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Cancellation of lattices and finite two-complexes

By Ian Hambleton') at Hamilton and Matthias Kreck at Bonn

This is the first in a series of three papers (referred to below as [1], [II] and [III]) on
certain cancellation problems which arise in algebra and topology. For example, if M, M’,
N are modules with M@ N M' @ N, is M =~ M'? If K, K’ are finite two-complexes with
KvrS?~K'vrS?is K~ K'?In [I] we consider these questions for modules over orders
(e.g. integral group rings Z =, = a finite group) and two-complexes with finite fundamental
group. Part [II] deals with cancellation of quadratic forms and general results for
4-manifolds with finite fundamental group: when does X # (S?2x S?) ~ Y # (§2x §?)
imply X = Y? In [III] we study smooth structures on elliptic surfaces, and the homeo-
morphism classification of 4-manifolds with certain special fundamental groups.

We now give a more detailed description of the results in the present paper. Let R be
a Dedekind domain and F its field of quotients. A lattice over an R-order A4 is an A-
module which is projective as an R-module. The general stable range condition for can-
cellation of lattices over orders is free rank =2 [1], (3.5), p. 184. We obtain an improvement
in this stable range, assuming certain local information about the lattices. The problem is to
show that certain groups of elementary automorphisms act transitively on unimodular
elements in lattices, and our result suggests that an inductive procedure may be useful, to
pass from transitivity over a quotient order B to transitivity over A. The arguments in §1
are modelled closely on the ones given in [1], Chap.IV, §3. To obtain the geometric appli-
cations, the elementary automorphisms are shown to be realizable by (simple) homotopy
equivalences.

To state our condition, let A and B be orders in separable algebras over F [6], 71.1,
75.1, and suppose that there is a surjective ring homomorphism ¢: 4 — B. We say that a
finitely generated 4-module L has (A4, B)-free rank 21 at a prime p € R, if there exists an
integer r such that (B" @ L), has free rank 21 over A4,. Here 4, denotes the localized order
AQ® R, In the extreme case B = 0, this is just the condition that L, has a free direct
summand. In the other extreme case 4 = B, there is no condition on L.

1) Partially supported by NSERC grant A 4000 and the Max Planck Institut fir Mathematik.
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Theorem A. Let L be an A-lattice and put M = L @ A. Suppose that there exists a
surjection of orders ¢: A — B such that L has (A, B)-free rank 21 at all but finitely many
primes. If GL, (A) acts transitively on unimodular elements in B @ B, then for any A-lattice N
which is locally a direct summand of M" for some integer ny M@ N =~ M' ® N implies
M=M.

In the classification of two-complexes with finite fundamental group we find that
(Zn, Z)-locally free modules have an important role, where Z = is the integral group ring of
a finite group. This special case motivates the definition of (4, B)-locally free modules given
above. We check that for B = Z, the condition on ‘“‘transitive action” in Theorem A is
satisfied (see (1.16)), hence can be omitted from the statement.

For example, consider the lattices L arising as =, (K), where X is a finite 2-complex
with fundamental group =, (K) = =n. These fit into exact sequences

0.1) 0->L->C,->C, »Cy>2Z->0
with C, = C,(K) finitely generated free Zn modules.

More generally, any lattice L with a resolution (0.1) by finitely generated projective
Z7 modules C; is unique up to direct sum with projectives [17], 1.3. The stable class is
denoted 23Z. Such lattices with minimal Z-rank need not contain any projective direct
summands over Z=, but rationally contain all the representations of n except perhaps the
trivial one. Then L has (Z=, Z)-free rank =1 at all primes not dividing the order of n. The
simplest case occurs for n cyclic and L = ker {¢: Zn — Z} the augmentation ideal.

The linear cancellation theorems in § 1 have applications to the homotopy type of 2-
complexes. Recall that J.H.C. Whitehead proved that any two finite 2-complexes K, K’
with isomorphic fundamental groups become simple homotopy equivalent after wedging
with a sufficiently large (finite) number of S?’s. Furthermore, if « : 7, (K, xo) — n, (K, x{)
is a given isomorphism and K, K’ have the same Euler characteristic, then there is a simple
homotopy equivalence f: Kv rS? — K’ v rS? inducing « on the fundamental groups [19],
Theorem 12.

The following is our main result about finite two-complexes. The analogous result
for “homotopy type” instead of ‘“‘simple homotopy type” was proved by W.Browning
[4], 5.4.

Theorem B. Let K and K’ be finite 2-complexes with the same Euler characteristic and
finite fundamental group. Let o : n, (K, xo) = n,(K’, xg) be a given isomorphism and suppose
that K ~ K, v S2. Then there is a simple homotopy equivalence f: K — K’ inducing o. on the
Sfundamental groups.

This is the best possible result in general, but for special fundamental groups it can
sometimes be improved (see §2):

Theorem 2.1. Let n be a finite subgroup of SO (3). If K and K' are finite 2-complexes
with fundamental group © and the same Euler characteristic, and o : n, (K, x,) = n,(K’, x3)
a given isomorphism, then there is a simple homotopy equivalence f: K — K' inducing o on
the fundamental groups.
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For n cyclic or n= Z/2x Z/2, this was proved in [7], [11]. The result for
n = D(4n), the dihedral group of order 4n, has recently been obtained by P. Latiolais [10].
Our methods give a new proof in these cases.

A finite 2-complex K has minimal Euler characteristic if e(K') = e(K) for any finite
2-complex K’ with 7, (K") = 7, (K). We are indebted to the referee for pointing out that
[5], Corollary 2 can be applied to show:

Corollary. Let K be a connected finite 2-complex with finite fundamental group. Sup-
pose that K is not of minimal Euler characteristic, or that n,(K) < SO(3). Then each ele-

ment of Wh (n,(K)) can be realized as the Whitehead torsion of a self-homotopy equivalence
of K inducing the identity on n,(K).

Acknowledgement. We wish to thank P.Latiolais, W. Metzler and P.Teichner for
useful conversations and correspondence, and the referee for helpful comments. Some of
the results of §1 were contained in our preprint “On the cancellation of hyperbolic forms
over orders in semi-simple algebras”, Max-Planck-Institut (1990).

