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SMOOTH GROUP ACTIONS ON DEFINITE
4-MANIFOLDS AND MODULI SPACES

IAN HAMBLETON anp RONNIE LEE

In this paper we give an application of equivariant moduli spaces to the study
of smooth group actions on certain 4-manifolds. A rich source of examples for
such actions is the collection of algebraic surfaces (compact and nonsingular)
together with their groups of algebraic automorphisms. From this collection, fur-
ther examples of smooth but generally nonalgebraic actions can be constructed
by an equivariant connected sum along an orbit of isolated points. Given a smooth
oriented 4-manifold X which is diffeomorphic to a connected sum of algebraic
surfaces, we can ask: (i) which (finite) groups can act smoothly on X preserving
the orientation, and (ii) how closely does a smooth action on X resemble some
equivariant connected sum of algebraic actions on the algebraic surface factors of
X?

For the purposes of this paper we will restrict our attention to the simplest
case, namely X = P2(C) # -+ # P2(C), a connected sum of n copies of the com-
plex projective plane (arranged so that X is simply connected). Furthermore,

ASSUMPTION.  All actions will be assumed to induce the identity on H, (X, Z).

In previous works [17], [18], [19], we considered problem (i) and a variant of
problem (ii) when X = P?(C). It turned out that the only finite groups which
could act as above on P?(C) were the subgroups of PGL;(C) ([18] and [23]
independently). For problem (ii) there are 2 interesting notions weaker than
smooth equivalence. If (X, ) is a smooth action, then the isotropy group =, =
{g € n|gx = x}, x € X, acts linearly on the tangent space T, X and we can ask the
following.

Question (iii) a. Given an action (X, n), is there an equivariant connected
sum of actions on P?(C) with the same fixed point data and tangential isotropy
representations?

Question (iii) b. Given an action (X, n), is there an equivariant connected
sum of actions on P%(C) which is n-homotopy equivalent or m-equivariantly
homeomorphic to (X, n)?

Partial results were obtained on these questions in [17] and [10]: if = acts
smoothly on P?(C), inducing the identity on homology, and the action has an
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716 HAMBLETON AND LEE

isolated fixed point, then (P?(C), ) is equivariantly homeomorphic to a linear
action. We observed in [17] that this is false in general for actions of noncyclic
groups © on P?(C), due to the existence of actions with knotted 2-spheres in the
singular set. There are related results for topological actions of cyclic groups on
more general 4-manifolds in [9], [11], which will be summarized in §1, §2.

For the remainder of this paper, we will assume that X = #" P?(C) and con-
centrate on the case n > 1. Our main results are as follows.

THEOREM A. Let © be a finite group acting smoothly on X = #"1P%(C). If n
induces the identity on homology, then T is isomorphic to a subgroup of PGL,(C). If
in addition n > 1, then n is abelian of rank <2.

In the statement of the next result, we will let [F,], [F,], ..., [F.] denote the
homology classes in X of the oriented 2-dimensional components of the fixed-
point set, denoted by Fix(X, n), and ey, e,, ..., e, the standard basis of H,(X, Z)
given by the complex embeddings P!(C) = P?(C) in each factor of the connected
sum.

THEOREM B. Let n = Z/p be a cyclic group of prime order acting smoothly on
X = #7P%(C), inducing the identity on homology. Then the given orientation on X
induces an orientation on Fix(X, n). Furthermore, there exist disjoint, nonempty
subsets Sy, S,, ..., S, of the set {1,2,...,n} such that [F]=Y {elkeS;} for
1<i<r. If p=2, the subsets S, S,, ..., S, form a partition of the set {1,2,...,n}.

Here is a partial answer to Question (iii) a (see also [15], [16]).

THEOREM C. Let (X, m) be a smooth cyclic group action on X = #%P%(C),
inducing the identity on homology. Then there is an equivariant connected sum
of actions of P%(C) with the same fixed-point data and tangential isotropy represen-
tations.

By combining Theorem C with the results of Edmonds and Ewing [11], we
obtain the following.

THEOREM D. There exist locally-linear topological group actions (X, n) of cy-
clic groups on connected sums of P?*(C), inducing the identity on homology, which
are not smoothable.

Before giving the proofs, we will use standard methods to collect some prelimi-
nary results about group actions on 4-manifolds. These include (§1) P. A. Smith
theory, and (§2) the Atiyah-Singer index formula. Our new ingredient is in (§3),
namely equivariant gauge theory [19].

1. P. A. Smith theory. In this section we recall some results of A. Edmonds [9]
and G. Bredon [4]. For convenience we have included proofs which apply to our
special case. The idea is to study the Borel cohomology HX*(X) = H*(En x, X, Z)
to obtain information about the singular set. It is easy to see that the spectral
sequence for the fibration X - X x, Enx — Br collapses [19, 6.1], [9, 2.3].
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COROLLARY 1. Every class in H*(X, Z) is c¢,(L) for some m-equivariant U(1)-
bundle L — X.

COROLLARY 2. If m=1Z/p (p prime), then the fixed point set F(X,n) is a
disjoint union of isolated points and 2-spheres.

Proof. For n=Z/p, X is totally nonhomologous to 0 in X,, and it follows
that

(%) Y. dim H(X, Z/p) = }_ dim H'(F, Z/p).

