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Rigidity of certain finite group actions on the complex projective
plane

IaNn HamBLETON®, RoNNIE LEE® and I8 MADSEN®

In [HL], [W] the finite groups which act locally linearly on P*(C), inducing the
identity on homology, were found to be just the subgroups of PGLs(C). Since
any such subgroup acts on P*(C) as a group of collineations this raises the
question of rigidity: namely, is every action topologically conjugate to a linear
action? In this paper we prove that actions satisfying certain assumptions on the
singular set are rigid, and give a construction for non-linear examples, based on
the existence of knotted 2-spheres in S* invariant under cyclic group actions [G].

We will say that a locally-linear G-action has an isolated fixed point if G has a
fixed point x, where the local tangential representation is free. This is a strong
assumption: by [HL; 2.5], the local representation at an isolated fixed point
identifies G with a subgroup of U(2) acting freely on S°. It follows that G has a
unique non-trivial central element of order two, or G is cyclic of odd order (see
[HL; §1]).

There are also two distinct possibilities for the singular set of an action with an
isolated fixed point. When the action has an invariant 2-sphere which represents a
generator of H,(P%(C); Z) we say the action has type I, and otherwise the action
has type II. From [HL;2.1] we see that in a type II action, G is a cyclic group of
odd order acting semi-freely on P?(C) with three isolated fixed points
{P 1 P2 P 3}'

The linear G-actions on P*(C) are weakly complex in the sense that the
tangent bundle has a G-U(2) reduction. For a general locally linear action it
turns out that the topological tangent bundle always has a G-vector bundle
reduction, and if it further has a G-U(2) reduction, the action is called weakly
complex. Our main result is the following.

THEOREM A. Let G be a finite group with a locally linear action on P*(C),
inducing the identity on homology. If the action has an isolated fixed point and is
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type 1 or weakly complex type I, then it is topologically conjugate to a linear
action.

The proof can be outlined as follows: (i) we produce an isovariant homotopy
equivalence to a linear action, which is a homeomorphism near the singular set,
and (ii) we prove (in §3) that any action with this property is topologically
conjugate to the linear model. We need to assume that type II actions are weakly
complex in step (i), to show that the local representations at the three isolated
fixed points agree with those in some linear action (see §2).

For a type II action, the local tangential representations T, P*(C) are
well-defined [MR], [HP]. They have complex structures, say

T,PX(C)=V(a; b)),
where the generator ¢ of G acts on V(a;, b;) = C* by

t-(z, )= (%2, L%2,), L =exp(2aV—1/|G)). (0.1)
Of course, there is no canonical choice of (a;, b;) since the action does not
distinguish between (a;, b;) and (—a;, —b;), or prefer an ordering of the fixed

points. We show in §1 that a type II action is weakly complex if and only if

a1+b1 a2+b2 a3+b3
+
albl a2b2 a3b3

=0 (mod |G|) (0.2)

for some choice of rotation numbers (a;, b;).

If the topological tangent bundle has a G-U(2) reduction, then (0.2) follows
from (1.4) applied to the “determinant line bundle” A*(T,P*(C)).

For a linear type II action, the rotation numbers have the form

(a1, b)) = (a, b), (az, by) =(—a, b —a), (a3, b3)=(—b,a—b) (0.3)

with a, b, and a — b units in Z/|G|. In this case, (0.2) follows by inspection.

Recently, A. Edmonds and J. Ewing [EE] have shown that the local
representations in a type II action always agree with those in some linear action,
using a more extensive analysis of the Atiyah-Singer formula. By combining their
work with ours, we conclude that every type II action is weakly complex, and
hence that Theorem A holds without this condition. It would be interesting to see
a direct proof of (0.2), and thus provide a relatively elementary argument for the
general result.
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In the smooth category our methods do not prove rigidity, since smooth
surgery does not work in dimension 4. In addition there is the intriguing
possibility of the existence of a non-trivial smooth (inertial) 4-dimensional
s-cobordism between spherical space forms. In fact, if there is such an example
with the universal cover a product, then rigidity fails. In the topological category,
the existence of non-trivial s-cobordisms does not prevent rigidity because the
usual “infinite repetition” argument (see §3) overcomes this difficulty.
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Section 1: Equivariant Line Bundles

We begin with the classification of equivariant line bundles over a G-space X
(the following convenient formulation is given in [LMS]):

[X, BU(DIC =[X X EG, BU(1)]. (1.1)

The right-hand side is just the Borel cohomology group H%(X;Z) and the
left-hand side is the set of isomorphism classes of G-U(1) bundles over X.

