ACYCLIC MAPS AND POINCARE SPACES

Ian HAMBLETON and Jean-Claude HAUSMANN

1. The "minus" problem for Poincaré spaces

Recall that a continous map $f: Y \rightarrow Z$ is called *acyclic* if its homotopy theoretic fiber is an acyclic space, or equivalently if it induces an isomorphism on homology or cohomology with any local coefficients. If the space Y is fixed, the correspondence $f \mapsto \ker_1 f$ produces a bijection between equivalence classes of acyclic maps $f: Y \rightarrow Z$ and perfect normal subgroups of $\pi_1(Y)$. A representative $Y \rightarrow Y_p^+$ of the class corresponding to the perfect normal subgroup P of $\pi_1(Y)$ can be obtained by a *Quillen plus* construction, which means that Y_p^+ is obtained by attaching cells of dimension 2 and 3 to Y. For details and other properties of acyclic maps, see [fH].

A space X is called a Poincaré space (of formal dimension n) if it is homotopy equivalent to a finite complex and if there exists a class $[X] \in H_n(X;\mathbb{Z})$ so that $- \cap X : H^k(X;B) \to H_{n-k}(X;B)$ is an isomorphism for any $\mathbb{Z}\pi_1(X)$ -module B. If Y is a Poincaré space and f : Y $\to X$ an acyclic map with $\pi_1(X)$ finitely presented, then X is a Poincaré space. The homology condition is obviously satisfied for X and it only remains to prove that X is homotopy equivalent to a finite complex. As $\pi_1(X)$ is finitely presented, the group $\pi_1(X)$ is finitely presented iff ker π_1 f is the normal closure of finitely many elements in $\pi_1(Y)$. Hence a space Y_p^+ (P=ker π_1 f) homotopy equivalent to X may be obtained by attaching to Y finitely many 2-cells and then the same number of 3-cells.

Let X be a Poincaré space. For each epimorphism $\varphi: \Gamma \longrightarrow \pi_1(X)$ with Γ finitely presented and ker φ perfect, we consider the problem of finding an acyclic map $f: Y \longrightarrow X$, where Y is a Poincaré space, $\pi_1(Y) = \Gamma$ and $\pi_1 f = \varphi$. In other words : is X obtained by performing a plus construction on a Poincaré space with fundamental group Γ) (the "minus" problem for (X, φ)).

First observe that the existence of such an acyclic map $f: Y \rightarrow X$ implies some conditions on X. The following commutative diagram :

shows the existence of a lifting α_y^+ : $X \to B\Gamma_{ker\varphi}^+$ of the characteristic map $\alpha_X : X \to B\pi_1(X)$ (see [H-H, Proposition 3.1]). Moreover, recall that for any space Z, the homomorphism $H_2\alpha_Z : H_2(Z;C) \to H_2(B\pi_1(Z);C)$ is surjective for any $\mathbb{Z}\pi_1(Z)$ -module C (since $B\pi_1(Z)$ is obtainable from Z by adding cells of dimension ≥ 3). Hence the following commutative diagram :

shows that for any $\mathbb{Z}\pi_1(X)$ -module C, the homomorphisms $H_2 \alpha_Y^+$ and $H_2 B \phi^+$ are both surjective. This, of course, implies non-trivial compatibilities between $H_2(X;C)$ and $H_2(B\Gamma;C) = H_2(\Gamma;C)$.

These first remarks suggest a more natural formulation of the above problem, using the following definition :

(1.1) Definition : Let X be a Poincaré space. Let us consider pairs $(\phi,\widetilde{\alpha})\,,$ where :

1) ϕ : $\Gamma \longrightarrow \pi_1(X)$ is an epimorphism of finitely presented groups with ker ϕ perfect, and

2) $\tilde{\alpha}$: X $\rightarrow B\Gamma_{ker\phi}^{+}$ makes the following diagram commute :

and H_2^{α} : $H_2(X;C) \longrightarrow H_2(B\Gamma_{\ker\phi}^+;C)$ is surjective for any $\mathbb{Z}\pi_1(X)$ -module C.

Such a pair $(\varphi, \widetilde{\alpha})$ is *realizable* if there exists an acyclic map f : Y \longrightarrow X with Y a Poincaré space, $\pi_1(Y) = \Gamma, \pi_1 f = \varphi$ and $\alpha_v^+ = \widetilde{\alpha}$.

Our problem then becomes : given a Poincaré space X and a pair $(\varphi, \widetilde{\alpha})$ as in (1.1), is this pair realizable ? The answer that we are able to give to this more precise problem is contained in Theorem (1.2) below. Recall that a group G is called *locally perfect* if any finitely generated subgroup of G is contained is a finitely generated perfect subgroup of G.

(1.2) Theorem Let X be a Poincaré space of formal dimension $n \ge 4$.

- i) a pair $(\varphi, \widetilde{\alpha})$ as in (l.1) determines an element $\sigma(\varphi, \widetilde{\alpha})$ in the Wall surgery obstruction group $L_n(\varphi)$. If $(\varphi, \widetilde{\alpha})$ is realizable, then $\sigma(\varphi, \widetilde{\alpha}) = 0$.
- ii) If $\widetilde{\alpha}'$: $X \to B\Gamma_{\ker \phi}^+$ is another lifting of α_x such that the pair $(\varphi, \widetilde{\alpha}')$ satisfies to the conditions of (1,1), then $\sigma(\varphi, \widetilde{\alpha}) = \sigma(\varphi, \widetilde{\alpha}')$.
- iii) If in addition n≥5 and ker φ is locally perfect, then $\sigma(\varphi, \alpha) = 0$ implies that (φ, α) is realizable.

(1.3) Remarks : a) The Wall group used in (1.2) is the obstruction group for surgery to a homotopy equivalence (sometimes called L_n^h). Recall that the group L_n () fits in the exact sequence :

$$\longrightarrow L_{n}(\Gamma) \xrightarrow{\phi} L_{n}(\pi_{1}(X)) \longrightarrow L_{n}(\phi) \xrightarrow{} L_{n-1}(\Gamma) \xrightarrow{}$$

b) The same theory holds for simple Poincaré spaces [Wa, Chapter 2]. using simple acyclic maps (the Whitehead torsion of an acyclic map f : Y \rightarrow X is well defined in Wh($\pi_1(X)$); if this torsion vanishes, the acyclic map is called *simple*). The relevant Wall group is then $L_{\Sigma}^{S}(\phi)$.

c) The same theory holds for non-orientable Poincaré spaces. The relevant Wall group is then $L_n(\varphi, w_1(X))$, where $w_1(X) : \pi_1(X) \rightarrow \mathbb{Z}/2\mathbb{Z}$ is the orientation character for X.