§ 1. Cancellation of lattices

By an “A-module”” we will mean a finitely generated right A-module. As above we
suppose that ¢ : 4 — B is a surjective ring homomorphism of R-orders in (possibly different)
separable F-algebras. If M is an A-lattice and N:=¢, (M) = M ®, B, we get an induced
homomorphism

¢,:GL(M) - GL(N).

If M=M,® M, is a direct sum splitting of an 4-module then E(M,, M,) denotes
the subgroup of GL(M) generated by the elementary automorphisms ([1], p. 182). Let
E,(M,, M,) be the subgroup of elementary automorphisms of the form 1,, @ f where
f:M, > M, is a homomorphism. Similarly, let E_(M,, M,) be the subgroup consisting
of those of the form 1,, @ g, where g: M, - M,. Then

E(Mp Mz) = <E+(M1’M2), E—-(Mth))-

If O is a two-sided ideal in 4, then let GL(M; D) = ker (GL(M) - GL(M|/MD)). We
define

E,(M;,M,;0)=E,(M;,M;,)nGL(M;9D).

Finally, let E(M,, M,; D) be the normal subgroup of E(M,, M,) generated by all elemen-
tary automorphisms as above with f(M,) € M, O, or g(M,) & M, DO, respectively.

We will frequently use the notation P = py A @ p, A4 for a free 4-module of rank two
with the basis {p,, p,}. It has rank one submodules P, = p;4 for i =0,1. We define
E,.(P)=E,(pyA,p,A) and E,(P; D) = E,(py A, p; A; O) when the basis is understood
from the context.

Recall that for an element x € M, Oy (x) is the left ideal in 4 generated by

{f(x)| fe Hom, (M, A)} .

7 Journal fir Mathematik. Band 442
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If O),(x) = A we say that x is unimodular. If N £ M is a submodule, then an element
x € N is M-unimodular if O, (x) = 4.

The following result of Bass is an essential ingredient in the proofs of the cancellation
theorems.

Theorem 1.1 ([1], (3.1), p. 178; (3.2), p. 181). Suppose that
Q=4 and P=p,A®p,A,

and O is a two-sided ideal in A. Let x = (p,q)e P® Q be an element such that
X = po(mod D), and Opgo(x)+a= A for some left ideal a. Then there exists an A-
homomorphism f: Q — PO such that Op(p + f(q)) + a = A.

We also need two other facts.

Lemma 1.2, Let M be a finitely generated right A-module, projective over R, and
A’ = A At for an ideal t € R such that the localized order A, is maximal. Then the induced
map

Hom, (M, A) - Hom,. (M', A")
is surjective, where M’ = M| M?1.

Proof. First note that M, = M ®, A, is projective over A4,. Since A’ = 4,/A4,t we can
lift any map f': M’ — A’ to f: M, —» A,. After restricting to M = M,, we can find an ele-
ment r € R prime to t such that the image of (rf|,,) < 4. This gives a lifting of r'f". But
r’ (the image of r in R’)is a unitin 4. O

Lemma 1.3 ([2], (2.5.2), p.225). If C is a semisimple algebra, then for each a, be C
there exists r € C such that C(a+ rb) = Ca + Cb.

We now come to the main result ‘of the section.

Theorem 1.4. Let A be an R-order in a separable K-algebra and suppose that
M= P@®L is an A-lattice, where P = p,A ® p, A, and L has (A, B)-free rank =1 at all
but finitely many primes. For any two-sided ideal O in A, the subgroup of

G, (D) =<E(poA, LB p;A4;0), E(pyA, LD pyA; D)) S GL(M; D)

fixing &,(p,) acts transitively on the unimodular elements x € M such that x = Do (mod O)
and e, (x) = &, (po)-

We divide the proof into several parts, stated as separate Lemmas for use in [II].
Let x = poa+p,b+ve M be a unimodular element, with p = pja+ p,be P and ve L,
so that O(x) = Aa+ Ab + O(v). We assume that ¢, (x) = ¢,(p,) and x = p, (mod D), so
a =1(mod D), b, v = 0 (mod O). In the proof we use the stability assumption on L to move
x so that its component in p, 4 @ L is unimodular. Then we move x to p, to prove the
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statement about unimodular elements in M. At each step we must use only elements ¢ of
G, (D) fixing &, (po).

Lemma 1.5. Let & be a finite set of (non-zero) primes in R, and A = A[gA where g
is the produgt of all the primes p € &. Then after applying an element 1€ E_. (P, @ L, Py; O) to
x,0(x) = Aa= A and ¢,(x) = &,(p,).

Proof. The semi-simple quotient ring 4/Rad A = C x C’, where C = B/Rad B and
C' is a complementary direct factor. Here “Rad” denotes the Jacobson radical [6]. There-
fore the C component of a is already a unit since a projects to 1 in the semisimple quotient.
Since Aa+ O(p, b+ v) = A, there exists ce O(p, b + v) < O such that 4a + ¢ contains 1,
and c projects to zero in B. By 1.3 there exists z € 4 with 4(a + zc) = A(modg)and amap g:
P,®L - pyA < Mwithg(p, b+ v) = p,zc. Extend g to amap from M to M by zero on the
complement. Then 7 =1 + g is an element of E, (P, @ L, P,; O) and 7(x) has the desired
properties (1.5). 0O

We apply Lemma 1.5 to the set & of primes p € R at which A4 is not maximal, or L
does not have (A4, B)-free rank =>1.

Lemma 1.6. If x = pya+ p,b+ve M is a unimodular element for which
Aa+gA=A4.

Let t = R be the ideal which is maximal among those such that At = Aa. Then t is rela-
tively prime to g and A, is a maximal order. In addition, after applying an element
te E, (P, L;O) we have x =pya+p,b+v with pya+ v unimodular, x = p,(mod D),
and e, (x) = &,(po)-

Proof. Lett < R denote the ideal, maximal among those such that At € Aa. If p
divides t, where p is a prime dividing g, then t = 4an R-1 implies that AanR-1 < p.
But (4a), = A4, for all primes p dividing g, so this is impossible. Hence g is relatively
prime to t, and in particular t & 0.