For type I actions on X = P*(C), there exists an invariant S2. First we give a
result essentially due to Freedman [F], concerning the existence of equi-
variant tubular neighbourhoods.

LEMMA 1.2. Let G act locally-linearly on a closed oriented 4-manifold M. If
the action is orientation-preserving and X is an invariant locally-flat surface in M,
then there exist a closed equivariant neighborhood (N, dN) for X which is

G-homeomorphic as a pair to (D(v), S(v)) for some G-U(1) vector bundle v over
(=2 G).

Proof. Let G be the quotient of G which acts effectively on the invariant
surface. The singular set of the G-action on X is a finite set S of points. After
deleting a set B(S) of balls around these points on which G acts linearly, the
complement has a free G-action in a neighbourhood of X-B(S). The result of
Freedman [F, Thm. 10] applied to the orbit space gives a closed vector
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bundle neighbourhood for (2-B(S))/G. The covering space is then a G-vector
bundle neighbourhood for this part of X. Inside B(S) we can also find a
G-tubular neighbourhood since the action is linear there. These two pieces fit
together in 9B(S), by uniqueness of (smooth) G-tubular neighbourhoods in a
3-manifold. To justify the use of smoothness at the last stage, we need to know
that any locally-linear action of a finite group on a closed 3-manifold is
smoothable. But, since our action is orientation-preserving, the orbit space is also
a topological 3-manifold and hence smoothable.

To understand the equivariant line bundles over S2, we recall that any
topological action of a finite group on S” is conjugate to a linear action (K, p.
229]. The relevant linear models are the Hopf bundles: let V be a complex
2-dimensional G-representation (where G < SO(4), then

H=(CxaS(V)—(V-{0})/C*=S5?
is a G-equivariant Hopf bundle.

LEMMA 1.3. Let v\S? be a G-U(1) bundle over S* with Euler class *1.
Then v is G-isomorphic to an equivariant Hopf bundle.

Proof. From (1.1) the bundle v is classified by an element of
H%(8%,2)=HXG;2)®Z.

The group H*(G; Z) may be identified with the group of 1-dimensional (complex)
representations L of G, or flat bundles over (S?, G). This group acts transitively
on the G-U(1) bundles with fixed Euler class (v— v ® L) and hence the linear
models represent all elements of H5(S%; Z).

We assume now (and for the rest of the section) that our action on X = P*C)
is of type II. Let G = C, be a cyclic group of odd order n with a generator ¢. Fix
an identification of the tangent planes T, X =V(a;, b;) as in (0.1). If L is a
G-equivariant line bundle over X, we denote the isotropy representations at the
fixed point p; by {¢*} for i = 1,2 or 3. In the following result and its proof, we will
establish certain relations among the {A;} and the (a;, b;) expressed as con-
gruences modulo 7.

PROPOSITION 1.4. There exists a G-equivariant line bundle L over X with
L |, =" if and only if

A
; ;iz;—- 0 (mod n).
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Proof. Let B; denote small open G-disks around the fixed points p;, and let
Y=(X—-B,UB,UB;)/G. (1.5)

Then Y is a compact 4-manifold with three boundary components Y;, Y,, Y;
which are the lens spaces L*(V(a;, b;)). The problem of finding the equivariant
line bundle L over X is equivalent to showing that

L;=S(V(a; b)) xgt*

extends over Y.
Since S'-bundles over Y are classified by an element in H*(Y; Z), we must
study the image of the restriction map

HX(Y;2)— X HY(Y; 2).

However, both H*(Y, 3Y;Z) and H*(Y;;Z) are isomorphic to Z/n, and the
natural map H*(Y;; Z)— H>(Y, 9Y; Z) between them can be identified (with the
help of the linking pairing) with

Hom (H\(Y;; 2), Q/2)—> H\(Y; 2) =Z/n

A_i’._)_l_i

b (1.6)

Remark. The line bundle L is not specified uniquely in (1.4) since H*(Y; Z) =
Z @ Z/n. By considering intersection numbers in Y, we can see that k*> = (c,(L))?
is given by

k2= ;}i—(mod n). 1.7)

This relation is derived in Section 2 by another method.
PROPOSITION 1.8. For a type II action, the topological tangent bundle has a
G-U(2) reduction with T, X =V (a;, b;) if and only if (0.2) is satisfied.

