) is just the class
{∆(V1)/∆(V2)} considered as an element in H1(Wh(CW×R−,G(Z)). Moreover,
the natural map

H1(Wh(ZG−)/ Wh(ZH)) → H1(Wh(CW×R−,G(Z))

factors through H1(Wh(CR−,G(Z))), and the torsion subgroup of Lh
1(CR−,G(Z))

injects into H1(Wh(CR−,G(Z))) by Lemma 7.1(ii). Therefore, trfW×R−(σ) = 0
if and only if the Reidemeister torsion invariant vanishes in H1(Wh(CR−,G(Z))).
But H∗(k) = 0 so the natural map

H1(Wh(ZG−)/ Wh(ZH)) → H1(Wh(ZH→ZG−)) ∼= H1(Wh(CR−,G(Z)))

induces an isomorphism. This proves part (i).
In part (ii), since ResH V1

∼= ResH V2, our Reidemeister torsion quotient
represents an element {∆(V1)/∆(V2)} ∈ H1(Wh(ZG−)), and this group injects
into H1(Wh(ZH →ZG−)). The vanishing of the surgery obstruction is now
equivalent to {∆(V1)/∆(V2)} = 0 in H1(Wh(ZG−)), by the argument above.

Corollary 9.3. The groups G = C(2r) have no 5-dimensional nonlinear
similarities.

Proof. The Reidemeister torsion quotients for possible 5-dimensional sim-
ilarities are represented by the units U1,i which form a basis of H1(Wh(ZG−))
(see [5], [8, p. 733]).

Higher-dimensional similarities of cyclic 2-groups were previously studied
in the 1980’s. The 6-dimensional case was worked out in detail for cyclic
2-groups in [8], and general conditions A–D were announced in [7] for the
classification of nonlinear similarities for cyclic 2-groups in any dimension.
However, in Example 9.7 we give a counterexample to the necessity of [7,
Cond. B], and this invalidates the claimed solution. Our next result concerns
similarities with both R− and R+ summands.

Theorem 9.4. Let V1 = ta1 + · · · + tak and V2 = tb1 + · · · + tbk be free
G-representations, where G = C(2r). Let W be a complex G-representation
with no R+ summands. Then there exists a topological similarity V1 ⊕ W ⊕
R− ⊕ R+ ∼t V2 ⊕ W ⊕ R− ⊕ R+ if and only if
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(i) S(V1) is s-normally cobordant to S(V2),

(ii) ResH(V1 ⊕ W ) ⊕ R+ ∼t ResH(V2 ⊕ W ) ⊕ R+, and

(iii) the element {∆(V1)/∆(V2)} is in the image of the double coboundary

δ2 : H1(K̃0(ZH→ZG−)) → H1(Wh(ZH→ZG−)) .

Corollary 9.5. There is a stable topological similarity V1 ≈t V2 if and
only if S(V1) is s-normally cobordant to S(V2) and ResK {∆(V1)/∆(V2)} is in
the image of the double coboundary δ2

K for all subgroups K ⊆ G.

Remark 9.6. The double coboundary δ2
K in this statement is the one for

the subgroup K with respect to an index-two subgroup K1 < K. Corollary
9.5 follows from Theorem 9.4 and [II, Prop. 7.6]. Notice that Theorem 9.4
also gives a way to construct the stable similarity, if we assume that the con-
ditions are satisfied. In the most complicated case, one would need all proper
subgroups of G appearing as isotropy groups in W . This will be explained
precisely in Section 11.

The proof of Theorem 9.4. By [II, Cor. 6.9] the double coboundary

δ2
W : H1(K̃0(CWmax×R−,G(Z))) → H1(Wh(CWmax×R−,G(Z)))

is isomorphic to

δ2 : H1(K̃0(ZH→ZG−)) → H1(Wh(ZH→ZG−))

under the cone point inclusion. The result now follows from Theorem C.

We conclude this section with two examples showing methods of construct-
ing nonlinear similarities.