<u>Proof of (1.2</u>) : Write $B\Gamma^+$ for $B\Gamma^+_{ker\phi}$. Let us consider the pull-back diagram :

 $\begin{array}{c} T & \longrightarrow & B\Gamma \\ \downarrow g & & \downarrow \iota \\ X & \stackrel{\sim}{\longrightarrow} & B\Gamma^+ \end{array}$

The fiber of g is the same as the fiber of 1, therefore g is an acyclic map. If F is the homotopy theoretic fiber of $\widetilde{\alpha}$ one has the following diagram :

$$\pi_{2}(X) \longrightarrow \pi_{1}(F) \longrightarrow \pi_{1}(T) \longrightarrow \pi_{1}(X) \longrightarrow 1$$

$$\pi_{2}(B\bar{\Gamma}^{+}) \longrightarrow \pi_{1}(F) \longrightarrow \bar{\Gamma} \longrightarrow \bar{\Gamma}/\ker\varphi \longrightarrow 1$$

Hence $\pi_1(T) = \Gamma$ if $\pi_2 \tilde{\alpha}$ is surjective. But this is the case, as can be seen by the following diagram :

the right-hand vertical arrow being surjective by Part b) of (1.1).

Let Z be a space. We denote by $\Omega_n^P(Z)$ (Poincaré bordism group) the bordism group of maps $f: U \rightarrow Z$ where U is an oriented Poincaré space of formal dimension n. According to the theory of Quinn ([Qn], see [HV2] for proofs), these groups fit in a natural long exact sequence :

$$H_{n+1}(Z;MSG) \longrightarrow L_{n}(\pi_{1}(Z)) \longrightarrow \Omega_{n}^{P}(Z) \longrightarrow H_{n}(Z;MSG)$$
(n≥4)

If Z' is a subspace of Z, one defines $\Omega_n^P(Z,Z')$ similarly, using Poincaré pairs, and on gets a corresponding sequence. Specializing to Z = X,Z' = T and using the fact that T \rightarrow X is an acyclic map, one gets the following commutative diagram in which the rows and columns are exact :

This permits us to define $\sigma(\varphi, \widetilde{\alpha})$ as the image of $[id_X] \in \Omega_n^P(X)$ under the composite map $\Omega_n^P(X) \longrightarrow \Omega_n^P(X,T) \simeq L_n(\varphi)$.

Now, suppose that $(\varphi, \widetilde{\alpha})$ is realizable by an acyclic map $f : Y \to X$ with Y a Poincaré space. Thus, f factors through a map $f : Y \to T$ representing a class in $\Omega_n^P(T)$. As f is acyclic, its mapping cylinder constitutes a Poincaré cobordism from id_X to f. Therefore, the class $[id_X]$ is mapped to zero in $\Omega_n^P(X,T)$ (since f factors through T) and $(\varphi, \widetilde{\alpha}) = 0$. This proves part i) of (1.2).

To prove ii), let us consider the pull-back diagram

and form again the pull-back diagram

$$\hat{\tilde{T}} \xrightarrow{T} X$$

in which all the maps are now acyclic. Then the composed map $\hat{T} \rightarrow X$ is also acyclic. Denote by $\hat{\varphi}: \hat{\Gamma}=\pi_1(\hat{T}) \rightarrow \pi_1(X)$ the induced homomorphism. One has a commutative diagram

Therefore, $\sigma(\phi, \widetilde{\alpha})$ and $\sigma(\phi, \widetilde{\alpha}')$ are both image of a single element of $L_n(\phi)$. This proves Part ii) of (1.2).

Let us finally prove part iii) of (1.2). If $\sigma(\varphi, \widetilde{\alpha}) = 0$, then there is a map $\beta_0 : Y_0 \rightarrow T$ representing a class in $\Omega_n^P(T)$ such that $g \circ \beta_0$ is Poincaré cobordant to id_X . To show that (φ, α) is realizable, we shall find a representative $\beta : Y \rightarrow T$ of the class β_0 such that $\pi_1\beta$ and $\beta_* : H_*(Y; \mathbb{Z}\pi_1(X)) \rightarrow H_*(T; \mathbb{Z}\pi_1(X))$ are isomorphisms.

By construction of the space T, the group ker φ acts trivially on π_2 (T) (use [HH, Proposition 5.4] to the maps 1 and g). As ker φ is locally perfect, one can construct, as in [H2, proof of Theorem 3.1], a finite complex T, and a commutative diagram :

such that g_1 is an acyclic map and $\pi_1 \gamma$ is an isomorphism. Thus, T_1 is a finite complex satisfying Poincaré duality with coefficients $\mathbb{Z}\pi_1(X)$ and β_1 can be covered by a map of the Spivak bundles. By surgery with coefficients for Poincaré spaces (the Cappell-Shaneson type of generalization of [Qn, Corollary 1.4]; for proofs, see[HV2]), the map β_1 determines an element $\sigma(\beta_1) \in \Gamma_n(\varphi)$, where $\Gamma_n(\varphi)$ is the Cappell-Shaneson surgery obstruction group $\Gamma_n^h(\mathbb{Z}\Gamma \to \mathbb{Z}\pi_1(X))$ defined in [CS]. The existence of the required map $\beta : Y \to T$ will be implied by the nullity of $\sigma(\beta_1)$.

As in [H1,§3], it can be checked (see [HV2]) that the image of $\sigma(\beta_1)$ under the homomorphism $\Gamma_n(\phi) \longrightarrow L_n(\pi_1(X))$ is the

obstruction to $g_1 \circ \beta_1$ being Poincaré cobordant to a homotopy equivalence. The latter is obviously zero since, by construction, $g_1 \circ \beta_1 = g \circ \beta_0$ is Poincaré cobordant to id_X . Since both Γ and $\pi_1(X)$ are finitely presented, ker φ locally perfect is equivalent to ker φ being the normal closure of a finitely generated perfect group. Therefore, the homomorphism $\Gamma_n(\varphi) \longrightarrow L_n(\pi_1(X))$ is an isomorphism [H1, Theorem 1]. Then $\sigma(\beta_1) = 0$ and Part ii) of (1.2) is proved.

2. The invariant $\sigma(\varphi, \widetilde{\alpha})$ as part of a total surgery obstruction theory

Let X be a Poincaré space of formal dimension n≥4. By (1.2) to each pair $(\varphi, \widetilde{\alpha})$ as in (1.1), one can associate the element $\sigma(\varphi, \widetilde{\alpha}) \in L_n(\varphi)$. This gives a large collection of invariants associated to X. In this context, Theorem 2.1 of [HV1] may be rephrased as follows :

(2.1) Theorem Let X be a Poincaré space of formal dimension n≥5. Let $(\varphi, \widetilde{\alpha})$ be a pair as in (1.1) with ker φ locally perfect. If X has the homotopy type of a topological closed manifold then $\sigma(\varphi, \widetilde{\alpha}) = 0$.

Thus, the elements $\sigma(\varphi, \widetilde{\alpha})$ occurs as obstruction for X being homotopy equivalent to a closed topological manifold and we can except some relationship between our $\sigma(\varphi, \widetilde{\alpha})$'s and the total surgery obstruction of [Ra]. We are indebted to A. Ranicki for pointing out a mistake in our first draft of this section.