Proof. We first notice that the topological tangent bundle of X has a
reduction to a G-vector bundle. Indeed, this follows from equivariant obstruction
theory because m;(Top(4)/O(4)) is 2-torsion for i =3 and |G| is odd.
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Given such a reduction, with T,X =V(a;, b;) we want to get a G-U(2)
reduction of TX. With the notation of (1.5), we want to lift 7X | 9Y to a G-U(2)
bundle on Y. Since G acts freely on ¥ (with orbit space Y), the obstructions lie in

H'(Y, 3Y; m;_1(SO(4)/ U(2)).

The only non-trivial group occurs for i =3, where m,(SO(4)/U(2))=2Z. The
mapping

Bdet

SO(4)/U(2)—~ BU(2) ==> BU(1)

is multiplication by 2 on m,. Thus the obstruction to a G-U(2) structure is the
same as the obstruction to finding a line bundle L over X with

L|,=A%V(a,b), i=1,2,3.

This was analysed in (1.4).

Section 2: Type II Actions of Cyclic Groups of Odd Order

In this section we prove that the local representations for weakly complex type
II actions on P*(C) agree with those in some linear action.

THEOREM 2.1. Let G be a cyclic group of odd order n acting locally linearly
and semi-freely on P*(C) with three isolated fixed points. If G is weakly complex
and induces the identity on homology, then the local representations at the fixed
points agree with those in a linear G-action.

Before beginning the proof, we derive some more information about the
rotation numbers (g;, b;) at the three isolated fixed points. We will see below that
our method has difficulty with “small primes”. However it is easy to verify
Theorem 2.1 directly for n =3" (r=3), 5, or 7, and from now on we will assume
that these cases are known.

The linear G-actions on P*(C) are given by the formula

t (21, 22, 23) = (21, 1°22, 1°23) 2.2)

in terms of homogeneous coordinates. This is a semi-free action with three
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isolated fixed points provided that a+#b are units (modn). If p;=(1,0,0),
p>=(0, 1, 0) and p; = (0, 0, 1), then the local rotation numbers (a;, b;) are

(a, b), (—a, b —a), and (—b, a — b). (2.3)
or
(a,b),(b—a, —a) and (a-—b, —b). 2.9

In a possibly non-linear action (X, G) on P*(C), we have the relations arising
from the G-signature Theorem [AS; Thm. 6.18]

FERED-EREDERDED - e

Note that we get an equation in the ring R=2Z[f]/(1+¢t+---+¢*"") after
multiplying both sides of (2.5) by (t — 1)>. Let I denote the ideal generated by
(t — 1) in R. In order to compute the low order terms (=6) in the /-adic expansion
of the resulting left-hand side, we lift this equation to Z[¢], expand in powers of
(t — 1) and equate coefficients. From these relations we will obtain congruences
modulo n involving the rotation numbers. Note that the indeterminacy in this
procedure arises from the coefficients in the expansion of

g)=(Q+t+---+"").

It is sufficient to do the cases n = p”, for some prime p with n #3" (r <3), 5,
or 7 (i.e. r(p—1)>6). The expression for g(t) as a product of cyclotomic
polynomials shows that

8O =h(D) - (= 1™+ 4 p k()

for some h(t), k(¢) € Z[t]. But in R, the prime p has I-adic valuation (p — 1), so
the indeterminacy affects the terms of degree =r(p — 1). Since r(p — 1) >6, by
considering the terms of degree up to six and reducing modulo n, one derives
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four congruences:

1

> b (2.6)
a?+b?

> T 2.7

a! + b} — S5a’b?
2—————=

ab, 0 (2.8)

248 — Tatb? — TaZb? + 2b¢
1 1~ Lt} 1 = O, .

> b 29
Since the action is assumed to be semi-free with three isolated fixed points, then
a; #+ b; are units mod n (for i =1, 2 or 3).