Now we project to the semilocal ring A’ = A/ At, which is the quotient of the order
A, (maximal by our choice of g) and so the projection ¢': 4" - B’ splitsand 4" = B’ x C".
Since over the B’ factor a projects to 1, we have (4a)’ = A". Over the complementary factor
C’ we use a suitable te E(p; C', L"), so that after applying © we achieve the condition

a7 Aad+0@)=4
over both factors of 4’. This is an application of 1.3 to the component of x in L' @ p; C' using
the fact that C’' g L. The necessary homomorphism ge Hom . (P{, L'D’), which is the
identity over B’, can be lifted to Hom ,(P;, LD) since P, is projective and extended to M
by zero on p, A ® L.
We now lift the relation (1.7) to A using 1.2 and obtain
Aa+O@Ww)+At=A4.

But At £ Aa so v + pya is unimodular. O
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We now complete the proof of Theorem 1.4 by the following:

Lemma 1.8. Let x = pya+p,b+v, with x = p,(mod O) and ¢, (x) = p,. Suppose
that z = pya + v is unimodular, and write L ® Py = zA @ L,. Then there exist elementary
automorphisms t, € E (zA, P;O), 1,€e E, (P, F,), 13€ E, (P, P;;0) and 1,€ E (P, L; D)
such that t,t; '137,7,(x) = p, and the product fixes ¢, (p,).

Proof. This is the argument of [1], pp.183-184. Let g,(z) = p,(1 — a — b), with

g1(Lo) = 0. Define g,(p,) = po, 83(Po) = p1(a—1), and g,(p,) = —v, where the homo-
morphisms are extended to the obvious complements by zero. If 7; =1+ g;, then

1473 137,71, (X) = Py -
The product fixes ¢,(p,) and lies in E(P,, P,® L;O). O

We now introduce the following notation: if N is a submodule of M and G, € GL(M),
then G,(N) = {ge€ G,|g(N) = N}. The next step towards the proof of Theorem A is a
technical Definition and Lemma, leading to a reduction of our transitivity problem to the
case handled in Theorem 1.4.

Definition 1.9. Suppose that M = P@® L is an A-lattice, where P =p, A @ p, 4,
and N ¢ M is a submodule containing p, 4 as a direct summand. Let O = Ann(M/N),
a two-sided ideal in 4. A subgroup G, £ GL(M) is (N, p,, €)-transitive if

(i) Gy (N) acts transitively on the images in N/N n MO of the elements p,a, for any
a € A representing a unit in 4/0, and

(ii) the subgroup of G,(N) which fixes p, (mod D) acts transitively on the images in
&, (M) of the P-unimodular elements x € PN N such that x = p,(mod D).

Lemma 1.10. Let M = P@® L be an A-lattice, where P =p,A@® p, A. Let

i

N=p,A®N cM and O =Ann(M/N).

(i) Suppose that N’ is a submodule of finite index in p, A @ L and that there exists a
subgroup G, < GL(M) which satisfies the condition in Definition 1.9 (i). If x€ N is an M-
unimodular element, then there exist elementary automorphisms

T €EE_(poA, L®p1A), 1,€E,(po4,N),

and 0, € Gy(N) such that x'=0,1,7,(x) has x' = p,(mod D). In addition, 1,(N) = N,
for i=1,2.

(ii) Suppose that there exists a subgroup G, < GL(M) which satisfies the condition in
Definition 1.9 (ii). If xe N is an M-unimodular element with x = p,(mod D), then there
exist elementary automorphisms t5,t,€ E(P, L; O) and 0, € G,(N), such that x' = 1,0,75(x)
has e,(x’) = e,(p,) and x' = p,(mod O). In addition, ©;(N) = N, for i=3,4.
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Proof. (i) By assumption, 4/9 is a finite ring. It is convenient to describe the ele-

ments of NS p,A® p; A@ L in the notation used above: x = pya + p,b + v, where
p1b+veN and ve L.

We work over N/Nn MQ and start by arranging that x has p, b+ v.= 0(mod ).
To see this note that Aa+ Oy (p, b+ v) = A4, so there exists ce O(p, b+ v) such that
Aa+c contains 1. Apply 1.3 to 4D p, A4 and the element (c,a) to find ze 4 with
A(a+zc) = A(mod D). There exists g, : L@ p, A - py A with g,(p, b+ v) = p,zc, since
c€ Oy (p,b+v). Let ue A be an element such that u(a + zc) = 1 (mod D), and define

fi:podA » Ldp, A4
by f1(po) = (p1 b+ v)u. Extend by zero on the complements, and define 7, = (1 + g,),
7, = (1 —f1). Then 1,7, (x) = pya’ (mod O), t,,7, € E(py 4, L ® p, A), and 1,(N) = N for
i =1, 2. By assumption there exists 0, € G,(N) to get x = p,(mod D).
(ii) We will first make the P-component p = p,a + p, b of x unimodular, using the
fact that P satisfies the hypotheses of 1.1, with O = Ann(M/N) and a = 0. Again we start
with O(p) + O (v) = A, so there exists ¢ € O (v) such that O(p) + ¢ contains 1. Apply 1.1 to

A @ P and the element (c, p) to find ze PO with O(p + zc) = A. There exists g;: L - P
with g,(v) = zc. Extend by zero on the complement, then

3(X)=(1+8g)(x)=(p+z0)+v, ;(N)=N
and t,e€ E(P, L; D).
Finally, note that p = x (mod O) implies that pe P N, so we can use our assump-

tion that a suitable element 6, of G, (N) moves ¢, (p) to &, (p,) and preserves the condition
P = po(mod D). Now let f, : P, — L be defined by f,(p,) = v and apply

=1 ~—f)e E(F, L)

to x. The result is that ¢, (x) = &,(p,) and x = p,(mod D). Since v = 0(mod D), ve N
and so 1,(N)= N. O

Corollary 1.11. Suppose that M = P @ L is an A-lattice, where P = py A @ p, A, and
L has (A, B)-free rank =1 at all but finitely many primes. Let N = M be a submodule of
finite index containing p, A as a direct summand, and O = Ann (M|/N). Suppose that there
exists a subgroup G, = GL(M) which is (N, p,, €)-transitive.
Then the subgroup G (N) stabilizing N of
G =Gy, E(pyA, L®p, A), E(p; 4, L® po 4)) < GL(M)

acts transitively on the set of M-unimodular elements in N.