Since the action of n is orientation-preserving, F = F(X, n) is the disjoint union of
np isolated points {p;} and ng surfaces {F,} of genus g(F,). If p is odd, the normal
bundles to the surfaces F) have a natural orientation from the complex structure
and so each F, is orientable. If p = 2, we can use the fact that H?(X,, Z/2) =
H?'(F,, Z/2) for large [ to see that Sq' is trivial on H!(F, Z/2), implying again that
each surface F, is orientable (compare [4, page 379]).

Now the Euler characteristic

x(F) = ; 2—29(F))+np=n+2,

and (x) implies that ) (2 + 2g(F,)) + np = n + 2, hence g(F,) = Ofor allk. W

Lemma 3. If n=1Z/p, the map H*(n)— H*(0(X — N)/n) induced by the
classifying map of the m-covering is injective for some component 0(X — N)/n
of 0(X — N)/m, where N is a tubular neighbourhood of F in X.

Proof. We have just seen that 2ng+ np,=n+ 2. For n =Z/p and Z/p-
coefficients, there is an exact sequence

0 H'(X,) » H'(F,) > H;; (X — F)/m) - 0.

Since rank 2, H*(X,) = n + 1, we get H>((X — F)/n) = Z/p. By Poincaré duality,
H,((X — F)/n) = Z/p, and the result is clear if np # 0 since the link of an isolated
singular point in the quotient X /= is a lens space.

If np = 0, then ng > 2 since we can assume n > 1. Then we claim that each
2-sphere component F; of F has a nontrivial normal bundle in X, implying that
the link of F; in the quotient is a homology lens space, and we finish as before. If
not, note first that suitable multiples (prime to p) of the circle fibres for the nor-
mal bundle in the quotient are homologous in (X — F)/n. Completing a 2-chain
connecting these fibres by adjoining normal 2-disks in N produces a 2-cycle in X
having a nontrivial intersection number with F,. Therefore 0 # [F;] € H,(X, Z).
Since X has definite intersection form, the Euler class of the normal bundle is
[F]1-[F]#0 =
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COROLLARY 4. If m = Z/p, then the restriction map H*(X, Z/p) - H*(F, Z/p)

is surjective. Then 2-dimensional components of F represent linearly independent
elements in H,(X, Z/p).

Proof. Comparison of the spectral sequences for Borel cohomology of F =« X
gives a commutative diagram

H°(F)® H*(nr) —— H2(0(X — N)/n)

H*(F,) —— H3(X —F)/n).
From Lemma 3 it follows that the composition
H*(r) > H*(8(X — N)/) > H3((X — F)/n) = Z/p
is surjective (for Z or Z/p coefficients) and a diagram chase finishes the proof:

0 —— H2(7z) s HO(F)®H2(1t) - (Z/p)ns+n,,—1 0

| |
0 — HZ(XR) —— Hz(Fn) I HSP((X—F)/’I'C) — 0

H*(X) —— H?(F) _— coker — 0

This result leads to the following question.

Question (iv). If F; is an oriented 2-sphere component of F = Fix(X, Z/p), what
are the possibilities for [F;] € H,(X, Z) expressed in terms of the standard basis of
H,(X, Z) given by the embeddings P*(C) = P?(C) in each factor?

Partial answers were provided by [4, 7.4] when p = 2, and [9, 2.6] for any p,
without assuming that the action induces the identity on homology or restricting
the 4-manifold to be a connected sum of P%(C)’s. Note that in these results, the
action is not necessarily smooth. In the smooth case, by applying gauge theory
we obtain a complete answer to Question (iv) in the setting of Theorem B.
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2. Atiyah-Singer formulas. These formulas [1, §6] relate the tangential isotropy
representations of g € n to the equivariant signature, when 7 acts locally-linearly
on a 4-manifold X. If pe X is an isolated fixed point, and ¢ denotes a fixed
1-dimensional faithful complex representation of (g), then T,(X)=t*+ ¢ for
some integers (a, b) relatively prime to |g|. If F, is a 2-sphere in X fixed by g, then
the normal bundle has the slice representation v(F;)|, = t%, x € F,.

(@) For |g| odd,

Sign (g, X) =n= —Y, cot <§> cot <?—') + Y cosec? <ﬂ) [F.]?
7 2 2 % 2

where the sums correspond to the sets of isolated fixed points and fixed 2-spheres
respectively.
(ii) For |g| =2,

Sign (9, X) =FoF,

and in particular, isolated fixed points do not contribute.
A partial converse is provided by the following result of Edmonds and Ewing.

THEOREM 5 [11]. If p is an (odd) regular prime, and the set of rotation numbers
{(a;, b;)} satisfies the Atiyah-Singer formula, then there exists a locally linear
pseudofree topological Z/p-action on X with these representations at the isolated
fixed points.

In contrast, we will see in Theorem D that some of the actions constructed by
Edmonds and Ewing are not smoothable, and so extra restrictions on the fixed-
point data exist for smooth actions.

3. Equivariant moduli spaces. In [19, §2] we adapted the theory of Yang-Mills
moduli spaces [7], [8] to the equivariant setting. Let P — X be a principal SU(2)-
bundle and suppose that (X, ) is a smooth action with = finite. We fix a
real analytic structure on X compatible with the n-action, and a real analytic
equivariant metric. Then we constructed an equivariant perturbation of the
Yang-Mills equations (using the method of Bierstone [2]) to construct a general
position moduli space of self-dual connections (.#, ) with an action of n. The
main features are as follows.