If L is a G-invariant line bundle over X, then the topological Index
homomorphism applied to [L] € Ks(X) gives a formula for a certain character x
of G:

x(@) = 2 ch(L | p))e(v,) '[pi]
. (2.10)

x(1) = ch(L)Z(X)[X].

By substituting the characters {t*} for L|,, and our local representations
in (2.10), we get

_ A+ (1+1%)
X(t) - 2 tl (1 _ ta,-) (1 - tbi) ‘

Let ¢;(L)?> = k? and x € H*(X; Z) denote a generator, then
x(1) = (1+ kx + k>x*/2)(4 + x)[X] = 2k* + 1.

If we substitute these expressions in (2.10) and expand, noting that
x(1) = x(¢)(mod n), we get

2 2 n .
21{ 1, &+ (a,+b,-+1+A,(A,+1))+”.}=2k2+1.
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By comparing terms on both sides, we get (1.4) and (1.7).
When the action is weakly complex, we can supplement (2.6)—(2.9) with

> ‘ia";—b" = 0(mod n). 2.11)

From (2.6), (2.7) and (2.11) we get the equations
(a1 + by — ay— by)* =9(asb, + asby)
(al +b1 _a3_b3)2=9(a1b1 +a3b3) (2.12)

(a3 + by — a3 — b3)> =9(ab, + asb;).
Indeed, from (2.6)

_ ab,ab,
asby = ab+ ayb, (2.13)
and then (2.11) gives
a1b202b2 (a1 + b1 a,+ bz)
+b3= + . .
s 3 albl + a2b2 a1b1 azbz (2 14)

Substituting this in (2.7) leads to the equation
[(a1+ by — az — by)* — 9(a1by + a,b,)]asa,b,b, =0,

and hence the first equation in (2.12). The others are similar. We remark that
(2.6) implies that the quantities in brackets on the right-hand side of (2.12) are
units (mod n).

Proof of (2.1) for n an odd prime: Let n = |G| be an odd prime, and consider
G = C, acting on P*(C). We will show that if (a;, b,) = (a, b) are fixed, then the
only rotation numbers satisfying the relations above are those from the linear
models (2.3) or (2.4). The cases when n =3, 5, or 7 are easy, so we leave them to
the reader and suppose that n > 7.

The first step is to eliminate a3, b; from (2.8) by using the relation

a3+ b3 — 5a3b3 _lG@s+ bs)’ —2a3bs]°

Tasbs,
a3b3 a3b3 303
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and the above expressions for a;b; and (a; + b;). This gives the equation

[(a1+b1)* — 2a:b,] Taib. + [(a2 + b2)* — 2a,b,]
a,b, o azb,

A2 7a1b1a2b2 _

—7ayb, — =
4222 (a1by +ayby)a;biazb,  (a b, + ayb,)

where
A= ["‘ (al + bl)z + 9alb1]a1b1 + [(a1 + bl)Z + 2a1b1]a2b2

+ 2(a1 + bl)(az + bz)albl.

Finally we use the first equation in (2.12) to express a,b, in terms of the sum
a,+ b, (and a,b,). Putting

z=[ay+b,—a~-b]/3,
we get (after some simplification)

2%+ 2(a + b)z° + (a* + 3ab + b*)z* — ab(a® + 3ab + b*)z?
~2ab(a +b)z —a’b*>=0. (2.15)

This equation factors as (z2—ab)(z +a)*(z + b)>=0. Since z>—ab = a,b, by
(2.12), and this is a unit, we get

(z +a)’(z + b)*=0. (2.16)
Similarly, if w = [a; + b; —a — b]3,
(w+a)’(w+b)*=0. (2.17)

These solutions lead immediately to the linear models, and this completes the
proof for |G| an odd prime.