Let X be a Poincaré space of formal dimension ≥ 5 . According to [Ra], there is an exact sequence :

$$(2.1) \quad \dots \rightarrow \mathcal{S}_{m+1}(x) \rightarrow H_{m}(x;\underline{\mathbb{I}}_{0}) \rightarrow L_{m}(\pi_{1}(x)) \rightarrow \mathcal{S}_{m}(x) \rightarrow H_{m-1}(x;\underline{\mathbb{I}}_{0}) \rightarrow \dots$$

and an element $s(X) \in \mathcal{S}_n(X)$ which vanishes if and only if X is homotopy equivalent to a closed topological manifold. Here the groups are defined for $m \ge 0$ by

$$\mathcal{S}_{\mathfrak{m}}(\mathsf{x}) \ = \ \pi_{\mathfrak{m}}(\sigma_{\star} \ : \ \mathsf{x}_{\star} \wedge \mathbb{I}_{0} \ \longrightarrow \mathbb{I}_{0}(\pi_{1}(\mathsf{x})))$$

where σ_{\star} is the assembly map and $\underline{\mathbb{L}}_{0}$ is the 1-connective covering of the spectrum $\underline{\mathbb{L}}_{0}(1)$ (see [Ra, p.285]; we use the notations of [Ra]). Observe that our definition of $\mathscr{G}_{m}(X)$ slightly differs from the one in [Ra] (we take the whole spectrum $\underline{\mathbb{H}}_{0}(\pi_{1}(X))$ instead of its 1-connective covering). This difference only affects the group $\mathscr{G}_{0}(X)$. Since the assembly map σ_{\star} can be extended to $\overline{\sigma_{\star}}: X_{\star} \wedge \underline{\mathbb{L}}_{0}(1) \rightarrow \underline{\mathbb{L}}_{0}(\pi_{1}(X))$ we can define : $\widetilde{\mathscr{G}}_{m}(X) = \pi_{m}(\overline{\sigma_{\star}})$. This gives the exact sequences :

$$\rightarrow \widetilde{\mathcal{I}}_{m+1}(X) \rightarrow H_{m}(X;\underline{\mathbb{I}}_{0}(1)) \rightarrow L_{m}(\pi_{1}(X)) \rightarrow \widetilde{\mathcal{I}}_{m}(X) \rightarrow H_{m-1}(X;\underline{\mathbb{I}}_{0}(1))) \rightarrow$$

and

(2.2)
$$\dots \to H_{m}(X;\mathbb{Z}) \to \mathscr{S}_{m}(X) \xrightarrow{\lambda_{m}} \widetilde{\mathscr{S}}_{m}(X) \to H_{m-1}(X;\mathbb{Z}) \to \dots$$

Let us define $\overline{s}(X) = \lambda_n(s(X)) \in \mathcal{S}_n(X)$. If $(\varphi, \widetilde{\alpha})$ is any pair for X as in (1.1), consider the pull-back diagram :

$$\begin{array}{ccc} T & \longrightarrow & B\Gamma \\ g & & \downarrow \\ X & \stackrel{\sim}{\longrightarrow} & B\Gamma \\ \end{array}$$

which gives rise to the following diagram :

in which rows and collumns are exact. One has also the corresponding diagram for $\mathcal{F}_{m}(X)$. Let $\eta_{m} : \mathcal{F}_{m}(X) \to L_{m}(\phi)$ be the composed homomorphism $\mathcal{F}_{m}(X) \to \mathcal{F}_{m}(X,T) \xleftarrow{} L_{m}(\phi)$. Define $\overline{\eta}_{m} : \overline{\mathcal{F}}_{m}(X) \to L_{m}(\phi)$ accordingly, and notice that $\eta_{m} = \overline{\eta}_{m} \circ \lambda_{m}$.

(2.4) Proposition In $L_n(\phi)$, one has the equalities :

$$\eta_n(s(X)) = \overline{\eta}_n(\overline{s}(X)) = \sigma(\varphi, \widetilde{\alpha}).$$

<u>Proof</u> This follows directly from the definitions, since there is a homomorphism $\delta_{X} : \Omega_{n}^{P}(X) \to \mathcal{S}_{n}(X)$ such that the following diagram

commutes and $\delta_{\chi}([id_{\chi}]) = s(\chi) [Ra, pp. 307-308].$

(2.5) Corollary Let X be a Poincaré complex of formal dimension $n \ge 5$, and let $(\varphi, \widetilde{\alpha})$ a pair as in (1.1). Suppose that the Spivak bundle for X has a TOP-reduction ξ which defines a surgery obstruction $\sigma(\xi) \in L_n(\pi_1(X))$. Then, $\sigma(\varphi, \widetilde{\alpha})$ is the image of $\sigma(\xi)$ under the homomorphism $L_n(\pi_1(X)) \longrightarrow L_n(\varphi)$.

<u>Proof</u> By [Ra,p. 298], the element $\sigma(\xi)$ has image s(X) under the homomorphism $L_n(\pi_1(X)) \rightarrow \mathscr{S}_n(X)$. The result thus follows from (2.4). Thus, if $\overline{s}(X) = 0$, one has $\sigma(\varphi, \widetilde{\alpha}) = 0$ for any pair $(\varphi, \widetilde{\alpha})$ as in (1.1). A converse to this fact might be obtained by considering some "test pairs" $(\varphi_X, \widetilde{\alpha}_X)$ for X as follows : let \mathscr{A}_i , i=0,1,..., and $\mathscr{A} = U_i \mathscr{A}_i$ be the smallest classes of groups such that :

 \mathcal{A}_0 contains the trivial group G $\in \mathcal{A}_i$ iff at least one of the following conditions holds :

(a) there exist groups G_1, G_2 and $G_0 = G_1 \cap G_2$, all in \mathscr{A}_{i-1} such that $G = G_1 \star_{G_0} G_2$ and the inclusions $G_0 \subset G_i$ are $\sqrt{-closed}$ in the sense of [C1] : if $g \in G_i$ and $g^2 \in G_0$ then $g \in G_0$.

or

(b) $G = G_0 \times \mathbb{Z}$, with $G_0 \in \mathscr{A}_{i-1}$

(2.6) Proposition Let X be a finite complex of dimension n. Then there exists a pair $(\varphi_X : \Gamma_X \to \pi_1(X), \tilde{\alpha}_X)$ satisfying 1) and 2) of (1.1) such that :

1) $\Gamma_{\mathbf{X}} \in \mathscr{A}$ 2) $B\Gamma_{\mathbf{X}}$ is a finite complex of dimension n 3) $\widetilde{\alpha}_{\mathbf{y}}$ is a homotopy equivalence.

The pair $(\varphi_X, \widetilde{\alpha}_X)$ is associated to a triangulation of X, according an algorithm as in [B-D-H] or [Ma]. Its construction is given in §4.

Recall that a standard conjecture is that $\widetilde{K}_0(G) = 0 = Wh(G)$ for $G \in \mathscr{A}^{(1)}$. (or even for G such that BG is a finite complex).

