1. The "minus" problem for Poincare spaces

Recall that a continous map $f: Y \rightarrow Z$ is called acyclic if its homotopy theoretic fiber is an acyclic space, or equivalently if it induces an isomorphism on homology or cohomology with any local coefficients. If the space Y is fixed, the correspondence $f \longmapsto k e r \pi_{1} f$ produces a bijection between equivalence classes of acyclic maps $f: Y \rightarrow Z$ and perfect normal subgroups of $\pi_{1}(Y)$. A representative $Y \rightarrow Y_{P}^{+}$of the class corresponding to the perfect normal subgroup P of $\pi_{1}(Y)$ can be obtained by a quillen plus construction, which means that Y_{P}^{+}is obtained by attaching cells of dimension 2 and 3 to Y . For details and other properties of acyclic maps, see [HH].

A space X is called a Poincare space (of formaldimension n) if it is homotopy equivalent to a finite complex and if there exists a class $[X] \in H_{n}(X ; \mathbb{Z})$ so that $-n X: H^{k}(X ; B) \rightarrow H_{n-k}(X ; B)$ is an isomorphism for any $\mathbb{Z} \pi_{1}(X)$-module B. If Y is a Poincaré space and $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{X}$ an acyclic map with $\pi_{1}(\mathrm{X})$ finitely presented, then X is a Poincaré space. The homology condition is obviously satisfied for X and it only remains to prove that X is homotopy equivalent to a finite complex. As $\pi_{1}(X)$ is finitely presented, the group $\pi_{1}(X)$ is Einitely presented iff ker ${ }_{1} f$ is the normal closure of finitely many elements in $\pi_{1}(Y)$. Hence a space $Y_{D}^{+}\left(P=k e r \pi_{1} f\right)$ homotopy equivalent to X may be obtained by attaching to v finitely many 2 -cells and then the same number of 3-cells.

Let X be a Poincaré space. For each epimorphism $\varphi: \Gamma \rightarrow \pi_{1}(X)$ with Γ finitely presented and kere perfect, we consider the problem of finding an acyclic map $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{X}$, where Y is a Poincaré space, $\pi_{l}(Y)=\Gamma$ and $\pi_{1} f=\varphi$. In other words : is X obtained by performing a plus construction on a Poincaré space with fundamental group Γ) (the "minus" problem for (X, φ)).

First observe that the existence of such an acyclic map

$f: Y \rightarrow X$ implies some conditions on X. The following commutative diagram :

shows the existence of a lifting $\alpha_{\mathrm{y}}^{+}: \mathrm{X} \rightarrow \mathrm{B} \mathrm{\Gamma}{ }_{\text {ker } \varphi}^{+}$of the characteristic map $\alpha_{X}: X \rightarrow B \pi_{1}(X)$ (see [H-H, Proposition 3.1]). Moreover, recall that for any space Z, the homomorphism $H_{2}{ }_{Z}: H_{2}(Z ; C) \rightarrow H_{2}\left(B \pi_{1}(Z) ; C\right)$ is surjective for any $\mathbb{Z} \pi_{1}(Z)$-module C (since $B \pi_{1}(Z)$ is obtainable from Z by adding cells of dimension ≥ 3). Hence the following commutative diagram :

shows that for any $\mathbb{Z} \pi_{1}(X)$-module C, the homomorphisms $H_{2} \alpha_{y}^{+}$and $\mathrm{H}_{2} \mathrm{~B}^{+}$are both surjective. This, of course, implies non-trivial compatibilities between $\mathrm{H}_{2}(\mathrm{X} ; \mathrm{C})$ and $\mathrm{H}_{2}(\mathrm{~B} \mathrm{\Gamma} ; \mathrm{C})=\mathrm{H}_{2}(\Gamma ; \mathrm{C})$.

These first remarks suggest a more natural formulation of the above problem, using the following definition :
(1.1) Definition : Let X be a Poincaré space. Let us consider pairs $(\varphi, \tilde{\alpha})$, where :

1) $\varphi: \Gamma \longrightarrow \pi_{1}(X)$ is an epimorphism of finitely presented groups with kere perfect, and
2) $\tilde{\alpha}: X \rightarrow B \Gamma_{\text {ker } \varphi}^{+}$makes the following diagram commute :

and $\mathrm{H}_{2} \tilde{\alpha}: \mathrm{H}_{2}(\mathrm{X} ; \mathrm{C}) \rightarrow \mathrm{H}_{2}\left(\mathrm{Br}_{\operatorname{ker} \varphi}^{+} ; \mathrm{C}\right)$ is surjective for any $\mathbb{Z} \pi_{1}(X)$-module C.

Such a pair $(\varphi, \tilde{\alpha})$ is realizable if there exists an acyclic
$\operatorname{map} \mathrm{f}: Y \longrightarrow X$ with Y a Poincaré space, $\pi_{1}(Y)=\Gamma, \pi_{1} f=\varphi$ and $\alpha_{Y}^{+}=\tilde{\alpha}$.

Our problem then becomes : given a Poincaré space X and a pair ($\varphi, \tilde{\alpha}$) as in (l.1), is this pair realizable ? The answer that we are able to give to this more precise problem is contained in Theorem (l.2) below. Recall that a group G is called locally perfect if any finitely generated subgroup of G is contained is a finitely generated perfect subgroup of G.
(1.2) Theorem Let X be a Poincaré space of formal dimension $n \geq 4$.
i) a pair $(\varphi, \tilde{\alpha})$ as in (1.I) determines an element $\sigma(\varphi, \tilde{\alpha})$ in the Wall surgery obstruction group $L_{n}(\varphi)$. If $(\varphi, \tilde{\alpha})$ is realizable, then $\sigma(\varphi, \widetilde{\alpha})=0$.
ii) If $\tilde{\alpha}^{\prime}: X \rightarrow B \Gamma_{\text {ker }}^{+}$is another lifting of α_{x} such that the pair $(\varphi, \tilde{\alpha} \cdot)$ satisfies to the conditions of (1,1), then $\sigma(\varphi, \tilde{\alpha})=\sigma\left(\varphi, \tilde{\alpha}^{\prime}\right)$.
iii) If in addition $n \geq 5$ and ker φ is locally perfect, then $\sigma(\varphi, \tilde{\alpha})=0$ implies that $(\varphi, \tilde{\alpha})$ is realizable.
(1.3) Remarks : a) The Wall group used in (1.2) is the obstruction group for surgery to a homotopy equivalence (sometimes called L_{n}^{h}). Recall that the group I_{n} () fits in the exact sequence :

$$
\longrightarrow I_{n}(\Gamma) \xrightarrow{\varphi} L_{n}\left(\pi_{1}(X)\right) \longrightarrow L_{n}(\varphi) \longrightarrow L_{n-1}(\Gamma) \longrightarrow
$$

b) The same theory holds for simple Poincaré spaces [Wa, Chapter 2]. using simple acyclic maps (the Whitehead torsion of an acyclic
map $f: Y \rightarrow X$ is well defined in $W h\left(\pi_{1}(X)\right)$; if this torsion vanishes, the acyclic map is called simple). The relevant wall group is then $L_{n}^{S}(\varphi)$.
c) The same theory holds for non-orientable Poincare spaces. The relevant wall group is then $L_{n}\left(\varphi, w_{1}(X)\right)$, where $w_{1}(X): \pi_{1}(X) \rightarrow \mathbb{Z} / \mathbb{Z}$ is the orientation character for X.