Proof of (2.1), general case. Let n=|G| be an odd integer. Notice first that
a, + b, = ay + by(mod n) implies that n =3 or 9. Indeed the equations (2.12) show
that 9a,b, =9a;b; and 9a,b, = —9a3bs, hence 18a,b,=0. Since n is odd and
a,b, is a unit this gives 9=0(mod n). The cases n =3, n =9 have already been
dealt with, so assume below that a, + b, # a3 + bs(mod n).
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Write (a, b) = (a,, b;) and suppose p is a prime divisor of n. The equations
(2.16) and (2.17) give

(z + a)=0(mod p), (w + b) =0(mod p)
after possibly permuting a and b, so
a,+b,=b—2a, as+bs;=a—-2b (modp).
On the other hand, (2.12) gives
ab,=a(a—b), asbs;=b(b—a) (modp).
Hence we can assume
(az, b2) =(—a, b—a), (a3, b3)=(-b,a—b) (mod p)

LEMMA 2.19. Suppose n=p'm with (p, m)=1 and p prime. If (2.18) is
satisfied mod p then it is satisfied (mod p").

Proof. Suppose (2.18) satisfied (modp‘), 1=t<r. Hence we can write
(mod p*)

a,=—a+p'x,, b,=(b—a)+p'y,

as= —b+p'xs, by=(a—b)+p'y,.
When p # 3, substituting this back into (2.12) leads to the equations

y2=(3b/a—1)x,, x3= —(b*/a®)x,, y3= — (3a/b —1)(b*/a*)x,  (mod p).
For p =3 we substitute into (2.6), (2.8) and (2.11) instead to obtain the same
conclusion.

These relations can be substituted into (2.9), where the coefficient of x,
becomes:

14(a — 2b)(a — b)(a + b)(2a — b)b
a? )

This is non-zero mod p and hence x, =0 (mod p), unless p =7 or we are in one of
the degenerate cases @ =2b, a=—b, or 2a=>b. The latter are treated by a
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different method below. For p =7, we must substitute into the degree eight
congruence derived from (2.5), and proceed in a similar way. Further details will
be omitted.

The above lemma finishes the proof of Theorem 2.1 when G has prime power
order and reduces the case of composite order to the square-free case. Write
n = pq with (p, g) =1, p prime and q square-free. Inductively we may assume

a=—a+qx,, by=(b—a)+qy,
(2.20)
as= —b+qx;, bs=(a—b)+qy,
and that the unordered pairs satisfy
{a2: bZ}E{_a’ b—a}’ {03, b3}E{—b’a—-b} (mOdP)’
or

{ay, by} ={—b,a—b}, {a;,b5}={-a,b—a}  (modp).

This gives eight choices for the ordered pairs. We must rule out seven of them,
namely the one corresponding to the cases (2.20) (modp) where:

[x2, y2, X3, y3] =

1. [b/q, —blq, 0, 0]

2. [0,0, a/q, —a/q]

3. [b/q, —blq, alq, —alq]

4. [(a—b)/q,2(a —b)/q, (b—a)lq, 2(b - a)/q] (2.21)
5. [(2a — b)/q, (a —2b)/q, (b —a)/q, 2(b — a)/q]

6. [(a—b)/q, 2(a —b)/q, 2b —a)/q, (b —2a)/q]

7. [(2a - b)/q, (a —2b)/q, 2b —a)/3, (b —2a)/q].

We first derive an equation in F, ® Z[{,] by substituting (2.18) back in the
signature relation (2.5) and evaluating ¢ at a generator g € G. Let t(g)=¢ be
a primitive pq’th root of 1. In Z[], 1— L7 generates a p-adic ideal I and

ZL1=F, ®2[5] &=

Notice that F, ® Z[{,] decomposes into |(Z/q)*: {p)| factors, each isomorphic to
the field F,[£,]. Write

1282=Q1+C%) £ - 1) Alx)
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with A(x) = (%2 — 1)/(£7 — 1)). Then

C—a
1-Z

Q- '=Q1- C'“)‘l{l + (&7 - l)A(Xz)} (mod I?)

and

1+8% 1+ 2A(x,)
l_caz l_C-a{1+Ca__C—a

There is a similar calculation for (1 + £%2)/(1 — £*?), and

(&7 - 1)} (mod 7).

1+8% 1+ 1+§7° 1+
1-¢% l_Cbz_l_C—a l_cb_a

2A(x2) 2A(y2)
) {1 + I:Ca - C-—a+ Ca—b _ Cb—a

](;q - 1)} (mod P?).