(2.7) Theorem Suppose that $\widetilde{K}_0(G) = Wh(G) = 0$ for all $G \in \mathscr{A}$. Then, for X a Poincaré space of formal dimension $n \ge 5$, the following conditions are equivalent :

 P. Vogel informs us that he has recently obtained a proof of this conjecture.

1)
$$\overline{s}(X) = 0$$

2) $\sigma(\varphi, \widetilde{\alpha}) = 0$ for any pair $(\varphi, \widetilde{\alpha})$ for X as in (1.1)
3) $\sigma(\varphi_{\mathbf{y}}, \widetilde{\alpha}_{\mathbf{y}}) = 0$ for some pair $(\varphi_{\mathbf{y}}, \widetilde{\alpha}_{\mathbf{y}})$ of (2.6).

<u>Proof</u>: Condition 1) implies Condition 2) by (2.4). The implication from 2) to 3) is straightforward. Therefore it remains to prove that 3) implies 1). As the map $\widetilde{\alpha}_X$ is a homotopy equivalence, the diagram for $\widetilde{\mathscr{I}}_m(X)$ similar to (2.3) gives the long exact sequence :

(2.8)
$$\dots \overline{\mathcal{I}}_{m}^{(\mathsf{B}\Gamma_{X})} \to \overline{\mathcal{I}}_{m}^{(\mathsf{X})} \xrightarrow{\eta_{m}} L_{m}^{(\varphi_{X})} \to \overline{\mathcal{I}}_{m-1}^{(\mathsf{B}\Gamma_{X})} \to \dots$$

Therefore, it suffices to establish that $\overline{\mathcal{I}}_{m}(B\Gamma_{X}) = 0$ for m>n. As dim $B\Gamma_{v} = n$, this follows from the following lemma :

(2.9) Lemma Let $G \in \mathscr{A}$ such that $\widetilde{K}_0(P) = 0 = Wh(P)$ for any subgroup P of G with $P \in \mathscr{A}$. Then the homomorphism

$$\overline{\sigma}_{m} : \operatorname{H}_{m}(G;\underline{\mathbb{H}}_{0}(1)) \longrightarrow \operatorname{L}_{m}(G)$$

induced by the assembly map $\overline{\sigma}_{\star}$ is an isomorphism for $m \ge \dim BG$ and is injective for $m = \dim BG - 1$.

<u>Proof</u> We shall prove Lemma (2.9) for $G \in \mathcal{A}_{j}$ by induction on j, using the classical idea of S. Cappell [C3]. The class \mathcal{A}_{0} contains only the trivial group and $H_{m}(pt;\underline{\Pi}_{0}(1))$ is isomorphic to $L_{m}(1)$ for $m \ge 0$ (this is the main point where we need the spectrum $\underline{\Pi}_{0}(1)$ instead of $\underline{\Pi}_{0}(1)$. Also $H_{-1}(pt;\underline{\Pi}_{0}(1)) = 0$, thus lemma (2.9) is proved for $G \in \mathcal{A}_{0}$.

If now $G \in \mathscr{A}_{j}$, then

in the first case and

in the second case, in which all the rows are exact. The exact sequences involving L-groups are those of [C1]. As dim BG₁ and dim BG₂ are \leq dim BG and dim BG₀ \leq dim BG-1 (in both cases), the induction step follows from the five lemma.

Using Exact sequences (2.2) and (2.3) together with Lemma (2.9), one obtains the following theorem :

(2.10) Theorem Suppose that $\widetilde{K}_0(G) = 0 = Wh(G)$, for all $G \in \mathscr{A}$. Let X be a Poincaré space of formal dimension $n \ge 5$ and let $(\varphi_X, \widetilde{\alpha}_X)$ be a pair as in (2.6). Then :

- a) $\eta_{\mathfrak{m}}$: $\mathscr{S}_{\mathfrak{m}}(X) \longrightarrow L_{\mathfrak{m}}(\varphi_X)$ is an isomorphism for $\mathfrak{m} \ge n+2$
- b) One has an exact sequence :

 $0 \longrightarrow \mathscr{S}_{n+1}(X) \xrightarrow{\eta_{n+1}} L_{n+1}(\varphi_X) \longrightarrow \mathbb{Z} \longrightarrow \mathscr{S}_n(X) \xrightarrow{\eta_n} L_n(\varphi_X)$

Finally, we mention the following proposition which will be of interest in Remarks 4 and 5 below :

(2.11) Proposition Let G be a group as in (2.9) such that BG is a (finite) complex of dimension n. Let X be a space with $\pi_1(X) = G$ and such that the canonical map $X \rightarrow BG$ induces an isomorphism on integral homology. Then $\mathscr{J}_m(X) = \overline{\mathscr{J}}_m(X) = 0$ for m>n, $\mathscr{J}_n(X) \cong \mathbb{Z}$ and $\widetilde{\mathscr{J}}_n(X) = 0$.

<u>Proof</u> This follows from Lemma (2.9) and from the comparison of the exact sequences (2.1) and (2.1 bis) for X and for BG.

2.12) Remarks 1) If one is interested in Statements (2.9), (2.10) and (2.11) only modulo 2-torsion, one can drop the assumption $\tilde{K}_0(G) = 0 = Wh(G)$ for $G \in \mathscr{A}$ as well as the condition $\sqrt{-}$ -closed in the definition of the class \mathscr{A} (this would simplify §4). Indeed, the exact sequences of surgery groups used in the proof of (2.9) always exist when all the groups are tensored by $\mathbb{Z}[1/2]$.

2) From Proposition (2.11), it follows that $\mathcal{L}_{m}(B\mathbf{Z}^{n}) = 0$ for m>n and $\mathcal{L}_{n}(B\mathbf{Z}^{n}) = \mathbf{Z}$. This result is mentioned in [Ra, p.310].

3) The class \mathscr{A} has been chosen minimal in order to obtain (2.6) and (2.7). But Lemma (2.9) is valid for a larger class in which we allow HNN-extension (with the relevant $\sqrt{-}$ -closed condition). As in 2), one is then able to prove for instance that $\mathscr{J}_{m}(X) = 0$ for m>3 and $\mathscr{J}_{3}(X) = \mathbb{Z}$ for X belonging to a large class of sufficiently large 3-manifolds (the result is valid mod 2-torsion for all sufficiently large 3-manifolds).

4) We now construct a Poincaré space Y of formal dimension n such that $\sigma(\varphi, \widetilde{\alpha}) = 0$ for all pairs $(\varphi, \widetilde{\alpha})$ for Y as in (1.1) but which is not homotopy equivalent to a closed topological manifold. We assume that $\widetilde{K}_0(G) = 0 = Wh(G)$ for all $G \in \mathscr{A}$ thus it suffices to prove that $\overline{s}(Y) = 0$ by (2.7).

We apply (2.6) to the case $X = S^n$. We thus obtain a group $\Gamma_n \in \mathscr{A}$ such that B Γ_n is a finite complex of dimension n and $H_*(B\Gamma_n; \mathbb{Z}) \cong H_*(S^n; \mathbb{Z})$.