(i) (A, =) is a Whitney stratified space [22] with an effective n-action and open
manifold strata

My ={x € M*|n, =7 S 7},

where #/* = ./ is the subset of irreducible connections (up to gauge equiva-
lence).
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(ii) For n’ < n each component of the fixed point set .#™ is the moduli space of
#'-invariant connections on P with respect to a #-SU(2) bundle structure on P
(compare [14], [13]). Here &' is the preimage of 7’ under the surjection ¥(rn) — m,
where %(n) is the group of SU(2)-bundle automorphisms of P which cover an
isometry g: X — X given by the action of some element g € =.

(iii) The strata have topologically locally trivial equivariant cone bundle neigh-
bourhoods in (.4, n).

(iv) (4, n) has an equivariant compactification (%, n). When c,(P) = —1, (4, m)
= (M U X x [0, 1), m), where 7: X x 0 c ./ is the Taubes embedding of X as the
set of ideal “concentrated” connections and X x [0, 1) is embedded as an equi-
variant collar of the given n-action on X.

(v) The dimensions of the strata .#,, can be computed from the n'-fixed set
of the fundamental elliptic complex. A stratum .#,, is nonempty only when its
formal dimension is positive.

In [3], Bierstone gave a refinement of the definition of equivariant general
position and showed that it is equivalent to a notion of equivariant stability or
infinitesimal equivariant stability. We can modify our construction of equivariant
moduli spaces to take this refinement into account. An advantage of this ap-
proach is that nearby perturbations result in smoothly equivalent stratified moduli
spaces. Moreover, the internal structure of normal cone bundles along each
stratum is now smoothly locally trivial.

We will consider the instanton number 1 moduli space (i.e., c,(P) = —1) and
discuss 4 additional features.

(a) Reducible connections. In general, reducible connections correspond to
splittings E = L @ L™ of the associated C2-bundle to P, as a sum of line bundles.
In our case, there are n > 1 reductions from line bundles {L;} with c¢,(L;) = e,
1 <i < n, where ¢; € H*(X, Z) is the Poincaré dual of the ith standard basis ele-
ment. By Corollary 1, we can assume that each L, is a #-U(1) bundle over X, and
so the associated reducible connection [D;] is fixed by the n-action on .

Next we consider neighbourhoods of a reducible connection [D] in .# and in
4. Recall that [D] has a neighbourhood #* « #* which is the weak homotopy
type of CP® [8, 5.1.18]. We may assume that #* is n-invariant, and then for
n = Z/p, p prime, it follows that the action (#*, Z/p) is weakly Z/p-equivariantly
homotopy equivalent to a linear action on Tj,/S* where T , = &/ is a transverse
slice to the %-orbit.

LeMMA 6. If n = Z/p, then Fix(%*, Z/p) is a disjoint union of p subspaces U*(x),
each weakly homotopy equivalent to CP*, associated to the decomposition of Tp ,
into complex linear subspaces Ty ,(x) on which Z/p acts via a fixed character y: m —
S'. In addition, if %, is a component of Fix(U*,Z/p), then the restriction map
H*(U*, Z)p) » H*(Z,, Z/p) is surjective.

Finally, we have the following result of Donaldson.
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ProPoSITION 7 [8, 5.1.217. For any a € H,(X . Z), the restriction of u(a) to the
copy of CP® which links the reducible connection [D;] is given by

W@l cpo = —<c1(Ly), ad-h

where he HX(CP®, Z) is the positive generator, and u: H,(X, Z) —» H*(#*, Z) is
the map defined in [8, 5.1.11]. The composition

Hy(X,Z) % H2(#*,2) 5 HX(X, Z)

is Poincaré duality [8, 5.3.3].

(b) Orientation. Donaldson shows that the real determinant line bundle A(P)
associated to the elliptic complex

Q*(Ad P): 0 » Q°(Ad P) - Q!(Ad P) » Q2(Ad P) » 0

has a canonical trivialization over # which induces the given orientation on X
times the inward pointing normal, where X is embedded as the Taubes boundary
in ./ [8, §5.4].

LeEmMMA 8. Let m = Z/p for p an odd prime, and C = M, a connected compo-
nent. Then C is an orientable manifold.

Proof. 1If [D] e C, we can split the elliptic complex
Q*(Ad P) = Q*(Ad P)" ® [Q*(Ad P)"]*

into a fixed subcomplex and a perpendicular complex. It follows that the line bun-
dle A(P) = Ayc)® Ay, Where A, is the determinant line bundle of Q*(Ad P)"
and A, is for the complementary part of Q*(Ad P). Since = is odd-order cyclic,
the action of = on [Q*(Ad P)*]* induces a complex structure and hence an orien-
tation on A,,. Then A,, is orientable also. However, the moduli space is locally
modelled on the zero set of a smooth map f: H) —» H3 in Bierstone general
position. Furthermore, the fixed set (coker df,)" = 0 and ker df, (which is fixed
under ) is the tangent space to the manifold stratum C at [D]. Therefore C is
orientable. W

(c) Connectedness. Since our equivariant moduli space (.4, n) is constructed
by general position, it is unique only up to a suitable notion of cobordism. In
particular, we can try to arrange for it to be as connected as possible.