Example 9.7. For G = C(2r), r � 5, the element (t9 + t1+2r−2 − t− t9+2r−2
)

lies in R̃free
t (G). To prove this assertion, note that (t9+t1+2r−2−t−t9+2r−2

) lies
in R̃free

n (G) by applying [7, Cond. A′]. Let V1 = t9+t1+2r−2
, V2 = t+t9+2r−2

and
let W denote the complex 2-dimensional representation with isotropy of index
4. The surgery obstruction in Lp

3(CW×R−,G(Z)) is zero by a similar argument
to that given in [8, p. 734], based on the fact that 9(1 + 2r−2) ≡ 1 mod 8 when
r � 5, and invariance under group automorphisms (similar to [8, 4.1]). The
Reidemeister torsion invariant

u = ∆(V1)/∆(V2) =
(t9 − 1)(t1+2r−2 − 1)
(t − 1)(t9+2r−2 − 1)

can be written in the form u = α(v)v where

v =
(t� − 1)(t1+2r−2 − 1)
(t − 1)(t�+2r−2 − 1)
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for �2 ≡ 9 mod 2r and � ≡ 1 mod 4. The Galois automorphism is α(t) = t�.
Once again we justify these formulas by appeal to a pull-back diagram for the
group ring. Since the surgery obstruction is determined by the image of u in
H1(∆R−), which has exponent 2, and group automorphisms of G induce the
identity on this group by Lemma 8.2(ii), the element (t9 + t1+2r−2 − t− t9+2r−2

)
lies in R̃free

t (G).
We note that this gives a counterexample to the necessity of [7, Cond. B]

for nonlinear similarities. If f : S(V1) → S(V2) is a G-homotopy equivalence,
then the Whitehead torsion τ(f) = ∆(V1)/∆(V2) ∈ Wh(ZG), but its restric-
tion to Wh(ZH) is given by U9,1+2r−2 = U1,9(U1,1)−1, and this is not a square,
since it is nontrivial in H0(Wh(ZH)) by the results of Cappell-Shaneson on
units (see [8, p. 733]).

Example 9.8. According to [7, Th. 2], the element t− t5 has order 2r−2 in
RTop(G) for G = C(2r), r > 3, and order 4 for G = C(8). We will verify this
claim using our methods. Note that 2r−2(t− t5) ∈ R̃free

h (G), for r � 3 and this
is the smallest multiple that works. A short calculation using [7, Cond. A′]
(done in [II, Lemma 12.5]) also shows that 2r−2(t − t5) ∈ R̃free

n (G), and it
remains to consider the surgery obstruction.

For r = 3 it follows from [8, Cor. (iii)] that 2(t − t5) does not give a 6-
dimensional similarity. By Theorem 9.4 it follows that 2(t − t5) /∈ Rt(G), but
is contained in Rn(G). Since the surgery obstruction has exponent 2, we get
4(t − t5) ≈t 0 as claimed.

To handle the general case, let U1 = 2r−3t and U2 = 2r−3t5 be the
free representations over H = C(2r−1), and let V1 = 2r−3t and V2 = 2r−3t5

be the corresponding free representations over G = C(2r). Notice that
IndH(U1 − U2) = (V1 − V2) + (V τ

1 − V τ
2 ) where τ is the group automorphism

τ(t) = t1+2r−1
. By [8, Cor(iii)] we have 2t ≈t 2t1+2r−1

and 2t5 ≈t 2t5+2r−1
,

whenever r � 4. Therefore, 2r−2t = V1⊕V1 ≈t V1⊕V τ
1 and 2r−2t5 = V2⊕V2 ≈t

V2 ⊕ V τ
2 .

For r > 3, the assertion is that 2r−2(t − t5) ∈ R̃free
t (G) already. We prove

this by induction starting with 2(t−t5) in Rn(C(8)). Suppose that 2r−3(t−t5) ∈
Rn(H) for H = C(2r−1), where r > 3. Then IndH(∆(U1)/∆(U2)) = 0 in
H1(Wh(ZG−)/ Wh(ZH)), since we are dividing out exactly the image of IndH .
If r = 4, it follows from Theorem 9.4 that IndH(U1 − U2) ∈ Rt(C(16)). For
r � 5 we conclude by induction that IndH(U1 − U2) ∈ Rt(G), for G = C(2r)
since Rt(G) is closed under induction from subgroups. Now the calculation
above for IndH(U1 − U2) shows that 2r−2(t − t5) ∈ R̃free

t (G) for r � 4.