The Atiyah-Hirzebruch spectral sequence shows that $H_{m}(B\Gamma_{n};\underline{\mathbb{H}}_{0}) = L_{m}(1) \text{ for } 1 \leq m \leq n \text{ and the homomorphism } H_{m}(B\Gamma_{n};\underline{\mathbb{H}}_{0}) \longrightarrow L_{m}(\Gamma_{n}) \text{ induced by the assembly map coincides with the inclusion } L_{m}(1) \longrightarrow L_{m}(\Gamma_{n}). \text{ Thus, the reduced surgery group } \widetilde{L}_{n}(\Gamma_{n}) = \operatorname{coker}(L_{n}(1) \longrightarrow L_{n}(\Gamma_{n})) \text{ is isomorphic to } \mathscr{I}_{n}(B\Gamma_{n}) = \mathbb{Z} \text{ by } (2.1) \text{ and } (2.11).$

Let us consider the Poincaré homology sphere bordism group $\Omega_n^{\rm PHS}({\rm B}\Gamma_n)$ defined in [H3], whose elements are represented by maps $f: \Sigma \longrightarrow {\rm B}\Gamma_n$, where Σ is an oriented Poincaré space with the homology of S^n . For $n \ge 6$, the theory of [H3] gives an isomorphism :

 $\Omega_n^{\mathbf{PHS}}(\mathbf{B}\mathbf{\Gamma}_n) \stackrel{\simeq}{=} \pi_n(\mathbf{S}^n) \oplus \widetilde{\mathbf{L}}_n(\mathbf{\Gamma}_n) \stackrel{\simeq}{=} \mathbf{Z} \oplus \mathbf{Z}$

so that the class of $f: \Sigma \to B\Gamma_n$ corresponds to the pair (degf, $\widetilde{f_{\star}(\sigma)}$), where $\sigma \in L_n(\pi_1(\Sigma))$ is the surgery obstruction for any surgery problem with target Σ . As Γ_n is finitely presented and $H_1(\Gamma_n; \mathbb{Z}) = H_2(\Gamma_n; \mathbb{Z}) = 0$, it actually follows from [H3, "proof of the surjectivity of σ_n "] that for any class of $\Omega_n^{\text{PHS}}(B\Gamma_n)$ has a representative $f: \Sigma \to B\Gamma_n$ with $\pi_1 f$ an isomorphism . Therefore, the pair (1,k) with k \neq 0 corresponds to a map $f: Y \to B\Gamma_n$ such that :

- f induces an isomorphism on the fundamental groups
- f induces an isomorphism on integral homology (since deqf = 1)
- Y has not the homotopy type of a closed topological manifold (otherwise k would be zero).
- $-\overline{s}(Y) = 0$ (since $\mathscr{S}_{n}(Y) = 0$ by (2.11)).

5) The following is a version of the Novikov Conjecture : if G is a group such that BG is a Poincaré space of formal dimension n, then

a) $\mathscr{S}_{m}(BG) = 0$ for m>n and $\mathscr{S}_{n}(BG) = \mathbf{Z}$ b) s(BG) = 0

Proposition (2.11) shows that a) is satisfied if $G \in \mathscr{A}$ (modulo the vanishing assumptions on \widetilde{K}_0 and Wh). On the other hand, the space Y of Remark 4) above has fundamental group $\Gamma_n \in \mathscr{A}$, the same integral homology as $B\Gamma_n$ and thus satisfies a) by (2.11). But $s(Y) \neq 0$. This shows some independence between condition a) and b) and emphasizes the importance of the assumption that BG itself be a Poincaré space in the Novikév conjecture.

3. Homotopy equivalences of closed manifolds

As one might except, the results of §1 and 2 have analogues for homotopy equivalences of closed manifolds. We give here the "simple homotopy" version of this theory, which seems more natural in this framework.

(3.1) Theorem Let $j : M \to N$ be a simple homotopy equivalence between closed manifolds of dimension $n \ge 5$. Then any pair $(\varphi, \widetilde{\alpha})$ for N as in (1.1) with ker φ locally perfect determines an element $\sigma(j,\varphi,\widetilde{\alpha}) \in L^{S}_{n+1}(\varphi)$ such that the following three conditions are equivalent :

a) there is a commutative diagram :

where M_ and N_ are closed manifolds, ${\rm f}_{\rm M}$ and ${\rm f}_{\rm N}$ are simple acyclic maps and j_ is a simple homotopy equivalence.

b) any commutative diagram

$$\begin{array}{c} & \stackrel{N}{\longrightarrow} & \stackrel{\alpha}{\longrightarrow} & \stackrel{B\Gamma}{\longrightarrow} \\ & f_{N} & \int & \stackrel{\alpha}{\longrightarrow} & \stackrel{\beta}{\longrightarrow} \\ M & \stackrel{j}{\longrightarrow} & N & \stackrel{\alpha}{\longrightarrow} & B\Gamma^{+} \end{array}$$

with N_ a closed manifold and ${\rm f}_{\rm N}$ a simple acyclic map can be completed in a diagram as in a).

<u>Proof</u> Recall that in the proof of (1.2) we checked that in the pull-back diagram :

the map g is acyclic, $\pi_1(T) = \Gamma$ and ker φ acts trivially on $\pi_2(T)$. By [H2, Theorem 3.1], there is a commutative diagram :

such that f_N is a simple acyclic map and $\pi_1(N_-) = \pi_1(T) = \Gamma$. (This existence of f_N shows that b) implies a).)

For P a closed manifold of dimension n, let $\mathscr{J}_{TOP}(P)$ be the Sullivan-Wall set of topological structures on P [Wa, Chapter 10] According to [Ra, p.277] there is an identification $\mathscr{J}_{TOP}(P) \xrightarrow{\simeq} - \mathscr{J}_{n+1}(P)$. Let $h : Q \to N_{-}$ represent a class in $\mathscr{J}_{TOP}(N_{-})$. Using a simple plus cobordism (W,Q_,Q) (i.e. $Q^{+} \simeq W$) one gets a simple homotopy equivalence $h^{+} : Q \to N$ whose class in $\mathscr{J}_{TOP}(N)$ is well defined. One checks that this correspondance $[h] \to [h^{+}]$ is actually given by the composite :

actually given by the composite : $\mathcal{S}_{\text{TOP}}(N_{-}) \xrightarrow{\simeq} \mathcal{S}_{n+1}(N_{-}) \xrightarrow{f_N \star} \mathcal{S}_{n+1}(N) \xrightarrow{\simeq} \mathcal{S}_{\text{TOP}}(N)$. Finally, observe that one has the following commutative diagram :

The map $\mathscr{S}_{n+1}(N_{-}) \rightarrow \mathscr{S}_{n+1}(T)$ is an isomorphism by the Ranicki exact sequence [Ra, p.276] indeed the map $N_{-} \rightarrow T$ induces an isomorphism on the funcamental groups and on the homology.

These considerations make Theorem (3.1) straightforward if we define $\sigma(j,\varphi,\tilde{\alpha})$ to be the image of $[j] \in \mathcal{S}_{TOP}(N)$ under the composite map $\mathcal{S}_{TOP}(N) \xrightarrow{\simeq} \mathcal{S}_{n+1}(N) \xrightarrow{\eta_{n+1}} L_{n+1}(\varphi)$ (see (2.3) and (2.4)).