LEMMA 9. For each reducible connection [ D], there exists an equivariant neigh-
bourhood (U*, ©) = (#*, n) such that the closure of the free stratum in M* N U*
contains all singular strata of dimension <5. Moreover, for each singular point, the
intersection of its link with the free stratum is connected.
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Proof. Let £ < 0% n #* be the link of [D] in the closure of the free stratum
of (M, m). We will identify % N 4 ~ ¢$~*(0)/S*, where ¢: H}, — H} is a local chart
for the moduli space. Here the spaces H., are complex 7 representations and ¢ is
equivariant with respect to the = x S! actions. Note that the S*-action inducing
the complex structure is free except at the origin. Then ¥ = $/S! is the quotient
space of the intersection & of a sphere (of small radius) in H} with ¢~1(0).

By the index formula, the dimension of the free stratum equals 5. For a singu-
lar stratum in ¢~1(0)/S?, its normal cone structure can be determined by applying
Bierstone general position to ¢: Hy — H3 with respect to the isotropy subgroup
7’ = 7 of the stratum. From this it follows that the closure of the free stratum is
the union of the free stratum with singular strata of dimension <35. It remains to
show that the closure of the free stratum is connected in a neighbourhood of the
reducible connection [D].

Since the strata have even codimension, if p, ¢ are in distinct connected compo-
nents of X, we may assume that p lies in the free stratum and that there is an arc
¢, joining p and g, such that £,,(t) lies in the free stratum of X for 0 < t < 1. Now
we can assume that the image of the path /(t) under ¢ is a simple closed path
such that the interior points, () for 0 <t < 1, lie in the free stratum of H3/S*.
Since the m-action Hj is the cone over an action on the unit sphere, we can join p
and g radially to the origin, and this closed path in H}/S* bounds an embedded
2-disk B whose interior lies in the free stratum. Then we deform ¢ = ¢, in H}
through general position maps ¢;, 0 < s < 1, so that ¢,(B) = 0 and the new zero
set ¢;1(0)/S* ~ ¢ 1(0)/S* UB in a neighbourhood of the origin. Note that the
above construction can be made in the smooth category. Since a Bierstone gen-
eral position map is determined by its jets up to some level n,, ie., by all its
partial derivatives (0/0x" - - - x’*)¢ of degree <n,, it follows that the closure of the
free stratum is connected. W

(d) Domination and links of reducibles. After the last section we can assume
that the link £ < 6% n #* of a reducible connection [ D] inside the closure of the
free stratum is connected. In order to obtain information about its topology, we
can compare our equivariant moduli space to the nearby generic moduli spaces
without group action. By integrating a suitable vector field in a compact subset of
a local chart, we can construct a continuous map f: P?(C) - X such that f,:
H,(P?*(C), Z) » H,(Z, Z) is degree 1. Here P%(C) is the link of [D] in a generic
5-dimensional smooth moduli space near (.4, ), and X carries a 4-dimensional
class because the fixed-point sets have codimension at least 2.

LEMMA 10. The link T has the homotopy type of a 4-dimensional Poincaré
complex.

Proof. By general position, the free stratum of X is a manifold, but there
could be nonmanifold points in the singular set. Let p e £ be an isolated fixed
point, with link L = ¢k(p) in X. Since p is isolated, the = action on Zk(p) is free
and L is a connected 3-manifold by Lemma 9. However, L is dominated by a
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degree-1 map from S3, and so L is a homotopy 3-sphere and X is a homology
manifold around p. A similar argument deals with neighbourhoods of points which
lie on 2-dimensional fixed sets. W

COROLLARY 11. X is homotopy equivalent to P%(C).

Proof. The Poincaré duality space X is the quotient space of a free S! action
on X. But by the same domination argument, there is a degree-1 map N
Therefore X is homotopy equivalent to S° and H,(X) = Z. Now the existence of
the degree-1 map f: P%(C) — X implies that T has the integral homology of P%(C),
andn,(Z)=1 N

4. The proof of Theorem A (1). We will prove that our equivariant moduli
space (.#, ) has nice neighbourhoods around each reducible connection. First we
need some preparation.

LemMA 12. Let C < M, be a noncompact connected component with n' # 1.
If dim C > 5, then C must be empty. If dim C = 3, then the closure C = M must
intersect the Taubes boundary 0.# = X x 0 c A.

Proof. If dim C > 5, by general position (or more specifically the existence of
normal cone bundle neighbourhoods to the strata) the closure C = .# does not
intersect the closure of the free stratum except at reducible connections. If dim C =
3, we will assume that C also has only reducibles as its limit points and derive a
contradiction.

Choose a nontrivial subgroup Z/p < #’, and put (4, Z/p) in general position
with respect to the action restricted to Z/p = . Then the deformed stratum C' is a
manifold stratum, fixed under Z/p, and C = C' U {reducibles}. Let [D,], ..., [D,] €
C' be the set of reducible limit points of C, and let W denote the compact
manifold with boundary obtained from C’ by removing small open neighbour-
hoods of the [D;]. Then W has odd dimension, say 2d + 1, d > 1, and has 1
boundary component §;W ~ P*(C) for each reducible [D;] in the closure of C'.

Bierstone general position implies that the inclusion of each link P¥(C) = #*
induces a weak homotopy equivalence with the link of [D;] in #* through di-
mensions <2d. If +e; € H,(X, Z) is the Poincaré dual of c,(L;), where L; is the
line bundle associated to the reduction, then

uelow = —<ea(Ly), €> hy= 6

where h;e H 2(6 W, Z) =~ H*(P%(C), Z) is the positive generator. For any cocycle
representative u(e,) of u(e;) we have

(uler), [OW1) = (S(ule), [W1y =0  mod 2.