Proof. We apply Lemma 1.10 and then Theorem 1.4 to complete the proof. Since
o =1,,(mod D) for every o € G, (D), it follows that G, (D) leaves N invariant. O




98 Hambleton and Kreck, Lattices and finite two-complexes

We will find it convenient to refer to the special case when © = 4 and N = M.

Corollary 1.12. Suppose that M = P@® L is an A-lattice, where P =p, A @ p, A,
and L has (A, B)-free rank 21 at all but finitely many primes. Let G, < GL(M) be a sub-
group such that ¢, (G,) acts transitively on the images in &,(M) of the P-unimodular ele-
ments. Then the group

G =<(Gy, E(poA, LD p,;A), E(p; 4, L® py A)) < GL(M)
acts transitively on the unimodular elements in M.

Remark 1.13. In some cases there may be no subgroup G, with the required pro-
perty. For example, if 4 = B = Zn is the integral group ring of a finite group 7 and L =0,
then GL,(B) acts transitively on unimodular elements in B @ B if and only if the relation
3@ B =~ B® B for a projective ideal J implies J = B. In [16], Thm. 3, Swan shows that
this is not true for a certain ideal in Zz where n is the generalized quaternion group of
order 32. Jacobinski proved in [9] that cancellation in this sense holds for Zr unless n has
a quotient which is binary polyhedral (in particular, those satisfying the “Eichler condi-
tion”). The converse was studied in [18]: Swan proved that cancellation fails for Zx if =
has a binary polyhedral quotient which is not one of 7 exceptional groups.

Proof of Theorem A. By Swan’s Cancellation Theorem ([17], 9.7 and the discus-
sion on [17], p.169), M A= M' @ A since M D A is the direct sum of two faithful
modules. We apply 1.12 following [1], IV. 3.5, to cancel the free modules.

Remark. The method does not seem to prove either Swan’s or Jacobinski’s cancella-
tion theorems independently. When the hypotheses of Corollary 1.11 apply, the same
method gives other cancellation results.

For geometric applications, we will be particularly interested in the case when B = Z.
We have remarked in 1.13 that GL,(A) acts transitively on unimodular elements for
A= Z and certain group rings of finite groups (in particular those which ‘satisfy the
Eichler condition [17]). For applications to finite two-complexes, the transitivity of
SL,(A4) = ker (GL,(A4) - GL, (A ®, @)) is more useful. Recall that SL, (4) is an unstable
analogue of the group SK, (4) = ker (K, (4) - K, (4 ®, @)) studied in algebraic K-theory
[12]. Let SL,(A4;90) = SL,(A)nGL,(4;9D).

Theorem 1.14 ([12], 10.6). Suppose that A satisfies the Eichler condition, and let B be
the image of A in the product of all the commutative factors of A Qg F. Then SL,(A) acts
transitively on unimodular elements in A @ A provided that SK,(B) = 0.

Proof. Since A is Eichler, it follows that GL,(A4) acts transitively on unimodular
elements in 4 @ 4. From [12], 10.6, the map 4* — K, (4) is surjective and hence the
subgroup ker (GL,(A4) - K,(4)) acts transitively. But

ker (GL,(4) = K,(4)) s SL,(4). O

Our next two results are used in Section 2.
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Lemma 1.15. Suppose that A — B is a surjection of orders, with B commutative and
SK,(B) =0. Let W be a right ideal in A,P=p,A®p, A, and let N= p,A® p,A.
Suppose that SL,(A) acts transitively on the unimodular elements of P, and that

A< J:=ker(4 - B).

Then the subgroup of SL,(A; J) stabilizing N acts transitively on the P-unimodular elements
x € N such that x = p,(mod J).

Proof. If x=poa+p,b is a P-unimodular element in N with beA < J and
a=1(mod J), then a matrix in SL,(4) which moves p, to x must have the form

o= (Z 2 . But the image of ¢ under stabilization and projection to K, (B) lies in
SK,(B) = 0. Since B is commutative, it follows that the projection of ¢ to GL,(B) has

determinant one, implying that d = 1 (mod J) as well. Then ¢’ = ¢ - ) is contained

1 —c
01
in SL,(A4; J3). Notice that since b e U, the matrix ¢’ stabilizes N. O

For any R-order A, there is a ring map R — A4 sending re R to r - 1 € A. The image
of the induced map E,(Z) — E,(A) = E(P) will be denoted E,(P).

Lemma 1.16. Suppose that R = Z.
(i) If e: A - Z is a surjection of orders, then E,(P) maps onto SL,(Z).

(i) Let A be a right ideal in A, P =pyA@® p, A, andlet N =p, AD p,U. Let O be
a 2-sided ideal of A contained in W and let (q) = ¢, (D). Suppose that x € N «is a P-uni-
modular element such that x = p,(mod O) and q' is an integer such that q|q’ and q'|q'
for some t. Then there is an element 1€ SL,(4; D) so that ¢, (t(x) = &, (po) (mod q’).

(iii) Assume that one of the following conditions holds (a) O is contained in ker (4 - Z),
or (b) g€ O where (q) = ¢,(D), or (c) (O,q) is a principal ideal. Then the subgroup of
E,(P) which fixes p,(mod O) acts transitively on the images in ¢, (P) of the P-unimodular
elements x € N such that x = p,(mod D). If (d) ©NZ-1=(q’) for some integer q' with
the same prime divisors as q, then the same conclusion holds for the group

CEz(P), SL,(4;9)) .

Proof. Part (i) follows from the fact that the composite Z - 4 — Z is the identity,
and the relation E,(Z) = E(pyZ, p,Z) = SL,(Z). For part (ii), we choose an element
ueO such that &,(u) = ¢, and then act on x =pya+p,b by a matrix of the form

14+ru —ru
( ru 1—ru
divisors as ¢, by a suitable choice of r we can obtain the relation ¢, (a) =1(modq’).