Proof of (1.2) : Write $\mathrm{B} \mathrm{\Gamma}^{+}$for $\mathrm{B} \mathrm{\Gamma}_{\text {ker } \varphi}^{+}$. Let us consider the pull-back diagram:

The fiber of g is the same as the fiber of l, therefore g is an acyclic map. If F is the homotopy theoretic fiber of $\tilde{\alpha}$ one has the following diagram :

Hence $\pi_{1}(T)=\Gamma$ if $\pi_{2} \tilde{\alpha}$ is surjective. But this is the case, as can be seen by the following diagram:

the right-hand vertical arrow being surjective by Part b) of (1.1).
Let Z be a space. We denote by $\Omega_{n}^{P}(Z)$ (Poincaré bordism groupl the bordism group of maps $f: U \rightarrow Z$ where U is an oriented Poincare space of formal dimension n. According to the theory of Quinn ([Qn], see [HV2] for proofs), these groups fit in a natural long exact sequence :

$$
H_{n+1}(Z ; M S G) \longrightarrow L_{n}\left(\pi_{1}(Z)\right) \longrightarrow \Omega_{n}^{P}(Z) \longrightarrow H_{n}(Z ; M S G)
$$

If Z^{\prime} is a subspace of Z, one defines $\Omega_{n}^{P}\left(Z, Z^{\prime}\right)$ similarly, using Poincaré pairs, and on gets a corresponding sequence. Specializing to $Z=X, Z=T$ and using the fact that $T \rightarrow X$ is an acyclic map, one gets the following commutative diagram in which the rows and columns are exact :

This permits us to define $\sigma(\varphi, \tilde{\alpha})$ as the image of $\left[i d_{X}\right] \in \Omega_{n}^{p}(X) \quad$ under the composite $\operatorname{map} \Omega_{n}^{P}(X) \rightarrow \Omega_{n}^{P}(X, T) \simeq L_{n}(\varphi)$.

Now, suppose that $(\varphi, \tilde{\alpha})$ is realizable by an acyclic map $f: Y \rightarrow X$ with Y a Poincare space. Thus, f factors through a map $\mathrm{f}: \mathrm{Y} \rightarrow \mathrm{T}$ representing a class in $\Omega_{\mathrm{n}}^{\mathrm{P}}(\mathrm{T})$. As f is acyclic, its mapping cylinder constitutes a Poincaré cobordism from id x to f. 'Therefore, the class [id X] is mapped to zero in $\Omega_{n}^{P}(X, T)$ (since f factors through T) and $(\varphi, \widetilde{\alpha})=0$. This proves part i) of (1.2).

To prove ii), let us consider the pull-back diagram

and form again the pull-back diagram

in which all the maps are now acyclic. Then the composed map $\hat{T} \rightarrow X$ is also acyclic. Denote by $\hat{\varphi}: \hat{\Gamma}=\pi_{1}(\hat{T}) \rightarrow T_{1}(X)$ the induced homomorphism. One has a commutative diagram

Therefore, $\sigma(\varphi, \tilde{\alpha})$ and $\sigma\left(\varphi, \tilde{\alpha}^{\prime}\right)$ are both image of a single element of $L_{n}(\varphi)$. This proves Part ii) of (1.2).

Let us finally prove part iji) of (1.2). If $\sigma(\varphi, \tilde{\alpha})=0$, then there is a map $\beta_{0}: Y_{0} \rightarrow T$ representing a class in $\Omega_{n}^{P}(T)$ such that $g^{\circ} \beta_{0}$ is Poincare cobordant to id X_{X}. To show that (φ, α) is realizable, we shall find a representative $\beta: Y \rightarrow T$ of the class
β_{0} such that $\pi_{1} \beta$ and $\beta_{*}: H_{*}\left(Y ; \mathbb{Z}_{1}(X)\right) \rightarrow H_{*}\left(T ; \mathbb{Z} \pi_{1}(X)\right)$ are isomorphisms.

By construction of the space T, the group kerp acts trivially on $\pi_{2}(T)$ (use [HH, Proposition 5.4] to the maps l and g). As kere is locally perfect, one can construct, as in [H2, proof of Theorem 3.i], a finite complex T_{1} and a commutative diagram :

such that g_{1} is an acyclic map and $\pi_{1} Y$ is an isomorphism. Thus, T_{1} is a finite complex satisfying Poincaré duality with coefficients $\mathbb{Z}_{1}(X)$ and β_{1} can be covered by a map of the Spivak bundles. By surgery with coefficients for Poincare spaces (the Cappell-Shaneson type of generalization of [Qn, Corollary 1.4]; for proofs, see[HV2]), the map β_{1} determines an element $\sigma\left(\beta_{1}\right) \in \Gamma_{n}(\varphi)$, where $\Gamma_{n}(\varphi)$ is the Cappell-Shaneson surgery obstruction group $\Gamma_{n}^{h}\left(\mathbb{Z} \Gamma \rightarrow \mathbb{Z}_{1}(X)\right)$ defined in [CS]. The existence of the required map $\beta: Y \rightarrow T$ will be implied by the nullity of $\sigma\left(\beta_{1}\right)$.

As in $[H 1, \S 3]$, it can be checked (see [HV2]) that the image of $\sigma\left(\beta_{1}\right)$ under the homomorphism $\Gamma_{n}(\varphi) \rightarrow L_{n}\left(\pi_{1}(X)\right)$ is the
obstruction to $g_{1} \circ \beta_{1}$ being Poincaré cobordant to a homotopy equivalence. The latter is obviously zero since, by construction, $g_{1} \circ \beta_{1}=g \circ \beta_{0}$ is Poincaré cobordant to $i d_{X}$. Since both Γ and $\pi_{1}(X)$ are finitely presented, kere locally perfect is equivalent to ker φ being the normal closure of a finitely generated perfect group. Therefore, the homomorphism $\Gamma_{n}(\varphi) \rightarrow L_{n}\left(\pi_{l}(X)\right)$ is an isomorphism [H1, Theorem 1]. Then $\sigma\left(\beta_{1}\right)=0$ and Part ii) of (1.2) is proved.
2. The invariant $\sigma(\varphi, \tilde{\alpha})$ as part of a total surgery obstruction theory

Let X be a Poincaré space of formal dimension $\mathrm{n} \geq 4$. By (1.2) to each pair $(\varphi, \widetilde{\alpha})$ as in (l.l), one can associate the element $\sigma(\varphi, \tilde{\alpha}) \in \mathrm{L}_{\mathrm{n}}(\varphi)$. This gives a large collection of invariants associated to X . In this context, Theorem 2.1 of [HVI] may be rephrased as follows :
(2.1) Theorem Let X be a Poincaré space of formal dimension $n \geq 5$. Let $(\varphi, \tilde{\alpha})$ be a pair as in (1.l) with $\operatorname{ker} \varphi$ locally perfect. If X has the homotopy type of a topological closed manifold then $\sigma(\varphi, \tilde{\alpha})=0$.

Thus, the elements $\sigma(\varphi, \tilde{\alpha})$ occurs as obstruction for x being homotopy equivalent to a closed topological manifold and we can except some relationship between our $\sigma(\varphi, \tilde{\alpha})$'s and the total surgery obstruction of [Ra]. We are indebted to A. Ranicki for pointing out a mistake in our first draft of this section.