If $(\varphi_N, \widetilde{\alpha}_N)$ is a pair for N as in (2.6), the homomorphism $\mathscr{S}_{n+1} : \mathscr{S}_{n+1}(N) \to L_{n+1}(\varphi_N)$ is injective by (2.10). One thus obtains the analogue of (2.7) :

(3.2) Theorem Let j : $M \to N$ as in (3.1). Assume that $\widetilde{K}_0(G) = Wh(G) = 0$ for all $G \in \mathscr{A}$. Then, the following conditions are equivalent :

- 1) j is homotopic to a homeomorphism
- 2) $\sigma(j,\varphi,\widetilde{\alpha}) = 0$ for all pair $(\varphi,\widetilde{\alpha})$ for N as in (1.1) 3) $(j,\varphi_N,\widetilde{\alpha}_N) = 0$ for some pair $(\varphi_N,\widetilde{\alpha}_N)$ for N as in (2.6)

4. Proof of Proposition (2.6)

Our proof makes use of Statements (4.1)-(4.4) below. The proof of (4.1) is given at the end of this section.

(4.1) Lemma Let R_i (i \in I) be a familly of groups having a common subgroup B and let R be the amalgamated product $\binom{*}{*B}_{i \in I} R_i$. Let S be a subgroup of R and let $S_i = S \cap R_i$. Suppose that the following conditions hold :

- 1) the union of S'sgenerates S
- 2) S_i is $\sqrt{-}$ closed in R_i for all i
- 3) if $s_i b \hat{s}_i \in B$ with $s_i, \hat{s}_i \in S_i$ and $b \in B$, then $b \in S_i$.

Then S is $\sqrt{-}$ closed in R.

(4.2) Examples a) Condition 3) holds trivially if $B \subset S_i$ for all iEL. For instance, if B = 1, case of a free product.

b) If B is $\sqrt{-}$ closed in R_i for all i \in l, then B is $\sqrt{-}$ closed in R (case S_i = B).

c) If $J \in I$ and B is $\sqrt{-}$ -closed in R_i for $i \in I \setminus J$, then the subgroup generated by $U_{i \in J} R_i$ is $\sqrt{-}$ -closed in R. (Take $S_i = R_i$ for $i \in J$ and $S_i = B$ for $i \notin J$).

(4.3) Lemma If G_1 and G_2 are groups in \mathscr{A} , so is $G_1 \times G_2$.

<u>Proof</u> Let $G_1 \in \mathscr{A}_m$ and $G_2 \in \mathscr{A}_n$. The proof is by induction on m+n. The statement is trivial if m+n = 0 and the induction step is easily obtained, using the isomorphisms $G_1 \times (G_2 \times_G G_3) = (G_1 \times G_2) \times_{G_1 \times G} (G_1 \times G_3)$ and $G_1 \times (\mathbb{Z} \times G) = (G_1 \times G) \times \mathbb{Z}$.

(4.4) Lemma There exists an acyclic group A in \mathscr{A}_4 such that dim BA = 2. (G acyclic means that $H_*(BG;\mathbb{Z}) = 0$ where Z is endowed with the trivial G-action).

<u>Proof</u>: Let $G = \langle a, b | a^3 \rangle = b^5 \rangle$ (the group of the (3.5)-torus knot; one could take another (p,q)-knot with p and q relatively prime odd integers). The group G belongs to \mathscr{A}_2 . One has G/[G,G] infinite cyclic generated by $m = a^{-1}b^2$. The commutator group [G,G] is free of rank 8 on $[a^{i},b^{j}]$ for i = 1,2 and $1 \le j \le 4$. The center $\zeta(G)$ of G is infinite cyclic on a^{3} .

(4.4.a) Sublemma The equation $m^k xm^{-k} = x^{-1}$ is possible in G only if x = 1. The equation $m^k xm^{-k} = x$ is possible in G iff $x = m^i z$ with $z \in \zeta(G)$.

As the proof of (4.1), our proof of (4.4.a) uses the Serre theory of groups acting on trees. It is also posponed till the end of this section.

The element u = [a,b] generates a $\sqrt{-closed}$ subgroup U in G. Indeed, U is $\sqrt{-closed}$ in [G,G] (since u is part of a basis of [G,G]) and [G,G] is $\sqrt{-closed}$ in G (since G/[G,G] has no 2-torsion). On the other hand, the element m generates a subgroup M of G which is also $\sqrt{-closed}$. Indeed, suppose that $g^2 = m^k$. As G/[G, G] is infinite cyclic generated by m, one has k = 2i and $g = ym^i$ with $y \in [G,G]$. Then, one has $m^{2i} = g^2 = ym^i ym^i = ym^i ym^{-i}m^{2i}$ which implies $m^i ym^{-i} = y^{-1}$. Thus y = 1 by (4.4.a).

Let G_1 and G_2 be two copies of G, with corresponding elements m_1, u_1 and m_2, u_2 . By the above, the group $P = G_1 * G_2 / \{m_1 = u_2\}$ is in the class \mathscr{A}_3 . By the Mayer-Vietoris sequence for amalgamated products, one checks easily that $H_*(P) = 0$ if $* \neq 0,1$ and $H_1(P) = \mathbb{Z}$, generated by m_2 .

Let us consider the subgroup Q of P generated by u_1 and m_2 . As $M \cap U = (1)$ in G, Q is free on u_1 and m_2 [Se, Corollary p.14]. and we have $Q \cap G_1 = U_1$ and $Q \cap G_2 = M_2$. We will prove that Q is $\sqrt{-}$ -closed in P, using (4.1) with $R_1 = G_1$, Q = S, $S_1 = U_1$ and $S_2 = M_2$. It just remains to check Condition 3) of (4.1) which we do by showing that the equations $m^i u^s m^j = u^t$ and $u^i m^s u^j = m^t$ are possible in G only if s = t = 1.

Let us first consider the equation $m^{i}u^{s}m^{j} = u^{t}$. Passing to G/[G,G] shows that j = -i. Thus u^{t} is the image of u^{s} under an automorphism of the free group [G,G]. This implies that $t = \pm s$. One checks easily that this contradicts (4.4.a).

As for the equation $u^{i}m^{s}u^{j} = m^{t}$, one must have s = t for homological reasons. The equation is then equivalent to $m^{s}u^{j}m^{-s} = u^{-i}$ which drives us back to the former case.

Let \overline{P} be another copy of P. By the above, the group $A = P \times \overline{P} / \{m_2 = \overline{u}_1, u_1 = \overline{m}_2\}$ belongs to \mathscr{A}_4 . Using the Mayer-Vietoris sequence again, one checks that A is acyclic.Observe that dim BA=2.

(4.5) Remarks on the proof of (4.4) : a) The subgroup $U_1 \subset G_1 \subset Q = A$ generated by u_1 is $\sqrt{-}$ -closed in A. Indeed, U_1 is $\sqrt{-}$ -closed in Q = $U_1 \times M_1$ and Q is $\sqrt{-}$ closed in A by (4.2.b).

b) Acyclic groups can be obtained by the amalgamation of two copies of a free group F of rank 2 over a suitable subgroup 5 (see [BDH , p.11]). Problem : find such a situation where S is $\sqrt{-}$ -closed in F.