But since
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(e, [OWT) = j; ule), [GW]) = <h{,[PY(C)]>) =1  mod?2,

we have a contradiction. H

Recall that X = 0% n #* denotes the link of a reducible connection [D] inside
the closure of the free stratum. As in §4 (c), we identify % ~ H}/S', and % n M ~
#71(0)/S!, using a local chart map ¢: H) — H3 in general position. Consider the
decomposition of ¥ = H} into isotypical n-subspaces V = @ V(;), where each
V(x;) is a direct sum of copies of the same irreducible complex representation of
7. There is a similar decomposition for W = H3, and we further write V =V, @
V', W=W,® W', where V,, = ker df, and W, = coker df, are determined by the
differential (at zero) of a general position map f: V' —» W. We may assume V,
and W, have no irreducible representations in common [19, 1.117]. Let deg(y)
denote the degree of a complex representation y, and my(y) its multiplicity as a
constituent of V.

CoROLLARY 13. If x; is an irreducible complex constitutent of V,, then mo(y;)-
deg(x;) < 3, with equality holding if and only if deg(y;) = 3, mo(y;) = 1, and x;
is faithful as a projective representation of © into PGL4(C).

Proof. 1If y; is an irreducible complex constitutent of ¥, then by general
position there is a nonempty stratum component in .#* of (real) dimension
>2my(y;) deg(x;) — 1 with minimal isotropy subgroup equal to the minimal
isotropy subgroup occurring in a complex projective space of (real) dimension
2d = 2 deg(y;) — 2 on which = acts via the associated projective representation of
x;jinto PGL,(C).

If x; is a faithful projective representation of =, then its minimal isotropy group
is the trivial group. Since every component of the free stratum of the moduli
space has dimension 5 (from the usual Atiyah-Hitchin-Singer index calculation
[19, page 28]), we conclude that 2m(y;) deg(x;) — 1 < 5. If equality holds, then
the solution my(y;) = 3 and deg(x;) = 1 would produce a 3-dimensional projec-
tively trivial subrepresentation of ¥, and hence an open subset of .#* on which ©
acted trivially. This is ruled out by the effectiveness of the n-action on .#, which is
a consequence of our assumption that the original equivariant metric on X was
chosen to be real analytic. (Recently [20], S. Illman has shown that every smooth
compact group action admits an equivariant analytic structure.)

On the other hand, if x; is not faithful, its minimal isotropy group is the kernel
7’ # 1 of the representation. Then, by Lemma 12, any connected component of
M, has dimension <3 and so my(x;)-deg(y;) <2. W

It will also be important for us to estimate how many singular strata intersect
Z. For each irreducible complex constituent x; of ¥, let Z(x;) denote the intersec-
tion of £ with the complex projective subspace P(y;) = S(V(x;))/S* = %, and call
this the singular stratum in X associated to V(y;). Note that points x € Fix(Z, «)
correspond to 7-invariant 1-dimensional complex linear subspaces of V,, so
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that these singular strata contain all the points of Fix(Z, ). Let d; = my(x;)
deg(y;) — 1.

LEMMA 14. There are at most 3 nonempty singular strata Z(x;) of real dimen-
sion 2d; in the link X, and ), (d; + 1) < 3 where we sum over all irreducible complex
constituents y; of V,.

Proof. We note that each nonempty Z(x;) has the integral homology of a
projective space, of real dimension 2d;, where 0 < d; < 2 by Corollary 13. More-
over, if d; > 1, then the inclusion induces an isomorphism H,(Z(x;), Z) - H,(Z, Z).
The argument is similar to the proof of Corollary 11: each singular stratum is the
orbit space of a simplicial complex homotopy equivalent to a sphere under a free
St-action.

Since the different subspaces IP(x;) are all disjoint, so are the different Z(x;).
This implies that if Z(y;) # & and d; = 2, then £ = Z(x;) has just 1 singular
stratum.

Next, d; = 1 for some constitutent y; of ¥, would imply the existence of a
n-invariant S? in X. But the nontrivial self-intersection number of the generator of
H,(Z, Z) implies that all other singular strata X(y;), i # j must have d; = 0.

We will finish the proof by considering 2 cases.

Case (i). Suppose that the k + 1 nonempty singular strata all have d; = 0. In
other words, Fix(Z, n) consists of k + 1 distinct points, and we need to show that
k<2 LetY =X — {x,}, where x; € X denotes 1 of the fixed points.

Then Y is a finite simplicial n-complex homotopy equivalent to S2, and the
w-action has k fixed points corresponding to distinct (nontrivial) linear represen-
tations x; of , each a complex constituent of ¥, with multiplicity 1. Since the free
stratum of X is dense, the representation ¥, must be projectively faithful. For a
sum of linear characters, this can only happen if = is abelian.

Pick an element 1 # g € = of prime order p. Then by the P. A. Smith theory,
Fix(Y, g) is a Z/p-homology sphere containing Fix(Y, n). It follows that Fix(Y, g)
is either an S? or consists of 2 distinct points. Since this fixed set is m-invariant,
we obtain k = 2 by an easy inductive argument.