Let X be a Poincaré space of formal dimension ≥ 5. According to [Ral, there is an exact sequence :

and an element $s(x) \in \mathscr{S}_{\mathrm{n}}(\mathrm{x})$ which vanishes if and only if x is homotopy equivalent to a closed topological manifold. Here the groups are defined for $m \geq 0$ by

$$
\mathscr{S}_{\mathrm{m}}(\mathrm{x})=\pi_{\mathrm{m}}\left(\sigma_{\star}: \mathrm{x}_{+} \underline{\underline{I}}_{0} \rightarrow \mathbb{E}_{0}\left(\pi_{1}(\mathrm{x})\right)\right)
$$

where σ_{*} is the assembly map and $\underline{\underline{L}}_{0}$ is the l-connective covering of the spectrum \underline{I}_{0} (1) (see [Ra, p.285]; we use the notations of [Ra]). Observe that our definition of $\mathscr{S}_{\mathrm{m}}(\mathrm{X})$ slightly differs from the one in [Ra] (we take the whole spectrum $\mathbb{\#}_{0}\left(\pi_{1}(X)\right)$ instead of its l-connective covering). This difference only affects the group $\mathscr{S}_{0}(\mathrm{x})$. Since the assembiy map σ_{*} can be extended to $\bar{\sigma}_{\star}: X_{+} \underline{I}_{0}(1) \rightarrow \mathbb{I}_{0}\left(\pi_{1}(\mathrm{X})\right)$ we can define : $\overline{\mathscr{S}}_{\mathrm{m}}(\mathrm{X})=\pi_{\mathrm{m}}\left(\bar{\sigma}_{\star}\right)$. This gives the exact sequences :
and
(2.2) $\ldots \rightarrow H_{m}(\mathrm{X} ; \mathbb{Z}) \rightarrow \mathscr{S}_{\mathrm{Z}}(\mathrm{x}) \xrightarrow{\lambda_{\mathrm{m}}} \overline{\mathscr{F}}_{\mathrm{m}}(\mathrm{X}) \rightarrow \mathrm{H}_{\mathrm{m}-1}(\mathrm{x} ; \mathbb{Z}) \rightarrow \ldots$

Let us define $\bar{s}(x)=\lambda_{n}(s(x)) \in \overline{\mathscr{P}}_{n}(x)$.
If $(\varphi, \tilde{\alpha})$ is any pair for X as in (1.l), consider the pull-back diagram :

which gives rise to the following diagram :

in which rows_and collumns are exact. One has also the corresponding diagram for $\overline{\mathscr{P}}_{\mathrm{m}}(\mathrm{X})$. Let $\eta_{\mathrm{m}}: \mathscr{S}_{\mathrm{m}}(\mathrm{X}) \rightarrow \mathrm{L}_{\mathrm{m}}(\varphi)$ be the composed homomorphism $\mathscr{C}_{\mathrm{m}}(\mathrm{x}) \rightarrow \mathscr{F}_{\mathrm{m}}(\mathrm{x}, \mathrm{T}) \stackrel{\approx}{\leftrightarrows} \mathrm{L}_{\mathrm{m}}(\varphi)$. Define $\bar{\eta}_{\mathrm{m}}: \overline{\mathscr{S}}_{\mathrm{m}}(\mathrm{X}) \rightarrow \mathrm{L}_{\mathrm{m}}(\varphi)$ accordingly, and notice that $n_{m}=\bar{\eta}_{m} \circ \lambda_{m}$.
(2.4) Proposition $\operatorname{In} L_{n}(\varphi)$, one has the equalities :

$$
\eta_{n}(s(x))=\bar{\eta}_{n}(\bar{s}(x))=\sigma(\varphi, \tilde{\alpha})
$$

proof This follows directly from the definitions, since there is a homomorphism $\delta_{X}: \Omega_{n}^{P}(X) \rightarrow \mathscr{S}_{n}(X)$ such that the following diagram
commutes and $\delta_{X}\left(\left[i d_{X}\right]\right)=s(x)[$ Ra, pp. 307-308].
(2.5) Corollary Let X be a Poincaré complex of formal dimension $n \geq 5$, and let $(\varphi, \tilde{\alpha})$ a pair as in (1.1). Suppose that the Spivak bundle for x has a Top-reduction ξ which defines a surgery obstruction $\sigma(\xi) \in L_{n}\left(\pi_{1}(X)\right)$. Then, $\sigma(\varphi, \tilde{\alpha})$ is the image of $\sigma(\xi)$ under the homomorphism $L_{n}\left(\pi_{1}(X)\right) \rightarrow L_{n}(\varphi)$.

Proof By [Ra,p. 298], the element $\sigma(\xi)$ has image $s(X)$ under the homomorphism $L_{n}\left({ }_{1}(X)\right) \rightarrow \mathscr{S}_{n}(X)$. The result thus follows from (2.4). Thus, if $\bar{s}(X)=0$, one has $\sigma(\varphi, \tilde{\alpha})=0$ for any pair ($\varphi, \tilde{\alpha}$) as in (1.1). A converse to this fact might be obtained by considering some "test pairs" ($\varphi_{X}, \tilde{\alpha}_{X}$) for X as follows : let $\mathscr{A}_{i}, i=0,1, \ldots$, and $\mathscr{A}=U_{i} \mathscr{A}_{i}$ be the smallest classes of groups such that :

```
\mathscr{A}
G \in\mathscr{A}}\mathrm{ iff at least one of the following
                        conditions holds :
```

(a) there exist groups G_{1}, G_{2} and $G_{0}=G_{1} \cap G_{2}$, all in \mathscr{A} i-1 such that $G=G_{1} * G_{0} G_{2}$ and the inclusions $G_{0} \subset G_{i}$ are $\sqrt{\text {-closed in }}$ the sense of ${ }^{0}[\mathrm{Cl}]:$ if $g \in G_{i}$ and $g^{2} \in G_{0}$ then $g \in G_{0}$.
or
(b) $G=G_{0} \times \mathbb{Z}$, with $G_{0} \in \mathscr{X}_{i-1}$
(2.6) Proposition Let x be a finite complex of dimension n. Then there exists a pair $\left(\varphi_{X}: \Gamma_{X} \rightarrow \pi_{2}(X), \tilde{\alpha}_{X}\right)$ satisfying 1) and 2) of (1.1) such that :

1) $\Gamma_{\mathrm{X}} \in \mathscr{A}$
2) ${ }^{\mathrm{B}} \mathrm{\Gamma}_{\mathrm{X}}$ is a finite complex of dimension n
3) $\tilde{\alpha}_{X}$ is a homotopy equivalence.

The pair $\left(\varphi_{X}, \tilde{\alpha}_{X}\right)$ is associated to a triangulation of X, according an algorithm as in $[B-D-H]$ or [Ma]. Its construction is given in §4.

Recall that a standard conjecture is that $\widetilde{K}_{0}(G)=0=W h(G)$ for $G \in \mathscr{A}^{(1)}$. (or even for G such that $B G$ is a finite complex).
(2.7) Theorem Suppose that $\widetilde{K}_{0}(G)=W h(G)=0$ for all $G \in \mathscr{A}$. Then, for X a Poincaré space of formal dimension $n \geq 5$, the following conditions are equivalent :
(1) P. Vogel informs us that he has recently obtained a proof of this conjecture.

1) $\bar{s}(\mathrm{X})=0$
2) $\sigma(\varphi, \tilde{\alpha})=0$ for any pair $(\varphi, \tilde{\alpha})$ for x as in (1.1)
3) $\sigma\left(\varphi_{\mathrm{X}}, \tilde{\alpha}_{\mathrm{X}}\right)=0$ for some pair $\left(\varphi_{\mathrm{X}}, \tilde{\alpha}_{\mathrm{X}}\right)$ of (2.6).