(4.6) Proof of Proposition (2.6) Following the procedure of [Ma], we consider for any polyedron L (polyedron = finite simplicial complex) the following condition $\mathcal{M}(L)$:

<u>Condition</u> $\mathcal{M}(L)$: There exists a map t : (UL,TL) \longrightarrow (CL,L) (where CL denotes the cone over L) such that, for each connected subpolyedron M of L, one has :

- a) $t|t^{-1}(CM) : t^{-1}(CM) \rightarrow CM$ and $t|t^{-1}(M) : t^{-1}(M) \rightarrow M$ are acyclic maps
- b) $t^{-1}(CM) = B\Gamma_{CM}$ and $t^{-1}(M) = B\Gamma_{M}$, where Γ_{M} and Γ_{CM} are groups in \mathscr{A} ; moreover, dim $B\Gamma_{M}$ = dim M and dim ΓB_{CM} = dim M + 1
- c) ker($\Gamma_{M} \longrightarrow \pi_{1}(M)$) is locally perfect
- d) If M' is a connected subpolyedron of L containing M, the inclusion $t^{-1}(CM,M) \subset t^{-1}(CM',M')$ induces four homomorphisms

which are all monomorphisms and $\sqrt{-}$ -closed (a monomorphism $\gamma : G \rightarrow G'$ is $\sqrt{-}$ -closed if $\gamma \langle G \rangle$ is $\sqrt{-}$ -closed in G').

We shall prove that Condition $\mathscr{M}(L)$ holds by induction on $\dim L$.

 $\dim L = 0$ One takes t to be the identity map.

 $\underline{\dim L} = \underline{1}$ One takes t to be the identity map on TL = L and on the

1-skeleton UL⁽¹⁾ of UL which is $L \cup C(L^{(0)})$. Let A be the acyclic group constructed for (4.4) and $u_1 \in A$ be the element considered in (4.5.a). Then BA can be taken to be a polyedron having a subpolyedron isomorphic to the boundary of a 2-simplex which represent the class u_1 . Form the polyedron

UL = UL⁽¹⁾
$$\coprod$$
 (\coprod_{σ} (CA) _{σ}) /{ $\partial \sigma$ = (u₁) _{σ} }

where (BA) $_{\sigma}$ is a copy of BA and σ runs over the set of 2-cells of CL. One easily check Conditions a)-d), using (4.4),(4.5.a), (4.2.b) and (4.2.c) for the latter.

<u>Induction step</u>: one assumes by induction that $\mathcal{M}(L)$ holds if dimL $\leq n-1$. By induction on the number of n-cells of L, it is enough to prove that $\mathcal{M}(L_0)$ implies $\mathcal{M}(L)$ when L is the union of L_0 with one n-simplex σ . As $n\geq 2$, $\partial\sigma$ is connected and one may assume that L_0 is connected.

As $\mathscr{M}(L_0)$ holds, $t^{-1}(C\partial\sigma) = U\partial\sigma$ and $t^{-1}(\partial\sigma) = T\partial\sigma$ are subpolyedra of UL_0 and TL_0 respectively. Let TL be $TL_0 \sqcup U'\partial\sigma$, where U' $\partial\sigma$ is another copy of U $\partial\sigma$ attached to T $\partial\sigma$ and extend t to TL by sending U' $\partial\sigma$ to σ . Then TL = BF_L where Γ_L is the free product $\Gamma_{L_0} \ast \Gamma_{C'} \partial_{\sigma}$ with amalgamation over $\Gamma_{\partial\sigma}$ (where C' $\partial\sigma$ is another copy of C $\partial\sigma$). Observe also that $t^{-1}(L \cup CL_0) = BF_{L \cup CL_0}$, where $\Gamma_{L \cup CL_0}$ is the free product $\Gamma_{C'} \partial_{\sigma} \ast \Gamma_{CL}$ with amalgamation over $\Gamma_{\partial\sigma}$ and that $\Gamma_{C'} \partial_{\sigma} (\ast \Gamma_{\partial\sigma}) \Gamma_{C} = \Gamma_{\Sigma} (\partial\sigma)$ is a subgroup of $\Gamma_{L \cup CL_0}$. As in [BDH, Theorem 6.1] one embedds $\Gamma_{\Sigma(\partial\sigma)}$ into the acyclic group $(A \times \Gamma_{\partial\sigma}) \ast \Gamma_{C\partial\sigma} = \Gamma_{C\Sigma\partial\sigma}$ (amalgamation over $\Gamma_{\partial\sigma}$; A is the acyclic group of (4.4)) by sending $g \rightarrow g$ if $g \in \Gamma_{C\partial\sigma}$ and $g \rightarrow aga^{-1}$ if $g \in \Gamma_{C'\partial\sigma}$, where a $A - \{1\}$. Take $UL = TL \cup UL_0 \cup m$ where m is the mapping cylinder of the above embedding and extend t to UL by sending m onto C σ . One easily check Condition a)-c) of $\mathscr{M}(L)$ (observe that $\Gamma_{C\Sigma\partial\sigma} \in \mathscr{A}$ by (4.4) and (4.3)). For Condition d), one checks that the monomorphisms $\Gamma_{Y} \rightarrow \Gamma_{X}$ corresponding to all the inclusion $Y \rightarrow X$ of the following diagram :

are $\sqrt{-}$ closed. This is done as follows :

- inclusions (i) are $\sqrt{-}$ closed because $\mathcal{M}(L_0)$ holds.
- " (2) " " " inclusions (1) are, using (4.2.b) and (4.2.c).
- if inclusion (3) is √-closed, then inclusions (4) are √closed, using several times (4.2.b) and (4.2.c). For instance, the inclusion L⊂ CL has to be decomposed : L⊂LUC∂g⊂ (CΣ∂σUL)U_{LUC∂σ}(CL₀), etc.

It thus remains to prove that Inclusion (3) is $\sqrt{-}$ -closed. To simplify the notation, write Inclusion (3) under the form $G'*_{H}G \rightarrow (A \times H)*_{H}G$ (G' a copy of G). As for the proof of (4.4.a) and (4.1), we shall use the Serre theory of amalgamated product acting on trees [Se, 4 and 5]. Recall that an amalgamated product $R_{1}*_{B}R_{2} = R$ acts on a tree T_{R} characterised by the following properties : there is a fundamental domain which is a segment P = Q isomorphic to the quotient tree $R \setminus T_{R}$ with isotropy groups $R_{P} = R_{1}, R_{Q} = R_{2}$ and $R_{e} = B$. Applying this to $R = (A \times H)*_{H}G$ and making the normal closure \overline{G} of G act on T_{R} , one see that a fundamental domain isomorphic to $\overline{G} \setminus T_{R}$ is given by the following tree :

The isotropy group are : $R_{xe} = H$ and $R_{xQ} = xGx^{-1}$. Using [Se,§5] one deduces that \overline{G} is the free product of the groups xGx^{-1} ($x \in A$) amalgamated over their common subgroup H. Therefore, the subgroup G'*_HG of R which is the subgroup generated by G and aGa⁻¹ is $\sqrt{-}$ closed in \overline{G} by (4.2.c) (the inclusion H \subset AxH is $\sqrt{-}$ closed since A $\in \mathscr{A}$ and groups in \mathscr{A} have no 2-torsion). On the

242

other hand, \overline{G} is $\sqrt{-}$ -closed in R since $R/\overline{G} = A$ has no 2-torsion. Therefore, $G^{**}_{H}G$ is $\sqrt{-}$ -closed in R.