10. The proof of Theorem E

Our next example is the computation of RTop(G) for G = C(2r). We first
choose a nice basis for R̃free(G). Let
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a
(i)
s (r) = t5

i − t5
2r−s−2+i

, for 0 � i < 2r−s−2 and 1 � s � r − 2

and let σ denote the automorphism of G given by σ(t) = t5. It is easy to
check that the {a(i)

s (r)} give an additive basis for R̃free(G). For later use,
we let αs(r) = [a(0)

s (r)] and βs(r) = [a(1)
s (r)] denote elements in R̃free

Top(G) for
1 � s � r − 2. When the order 2r of G is understood, we will just write αs,
βs. These elements admit some stable nonlinear similarities, and behave well
under induction and restriction.

Lemma 10.1. There exist the following relations.

(i) ResH(a(i)
s (r)) = a

(i)
s−1(r − 1) for 0 � i < 2r−s−2 and s � 2.

(ii) ResH(a(i)
1 (r)) = 0.

(iii) a
(i)
s (r) ≈t a

(i+2)
s (r) for 0 � i < 2r−s−2 − 2, with 1 � s � r − 4 and r � 5.

(iv) 0 �= α1(r) + β1(r) ∈ R̃free
n,Top(G) for r � 4, but 2(α1(r) + β1(r)) = 0.

(v) IndH(a(i)
s−1(r − 1)) = 2a

(i)
s (r) − a

(i)
1 (r) + a

(2r−s−2+i)
1 (r) for 2 � s � r − 2.

(vi) 2s−2(αs(r) − βs(r)) /∈ R̃free
n,Top(G) for s � 2.

(vii) 2s−1(αs(r) + βs(r)) = 0 for 2 � s < r − 2 and r � 5.

(viii) 2s(αs(r)) = 0 for 1 � s � r − 2 and r � 4.

Proof. The first two parts are immediate from the definitions. Part (iii)
uses the Cappell-Shaneson trick described in Example 9.7. Let

u(a, b; c, d) =
(t5

a − 1)(t5
b − 1)

(t5c − 1)(t5d − 1)
.

This element represents a unit in ZG provided that a + b ≡ c + d mod 2r−2.
As mentioned in Section 2, we can calculate in a pull-back square for ZG

over the corner where these elements become cyclotomic units. Notice that
u(a, b; c, d)−1 = u(c, d; a, b) and σ(u(a, b; c, d)) = u(a + 1, b + 1; c + 1, d + 1).
Consider the units u = u(i, 2r−s−2 + i + 2; 2r−s−2 + i, i + 2) associated to the
Reidemeister torsion quotient ∆(V1)/∆(V2) for the element a

(i)
s (r)− a

(i+2)
s (r).

We can write u = σ(v)v where v = u(i, 2r−s−2 + i + 1; i + 1, 2r−s−2 + i) also
represents a unit in ZG. Since dimVi = 4 the spheres S(V1) and S(V2) are
G-normally cobordant. Then we restrict to H and use induction on r, starting
with r = 4 where the similarity follows from [8, Cor. (iii),p. 719]. Theorem
9.4 and Galois invariance of the surgery obstruction under the action of σ (by
Lemma 8.2(ii)) completes the inductive step.
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The nonexistence of a 6-dimensional similarity in Part (iv) follows from
the calculation [8, Cor. (iii), p. 719]. Theorem 9.4 shows that there is no higher
dimensional similarity.