Proof : Condition 1) implies Condition 2) by (2.4). The implication from 2) to 3) is straightforward. Therefore it remains to prove that 3) implies 1). As the map $\tilde{\alpha}_{X}$ is a homotopy equivalence, the diagram for $\overline{\mathscr{P}}(\mathrm{X})$ similar to (2.3) gives the long exact sequence :

$$
\begin{equation*}
\ldots \overline{\mathscr{P}}_{\mathrm{m}}\left(\mathrm{~B} \mathrm{\Gamma} \mathrm{X}_{\mathrm{X}}\right) \rightarrow \overline{\mathscr{P}}_{\mathrm{m}}(\mathrm{X}) \xrightarrow{\bar{\eta}_{m}} \mathrm{~L}_{\mathrm{m}}\left(\varphi_{\mathrm{X}}\right) \rightarrow \overline{\mathscr{S}}_{\mathrm{m}-1}\left(\mathrm{~B} \mathrm{\Gamma} \mathrm{X}_{\mathrm{X}}\right) \rightarrow \ldots \tag{2.8}
\end{equation*}
$$

Therefore, it suffices to establish that $\overline{\mathscr{S}}_{\mathrm{m}}\left(B \Gamma_{\mathrm{X}}\right)=0$ for $m \geq n$. As dim $B \Gamma_{X}=n$, this follows from the following lemma :
(2.9) Lemma Let $G \in \mathscr{A}$ such that $\widetilde{\mathrm{K}}_{0}(P)=0=$ Wh(P) for any subgroup P of G with $P \in \mathscr{A}$. Then the homomorphism

$$
\bar{\sigma}_{m}: H_{m}\left(G ; \Pi_{0}(1)\right) \rightarrow L_{m}(G)
$$

induced by the assembly map $\bar{\sigma}_{\star}$ is an isomorphism for $m \geq d i m$ BG and is injective for $m=\operatorname{dim} B G-1$.

Proof We shall prove Lemma (2.9) for $G \in \mathscr{A}$ by induction on j, using the classical idea of s. Cappell [C3]. The class \mathscr{A}_{0} contains only the trivial group and $H_{m}\left(p t ; \#_{0}(1)\right)$ is isomorphic to $L_{m}(1)$ for $m \geq 0$ (this is the main point where we need the spectrum $\mathbb{H}_{0}(1)$ instead of \underline{H}_{0}). Also $H_{-I}\left(p t ; \mathbb{H}_{0}(1)\right)=0$, thus lemma (2.9) is proved for $G \in \mathscr{A}_{0}$. If now $G \in \mathscr{A}$, then

in the first case and

in the second case, in which all the rows are exact. The exact sequences involving L-groups are those of [Cl]. As dim BG_{1} and $\operatorname{dim} B G_{2}$ are $\leq \operatorname{dim} B G$ and $d i m G_{0} \leq \operatorname{dim} B G-1$ (in both cases), the induction step follows from the five lemma.

Using Exact sequences (2.2) and (2.3) together with Lemma (2.9), one obtains the following theorem :
(2.10) Theorem Suppose that $\widetilde{\mathrm{K}}_{0}(\mathrm{G})=0=\mathrm{Wh}(\mathrm{G})$, for all $G \in \mathscr{A}$. Let X be a Poincaré space of formal dimension $n \geq 5$ and let ($\varphi_{X}, \widetilde{\alpha}_{X}$) be a pair as in (2.6). Then :
a) $\eta_{m}: \mathscr{C}_{m}(X) \rightarrow L_{m}\left(\varphi_{X}\right)$ is an isomorphism for $m \geq n+2$
b) One has an exact sequence :

$$
0 \rightarrow \mathscr{S}_{n+1}(x) \xrightarrow{\eta_{n+1}} L_{n+1}\left(\varphi_{x}\right) \rightarrow \mathbb{Z} \rightarrow \mathscr{S}_{n}(x) \xrightarrow{\eta_{n}} L_{n}\left(\varphi_{x}\right)
$$

Finally, we mention the following proposition which will be of interest in Remarks 4 and 5 below :
(2.11) Proposition Let G be a group as in (2.9) such that BG is a (finite) complex of dimension n. Let X be a space with $\pi_{1}(X)=G$ and such that the canonical map $X \rightarrow B G$ induces an isomorphism on integral homology. Then $\mathscr{C}_{\mathrm{m}}(\mathrm{X})=\overline{\mathscr{P}}_{\mathrm{m}}(\mathrm{X})=0$ for $\mathrm{m}>\mathrm{n}, \mathscr{C}_{\mathrm{n}}(\mathrm{X}) \cong \mathbb{Z}$ and $\overline{\mathscr{S}}_{\mathrm{n}}(\mathrm{x})=0$.

Proof This follows from Lemma (2.9) and from the comparison of the exact sequences (2.1) and (2.1 bis) for X and for $B G$.
2.12) Remarks 1) If one is interested in Statements (2.9), (2.10) and (2.11) only modulo 2-torsion, one can drop the assumption $\tilde{K}_{0}(G)=0=W h(G)$ for $G \in \mathscr{A}$ as well as the condition V-closed in the definition of the class $\mathscr{A}($ this would simplify $\S 4$). Indeed, the exact sequences of surgery groups used in the proof of (2.9) always exist when all the groups are tensored by $\mathbb{Z}[1 / 2]$.
2) From Proposition (2.11), it follows that $\mathscr{S}_{\mathrm{m}}\left(\mathrm{B} \mathbb{Z}^{n}\right)=0$ for $m>n$ and $\mathscr{S}_{\mathrm{n}}\left(\mathrm{Bm}^{\mathrm{n}}\right)=\mathbb{Z}$. This result is mentioned in $[\mathrm{Ra}, \mathrm{p} .310]$.
3) The class \mathscr{A} has been chosen minimal in order to obtain (2.6) and (2.7). But Lemma (2.9) is valid for a larger class in whigh we allow HNN-extension (with the relevant V^{-}-closed condition). As in 2), one is then able to prove for instance that $\mathscr{S}_{\mathrm{m}}(\mathrm{X})=0$ for $\mathrm{m}>3$ and $\mathscr{S}_{3}(x)=\mathbb{z}$ for x belonging to a large class of sufficiently large 3 -manifolds (the result is valid mod 2 -torsion for all sufficiently large 3-manifolds).
4) We now construct a Poincaré space Y of formal dimension n such that $\sigma(\varphi, \tilde{\alpha})=0$ for all pairs $(\varphi, \tilde{\alpha})$ for Y as in (1.1) but which is not homotopy equivalent to a closed topological manifold. We assume that $\widetilde{K}_{0}(G)=0=W h(G)$ for all $G \in \mathscr{A}$ thus it suffices to prove that $\bar{s}(Y)=0$ by (2.7).

We apply (2.6) to the case $x=s^{n}$. We thus obtain a group $\Gamma_{\mathrm{n}} \in \mathscr{A}$ such that $\mathrm{Br}{ }_{\mathrm{n}}$ is a finite complex of dimension n and $H_{*}\left(B \Gamma_{n} ; \mathbb{Z}\right) \cong H_{*}\left(S^{n} ; \mathbb{Z}\right)$.

The Atiyah-Hirzebruch spectral sequence shows that
$H_{m}\left(B \Gamma_{n} ; \underline{\mu}_{-0}\right)=L_{m}(1)$ for $l \leq m \leq n$ and the homomorphism $H_{m}\left(B \Gamma_{n} ; \underline{I}_{0}\right) \rightarrow L_{m}\left(\Gamma_{n}\right)$ induced by the assembly map coincides with the inclusion $L_{m}(1) \rightarrow L_{m}\left(\Gamma_{n}\right)$. Thus, the reduced surgery group $\tilde{L}_{n}\left(\Gamma_{n}\right)=\operatorname{coker}\left(L_{n}(1) \rightarrow L_{n}\left(\Gamma_{n}\right)\right)$ is isomorphic to $\mathscr{S}_{n}\left(B \Gamma_{n}\right)=\mathbb{Z}$ by (2.1) and (2.11).