). This matrix is in SL,(4; D). Since g|q’ and ¢’ has the same prime

. 1 0).
Similarly we can act on x = pya + p,b by a matrix of the form (ru 1) in SL,(4;9)
and obtain the relation ¢, (b) = 0(mod q').
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For part (iii) we first observe that the transitivity claimed can be carried out in E,(2),
and then use one of our assumptions to lift the matrices using the given subgroup of
GL(P). This last step is straightforward, and we can lift into the subgroup E, (P), except
under assumption (d). In that case, by part (ii) we can assume that ¢, (x) = ¢, (p,)(mod ¢’).
Now the column vector (g, (@), ¢, (b)) can be completed to a matrix in SL,(Z), which can
be lifted to E, (P) by our assumption OnZ-1=(q’). O

Example 1.17. Let A = Zn, where n is the direct product of two cyclic groups of
order two, generated by S, T. Let O = {§—1,2(T—1),ST—1,1+ S+ T+ ST). Then
€, (D) = (4), but 4¢ O, and (D, 4) is not principal. However, OnZ -1 = (8).

We conclude this section by giving a useful generalization of the Roiter Replacement
Theorem [13]. An A-lattice L will be called (A4, B)-faithful if B*@® L is a faithful 4-
module for some integer s. If I' is a hereditary order containing A4, then I' = I'(B) X I'(C),
where I'(B) is a hereditary order containing B. The I'-module generated by an A-module
L is denoted I'L.

Theorem 1.18. Let L be an (A, B)-faithful lattice over an order A, with respect to
e: A — B. Suppose that I is a hereditary order containing A and nI' = A for some integer
n. In addition, we assume that the map of units (A/nI')* — (I'(B)/nI'(B))* is surjective.
Then for any locally-free projective A-module P of rank r with I'(B) L free, there exists an
A-module L' in the same genus as L such that L@ P=~L @ A".

Proof. We consider the pull-back square

A —— T
! l
! A/nI —— T'/nT .

Let A = A/nI’ and T = I'/nI" with a similar convention for modules (e.g. L = L ®, A).
Since L is (4, B)-faithful, by Roiter’s Theorem there exists a I'(C)-module U in the same
genus as I'(C) L such that U@ I'(C)" =~ I'(C)(L @ P). Note that U is projective of rank
21 over I'(C). We add I'(B)(L @ P) to both sides and use the assumption I'(B) P =~ I' (B)',
to express our original module L @ P as a pull-back '

:LeA®,F - (IrBLOUDIN)Q,T).

The isomorphism a can be varied by self-automorphisms of the right-hand side which lift
over A or I.

We remark that for rank =2 the action of elementary matrices over I is transitive
on unimodular elements. Using this variation over the I' (C) component of «, we can assume
that o induces the identity on the I'(C)" summand. Over the I'(B)" factor, we use the
assumption on (4)* to achieve the same result. If we denote the new patching isomorph-
ism by a', we have the block form

, _(B 0O
‘ ““(r id)'
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The pullback
| B:Le, T - (rBLOU)®,T)

is our desired module L', and it follows that L@ P =~ L' @ A". Since P is locally free, and
cancellation holds locally, we see that L' is in the same genus as L. 0O

Corollary 1.19. Let A = Z=n, n a finite group and L be any (A, Z)-faithful module.
Then for any projective A-module P of rank r, there exists a module L' in the same genus as L
such that LOP=L @ A"

§ 2. Applications to two-complexes

The cancellation problem for 2-complexes has been extensively investigated [4], [7],
[11], [15]. In particular it is known that even for finite abelian fundamental groups, there
are examples of 2-complexes which are stably simply equivalent but not homotopy equi-
valent [11], Satz 2. On the other hand, for a fixed finite fundamental group and Euler
characteristic, K v S is homotopy equivalent to K’ v S? [4].

The proof of Theorem B. Let h: KvrS? - K'v S? be a simple homotopy equi-
valence as above, inducing a given isomorphism o on the fundamental groups. Let
A= Z[n,(K)], L=m,(K,), and note that this module has (4, Z)-free rank =1. We may
assume that r =1 and set P = n,(S*v §?) < n, (K, v S?v S?).

By Corollary 1.12 and Lemma 1.16 the group G = (E(P,, L@ P,), E (Pl, @ P,))
acts transitively on unimodular elements in L @ P.

To realize elements in G by simple self homotopy equivalences of K, v 282 = Kv §2,
inducing the identity on =, it is enough to do this for E(P,,L @ P,). This group is
generated by automorphisms of the form 1+ f and 1+ g, where f: L@ P, —» P, and
g: P, » L@ P, are arbitrary 4-homomorphisms. Recall that P, = p, 4 and

L®Py=m,(K).
Consider the map Id vu: Kv S? - Kv S?, where

u= (g(P1)aP1)€7t2(KV S?)=mn,(K)®p, 4

It realizes 1 4+ g and its restriction to K is the identity and it also induces the identity on
(Kv S?)/K = S2. Thus the additivity formula for the Whitehead torsion implies that the
torsion of Id v # vanishes.

To realize 1+ f we note that f:L@® P, =n,(K)=H,(K;A) » P, = A factors
through H,(K, K!; A), with K' the 1-skeleton. The reason for this is that we have an
exact sequence

Hom, (H, (K, K'; 4), A) - Hom, (H,(K; A), A) — Ext} (H,(K'; A), 4)
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and the last group vanishes since H, (K'!; A) is Z-torsion free. Choose a factorization map
f:Hy(K,K*'; A) - A, where H, (K, K!; A) is a free A-module generated by the 2-cells of K
(appropriately connected to the base point). Denote this basis by e, ..., e,. Now write
K= K'UD?u...uD? Pinch off the 2-cells to obtain K v kS? and denote the projection
map by p:K — KvkS? Consider the composition map f:K - KvkS? - Kv S?,
where the second map is Id v f(e,) v ... Vv f(e,). By construction the induced map in =, is
1®f and the composition K - Kv S? - K is homotopic to Id. Finally consider
Bvid:Kv S* - Kv S? realizing 1 + f. Its restriction to S? and the induced map on K
are homotopic to the identity implying from the additivity of the Whitehead torsion that
B v Id has trivial torsion.