Part (v) is again immediate, and Part (vi) is an easy calculation show-
ing that the element 2s−2(αs(r) − βs(r)) ∈ R̃free

h (G) fails the first congruence
condition in [35, Th. 1.2], which for this case is the same as the congruence
on the sum of the squares of the weights given in [7, Cond. A′]. Part (viii)
follows from part (v) and induction on the order of G. In Example 9.8 we
showed the case s = r − 2. For s � r − 3 we induce up from the similarity
2α1(r − s + 1) = 0 provided by [8, p. 719], which applies since we now have
r − s + 1 � 4. We prove (vii) in a similar way, using part (v), starting from
the element α1(r − 1) + β1(r − 1) for r � 5. Induction of this element in
R̃free

n,Top(C(2r−1)) gives

2(α2(r) + β2(r)) + a
(2r−4)
1 (r) − a

(0)
1 (r) + a

(2r−4+1)
1 (r) − a

(1)
1 (r)

and application of part (iii) now gives 2(α2(r) + β2(r)) = 0. The required
similarities for s > 2 are obtained by inducing up from this one, and using
the relations 2a

(i)
1 (r) = 0 again to remove the lower terms in the formula from

part (v).

The proof of Theorem E. We already have the generators and relations
claimed in the statement of Theorem E, so it remains to eliminate all other
possible relations. In Example 9.8 we proved that R̃free

Top(C(8)) = Z/4 generated
by α1 = t − t5, where 0 �= 2α1 ∈ R̃free

n,Top(C(8). For G = C(16), we have

R̃free
Top(C(16)) =

〈
α2, α1, β1

〉
and we observe that the elements 2α2 + α1 and 2α2 + β1 are not Galois in-
variant, and hence do not lie in R̃free

n,Top(G) by [II, Th. 13.1(iii)]. Therefore
R̃free

Top(C(16)) = Z/4 ⊕ Z/2 ⊕ Z/2 as claimed in Theorem E.
We now assume the result for H = C(2r−1), with r � 5. By applying the

inductive assumption, we find it is not difficult to give generators for the sub-
group ker ResH ∩R̃free

h,Top(G). Indeed, a generating set consists of the elements
(type I) 〈

2�−1α� + α1, α1 + β1 | 2 � � � r − 2
〉

together with the elements (type II)〈
2�−2(α� − β�) | 3 � � � r − 3

〉
,

where the type II elements appear for r � 6. Notice that none of the generators
(except α1 + β1) are in R̃free

n,Top(G), and all the generators have exponent 2.
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Let γ� = 2�−1α� +α1 and consider a linear relation among type I elements
of the form ∑

n�γ� + ε(α1 + β1) = 0 .

If #{n� �= 0} is odd, then the left side is not Galois invariant, so it cannot
be a relation. On the other hand, if #{n� �= 0} is even, then we can write
the first term as a sum of terms 2�1−1α�1 − 2�2−1α�2 ∈ R̃free

h (G) with each
�i � 2. Suppose first that ε = 1. If the first sum on the left-hand side was in
R̃free

n,Top(G), then its surgery obstruction would be a square and hence trivial by
Theorem 9.4. This contradicts the fact that α1 + β1 �= 0.

We are left with the possibility that #{n� �= 0} is even and ε = 0. Suppose
that �0 � r − 3 is the minimal index such that n�0 = 1, and write the left side
as

2�0−1
[ ∑

�>�0

n�2�−�0α� + α�0

]
= 0 .

However, if we call the term in brackets ω and restrict it (�0 − 1) steps to the
subgroup of index 2�0−1 in G, we get∑

�>�0

n�2�−�0α�−�0+1 + α1

and this is not Galois invariant. We can arrange the signs of the coefficients n�

so that ω ∈ R̃free
h,Top(G). Since twice this element is trivial, its normal invariant

order equals 2. Now by [II, Th. 13.1(iv)] we conclude that the normal invariant
order (over G) of the bracketed term ω must be 2�0 . Hence there is no relation
of this form.

Next we let ξ� = 2�−2(α� −β�), and suppose that we have a relation of the
form ∑

�≥�0

n�ξ� = 0

where �0 is the minimal nonzero coefficient index as before. If #{n� �= 0}
is odd, then the left-hand side fails the first congruence test for the normal
invariant and so it cannot be a relation. If #{n� �= 0} is even we write the left
side as 2�0−2ω, with ω ∈ R̃free

h,Top(G), and restrict ω down to a subgroup K of
index 2�0−2 � 2r−5. The restriction has the form

ResK(ω) =
∑
�>�0

n�2�−�0(α�−�0+2 − β�−�0+2) + (α2 + β2) .