Let us consider the Poincaré homology sphere bordism group $\Omega_{n}{ }_{n}{ }^{\text {PHS }}\left(\mathrm{Br}{ }_{n}\right)$ defined in [H3], whose elements are represented by maps $\mathrm{f}: \Sigma \rightarrow B \Gamma_{n}$, where Σ is an oriented Poincare space with the homology of s^{n}. For $n \geq 6$, the theory of [H3] gives an isomorphism :

$$
\Omega_{\mathrm{n}}^{\mathrm{PHS}}\left(\mathrm{~B} \Gamma_{\mathrm{n}}\right) \cong \pi_{\mathrm{n}}\left(\mathrm{~S}^{\mathrm{n}}\right) \oplus \widetilde{\mathrm{L}}_{\mathrm{n}}\left(\Gamma_{\mathrm{n}}\right) \cong \mathbb{Z} \oplus \mathbb{Z}
$$

so that the class of $f: \Sigma \rightarrow B \Gamma_{n}$ corresponds to the pair (degf, $\left.\mathscr{f}_{*}(\sigma)\right)$, where $\sigma \in L_{n}\left(\pi_{I}(\Sigma)\right)$ is the surgery obstruction for any surgery problem with target Σ. As Γ_{n} is finitely presented and $H_{1}\left(\Gamma_{n} ; \mathbb{Z}\right)=H_{2}\left(\Gamma_{n} ; \mathbb{Z}\right)=0$, it actually follows from [H3, "proof of the surjectivity of $\left.\sigma_{n} "\right]$ that for any class of $\Omega_{n}^{D H S}\left(B \Gamma_{n}\right)$ has a representative $f: \Sigma \rightarrow B \Gamma_{n}$ with $\pi_{1} f$ an isomorphism. Therefore, the pair $(1, k)$ with $k \neq 0$ corresponds to a map $f: Y \rightarrow B \Gamma_{n}$ such that :

- f induces an isomorphism on the fundamental groups
- f induces an isomorphism on integral homology (since deqf $=1$)
- Y has not the homotopy type of a closed topological manifold (otherwise k would be zero).
$-\bar{s}(Y)=0 \quad\left(\right.$ since $\mathscr{S}_{\mathrm{n}}(Y)=0$ by $\left.(2.11)\right)$.

5) The following is a version of the Novikov Conjecture : if G is a group such that $B G$ is a Poincare space of formal dimension n, then
a) $\mathscr{C}_{\mathrm{m}}(\mathrm{BG})=0$ for $\mathrm{m}>\mathrm{n}$ and $\mathscr{S}_{\mathrm{n}}(\mathrm{BG})=\mathbb{z}$
b) $s(B G)=0$

Proposition (2.11) shows that a) is satisfied if $G \in \mathscr{A}$ (modulo the vanishing assumptions on $\widetilde{\mathrm{K}}_{0}$ and Wh). On the other hand, the space Y of Remark 4) above has fundamental group $\Gamma_{n} \in \mathscr{A}$, the same integral homology as $B \Gamma_{n}$ and thus satisfies a) by (2.11). But $s(Y) \neq 0$. This shows some independence between condition a) and b) and emphasizes the importance of the assumption that $B G$ itself be a Poincare space in the Novikov conjecture.

3. Homotopy equivalences of closed manifolds

As one might except, the results of $\S 1$ and 2 have analogues for homotopy equivalences of closed manifolds. We give here the "simple homotopy" version of this theory, which seems more natural in this framework.
(3.1) Theorem Let $j: M \rightarrow N$ be a simple homotopy equivalence between closed manifolds of dimension $n \geq 5$. Then any pair $(\varphi, \tilde{\alpha})$ for N as in (1.1) with kery locally perfect determines an element $\sigma(j, \varphi, \tilde{\alpha}) \in L_{n+1}^{S}(\varphi)$ such that the following three conditions are equivalent :
a) there is a commutative diagram :

where M_{-}and N_{-}are closed manifolds, f_{M} and f_{N} are simple acyclic maps and $j_{\text {_ }}$ is a simple homotopy equivalence.
b) any commutative diagram

with N_{-}a closed manifold and f_{N} a simple acyclic map can be completed in a diagram as in a).
c) $\sigma(j, \varphi, \tilde{\alpha})=0$.

Proof Recall that in the proof of (1.2) we checked that in the pull-back diagram :

the map g is acyclic, $\pi_{1}(T)=\Gamma$ and ker φ acts trivially on $\pi_{2}(T)$. By [H2, Theorem 3.1], there is a commutative diagram :

such that f_{N} is a simple acyclic map and $\pi_{1}\left(N_{-}\right)=\pi_{1}(T)=\Gamma$. (This existence of f_{N} shows that b) implies a).)

For P a closed manifold of dimension n, let $\mathscr{S}_{T O P}(P)$ be the Sullivan-Wall set of topological structures on P [Wa, Chapter 10] According to [Ra, p.277] there is an identification $\mathscr{S}_{\mathrm{TOP}}(\mathrm{P}) \simeq$ $\rightarrow \mathscr{C}_{n+1}(P)$. Let $h: Q_{-} \rightarrow N_{-}$represent a class in $\mathscr{P}_{\mathrm{TOP}}{ }^{(N+}{ }^{(N)}$. Using a simple plus cobordism (W, Q_, Q) (i.e. $\underline{Q}_{-}^{+} \simeq W$) one gets a simple homotopy equivalence $h^{+}: Q \rightarrow N$ whose class in $\mathscr{S}_{\text {TOP }}(N)$ is well defined. One checks that this correspondance $\left.[h] \xrightarrow{[}{ }^{[}{ }^{+}\right]$is actually given by the composite :

$$
\mathscr{S}_{\mathrm{TOP}}\left(\mathrm{~N}_{-}\right) \cong \mathscr{S}_{\mathrm{n}+1}\left(\mathrm{~N}_{-}\right) \xrightarrow{\mathrm{f}_{\mathrm{N}} *} \mathscr{S}_{\mathrm{n}+1}(\mathrm{~N}) \xrightarrow{\sim} \mathscr{C}_{\mathrm{TOP}}(\mathrm{~N}) \cdot \text { Finally, observe }
$$ that one has the following commutative diagram :

The map $\mathscr{C}_{\mathrm{n}+1}\left(\mathrm{~N}_{-}\right) \rightarrow \mathscr{S}_{\mathrm{n}+1}(\mathrm{~T})$ is an isomorphism by the Ranicki exact sequence [Ra, p.276] indeed the map $N_{-} \longrightarrow T$ induces an isomorphism on the funcamental groups and on the homology.

These considerations make Theorem (3.1) straightforward if we define $\sigma(j, \varphi, \tilde{\alpha})$ to be the image of $[j] \in \mathscr{S}_{\mathrm{TOP}}(N)$ under the composite $\operatorname{map} \mathscr{S}_{\mathrm{TOP}}(\mathrm{N}) \stackrel{\cong}{\cong} \mathscr{S}_{\mathrm{n}+1}(\mathrm{~N}) \xrightarrow{n_{n+1}} L_{\mathrm{n}+1}(\varphi) \quad$ (see (2.3) and (2.4)).