Substituting this expression and the similar one for (as, b;) back in (2.5) and
using that

A(x)=x  (modl),
we get after clearing denominators the equation

(x2—2y2)8(a) + (x3 = 2y3)6(b) + (=2x; + 2x3 + y, — y3)8(a — b)
+ (y2+y3)0(a+b) +x,8(a—2b)+x36(b—2a)=0 (2.22)

where 8(u) = ¢4 — £, forue(Z/q)™.
The Galois group (Z/q)™ of the extension Q(&)/Q acts on the d(u).

LEMMA 2.23. Suppose the set {u,,...,u}c(Z/q)™ injects into (Z/q)™/
(x1). Then the units £ —¢™™,...,5%— & are linearly independent in
F, ® 7[L,].

Proof. This follows easily from the fact that the elements {*:u € (Z/q)*}
form a normal basis for the extension when g is square-free.

It follows from (2.23) that the elements d(a), 6(b), &(a—b), 8(a+b),
&8(a —2b) and &(b — 2a) are linearly independent if there are six distinct elements
in the set {1,b/a,1—b/a,1+b/a,1-2b/a, =2+ b/a} = (Z/q)*/{£1). This
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happens except in the special cases.
bla=-1,bla=+2,b/a=3,b/la=1/3,bla=1/2,bla=3/2 (2.24)

If we are not in the cases (2.24) we clearly get x, =x;=y,=y;=0in F, ® Z[,].
For each of the special cases (2.24) one checks through the 7 cases of (2.21)
separately, and derives a contradiction in each case. For example, if a = —b then
(2.22) reduces (upon replacing 3 by £,) to

(x2 = x3+ 2y; — 2y,)6(1) + (— 2x, + 2x3 + y2 — y3) 8(2) + (x, — x3)6(3) =0

SO X, =x; and y;=y, (mod p). Checking through (2.21) we see that this cannot
be satisfied when a = — b. The other special cases are similar.

We also have some degenerate cases left over from the proof of (2.19). These
too are handled by direct substitution of our relations for a,, b,, a; and b,
(mod p‘) into (2.5). Recall that in the argument of (2.19) we reduced the
deviation of the (a;, b;) from a linear model to a single unknown x,. It remains to
show that x,=0 (mod p). We write n =pq, with ¢ =p"~'m divisible by p and
expand (2.5) in powers of I = (1 — {?). This time the coefficients in the expansion
lie in

Z[E)1=F,(En)IC,):

After a straightforward calculation, we find that in each of the three cases
a= —b, a=2b, and 2a=b, the coefficient of I*> is non-zero unless x,=0
(mod p). Further details will be left to the reader. This ends the proof of (2.1).

Section 3: The Proof of Theorem A

From the results in Sections 1 and 2, we wish first to conclude that the actions
are G-homotopy equivalent to some linear action. This leads via surgery theory to
the proof of Theorem A.

LEMMA 3.1. Suppose that a cyclic group G has a type I action on P*(C).
Then the local representations of G at fixed points agree with those in a (complex)
linear G-action.

Proof. By (1.2) the invariant 2-sphere has a G-normal bundle. Suppose that
the G action is non-trivial on the 2-sphere, so has two fixed points say p, and p;.
Then by (1.3), the rotation numbers at p, and p; are of the form (a,, b,) and
(az— b,, —b,). If we substitute these values into (2.5), the result follows easily.
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PROPOSITION 3.2. Let G be a finite group acting locally linearly on P*(C)
inducing the identity on homology. Suppose that the action has an isolated fixed
point and a disjoint invariant 2-sphere representing a generator of H,(P*(C); Z).
Then there exists a G-homotopy equivalence to a linear action which is a
homeomorphism on a closed equivariant neighbourhood of the singular set.

Proof. Let p:G— SO(4) denote the local representative at the isolated fixed
point. From [HL; 2.5] we may assume that the image of p lies in U(2), so defines
a complex representation V and the identification P*(V @ 1)~ P*(C) gives a
linear action. We compare the given action to this linear model. Since the fixed
point is isolated, the local representation is free and G must be either cyclic or
contain a unique central element ¢ of order 2. In either case, the linear model
contains an invariant 2-sphere disjoint from the fixed point (this is just Fix # in the
second case). Now (3.1) implies that a suitable closed neighborhood (N, N) of
the invariant 2-sphere in the given action is G-homeomorphic to that in the linear
model. In particular, dN is G-homeomorphic to S(V). Since the invariant sphere
represents a generator of H,(P*(C); Z) it follows that

W =(P¥C)-NUD(V))
is a free G-h-cobordism from SN to S(V).