Since #{n� �= 0} is even, this can be rewritten as a sum ResK(ω) = θ − σ(θ)
with θ ∈ R̃free

h,Top(K). If ResK(ω) ∈ R̃free
n,Top(K), this would imply that its

surgery obstruction was trivial, hence ResK(ω) = 0. But restriction one more
step down gives α1 + β1 �= 0 and we have a contradiction. It follows that
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the normal invariant order of ResK(ω) equals 2, and that of ω is 2�0−1 so the
original relation was trivial.

We are left with the possibility of further relations among the type I and
type II elements of the form∑

n�γ� +
∑

m�ξ� + ε(α1 + β1) = 0 .

It is easy to reduce to a relation of the form∑
n�2�−1α� +

∑
m�2�−2(α� − β�) = 0

where #{n� �= 0} = 2 · ν is even and #{m� �= 0}+ ν is even. This follows from
the Galois invariance and the fact that the p1-obstruction for normal cobordism
is nontrivial for the order 2 elements of the form (2�1−1α�1 − 2�2−1α�2).

Now if �0 denotes the minimal index such that n� or m� is nonzero, we
have two cases. First, if m�0 �= 0, we factor out 2�0−2 and restrict our relation
to the subgroup K of index 2�0−2. We obtain

2�0−2
[ ∑

���0

n�2�−�0+1α�−�0+2 +
∑
�>�0

m�2�−�0(α�−�0+2 − β�−�0+2) + (α2 − β2)
]

.

If the normal invariant obstruction for the term in brackets vanishes, then its
surgery obstruction is zero: when ν is even we can rewrite the sum of type
II elements as above to get a Reidemeister torsion obstruction of the form
θ − σ(θ), with θ ∈ R̃free

h,Top(K). The remaining type I terms are collected in
pairs (2�1+1α�1+2 − 2�2+1α�2+2) whose surgery obstructions are squares. When
ν is odd, we replace α2 − β2 by the expression

(α2 − 2tαt+2) − (β2 − 2tβt+2) + 2t(αt+2 − βt+2)

whose torsion has the form θ − σ(θ) plus a square, and continue as for ν

even. The vanishing of this surgery obstruction contradicts (α1 + β1) �= 0 on
restricting one step further down.

In the remaining case, if n�0 �= 0 and m�0 = 0, we factor out 2�0−1 and
restrict to the subgroup of index 2�0−1. As above, the other factor is not Galois
invariant and we get a contradiction to the existence of a normal invariant. This
completes the proof.

11. Nonlinear similarity for cyclic 2-groups

In this final section we will apply our previous results to give explicit
necessary and sufficient conditions for the existence of a nonlinear similarity
V1⊕W ∼t V2⊕W for representations of finite cyclic 2-groups. The main result
is Theorem 11.6.

Lemma 11.1. Let G = C(2r) be a cyclic 2-group. A basis for R̃free
t (C(8))

is given by 4(t − t5). A basis for R̃free
t (G), r � 4, is given by the elements
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(i) 2sαs(r) for 1 � s � r − 2, and

(ii) 2(α1(r) + β1(r)),

together with (provided r � 5) the elements

(iii) 2s−1(αs(r) + βs(r)) for 2 � s � r − 3, and

(iv) γ
(i)
s (r) = (a(i)

s (r) − a
(i+2)
s (r)) for 0 � i < 2r−s−2 − 2 and 1 � s � r − 4.

Proof. This an immediate consequence of Theorem E.

The next step is to rewrite the basis in a more convenient form. It will be
useful to introduce some notation for certain subsets of R̃free(G). Let

A(r) = {2α1(r), 2(α1(r) + β1(r))}

for r � 4 and set A(3) = {4α1(3)}. Next, let

B̂(r) = {2α1(r), α1(r) + β1(r)}

for r � 4, and let B̂(3) = {2α1(3)}. Finally, let

C(r) = {γ(i)
s (r) | 0 � i < 2r−s−2 − 2 and 1 � s � r − 4}

when r � 5, and otherwise C(r) = ∅.
Recall the notation Gk for the subgroup of index 2k in G. We let Indk

denote induction of representations from Gk to G, and Resk denote restriction
of representations from Gk to Gk+1. Define

B(r) = {Indk(χ) |χ ∈ B̂(r − k)}

for r � 4 and 0 < k < r − 2. Note that x ∈ B(r) implies that x = Indk(χ) and
Resk(χ) = 0.