We complete the cancellation by composing /4 with a simple self-equivalence to obtain
h':Kv S? - K’ v S? which fixes the S? factor. Now the composition of 4’ with the inclu-
sion and projection gives a homotopy equivalence f: K — K’ which again by the addi-
tivity formula for the Whitehead torsion is simple. O

Although the result of Theorem B can not be improved in general for 2-complexes
with finite fundamental group, there are improvements possible for special fundamental
groups. For example, there is just one homotopy type for each Euler characteristic when =,
is finite abelian of rank less than 3 [11], [15].

We wish to describe another approach to such results. Recall that the finite sub-
groups G of SO (3) are cyclic, dihedral, 4,, S, and 4. For each of these, ZG satisfies the
Eichler condition so Browning’s results measure the number of distinct two-complexes with
fundamental group G (see [4], 5.4). As an application of the method we show:

Theorem 2.1. Let n be a finite subgroup of SO (3). If K and K’ are finite 2-complexes
with fundamental group © and the same Euler characteristic, and let a:n,(K, x,) — 7, (K’, x3)
be a given isomorphism, then there is a simple homotopy equivalence f: K — K’ inducing a on
the fundamental groups.

The method of proof is based the following more general construction. A based two-
complex (X, y) is a finite 2-complex K and a surjection y: n,(K)* — T from the dual of
n,(K) to a finite A-module 7. Two such pairs (K, 7y) and (K',y’) are stably simply equi-
valent if there exists a simple homotopy equivalence 4 : Kv rS? —» K’ v rS2, inducing the
identity on =,, and isomorphisms

o=h*:1,(K')*@ A" -> n,(K)*® A"

and u:T' - T such that yop, o9 =uo-y o p,, where p, is the projection on the first
summand.

Lemma 2.2. Let (K,7) be a based finite two-complex with n,(K) = n. If K' is a two-
complex which is stably simply equivalent to K, then there exists a surjection y' to T’ such
that the based pairs (K, y) and (K',y') are stably simply equivalent.

Proof. We choose a stable equivalence h: Kv rS? = K’vrS?, and let
h*=0:n,(K')* @ A" > m(K)* DA

We can take T’ = T, so choose an isomorphism u: 7' — T.
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First we observe that there exists an element o € E(n,(K)*, A") such that
a(e(0® 47) = (0@ 4") (mod e(T)) .

This follows by induction on r from Lemma 1.3. Since any such ¢ is realized by a simple

self-equivalence of K v rS2, we may assume that ¢ itself preserves the summand (0 @ A")
modulo e(T).

Next, we define y': n,(K')* - T’ to be the composite

’

Y =“_1°7°P1°‘P°i1’

where i, : 1, (K')* o m,(K')* @ 0 is the inclusion onto the first summand. It follows that
yopieo@ =ucy op,, and hence that (K,y) and (K, y’) are stably simply equivalent.

We now assume until further notice that = does not have periodic cohomology. This
excludes cyclic groups of any order or dihedral groups of order not divisible by four. It
follows that 7, (K) is not rationally isomorphic to @3, where J = J(n) denotes the aug-
mentation ideal of 4 = Z=n. This is the case for example whenever the minimal Euler
characteristic is not 1. From (0.1), there is an isomorphism 7,(K) @ Q@ = Q(J @ 4" *1).

Let L be the image of n,(K) under the projection to Q@ (J @ A"). Then we have a short
exact sequence

2.3) 0->pUA->n,(K) L -0,

where U is a right ideal of finite index in P, = p, A. Then by push-out, n,(K) & p, A@® L
is an inclusion respecting the inclusion p, A < p; 4 and the identity on L. This construc-
tion will be used to produce based pairs (K, y) for each of our fundamental groups z. Since
duality will be important in our later applications to 4-manifolds, we remark that 4 = Z=
has an involution induced by inverting group elements and hence there is a natural way to
convert left A-modules to right 4-modules. In particular, for any right A-module L we
convert the dual left module L* = Hom (L, 4) into a right 4-module and denote it by L.

Lemma 2.4. Let n be a non-periodic finite subgroup of SO(3). Then there exists a
representative M of Q3Z with minimal Z-rank, and a short exact sequence

0 - <3@,2> » R > JIm -0

which is non-split when restricted to each cyclic subgroup of order two in n. This extension
is classified by an element 0g € Ext}(3(n), 3 (n),2)) = H*(n, Z/2).

Proof. If # = SU(2) denotes the double cover of =, there is an exact sequence
0-3@ > C, »C »C »Z -0

where the C} are free Z[#] modules. Let {z) = Z/2 be the kernel of the epimorphism
# — 7, and tensor the above exact sequence over Z{z) with Z. This produces a complex
over A = Z[n]

0-»3(n) >C,»>C, »Cy»Z -0
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which is exact except at C,, where the homology is Z/2. We further resolve by adding 4

to C,, with 1€ 4 mapped to a lift to C, of the generator of the homology group Z/2.
The ideal {(J(n), 2) fits into the exact sequence

0 - (J(n),2) > 4> Z/2 - 0.

Now the kernel is 9t = Q327, sitting in an exact sequence

2.5) 0 - 3@ - N > (J(),2) - 0.
This sequence splits over Z and dualizing gives

(2-6) 0 - (3(m,2) > RN - I - 0,
which as an extension, is classified by an element of Ext!(3, (3,2)) = ExtL(S, Z/2).
Moreover, this extension group is isomorphic to H?(n, Z/2). Since the augmentation ideal
for = restricts to the augmentation ideal plus a free module over any subgroup, it follows
that (2.6) is non-split when restricted to every subgroup of order two in #. We remark that

its extension class g€ H2(n, Z/2) is uniquely determined by this condition, since the
2-Sylow subgroup of n is Z/2 x Z/2 or dihedral D(2¥*1), for k22. O

Lemma 2.7. Let n be a non-periodic finite subgroup of SO (3) and let & () = 2J(n).
Then the image of the map Ext} (J(n)/K(n), Z/2) — Ext} (J(n), Z/2) contains the extension
class Oy for (2.6).