If our action satisfies the assumptions of (3.2), then the proof of Theorem A
can be completed by the following argument. Let

f:(W, W, 3, W)= (S(V)/G x1, S(N)/G x0, S(V)/G x 1)
be a homotopy equivalence. Then f | 3, W is a homotopy automorphism of the
space form S(V)/G. By [R1], [R2] f | 3. W is homotopic to a homeomorphism.

After a change of f we may therefore assume that f | 3, W is a homeomorphism
such that f represents an element of the topological structure set,

[fl1e $*(S(V)/G x 1, ).
By results of Freedmann, the surgery exact sequence works in dimension 4, so
LYZG)— $*(S(V)/G x 1, 8)—[S(V)/G x 1/3, F/TOP}— L{(ZG)

is exact. The left-hand group is a finite 2-group [Wa2] and the normal invariant

group is Z @ H*(G;Z/2). The Z maps injectively forward to L§(ZG), so we
conclude that #*(S(V)/G X I,9) is finite 2-group, say of exponent 2".
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COROLLARY 3.3. In the situation above there is a homeomorphism
F:(WUsy, X[0,®), 3_W)—(S(V)/G X [0, =), S(V)/G x0)

which restricts to f on 3_W.

Proof. Replace the structure f by 2"*! - f, f stacked on top of itself 2"*! times.
This map is homotopic to a homeomorphism (rel 3) by the s-cobordism theorem
[F], since 2" was the exponent of the h-structure set, and one further doubling will
eliminate the Whitehead torsion. Now use infinite repetition:

WUuy, X[0,0)=2""1- WU - WU---.

It remains therefore to consider the case where G is cyclic and acts semi-freely
with 3 isolated fixed points.

PROPOSITION 3.4. Let G be a cyclic group acting as above on P*C)
semi-freely with 3 isolated fixed points. Suppose that the local representations at the
fixed points agree with those in a linear G-action. Then there exists an isovariant
G-homotopy equivalence to the linear action which is a local homeomorphism near
the fixed point set.

Proof. Write M for the G-manifold (P*(C), G) and p;e M for the 3 fixed
points. We saw in (2.1) that there exists a linear model PX(V @ 1), the pro-
jective space of the representation V =r>""@ " @1. Let q;e P(V H1)°
be the fixed point with z;=0 for j+#i, and the notation is arranged so that
T,PA(V®1)=T,M as G-representations for i=1,2,3. The canonical line
bundle L(V) over PX(V @ 1) is G-equivariant and has fiber L(V), =" at g, for
i=1,2,3. By (1.4) there exists a complex G-bundle H over M with H|, =1t",
i=1,2,3.

T M= th—lz e tl,—lg’ T. M= tlz—h @ tlz—la
o b (3.5)

T,,M=t""@ %
3
The Chern class (c;(H))>=1 (modn) by (1.7), since this is true in the linear

model. It is now easy to adjust H so that (c,(H))*=1.
Let U, be a neighborhood of p; in M, G-homeomorphic to 7,,M. Then we can

find an embedding

i:U=]]U-P(V®I
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such that L(V) | U= H | U. The classifying G-map
f:P(V®1)— BUQ)

for L(V) maps gq; into the component of BU(1)G which corresponds to t*. Hence
we see that

U PV & 1)L BU1)

classifies H | U. The obstructions to extending this map to a G-map from M to
P*(V @1) lie in the Bredon cohomology group

HEM, Us mi(f))
where m,(f) is the coefficient system =, (f)(G/H) = m . (f*). By excision,

HEM, U; mi(f)) = HEM, M®; m(f))
= H“(M/G, M®; m(f)).

These groups vanish because ,(f) =0 for k<5 and (M/G, M) has relative
CW-dimension 4. Then make f:M— P*(V @1) transverse to {qi, 92, q3}
without changing it in a neighbourhood of these points. This completes the proof
of (3.4).