Case (ii). Suppose that one of the singular strata, Z(y;), has d; = 1, and the
other (k — 1) strata have d; = 0 corresponding to distinct linear representations y;
of m, each a complex constituent of V;, with multiplicity 1. Let Y be obtained from
Z by collapsing the invariant 2-sphere Z(x;) to a point; then Y is a finite simplicial
n-complex homotopy equivalent to S%, and the = action has k > 1 distinct points
in Fix(Y, =).

Consider a composition series n,<1 n, < ***<a w, = = for n, where each n;/m; _,
is simple or solvable. Assume by induction that Fix(Y, =;_,) is either a 2-sphere or
<2 distinct points. If w;/m;_ is solvable, then we show as in Case (i) that Fix(Y, ;)
is either a 2-sphere or <2 distinct points. If z;/x;_, is simple, the trivial represen-
tation is the only representation of =;/m;_; with degree 1, and so Fix(Y, n;) con-
tains at most 2 points. W
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The following result was proved for = a cyclic 2-group in [5], [6], using other
techniques.

THEOREM 15. Let © act smoothly on X, inducing the identity on homology. Then
Jor each reducible connection [D], there is a n-invariant neighbourhood of [D] in
(-4, m) which is smooth away from the cone point and n-homeomorphic to the cone
of a linear action on P%(C). These 2 stratified spaces are equivariantly diffeomor-
phic away from the cone point.

Proof. By Lemma 12 we may now assume that dim .4, < 5 for each stra-
tum with nontrivial isotropy group n’. Furthermore, by Lemma 10 within a local
chart we can assume that there is a neighbourhood # = % of each reducible [D]
such that #* n 4* is connected. Our local model for .#* near [D] is determined
by a © x S* equivariant map f: Hj — H3 in general position. As above, we write
V = H), W = H} and decompose V = V, @ V', W = W, @ W', where V, = ker df,
and W, = coker df,.

By Lemma 14 there are at most 3 singular strata in the link £ of [D] in .#*.
Moreover, Y (d; + 1) <3 implies that Vo < V has at most 3 summands in
its decomposition into isotypical components, and dim ¥V, < 6. However, by
the index calculation, dim H} — dim H2 = 6 so W, < W must be trivial, and it
follows that .# is locally modelled on a transverse equivariant map near each
reducible. H

Part 1 of Theorem A is now proved: the link of a reducible is the cone on some
linear m-action on P?(C) and in particular, 1 = PGL(C).

5. The proof of Theorem A (2), and Theorem B. Suppose now that X =
#7P%(C) with n > 2. Theorem B is completed by Theorem 15 and the following
result. Note that in the case of involutions (p = 2), the equivariant link (P?(C), m)
of each reducible contains a fixed 2-sphere [18, 2.1]. This accounts for the last
assertion in the statement of Theorem B.

THEOREM 16. Let n = Z/p, p prime.

(i) Each 2-dimensional component F; = Fix(X, Z/p) has [F;] = ) a,e, where ay,
=0, 1 and (for each i) not all the a;, are 0.

(i) No nonempty collection {F;} = X = 0./ bounds a fixed set in M* L OM.

(iil) No nonempty collection of 2-dimensional fixed sets in the links of the
reducible connections bounds a compact fixed set in M*.

Proof. Parts (i) and (ii) are proved by similar arguments to those above, using
the u-map. Note that each noncompact 3-dimensional component of Fix(.#*, Z/p)
is canonically oriented since its closure in .# meets 0.4 = X and the set of reduc-
ibles. But the Donaldson orientation on .# induces the standard orientation of
P?(C) times the inward normal on the link £ = P?(C) of each reducible, and the
m-action on X is complex linear, so the 2-dimensional fixed set in the links repre-
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sent the homology classes P!(C) = P?(C). The compatibility of this orientation
with that of X specifies the sign in the expression for [F;] € H,(X, Z). Part (iii)
follows from Lemma 12. W

The next result will be used in the proofs of Theorems C and D.

LemMa 17. If n = Z/p, p an odd prime, then each noncompact 1-dimensional
fixed set in M* has at least 1 reducible connection as a limit point in M.

Proof. Let y denote the closure in .# of a 1-dimensional fixed stratum of .#*.
Then if y contains no reducible connections, its endpoints {p,, p,} lie in X = 0.4
Suppose that (a,, b;) and (a,, b,) denote the rotation numbers at p; and p, re-
spectively. Then clearly (a,, b;) and (a,, b,) are a cancelling pair, or in other
words we can assume that (a,, b,) = (—a,, by).

To rule out this pattern, we recall that a fixed-point component, such as the arc
y, corresponds to a m-equivariant structure on our original SU(2)-bundle P over
X (compare [14]). Also recall that this bundle admits a concentrated connection
at the point p; by means of Taubes construction. An equivariant interpretation of
this last connection allows us to describe explicitly this n-bundle (z, P) structure
as follows.

Consider a small invariant 4-ball B(p,) around p,. By collapsing the comple-
ment X — B(p,) of this 4-ball to a point, we obtain a 4-sphere S* = Hu {00} with
a linear action and an equivariant, degree-1 map g,: X — S* sending p, to the
north pole, g,(p;) = 0, and sending the complement X — B(p,) to the south pole,
g.(X — B(p,)) = . Locally near the north pole, the group action is given by the
rotation numbers (a,, b,;) and near the south pole by (—a,, b,). As described
in [21, Theorem 3], there exists an equivariant SU(2)-bundle Q over $* whose
Chern number ¢,(Q) = —1 and whose rotation number (r, Q|,) at the north pole
is {(a, + by), —(a; + b,)} and at the south pole is {(—a; + b,), —(—a; + by)}.
Pulling back Q by means of g,, we obtain the desired equivariant bundle (z, g1(Q))
structure on P.