Proof. The extension class .0,, is an element of
Ext} (3(n), <3(), 2)) = Ext} (3 (n), Z/2)
which is an abelian group of exponent two.
We consider the sequence: '
Hom, (8], Z/2) —» Ext}(J/RK, Z/2) —» Ext}(3,Z/2)

and note that the induced map Ext! (3, Z/2) — Ext} (8, Z/2) is just multiplication by two,
after identifying the isomorphic modules & =~ J. Therefore the map

Ext}(3/8,Z/2) - Ext4(3,Z/2)
isonto. O

For any A-lattice N, let SL(N) = ker (GL(N) -» GL(N ®, @)). This is the sub-
group of simple automorphisms of N.

Lemma 2.8. Let N=p,A® N and S be a finite set of primes. For each pe S, let
1,€SL (Np) be a simple automorphism over each completion. Then for any i 2 0 there exists
a simple automorphism t € SL(N) such that t© = t,(mod p') at each prime p € S.
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Proof. We may assume that S contains all the primes where A is not maximal by
choosing t, =id at the additional primes if necessary. After tensoring with @ we get
automorphlsms of N® 0 . By our assumptions on N, at any simple factor D of 01: these
automorphisms lie in SL ( ,) for some n > 2 (depending on p). Now we apply the Strong
Approximation Theorem [14], 5.1, p. 372, with the extra prime ¢q in the statement one of
the infinite primes. Then we get an automorphism t,e SL(N ®,D) = SL,(D), which is
arbitrarily close to the given 7, at all p € S and preserves a local maximal order M, (F ) at
all finite primes notin S. Note that a power of the prime element tlmes F lies in A and an
automorphism which is sufficiently close to one which preserves N w1ll also preserve N
It follows that the t, together give a simple automorphism 7 of N ® @ which preserves
N, as required. O

Proposition 2.9. Let n be a non-periodic finite subgroup of SO (3) and suppose that
N is the representative of Q*Z from 2.4. Let ¢: A= Zn — Z be the augmentation map.
Then there exists a module M with free A-rank 2 containing N = R @ p, A as a submodule
of finite index, with O = Ann(M/N), such that

(i) for some subgroup G, < SL(M), G,(N) acts transitively on the images in
N/NNMD of the elements pya, for any a€ A representing a unit in A|D, and

(i) the subgroup of Gy(N) which fixes p,(mod D) acts transitively on the images in
&, (M) of the P-unimodular elements x € P N such that x = p,(mod D).

Proof. From Lemma 2.7 we get an element 0 € Ext}, (3(n)/K (n), Z/2) with image
0q € Extl (3 (n), Z/2). Since Hom , (K (n), Z/2) surjects onto the fixed point set

(Ext} (3(m)/ K (), Z/2))",
we can assume that 0, gives a short exact sequence
0> 2Z/2>T-> Jm/K(n) - 0
with T of exponent two and a projection y: %t — T.

We denote the dual of T by 7 = Hom 2(T,Q/Z) and use (2.6) to deduce a short
exact sequence

(2.10) 0> RN > A®KMm - T - 0.
Let 7, denote the image of the induced map 4 — T and A = 4 be the kernel of the pro-
jection to T;. It follows that M is described by (2.3): it contains U as a Z direct summand,
and has a cokernel we denote by L.
Define M = p, A ® p,; A ® K(n), and N = p, A ® N. We identify
P A®LES p A®K(m)

with the pushout of the sequence (2.3) using the inclusion p, W < p, 4. As usual

P=p,A®p;A and O = Ann(M/N).




106 Hambleton and Kreck, Lattices and finite two-complexes

In this notation, PNN =p, A ® p, A

We also remark that, by construction, © € % < (3, 2). Since 7 has exponent two,
then 2 € O and therefore (2) < ¢, (D). In fact, ¢, (D) = (2) since otherwise 1 € ¢, () implies
that T®A Z = 0. By the cohomology sequence induced from (2.10), we would then have
an exact sequence

H '(n,R) - A '(n,kM) » H '(n,T).

But T®AZ 0 implies that A '(n,T) =0 [3], p.134, and K(n) = J(n) implies
that H- Y(n, K(n)) = Z/ Inl This is a contradiction, since n is not periodic and hence
H '(n,N) x> Hy(n, Z) = H*(r, Z) can not contain an element of order |x| [3], p. 154.

We will now verify the assertions of Proposition 2.9. For part (i) we note that the
natural mapping (4/2 A)* — (4/0)” is surjective, and that an element of 4 is a 2-adic unit
ifits reduction (mod 2) is a unit. Since &, (D) = (2), we only need to consider units in (4/0)*
represented by elements in ae A4 with ¢, (a) =1. Let be A4 represent a 2-adic unit with
&,(b) =1, and look at the pushout:

053> N-><32 >0
b I

08> E > {2 -0.
The lower (pushout) extension is classified by
b,(0g) € Ext' ((3,2), Z/2) = H?(n, Z/2) .

But this group is detected 2-locally and since b represents a 2-adic unit the induced map is an
isomorphism on the Ext group. The same is true when restricted to any subgroup of order
two in 7. Therefore, b, (0y) = Oy since our extension class was the only class with this
restriction property. It follows that the lower extension is congruent to the upper, and so we
have an element 1, € GL(R) acting as multiplication by b on the submodule J and induc-
ing the identity on the quotient module {3, 2). From these properties it follows that 7
preserves the kernel of our projection y : ® — T, and therefore extends to an automorphism
of p, A @ K(n). Now we apply Lemma 2.8 to obtain an element 7 e SL(N) which is 2-
adically as close as we want to 7, @ 7,, where £, denotes left multiplication by ae 4 on
PoA and a is chosen to closely approximate the 2-adic inverse of b. Clearly 7 also extends
to a simple automorphism of M. This proves part (i), and the extra property that t is simple
will be useful in the proof of Theorem 2.1.