Lemma 11.2. The free abelian group R̃free
t (G) has an integral basis given

by the elements in the set A(r) ∪ B(r) ∪ C(r).

Proof. This follows easily from the relations in Lemma 10.1, particularly
the induction formula

IndH(a(i)
s−1(r − 1)) = 2a(i)

s (r) − (a(i)
1 (r) − a

(2r−s−2+i)
1 (r))

valid for 2 � s � r − 2. Notice that the second term on the right-hand side is
just α1(r) − β1(r) if s = r − 2, and otherwise it is a linear combination of the
basis elements γ

(j)
1 (r). The result is easy for r = 3 or r = 4, and inductively

we assume it for r − 1. Then IndH(2s−1αs−1(r − 1)) = 2sαs(r), plus terms in
ker ResH which are all contained in the span of A(r) and C(r). Similarly,

IndH(2s−2(αs−1(r − 1) + βs−1(r − 1))) = 2s−1(αs(r) + βs(r)),
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plus terms in the span of A(r) and C(r). This shows that integral linear
combinations of the set A(r)∪B(r)∪C(r) span R̃free

t (G). Since ResH(γ(i)
s (r)) =

γ
(i)
s−1(r − 1), ResH ◦ IndH = 2, and A(r) ⊂ ker ResH , we conclude by induction

that there are no nontrivial integral relations among the elements of A(r) ∪
B(r) ∪ C(r).

Using the basis given in Lemma 11.2, we now define the set of weights
θ(x) = {i1, i2, . . . , i�} of an element x ∈ R̃free

t (G). This will be a subset of
{1, 2, . . . , r−2} arranged in strictly ascending order. It will be used to identify
the minimal set of isotropy subgroups needed for the construction of a nonlinear
similarity for x ∈ R̃free

t (G).

Definition 11.3. The weights for x ∈ A(r) ∪ B(r) ∪ C(r) are given as
follows:

(i) If x ∈ ker ResH then θ(x) = {1}.

(ii) If x = Indk(2α1(r − k)), for r > r − k � 4, then θ(x) = {k + 1}.

(iii) If x = Indk(α1(r−k)+β1(r−k)), for r > r−k ≥ 4, or x = Indk(2α1(3)),
then θ(x) = {k, k + 1}.

(iv) If x = γ
(i)
s (r), then θ(x) = {1, 2, . . . , s}.

If x =
∑

n� is an integral linear combination of elements ω� ∈ A(r)∪B(r)∪C(r),
then θ(x) =

⋃
{θ(ω�) |n� �= 0}.

In other words, after collecting the indices of the subgroups involved in
the unique linear combination of basis elements for x, we arrange them in
ascending order ignoring repetitions to produce θ(x).

Definition 11.4. We say that an element x ∈ R̃free
t (G) is even if x =∑

n�ω�, ω� ∈ A(r)∪B(r)∪C(r), has n� ≡ 0 mod 2 whenever one of the following
holds:

(i) ω� = 2α1(r) ∈ A(r), or

(ii) ω� ∈ C(r).

Otherwise, we say the element x is odd . An element x has mixed type if x is
even, but n� �≡ 0 mod 2 for some ω� = Ind(2α1(r − k)) with r > r − k � 4.
Such an element x has depth equal to the minimum k for which x contains a
constituent Ind(2α1(r − k)) with odd multiplicity.