If $\left(\varphi_{N}, \tilde{\alpha}_{N}\right)$ is a pair for N as in (2.6), the homomorphism $\mathscr{S}_{\mathrm{n}+1}: \mathscr{S}_{\mathrm{n}+1}(\mathrm{~N}) \rightarrow L_{\mathrm{n}+1}\left(\varphi_{\mathrm{N}}\right)$ is injective by (2.10). One thus obtains the analogue of (2.7) :
(3.2) Theorem Let $j: M \rightarrow N$ as in (3.1). Assume that $\tilde{K}_{0}(G)=$ $=\mathrm{Wh}(\mathrm{G})=0$ for all $\mathrm{G} \in \mathscr{A}$. Then, the following conditions are equivalent :

1) j is homotopic to a homeomorphism
2) $\sigma(j, \varphi, \tilde{\alpha})=0$ for all pair ($\varphi, \tilde{\alpha}$) for N as in (1.1)
3) $\left(j, \varphi_{N}, \tilde{\alpha}_{N}\right)=0$ for some pair $\left(\varphi_{N}, \tilde{\alpha}_{N}\right)$ for N as in (2.6)

4. Proof of Proposition (2.6)

Our proof makes use of Statements (4.1)-(4.4) below. The proof of (4.1) is given at the end of this section.
(4.1) Lemma Let R_{i} (ifI) be a familly of groups having a common subgroup B and let R be the amalgamated product $\left({ }_{*_{B}}\right)_{i \in I} R_{i}$. Let S be a subgroup of R and let $S_{i}=S \cap R_{i}$. Suppose that the following conditions hold :

1) the union of s_{i} sgenerates s
2) S_{i} is V^{-}-closed in R_{i} for all i
3) if $s_{i} b \hat{s}_{i} \in B$ with $s_{i}, \hat{s}_{i} \in S_{i}$ and $b \in B$, then $b \in s_{i}$.

Then S is $\sqrt{\text {-closed in } R . ~}$
(4.2) Examples a) Condition 3) holds trivially if $B \subset S_{i}$ for all i \in. For instance, if $B=1$, case of a free product.
b) If B is $\sqrt{ }$-closed in R_{i} for all $i \in l$, then B is V-closed in R (case $S_{i}=B$).
c) If $J \in I$ and B is V^{-}-closed in R_{i} for $i \in I \backslash J$, then the subgroup generated by $U_{i \in J} R_{i}$ is V-closed in R. (Take $S_{i}=R_{i}$ for $i \in J$ and $S_{i}=B$ for $\left.i \notin J\right)$.
(4.3) Lemma If G_{1} and G_{2} are groups in \mathscr{A}, so is $G_{1} \times G_{2}$.

Proof Let $G_{1} \in \mathscr{A}_{\mathrm{m}}$ and $\mathrm{G}_{2} \in \mathscr{A}_{\mathrm{n}}$. The proof is by induction on $\mathrm{m}+\mathrm{n}$. The statement is trivial if $m+n=0$ and the induction step is easily obtained, using the isomorphisms $G_{1} \times\left(G_{2} *_{G} G_{3}\right)=\left(G_{1} \times G_{2}\right){ }_{G_{1}} \times G\left(G_{1} \times G_{3}\right)$ and $G_{1} \times(\mathbb{Z} \times G)=\left(G_{1} \times G\right) \times \mathbb{Z}$.
(4.4) Lemma There exists an acyclic group A in \mathscr{A}_{4} such that dim $B A=2$. (G acyelic means that $H_{*}(B G ; \mathbb{Z})=0$ where \mathbb{Z} is endowed with the trivial G-action).

Proof : Let $G=\left\langle a, b \mid a^{3}=b^{5}\right\rangle$ (the group of the (3.5)-torus knot; one could take another (p, q)-knot with p and q relatively prime odd integers). The group G belongs to \mathscr{A}_{2}. One has $G /[G, G]$ infinite cyclic generated by $m=a^{-l_{b}}{ }^{2}$. The commutator group [G,G] is free
of rank 8 on $\left[a^{i}, b^{j}\right]$ for $i=1,2$ and $l \leq j \leq 4$. The center $\zeta(G)$ of G is infinite cyclic on a^{3}.
(4.4.a) Sublemma The equation $\mathrm{m}^{\mathrm{k}} \mathrm{xm}^{-\mathrm{k}}=\mathrm{x}^{-1}$ is possible in G only if $x=1$. The equation $m^{k} x^{-k}=x$ is possible in G iff $x=m^{i} z$ with $\mathrm{z} \in \zeta(\mathrm{G})$.

As the proof of (4.1), our proof of (4.4.a) uses the Serre theory of groups acting on trees. It is also posponed till the end of this section.

The element $u=[a, b]$ generates $a-c l o s e d$ subgroup U in G. Indeed, U is V^{-}-closed in [G,G] (since u is part of a basis of [G,G]) and [G,G] is $\sqrt{-c l o s e d}$ in G (since $G /[G, G]$ has no 2-torsion). On the other hand, the element m generates a subgroup M of G which is also V^{-}-closed. Indeed, suppose that $g^{2}=m^{k}$. As $G /[G, G]$ is infinite cyclic generated by m, one has $k=2 i$ and $g=y m^{i}$ with $y \in[G, G]$. Then, one has $m^{2 i}=g^{2}=y m^{i} y m^{i}=y m^{i} y m^{-i} m^{2 i}$ which implies $\mathrm{m}^{i} \mathrm{ym}^{-i}=\mathrm{y}^{-1}$. Thus $\mathrm{y}=1$ by (4.4.a).

Let G_{1} and G_{2} be two copies of G, with corresponding elements m_{1}, u_{1} and m_{2}, u_{2}. By the above, the group $P=G_{1} * G_{2} /\left\{m_{1}=u_{2}\right\}$ is in the class \mathscr{A}_{3}. By the Mayer-Vietoris sequence for amalgamated products, one checks easily that $H_{*}(P)=0$ if $* \neq 0,1$ and $H_{1}(P)=\mathbb{Z}$, generated by m_{2}.

Let us consider the subgroup Q of F generated by u_{1} and m_{2}. As $M \cap U=(1)$ in G, Q is free on u_{1} and m_{2} [Se, Corollary p.14]. and we have $Q \cap G_{1}=U_{1}$ and $Q \cap G_{2}=M_{2}$. We will prove that Q is V^{-}-closed in P, using (4.1) with $R_{i}=G_{i}, Q=S, S_{1}=U_{1}$ and $S_{2}=M_{2}$. It just remains to check Condition 3) of (4.1) which we do by showing that the equations $m^{i} u^{s} m^{j}=u^{t}$ and $u^{i} m^{s} u^{j}=m^{t}$ are possible in G only if $s=t=1$.

Let us first consider the equation $m^{i} u^{s} m^{j}=u^{t}$. Passing to $G /[G, G]$ shows that $j=-i$. Thus u^{t} is the image of u^{s} under an automorphism of the free group [G,G]. This implies that $t= \pm s$. One checks easily that this contradicts (4.4.a).