Part (ii) follows from 1.16 (iii) (b) since O n Z - 1 = (2) once we notice that the algebraic
automorphisms given there do stabilize N. Indeed, PN N = p,4 @ p, A and the auto-
morphism we need from E, (P) has the effect p, — p,c + p, d with d = 1(mod O). Note that
N < p, A® K(n) is the kernel of the projection to T from (2.10), and O = Ann(M/N) by
definition. It follows that the elements (ad, v) € R whenever (a,v) € R and d = 1(mod D).
Hence the automorphisms extended by the identity on K(r) preserve N. 0O .




Hambleton and Kreck, Lattices and finite two-complexes 107

Lemma 2.11. Let K be a finite two-complex with n = n, (K, x,) finite. Suppose that
f: K- K is a homotopy equivalence such that the inducedmap f, :7,(K)® Q@ - n,(K) ® Q@
has trivial reduced norm at every simple factor of Qn. If SK,(Z=) = 0 and f induces the
identity on m,(K, x,), then f is a simple homotopy equivalence.

Proof. We consider the chain homotopy equivalence induced by f on the chain
complex of K tensored over the rationals, and compute its Reidemeister torsion. Our
assumption implies that the induced map f, : 7,(K) - n,(K) has trivial determinant

in Im(Wh(Z=n) » Wh(Qn)) = Wh(Zn)/SK, (Z=), hence the Whitehead torsion of f
vanishes.

The Proof of Theorem 2.1. For any finite subgroup n of SO(3), it is known that
SK,(Z7m) = 0 (see [12], 14.1, 14.5). Let K be a finite 2-complex and let N = =, (K). We
may assume by Theorem B that K has minimal Euler characteristic. Suppose first that
n,(K) is periodic, i.e. cyclic or dihedral (of order 2m, m odd), and thath: K’'v S - Kv S?
is a simple homotopy equivalence.

In this case, !’ = J(n), a two-sided fractional ideal in @ 4. By scaling, we can embed
N < J(n) as a two-sided ideal in 4. Then

N=p,A®DNRcM=p,A®p, A4,

and by Lemma 2.2 it is enough to show that a suitable subgroup of GL,(4), stabilizing
N, acts transitively on M-unimodular elements x € N. The subgroup of GL,(A4) will have
the property that its elements will induce automorphisms of the 2-type (n,, n,, k) of K
hence can be realized by homotopy self-equivalences of K.

First we apply Theorem 1.14 and then Lemma 1.15 with 4 = Zzn, A =N and
S = S(m). We conclude that the subgroup of SL,(A4; J(n)) preserving N acts transitively
on M-unimodular elements in N.

Moreover, the algebraic automorphisms needed for transitivity on unimodular ele-
ments preserve the k-invariant of Kv S2. To see this recall that the k-invariant is an
element ke H3(n,M). Under the action of SL,(4; J(n)), the image of k is dk, where
d = 1(mod J(n)). However, the elements of J(n) act as zero on this cohomology group,
by dimension-shifting (compare [8], 2.3, 2.4). It now follows that such an algebraic auto-
morphism is induced by a homotopy self-equivalence f: Kv S? — Kv S? which is the
identity on =, (K).

By Lemma 2.11 applied to K v S?, f is a simple homotopy equivalence. As in the proof
of Theorem B, we can now cancel the final S to get a simple homotopy equivalence between
K and X'

Next, suppose that 7 is non-periodic. The construction of N = M in 2.9 used a sur-
jection y : m,(K)* — T, giving us a based pair (K, y). By Lemma 2.2 we need to show that a
suitable subgroup of GL (M), stabilizing N, acts transitively on M-unimodular elements in
N. This time the necessary transitivity follows from Corollary 1.11, and we conclude that
7, (K) = n,(K').
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It is not difficult to check that the algebraic transitivity can be achieved by simple self-
automorphisms which do not change the k-invariant. It will then follow that we can realize
the transitivity by simple homotopy self-equivalences.

A complete list of the automorphisms we need is given explicitly in (i) Corollary 1.11,
(ii)) Lemma 1.10, and (iii) Proposition 2.9. For the ones used in Corollary 1.11 we can
realize - those in E(pyA4, p, A ® K(n)) by simple self-equivalences as in the proof of
Theorem B. The automorphisms in E(p, 4, R(n)) may not fix the k-invariant of K v §2,
but they do fix the element p,, so that after we have moved an arbitrary M-unimodular
element x € N to p,, we can compose with the inverse of any automorphisms we used from
this subgroup. The result will be a simple algebraic automorphism of N which preserves the
k-invariant and hence is realizable by a simple self-equivalence of Kv S2. The same
argument applies to the automorphisms 7;, 1 <i < 4 used in Lemma 1.10.

Next we note that the automorphisms constructed in the proof of Proposition 2.9,
part (i) act on the k-invariant as multiplication by the 2-adic unit b€ A. But the k-
invariant lies in H3(n,N) = A°(n, Z) and under the dimension-shift, multiplication by b
corresponds to multiplication by ¢, (b) on A°(n, Z). But ¢, (b) = 1 by assumption and so
the k-invariant is preserved by these automorphisms.

The automorphism used in Proposition 2.9, part (ii) comes from Lemma 1.16 (iii) (b).
We first apply Lemma 1.16 (ii) to get an element 7, € SL,(4; D) such that

&4 (t1(%)) = &, (po) (mod 2')

for some large ¢. Then we can use an element 1, € E, (P) with 7, congruent to the identity
(mod 2%), extended by the identity on R (r). By similar arguments to those above, we see that
both 7,, 7, preserve N and 7, fixes the k-invariant. Moreover, dimension-shifting applied to
H?3(m, M) shows that 7, preserves the 2-primary part of the k-invariant. There is an exact
sequence

... =» H3(n,J(m)) » H3(n,N) » H?*(n,{J(n),2)).
The third term is isomorphic to H2(n, Z/2), and the middle term H3(n, N) = Z/|x|.

Now the odd-primary part of the k-invariant is in the image of H?(x, J(r)) since
the next term has exponent two. Under our embedding N < p, 4 @ K(xn), the submodule
§ is mapped into 0 @ K(n) and so 7, induces a map of this exact sequence which is the
identity on the term H?3(n, J(n)). Therefore t, preserves the odd-primary part of the -
invariant as well. O
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