Lemma 11.5. An element x = [V1−V2] ∈ R̃free
t (G) is even if and only if its

Reidemeister torsion invariant {∆(V1)/∆(V2)}=0 in H1(Wh(ZG−)/ Wh(ZH)).
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Proof. The Reidemeister torsion invariants for elements of ker ResH lie in
H1(Wh(ZG−)), which has a basis of units U1,i for 1 � i < 2r−1 and i ≡ 1 mod 4
(see [5, §5]). In particular, {∆(2α1(r))} = U1,1 �= 0, and {∆(α1(r) + β1(r))} =
U1,5 �= 0, but {∆(2(α1(r) + β1(r)))} = U2

1,5 = 0 in H1(Wh(ZG−)). Note that
H1(Wh(ZG−)) injects into H1(Wh(ZG−)/ Wh(ZH)).

Suppose first that x = [V1 − V2] ∈ R̃free
t (G) is even. It follows that its

Reidemeister torsion invariant is either a square or induced up from H, so
that {∆(V1)/∆(V2)} = 0 in H1(Wh(ZG−)/ Wh(ZH)). Conversely, suppose
that x ∈ R̃free

t (G) has an odd coefficient n� for ω� = 2α1(r) or ω� = γ
(i)
1 (r) in

ker ResH . In these cases, {∆(V1)/∆(V2)} �= 0 in H1(Wh(ZG−)/ Wh(ZH)).
Finally, suppose that n� is odd for some ω� =γ

(i)
s (r)∈C(r) with s�2. If the

Reidemeister torsion invariant for ω� were trivial in H1(Wh(ZG−)/ Wh(ZH)),
then its image under the twisted restriction map would also be trivial. This is
the map defined by composing the twisting isomorphism

H1(Wh(ZG−)/ Wh(ZH)) ∼= H0(Wh(ZG)/ Wh(ZH))

with ResH , followed by another twisting isomorphism at the index two level.
But

ResH(γ(i)
s (r)) = γ

(i)
s−1(r − 1) ,

so after restricting s − 1 steps we arrive at γ
(i)
1 (r − s + 1) ∈ ker Ress−1, and a

contradiction as in the previous case.

For 2 � i � r − 2, let Wi denote any irreducible 2-dimensional real repre-
sentation of G with isotropy group Gi, let W1 = R−, and let W0 = R+. The
terms defined in Definitions 11.3 and 11.4 will be used in the statement of our
classification result.

Theorem 11.6. Let G = C(2r) and V1, V2 be free G-representations.
Suppose that x = [V1 − V2] ∈ R̃free

t (G). Then V1 ⊕ W ∼t V2 ⊕ W for a given
G-representation W if and only if the representation W contains:

(i) a summand Wk for each k ∈ θ(x),

(ii) a summand Wt for some 0 � t � depth(x) when x has mixed type, and

(iii) a summand R+ when x is odd.

Proof. The sufficiency of the given conditions follows immediately from
Theorem 9.4, the basic list of 6-dimensional similarities in [8, Th. 1 (iii)], and
the following commutative diagram

Lh
2k(ZH)

i∗ ��

trfResH W

��

Lh
2k(ZG)

trfW

��
Lh

2k+m(CRes W,H(Z))
i∗ �� Lh

2k+m(CW,G(Z))
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or the corresponding Lp version if W contains an R+ sub-representation.
The summand R+ will be unnecessary exactly when {∆(V1)/∆(V2)} = 0 in
H1(Wh(ZG−)/ Wh(ZH)), by Theorem 9.2. By Lemma 11.5 this happens pre-
cisely when x is even.

For all elements [V1 − V2] ∈ R̃free
t (H) we have dim Vi = 2k ≡ 0 mod 4. To

handle the surgery obstructions of induced representations, note that

{∆(IndV1)/∆(IndV2)} = i∗ {∆(V1)/∆(V2)} ∈ H0(Wh(ZG))

for any x = [V1−V2] ∈ R̃free
t (H). For the surgery obstruction of an H-homotopy

equivalence f : S(V2) → S(V1) we have the relation

σ(Ind(f)) = i∗(σ(f)) + i∗(β) ∈ Lh
0(ZG)

for some β ∈ Ls
0(ZH). It follows that

i∗(trfRes W (σ(f))) = trfW (σ(Ind(f))) ∈ Lh
m(CW,G(Z))

provided that ResW contains an R− summand. This formula gives the ex-
istence of unstable similarities for elements Indk(χ) ∈ B(r) under the given
conditions on W .