Note that at any point p; € Fix(X, n), with p; # py, p,, the rotation numbers
of the pull-back equivariant bundle (r, g3 Q) are the same as at the south pole
{(—ay + by), —(—a; + b;)}. Now the same pull-back-bundle construction can
be repeated using an invariant 4-ball B(p,) around p,, a corresponding degree-1
map g,: X - §%, and the pull-back (g,)*(Q’) of an equivariant bundle Q' over S*.
This time, however, the rotation numbers of (n, g%(Q’)) at p; are {(—a, + b,),
—(—a; + by)}.

In order that there exists an arc y of self-dual equivariant connections connecting
the 2 concentrated connections at p, and p,, these 2 equivariant bundles (r, g¥(Q))
and (m, g%(Q’)) must be the same. Therefore the rotation numbers {(—a; + b,),
—(—ay + by)}, {(—ay + by), —(—a, + b,y)} at p; must also agree. Since (a,, by)
and (a,, b,) represent a cancelling pair, it follows that either 24, = 0 mod|=n| or
2b, = 0 mod|x|. This is impossible because |n| is odd and the action (x, X) has
isolated fixed points at p, and p,. W
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We can now complete the proof of Theorem A, part 2 by considering the
symmetries of the singular set patterns in .# under the action of 7. By the first
part of Theorem A, we can assume that # = PGL;(C) and that the action is a
cone over some linear n-actions on P?(C) around each reducible connection.

To prove part 2 we refer to the list given in [18, §1] for the various families
of finite subgroups of PGL;(C). We must eliminate (i) nonabelian subgroups of
U(2), (ii) subgroups of the Hessian group, and (iii) the simple groups 45, 44, and
PSL,(IF,). These cases are handled by the following 3 lemmas: Lemma 18 for
types (B)—(D), Lemma 19 for types (E)—(G), and Lemma 20 for types (H)—(J).
Note that 45, A contain A,, and PSL,(IF,) contains a dihedral group of order 14.

LemMA 18. If = contains a normal cyclic subgroup @' on which the conjugation
action of w is nontrivial and sends each element g — g™, for g € ', then n does not
act smoothly and effectively on X = #%P?(C), inducing the identity on homology,
Jorn> 1.

Proof. The linear actions of © on P?(C) restricted to the cyclic normal sub-
group 7’ are of the form

1 0 O
0 ¢ o0
0o o0 (¢

where a is relatively prime to the order of the subgroup. Therefore these actions
have 3 isolated points for the 7’ action on the link of each reducible connection in
M. Tt follows easily that at least 2 distinct reducibles must be connected by a
1-dimensional stratum of the fixed point set of ' intersecting the 2 linking copies
of P?(C) at points p and g, say. However, since this pattern has an extra Z/2
symmetry, the rotation numbers at p and g must be of the form (a, —a) and
(b, —b). Moreover, these rotation numbers at p and g must be identified under an
orientation-reversing m'-equivariant homeomorphism, and this is impossible since
a£0. B

LemMA 19. If n = Z/3 x Z/3 acts smoothly on X inducing the identity on ho-
mology, then the m-action on M has 3 isolated fixed points on the link of each
reducible connection.

Proof. The other possible pattern for the singular set of = on P2(C) has 3
isolated fixed points for each Z/3 subgroup, but no fixed points for = [18, 2.2].
Again we observe that at least 2 distinct reducible connections must be joined
by a 1-dimensional fixed set for the Z/3-action. However, this pattern has no
additional symmetry and so the n-action does not exist. W

LEmMMA 20. The group m = A, does not act smoothly on X inducing the identity
on homology.
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Proof. We consider the singular set for the action of the subgroup Z/2 x
Z/2 = n. By Lemma 17 we can conclude that at least 2 reducibles are again
connected by a 1-dimensional fixed set in .#, and this pattern has no extra Z/3
symmetry. B

Proof of Theorem C. First we suppose that = = Z/p and consider the fixed-
point set Fix(.#, ), which contains Fix(X, ). By Theorem 15 we can assume that
each reducible [D] has an equivariant neighbourhood in .# which is a cone over
a linear m-action on P%(C). Each such cone has a fixed set consisting of either 3
distinct lines or a line and a cone over a 2-sphere. In addition, these components
are disjoint except at the cone point [D] and correspond to different isotropy
subgroups of the © x S* action in the local model.

Case (i). Assume that the Z/p-action has only isolated fixed points. Then by
Theorem 16 the same is true for the linear actions linking the reducibles. We
regard the reducibles [D;] and the distinct points x; € Fix(X, 7) as the vertices of a
graph. Two such vertices are connected by an edge if there is an equivalence class
of paths in Fix(.Z, n) connecting them. We consider such paths to be equivalent if
they lie in the same component of Fix (.#, m) in every small open neighbourhood
of the vertices in .#. The vertices [D;] have valence 3 (connected to exactly 3
others), and the vertices {x;} have valence 1, by Lemma 17. Since there are n + 2
fixed points in X and only n reducibles, at least 1 reducible must be joined to
2 vertices in X.