As for the equation $u^{i} m^{s} u^{j}=m^{t}$, one must have $s=t$ for homological reasons. The equation is then equivalent to $m^{s} u^{j} m^{-s}=u^{-i}$
which drives us back to the former case.
Let $\overline{\mathrm{P}}$ be another copy of P . By the above, the group $A=P \times \bar{P} /\left\{m_{2}=\bar{u}_{1}, u_{1}=\bar{m}_{2}\right\}$ belongs to \mathscr{A}_{4}. Using the Mayer-Vietoris sequence again, one checks that A is acyclic.Observe that $\operatorname{dim} \mathrm{BA}=2$.
(4.5) Remarks on the proof of (4.4) : a) The subgroup $U_{1}=G_{1} \subset Q=A$ generated by u_{1} is V^{-}-closed in A. Indeed, U_{1} is V^{-}-closed in $Q=U_{1} \times M_{1}$ and Q is $\sqrt{-c l o s e d}$ in A by (4.2.b).
b) Acyclic groups can be obtained by the amalgamation of two copies of a free group F of rank 2 over a suitable subgroup 5 (see [BDH , p.11]). Problem : find such a situation where S is V^{-}-closed in F.
(4.6) Proof of Proposition(2.6) Following the procedure of [Ma], we consider for any polyedron L (polyedron $=$ finite simplicial complex) the following condition $\mathscr{M}(\mathrm{L})$:

Condition_ $\mathscr{M}(L)$: There exists a map $t:(U L, T L) \rightarrow(C L, L)$ (where CL denotes the cone over L) such that, for each connected subpolyedron M of L , one has :
a) $t \mid t^{-1}(\mathrm{CM}): t^{-1}(\mathrm{CM}) \rightarrow \mathrm{CM}$ and $\mathrm{t} \mid \mathrm{t}^{-1}(\mathrm{M}): \mathrm{t}^{-1}(\mathrm{M}) \rightarrow \mathrm{M}$ are acyclic maps
b) $t^{-1}(C M)=B \Gamma_{C M}$ and $t^{-1}(M)=B \Gamma_{M}$, where Γ_{M} and $\Gamma_{C M}$ are groups in $\mathscr{A} ;$ moreover, $\operatorname{dim} \mathrm{Br}_{\mathrm{H}}=\operatorname{dim} \mathrm{M}$ and $\operatorname{dim\Gamma B} \mathrm{CM}=\operatorname{dimM}+1$
c) $\operatorname{ker}\left(\Gamma_{M} \rightarrow \pi_{1}(M)\right)$ is locally perfect
d) If M^{\prime} is a connected subpolyedron of L containing M, the inclusion $t^{-1}(C M, M) \subset t^{-1}\left(C M^{\prime}, M^{\prime}\right)$ induces four homomorphisms

which are all monomorphisms and V^{-}-closed (a monomorphism $\gamma: G \rightarrow G^{\prime}$ is $V^{-c l o s e d}$ if $\gamma^{\prime}(G)$ is V^{-}-closed in $\left.G^{\prime}\right)$.

We shall prove that Condition $\mathscr{M}(\mathrm{L})$ holds by induction on dimL.
dim $I_{1}=0$ One takes t to be the identity map.
dimL_三_l One takes t to be the identity map on $T L=L$ and on the

1-skeleton $U L^{(1)}$ of $U L$ which is $L U C\left(L^{(0)}\right)$. Let A be the acyclic group constructed for (4.4) and $u_{1} \in A$ be the element considered in (4.5.a). Then BA can be taken to be a polyedron having a subpolyedron isomorphic to the boundary of a $2-$ simplex which represent the class u_{1}. Form the polyedron

$$
U L=U L^{(1)} \Perp\left(\frac{\mu}{\sigma}(C A)_{\sigma}\right) /\left\{\partial \sigma=\left(u_{1}\right)_{\sigma}\right\}
$$

where ($B A)_{o}$ is a copy of $B A$ and σ runs over the set of 2-cells of CL. One easily check Conditions a)-d), using (4.4), (4.5.a), (4.2.b) and (4.2.c) for the latter.

Induction_step : one assumes by induction that $\mathscr{M}(L)$ holds if $\operatorname{dim} L \leq n-1$. By induction on the number of $n-c e l l s$ of L, it is enough to prove that $\mathscr{M}\left(L_{0}\right)$ implies $\mathscr{M}_{(L)}$ when L is the union of L_{0} with one n-simplex σ. As $n \geq 2, \partial \sigma$ is connected and one may assume that I_{0} is connected.

$$
\text { As } \mathscr{M}\left(L_{0}\right) \text { holds, } t^{-1}(C \partial \sigma)=U \partial \sigma \text { and } t^{-1}(\partial \sigma)=T \partial \sigma \text { are }
$$ subpolyedra of $U L_{0}$ and $T L_{0}$ respectively. Let $T L$ be $T L_{0} U^{\prime} U^{\prime} \partial \sigma$, where $\sigma^{\prime} \partial \sigma$ is another copy of $U \partial \sigma$ attached to $T \partial \sigma$ and extend t to $T L$ by sending $U^{\prime} \partial \sigma$ to σ. Then $T L=B \Gamma_{L}$ where Γ_{L} is the free product $\Gamma_{L_{0}} * \Gamma^{\prime} C^{\prime} \partial \sigma$ with amalgamation over $\Gamma_{\partial \sigma}$ (where $C^{\prime} \partial \sigma$ is another copy of Cכб). Observe also that $t^{-1}\left(\mathrm{LUCL}_{0}\right)=B \Gamma \mathrm{LUCL}_{0}$, where $\Gamma \mathrm{LUCL}$ is the free product $\Gamma_{C^{\prime}} \partial \sigma{ }^{*} \mathrm{CL}_{0}$ with amalgamation over: $\Gamma_{\partial \sigma}$ and that

 Theorem 6.1] one embedds $\Gamma_{\Sigma(\partial \sigma)}$ into the acyclic group $\left(A \times \Gamma_{\partial \sigma}\right) * \Gamma_{C \partial \sigma}=\Gamma_{C \Sigma \partial \sigma}$ (amalgamation over $\Gamma_{\partial \sigma} ; A$ is the acyclic group of (4.4)) by sending $g \rightarrow g$ if $g \in \Gamma_{C \partial \sigma}$ and $g \rightarrow a g a^{-1}$ if $g \in \Gamma_{C}{ }^{\prime} \partial^{\prime}$, where a $A-\{1\}$. Take $U L=T L U U L_{0} U m$ where m is the mapping cylinder of the above embedding and extend t to UL by sending m onto Co. One easily check Condition a)-c) of $\mathscr{M}(\mathrm{L})$ (observe that $\Gamma_{C \Sigma \partial \sigma} \in \mathscr{A}$ by (4.4) and (4.3)). For Condition d), one checks that the monomorphisms $\Gamma_{Y} \rightarrow \Gamma_{X}$ corresponding to all the inclusion $Y \rightarrow X$ of the following diagram :

are $\sqrt{ }{ }^{-}$-closed. This is done as follows :

- inclusions (i) are $\sqrt{ }$-closed because $\mathscr{M}\left(\mathrm{L}_{0}\right)$ holds.
- " (2) " " " inclusions (1) are, using (4.2.b) and (4.2.c).
- if inclusion (3) is V^{-}-closed, then inclusions (4) are V^{-}closed, using several times (4.2.b) and (4.2.c). For instance, the inclusion $L \subset C L$ has to be decomposed :

It thus remains to prove that Inclusion (3) is V^{-}-closed. To simplify the notation, write Inclusion (3) under the form $G^{\prime} \star_{H} G \rightarrow(A \times H){ }_{H} G$ (G' a copy of G). As for the proof of (4.4.a) and (4.1), we shall use the Serre theory of amalgamated product acting on trees [Se, 4 and 5]. Recall that an amalgamated product $R_{1}{ }^{*} B^{R}{ }_{2}=R$ acts on a tree T_{R} characterised by the following properties : there is a fundamental domain which is a segment $P \xrightarrow{P} \quad Q$ isomorphic to the quotient tree $R \backslash T_{R}$ with isotropy groups $R_{P}=R_{1}, R_{Q}=R_{2}$ and $R_{e}=B$. Applying this to $R=(A \times H) H_{H} G$ and making the normal closure \bar{G} of G act on T_{R}, one see that a fundamental domain isomorphic to $\bar{G}\rangle_{R}$ is given by the following tree :