The necessity of condition (i) follows immediately from [17, Th. 5.1], once
we relate the odd p-local components used there to our setting. The surgery
obstruction group Lh

2k(ZG) has a natural splitting, after localizing at any odd
prime, indexed by the divisors of |G| = 2r. An element σ ∈ Lh

2k(ZG) of infinite
order will have a nontrivial projection in the “top” 2r-component provided
that ResH(σ) = 0. This applies to our basis elements 2α1(r), 2(α1(r)+β1(r)),
4α1(3), and γ

(i)
1 (r). If any of these occurs as a constituent in x, a summand

R− is necessary to produce the nonlinear similarity.
More generally, σ will have a nontrivial projection in the 2r−k-component

for k > 0 provided that ResGk
(σ) is nonzero but ResGk+1(σ) = 0. In this case

the representation W must contain at least one summand Wk+1 which restricts
to R− for the subgroup Gk. To see this we restrict the surgery obstruction
for our element x = [V1 − V2] to each Gk for k + 1 ∈ θ(x) and apply [17,
Th. 5.1]. This establishes part of condition (i) for x containing any one of the
basis elements Indk(χ) ∈ B(r). We will deal below with the necessity of the
additional summand Wk for the basis elements Indk(α1(r− k) + β1(r− k)), or
Indk(2α1(3)), having θ = {k, k + 1}.

For the elements γ
(i)
s (r) with s � 2, we use the relation (2x−IndH(ResH x))

∈ ker ResH and the induction formula in Lemma 10.1 again. This shows that
the elements γ

(i)
s (r) have a nontrivial projection into each component of index

� 2s, and we again apply [17, Th. 5.1]. Condition (i) is now established for
any x containing some γ

(i)
s (r) as a constituent.

Condition (ii) applies only to elements x of mixed type. These contain a
constituent Indk(2α1(r− k)), for r− k � 4, with odd multiplicity. It says that
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W must contain a summand which restricts to a sum of R+ representations
over the subgroup Gk. Suppose if possible that W = Wk+1 ⊕ U where U has
isotropy groups contained in Gk+1. Then K1(CWk+1,G(Z)) ∼= K1(CW,G(Z)) by
[II, Lemma 6.1], and

Wh(CWk+1,G(Z)) ∼= Wh(ZG)/ Wh(ZGk+1) .

However, the results of [5, Prop. 1.2] show that the inclusion induces an
injection

H0(Wh(ZGk)/ Wh(ZGk+1)) → H0(Wh(ZG)/ Wh(ZGk+1)) .

It follows that the surgery obstruction trfW (σ) is nonzero, contradicting the
existence of such a nonlinear similarity.

To see that a summand Wk is also necessary when x has a constituent of
the form Indk(α1(r− k)+β1(r− k)), r � 4, or Indk(2α1(3)), we start with the
argument of the last paragraph again. It shows that W must contain some Wt

for t � k. However the representations Wt with t < k all restrict to R+ or R2
+

over Gk; so it is enough to eliminate similarities of the form W = W2 ⊕ R+

for G with k = 1. Restriction from G to Gk−1 then gives the general case.
However, a nonlinear similarity of this form is ruled out by consideration of
the surgery obstruction trfW (IndH(σ)) ∈ Lp

2(CW,G(Z)). Over the subgroup H

the representation ResH W2 = R2
−, and the surgery obstruction trfResH W (σ) is

computed from the twisting diagrams tabulated in [19, App. 2]. In particular,
it is nonzero in Lp

2(ZH)/Lp
2(ZK) (see [19, Table 2: U → U , p.123]), which

injects into Lp
2(CResH W,H(Z)), where K denotes the subgroup of index 4 in G.

Since
0 → Lp

2(ZG)/Lp
2(ZK) → Lp

2(CW,G(Z)) → Lp
0(ZK) → 0

we check that the inclusion H ⊂ G induces an injection

Lp
2(CResH W,H(Z)) → Lp

2(CW,G(Z))

and hence the surgery obstruction trfW (σ) �= 0 from the commutative diagram
above.
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