Now we finish the Proof of Theorem A for the G-actions of (3.4). Again we
let M denote the given G-space and P*(V @ 1) the linear model (which exists by
(2.1)). Since the G-map

f:M—>P(V®I1)

given by (3.4) is a homeomorphism near the fixed set, we get a free G-homotopy
equivalence

F:(M-U,3)—(P(v®1) - [ID}, 8)=(Y, 8Y)

which is a homeomorphism on the boundary, hence an element of
$*(Y/G, 3Y/G). But the Whitehead torsion of f/G vanishes by [Wal, 7.2] since
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SK,(ZG) =0 [Wa2, §5.4]. Finally

P(Y/G, 8Y/G) =ker([Y/G, 3Y/G; F/TOP]— LXZG))
= HXY/3y:Z/2)=Z/2,

and the normal invariant of our homotopy equivalence is zero. Indeed it is
enough to notice that f is the restriction of a self-homotopy equivalence of P*(C),
so homotopic to the identity or complex conjugation. Both of these have trivial
normal invariant.

Section 4: Discussion

We remarked in the Introduction that the existence of knotted 2-spheres in $*
fixed under a group action would prevent rigidity in general. Indeed, such knots
can be constructed smoothly for cyclic groups of odd order [G, p.197]. Consider a
linear action of G = C, x C, on P*(C) with an invariant projective triangle as the
singular set. One may for example send the generators S and T of G to the
matrices

¢ 1
1 2 C
1 1

where ¢ denotes a p’th root of unity. On one of the lines (say x; = 0) pick a free
orbit of p points for the action of T, and replace the interiors of small linear balls
around these points by the connected sum with p copies of the knotted
C,-invariant pair (D*, K), where K~ D” and (3D*, 3K) is unknotted. It is easy
to see that the fundamental group of the complement of the singular set is now
different from any linear model. Indeed, in the linear models the complement of
the singular set is just

Y=~D*x D?>— (D*>*x0U X D?)=S8'x§'x D
If Y’ denotes the new complement and I' = z;(D* — K), then
a(Y')=(Z®DZ)*T *---+I/{z)(p copies),

is the free product amalgamated over the standard meridian for 3K in 3D*. This
contains a subgroup isomorphic to I', hence is different from 7 ,(Y).
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Finally it is worth observing that rigidity can hold in at least one action
without an isolated fixed point. Consider G = C; X C; with the linear action on
P?(C) given by the representation

S(20, 21, 22) = (20, W21, ©72,)
T(20, 21, 22) = (22, 20, 21)

in PGL;(C), where w is a cube root of 1. Its singular set contains 12 points, the
fixed points for each of the 4 subgroups of order three in G.

This G-action is also rigid (we are grateful to Stefan Bauer for help with the
argument). Suppose that M denotes P*(C) with a locally-linear G-action and
singular set M® consisting of 12 points. Then M€ is empty and the localization
theorem implies that the restriction map

HXEG x oM, Z)— HX(M, Z)

has cokernel Z/3. Hence there exists a G-line bundle over M realizing the third
power H? of the Hopf bundle. This is in agreement with the linear model, where
the lens space S°/([S, T]) = L°(Z/3)— P*(C) is the total space of a G-bundle A
restricting to H> but H itself does not lift to an equivariant line bundle.

To remedy this, we consider now the group I' of upper triangular matrices in
GL4(F5). It is the extension of G = C3 X C; by C;

1-C3>TI->G—-1,
and [S, T] = R generates C;. We view M as a I'-manifold and notice that
HYET'x M, Z)— H*(M, Z)
is onto, because H*(BI', Z) = 0. Thus we have a I'-line bundle L over M realizing
the Hopf bundle. Let V, and V_ be the CI'-modules induced up from the two

irreducible faithful representations of C;. Then CI'=CG ©® End(V, ) ® End(V_),
)

BU()*=PCG)IP(VIP(VT),
the disjoint union of the projective spaces of the indicated infinite direct sums of

representations.
As before we look at the maps ! and & which classify L and the standard
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I'-Hopf bundle
M-S BU(1)S: < P(C).

We may assume that both / and h map into the component P(V%). On the
singular set, the representations agree with the linear ones, so there exists a
G-bijection f° making the diagram

M~ P(V7y

r h

PZ(C)s

commutative. This extends (by obstruction theory as before) to an isovariant
G-homotopy equivalence f : M — P?*(C) which is a local homeomorphism near the
singular set. Now the same argument used at the end of §3 shows that f is
G-homotopic to a homeomorphism.
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