The isotropy group are : $R_{x e}=H$ and $R_{x Q}=x G x^{-1}$. Using [Se, §5] one deduces that \bar{G} is the free product of the groups $\mathbf{x G x}{ }^{-1}(x \in A)$ amalgamated over their common subgroup H. Therefore, the subgroup $G^{\prime}{ }_{H} G$ of R which is the subgroup generated by G and aGa^{-1} is V^{-}-closed in $\overline{\mathrm{G}}$ by (4.2.c) (the inclusion $\mathrm{H} \in \mathrm{A} \times \mathrm{H}$ is $\sqrt{-c l o s e d ~ s i n c e ~} A \in \mathscr{A}$ and groups in \mathscr{A} have no 2-torsion). On the
other hand, \bar{G} is $\sqrt{-}$-closed in R since $R / \bar{G}=A$ has no 2-torsion. Therefore, $G^{\prime}{ }_{H} G$ is V^{-}-closed in R.

Proof of Sublemma (4.4.a) Observe that the first statement is implied by the second since $m^{k} x^{-k}=x^{-1}$ implies that $m^{2 k} x^{-2 k}=x$. To estabiish the second statement, observe that the tree T_{G} has fundamental domain $\xrightarrow{P} \quad Q$ with isotropy groups $G_{P}=\langle a\rangle$, $G_{Q}=\langle b\rangle$ and $G_{e}=\zeta(G)$. One has the following situation in T_{G} :

By [Se, Proposition 25 §6], one deduces that the subgraph drawn above is part of an infinite chain L on which macts by a translation of amplitude 2. Observe that the orientations of the edges of L imply that m is a generator of the oriented-automomorphisms group of L. Now, if m^{k} commutes with x , one deduces from [Se, Propositions 25 and 27 §6] that $x L=L$ and thus $x e=m^{i} e$ for some i. As $G_{e}=\zeta(G)$, this implies that $\mathrm{xm}^{-1} \in \zeta(G)$.

Proof of Lemma (4.1) The Serre tree T_{R} has here fundamental domain (isomorphic to $R \backslash_{R}$) a cone on the set of vertices $\left\{P_{i}\right\}_{i \in I}$ (the cone vertex is called P; the edge from P_{i} to P is called e_{i}), and the isotropy groups are $R_{P_{i}}=R_{i}, R_{P}=R_{e_{i}}=B$.

Let T_{S} be the smallest subgraph of T_{R} such that $\left\{e_{i} ; i \in I\right\} \subset\left\{\right.$ Edges $\left.T_{S}\right\}$ and $S T S_{S}=T_{S}$. As S is generated by $S_{i}=S_{P_{i}}$, T_{S} is connected by the obvious generalisation of [Se, Lemme 2, ${ }^{\left.\frac{1}{p} .49\right]}$ and thus T_{S} is a subtree of T_{R}.

Let $g \in R$ such that $g^{2} \in S$. As an oriented automorphism of $\mathrm{T}_{\mathrm{R}} \mathrm{g}^{g}$ has either a fixed vertex or there is an infinite chain L in T on which g acts by a non-trivial translation [Se, Proposition 25 §6]. Suppose that g has a fixed vertex V. Hence $g^{2} V=V$ and, as $g T_{S}{ }^{\cap} T_{S} \neq \varnothing, g$ must fix the whole path joining V to T_{S}. Therefore one may suppose that $V \in T_{S}$ which implies that $g=t r_{i} t^{-1}$ with $r_{i} \in R_{i}$ (for some i) and $t \in S$. Thus, $r_{i}^{2}=t^{-l} g^{2} t \in S \cap R_{i}=S_{i}$. As S_{i} is V^{-}-closed in R_{i}, one has $t^{-1} g t \in S_{i}$ and then $g \in S$.

It then remains to check the case where g translates a chain L. As $g^{2} \in S$, one has $L \in T_{S}$ (otherwise $g T_{S} T_{S}=\not \subset$). Therefore, by replacing if necessary g by one of its conjugate by an element of S, one may suppose that L contains the edge e_{i} for some $i \in I$. As $T_{S} \cap_{-1} \operatorname{Orbit}_{R}(P)=\operatorname{Orbit}_{S}(P)$, there is $h \in S$ such that $b=h^{-1} g \in R_{p}=B$. One has $g^{2}=$ hbhb $\in S$ which means bhbes. As $L \subset T_{S}$, the vertex P_{i} is common to the edges e_{i} and $s_{i} e_{i}$ with $s_{i} \in S_{i}$. Observe that the path joining $h b\left(s_{i} e_{i}\right)$ to P_{i} contains $s_{i} e_{i}$, and therefore $b h b\left(s_{i} e_{i}\right) \in T_{S}$ implies that $b s_{i} e_{i} \in T_{S}$. The latter means $b s_{i}=\tilde{s}_{i} \tilde{b}$ for some $\tilde{s}_{i} \in S_{i}$ and $\tilde{b} \in B$. This contradicts Condition 3) of (4.1).

BIBLIOGRAPHY

[BDH] BAUMSLAG G.-DYER E.-HELLER A. The topology of discrete groups. Jal of Pure and Appl. Algebra 16 (1980),1-47.
[Cl] CAPPELL S. Mayer-Vietoris sequences in Hermitian K-theory. Algebraic K-theory III, Springer Lect. Note 343, 478-512.
[C2] Unitary nilpotent groups and hermitian K-theory I. BAMS 80 (1974), 1117-1122.
[C3] On homotopy invariance of higher signatures Invent. Math. 33 (1976),171-179.
[CS] CAPPELL S. -SHANESON J. The codimension 2 placement problem and homology equivalent manifolds. Annals of Math. 99 (1974) 277-348.
[Hl] HAUSMANN J-Cl. Homological surgery. Annals of Math. 104 (1976), 573-584.
[H2] Manifolds with a given homology and fundamental group. Comm. Math. Helv. 53 (1978), ll3-134.

[H3]	\qquad Poincare space with the homology of a sphere. To appear in the proc. of the conference on Homotopy theory. Evanston 1982 (AMS).
[HH]	HAUSMANN J-Cl - HUSEMOLLER D. Acyclic maps. L'Enseignement Math. XXV (1979) 53-75.
[HVL]	HAUSMANN J-Cl. - VOGEL P. The plus construction and lifting maps from manifolds. Proc. Symp. in Pure Math. (AMS) 32 (1978) 67-76.
[HV2]	\qquad Geometry in Poincaré spaces. In preparation.
[Ma]	MAUNDER C.R.F. A short proof of a theorem of Kan-Thurston Bull. London Math. Soc. 13 (1981), 325-327.
[Qn]	QUINN F. Surgery on Poincare and normal spaces. BAMS 78 (1972), 262-267.
[Ra]	RANICKI A. The total surgery obstruction. Algebraic Topology Aarhus 1978, Springer Lect. Notes 763, 275-316.
[Se]	SERRE J.-P. Arbres, Amalgames, SL_{2}. Astérisque 46 (1977).
[Wa]	WALL C.T.C. Surgery on Compact manifolds. Academic press 1970.

```
University of Aarhus, Denmark
University of Geneva,Switzerland
Current address :
McMaster University, Hamilton
Ontario
```