<u>Proof of Sublemma (4.4.a</u>) Observe that the first statement is implied by the second since $m^{k}xm^{-k} = x^{-1}$ implies that $m^{2k}xm^{-2k} = x$. To establish the second statement, observe that the tree T_{G} has fundamental domain $\stackrel{P}{\longrightarrow} \stackrel{e}{\longrightarrow} Q$ with isotropy groups $G_{p} = \langle a \rangle$, $G_{Q} = \langle b \rangle$ and $G_{e} = \zeta(G)$. One has the following situation in T_{G} :

$$\underline{me} \quad a^{-1}e \quad p \quad a^{-1}e^{-p} \quad b^{2}e^{-p} \quad a^{-1}e^{-p} \quad b^{2}e^{-p} \quad a^{-1}e^{-p} \quad b^{2}e^{-p} \quad a^{-1}e^{-p} \quad b^{2}e^{-p} \quad a^{-1}e^{-p} \quad a^{-1}e^{-p} \quad b^{2}e^{-p} \quad a^{-1}e^{-p} \quad b^{2}e^{-p} \quad a^{-1}e^{-p} \quad b^{2}e^{-p} \quad a^{-1}e^{-p} \quad a^{-$$

By [Se, Proposition 25 §6], one deduces that the subgraph drawn above is part of an infinite chain L on which m acts by a translation of amplitude 2. Observe that the orientations of the edges of L imply that m is a generator of the oriented-automomorphisms group of L. Now, if m^{k} commutes with x, one deduces from [Se, Propositions 25 and 27 §6] that xL = L and thus $xe = m^{i}e$ for some i. As $G_{p} = \zeta(G)$, this implies that $xm^{-i} \in \zeta(G)$.

<u>Proof of Lemma (4.1)</u> The Serre tree T_R has here fundamental domain (isomorphic to $R \setminus T_R$) a cone on the set of vertices $\{P_i\}_{i \in I}$ (the cone vertex is called P; the edge from P_i to P is called e_i), and the isotropy groups are $R_{P_i} = R_i$, $R_p = R_{e_i} = B$.

Let T_S be the smallest subgraph of T_R such that $\{e_i; i \in I\} \subset \{Edges \ T_S\}$ and $ST_S = T_S$. As S is generated by $S_i = S_{p_i}$, T_S is connected by the obvious generalisation of [Se, Lemme 2, p.49] and thus T_S is a subtree of T_p .

Let $g \in R$ such that $g^2 \in S$. As an oriented automorphism of T_R , g has either a fixed vertex or there is an infinite chain L in T on which g acts by a non-trivial translation [Se, Proposition 25 §6]. Suppose that g has a fixed vertex V. Hence $g^2V = V$ and, as $gT_S \cap T_S \neq \emptyset$, g must fix the whole path joining V to T_S . Therefore one may suppose that $V \in T_S$ which implies that $g = tr_i t^{-1}$ with $r_i \in R_i$ (for some i) and $t \in S$. Thus, $r_i^2 = t^{-1}g^2t \in S \cap R_i = S_i$. As S_i is $\sqrt{-}$ closed in R_i , one has $t^{-1}gt \in S_i$ and then $g \in S$. It then remains to check the case where g translates a chain L. As $g^2 \in S$, one has $L \subset T_S$ (otherwise $gT_S \quad T_S = \emptyset$). Therefore, by replacing if necessary g by one of its conjugate by an element of S, one may suppose that L contains the edge e_i for some i \in I. As $T_S \cap \text{Orbit}_R(P) = \text{Orbit}_S(P)$, there is $h \in S$ such that $b = h^{-1}g \in R_p = B$. One has $g^2 = \text{hbhb} \in S$ which means $\text{bhb} \in S$. As $L \subset T_S$, the vertex P_i is common to the edges e_i and $s_i e_i$ with $s_i \in S_i$. Observe that the path joining $hb(s_i e_i)$ to P_i contains $s_i e_i$, and therefore $bhb(s_i e_i) \in T_S$ implies that $bs_i e_i \in T_S$. The latter means $bs_i = \tilde{s}_i \tilde{b}$ for some $\tilde{s}_i \in S_i$ and $\tilde{b} \in B$. This contradicts Condition 3) of (4.1).

BIBLIOGRAPHY

- [BDH] BAUMSLAG G.-DYER E.-HELLER A. The topology of discrete groups. Jal of Pure and Appl. Algebra 16 (1980),1-47.
- [C1] CAPPELL S. Mayer-Vietoris sequences in Hermitian K-theory. Algebraic K-theory III, Springer Lect. Note 343, 478-512.
- [C2] Unitary nilpotent groups and hermitian K-theory I. BAMS 80 (1974), 1117-1122.
- [C3] On homotopy invariance of higher signatures Invent. Math. 33 (1976),171-179.
- [CS] CAPPELL S. -SHANESON J. The codimension 2 placement problem and homology equivalent manifolds. Annals of Math. 99 (1974) 277-348.
- [H1] HAUSMANN J-Cl. Homological surgery. Annals of Math. 104 (1976), 573-584.
- [H2] ______Manifolds with a given homology and fundamental group. Comm. Math. Helv. 53 (1978), 113-134.

- [H3] ———— Poincaré space with the homology of a sphere. To appear in the proc. of the conference on Homotopy theory. Evanston 1982 (AMS).
- [HH] HAUSMANN J-Cl HUSEMOLLER D. Acyclic maps. L'Enseignement Math. XXV (1979) 53-75.
- [HV1] HAUSMANN J-Cl. VOGEL P. The plus construction and lifting maps from manifolds. Proc. Symp. in Pure Math. (AMS) 32 (1978) 67-76.
- [HV2] Geometry in Poincaré spaces. In preparation.
- [Ma] MAUNDER C.R.F. A short proof of a theorem of Kan-Thurston Bull. London Math. Soc. 13 (1981), 325-327.
- [Qn] QUINN F. Surgery on Poincaré and normal spaces. BAMS 78 (1972), 262-267.
- [Ra] RANICKI A. The total surgery obstruction. Algebraic Topology Aarhus 1978, Springer Lect. Notes 763, 275-316.
- [Se] SERRE J.-P. Arbres, Amalgames, SL₂. Astérisque 46 (1977).

University of Aarhus, Denmark University of Geneva,Switzerland Current address : McMaster University, Hamilton Ontario