On the other hand, if n > 1 it is not possible for 1 reducible to be joined to 3
points in X, since then the remaining n — 1 reducibles would be connected by
n — 1 edges. This would produce a closed path, say 7y, of edges and y would
intersect 1 of the copes in 2 lines Z;, £, of fixed points with distinct isotropy
groups n(£,) # n(¢,) in the = x S action of the local model. But an irreducible
[D] € #™ corresponds to a lifting of the action on X to a n-SU(2) bundle struc-
ture on P, and the S! determinant line bundles over the strata containing #;, £,
are both “positively oriented” by the complex structure on Hj. This contradicts
the fact that the oriented determinant line bundle extends over y, and shows that
such a closed path y does not exist.

We can now count the edges and conclude that the reducibles may be ordered
[Dy], ..., [D,] so that there is an edge e(i, j) connecting [D;] and [D;] if and only
ifj=i+1,for 1 <i<(n— 1). The remaining edges connect [D,] and [D,] to 2
fixed points each in X, and [D,], 2 <i < (n — 1), to 1 fixed point each in X. This
is exactly the pattern of the equivariant connected sum of linear actions. From
this we can also conclude (from the normal bundles to Fix (.#*, m) as usual) that
the tangential representations at fixed points in X are the same as those in an
equivariant connected sum of linear actions.

Case (ii). When the Z/p action has 2-dimensional components in Fix(X, x)
the analysis is similar, but the definition of the graph must be modified. The
vertices as before are the reducible connections together wth the components of
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Fix(X, 7). The edges now have weights: w(e) = 1 if the path lies in a 1-dimen-
sional fixed-point set and w(e) = 2 otherwise. Now the valence (the weighted sum
of the edges) of each reducible is still 3. Consider one of the sets S; of reducibles
given by Theorem B. If k is the number of elements in S;, and n > k, then 1 of the
reducibles in S; must be joined by an edge of weight 1 to a reducible not in S;.
Otherwise, the n — k remaining reducibles are joined by edges with weighted sum
n — k, and a loop y would exist as before. The same contradiction eliminates this
possibility, and we can conclude that the subgraph with vertices the reducibles is
connected. An edge count shows that we again have the fixed-point pattern for an
equivariant connected sum of linear actions. The tangential representations are
determined by the normal bundles to the fixed sets as before.

Case (iii). Suppose now that = is a cyclic group, and Z/p is a subgroup of .
If the Z/p-action has isolated fixed points, then the m-action is pseudofree, and
Theorem C follows in this case. If the Z/p-action has 2-dimensional fixed sets, the
group © acts on Fix(.Z, Z/p) with fixed set Fix(.Z, n). Again, it follows that this
fixed-point pattern is the same as that of an equivariant connected sum of linear
actions, and the proof of Theorem C is complete. W

6. A nonsmoothable action. In [11] a semifree action of n =Z/5 on X =
P?(C) # P?(C) was constructed. Start with the linear actions on P?(C) having
rotation numbers {(2,3),(3,1),(—1,2)} and {(1,2),(—1,1),(—1, 3)}. After the
equivariant connected sum at the cancelling pair (—1, 2), (1,2), we obtain a
smooth action on X with rotation numbers

{(2’ 3)9 (3’ 1)’ ('_ 13 l)s (—' 19 3)} .

In particular, these values satisfy the Atiyah-Singer formula. Now, replacing the
cancelling pair (3, 1), (—1, 3) by the cancelling pair (1, 1), (1, —1), and applying
Theorem 5, the result is a topological, locally linear action with rotation numbers

{(2a 3)3 (19 1)9 (_ 1’ 1)’ (19 - 1)}

at the 4 isolated fixed points.

Such an action cannot arise as an equivariant connected sum of actions on
P?(C) since the fixed-point data (1, 1) would imply the existence of 2-spheres in
the fixed-point set. Since the action induces the identity on homology, the Euler
characteristic of the fixed point set is 4, and so the action is pseudofree.

THEOREM 21. There is no smooth action of n = Z/5 on P*(C) # P*(C) which
induces the identity on homology and has isolated fixed points with tangential rep-
resentations given by {(1, 1), (1, 4), (1, 4), (2, 3)}.

Proof. The equivariant moduli space .# has 2 singular points [D;], [D,]
arising from reducible connections. By Lemma 17, the 4 isolated fixed points in X
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provide 4 1-dimensional fixed point sets in .#, and each of these has either [D, ]
or [D,] as its closure. By Theorem 15, the moduli space is locally just the cone on
some linear actions on P?(C) near the [D;]. Since the fixed arcs from X intersect
the linking P?(C) in isolated fixed points, these linear actions have 3 isolated fixed
points. However, the equivariant normal bundles to these fixed arcs in .# are
product bundles, and this implies that the slice representation (1, 1) would appear
in a linear action on P%(C), a contradiction. W

Remark 22. A. Edmonds has informed us that it is possible to produce a wide
variety of rotation number configurations as the number of copies of P?(C) in
the connected sum increases. The idea is to find “cancelling cyles” of rotation
numbers, instead of just cancelling pairs. Combining this work with Theorem 5
and Theorem C would probably produce many other nonsmoothable locally
linear actions of Z/p on connected sums of P2(C).
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