
ACYCLIC MAPS AND POINCARE SPACES 

Ian HAMBLETON and Jean-Claude HAUSMANN 

i. The "minus" problem for Poincar~ spaces 

Recall that a continous map f : Y --* Z is called acyclic 

if its homotopy theoretic fiber is an acyclic space, or equivalently 

if it induces an isomorphism on homology or cohomology with any 

local coefficients. If the space Y is fixed, the correspondence 

f ~-* ker~if produces a bijection between equivalence classes of 

acyclic maps f : Y -~ Z and perfect normal subgroups of ~I(Y). A 

representative Y --* Y+ of the class corresponding to the perfect 
P 

normal subgroup P of ~I(Y) can be obtained by a Q u i l l e n  plus  

construction, which means that Y+ is obtained by attaching cells of 
P 

dimension 2 and 3 to Y. For details and other properties of acyclic 

maps, see [HH]. 

A s p a c e  X i s  c a l l e d  a Poincar~ space  (of formal  d imens ion  n) 

if it is homotopy equivalent to a finite complex and if there exists 

H k a class [X] 6 Hn(X;Z)so that - NX : (X~B) --~ Hn_k(X;B) is an 

isomorphism for any ~Zl(X)-module B. If Y is a Poincar~ space and 

f : Y --* X an acyclic map with ~I(X) finitely presented, then X is 

a Poincar~ space. The homology condition is obviously satisfied 

for X and it only remains to prove that X is homotopy equivalent 

to a finite complex. As ~I(X) is finitely presented, the group ~I(X) 

is finitely presented iff kerzlf is the normal closure of finitely 
+ 

many elements in ~I(Y). Hence a space Yn (P=kerzlf) homotopy 

equivalent to X may be obtained by attaching to ~ finitely many 

2-cells and then the same number of 3-cells. 

Let X be a Poincar~ space. For each epimorphism 

: F ~I(X) with F finitely presented and ker~ perfect, we 

consider the problem of finding an acyclic n~p f : Y --~ X, where Y 

is a Poincar~ space, ~I(Y) = F and ~i f = ~. In other words : is X 

obtained by performing a plus construction on a Poincar~ space with 

fundamental group F) (the "minus" problem for (X,~)). 
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First observe that the existence of such an acyclic map 

f : Y --~ X implies some conditions on X. The following commutative 

diagram : 

y Y ~BF 

X " ~ B~ I (X) 

+ + of the shows the existence of a lifting ey : X --* Brker~ 

characteristic map eX : X --* B~I(X) (see [H-H, Proposition 3.1]). 

Moreover, recall that for any space Z, the homomorphism 

H2~ z : H2(Z;C) --* H2(BzI(Z) ;C) is surjective for any ~l(Z)-moduleC 

(since B~I(Z) is obtainable from Z by adding cells of dimensiona 3). 

Hence the following commutative diagram : 

H 2 (Y ;C) 

--~1 H 2 f 

H 2 (X;C) 

H2ey 
~-~H 2 (BF ;C) 

H21 

(~ F + . c) 
ker~' 

+ 
H2~y 

H 2 
+ 

H2B~ 

H 2 (B~ 1 (X) ;C) 

shows that for any Z~l(X)-module C, the homomorphisms H2a ~ and 

H2B~ + are both surjective. This, of course, implies non-trivial 

compatibilities between H2(X;C) and H2(Br;C) = H2(F;C). 

These first remarks suggest a more natural formulation of 

the above problem, using the following definition : 

(I.i) Definition : Let X be a Poincar~ space. Let us consider pairs 

(~,~), where : 

i) ~ : r ,,~l(X) is an epimorphism of finitely presented groups 

with ker~ perfect, and 
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+ 
2) ~ : X --~ BFker< ° makes the following diagram commute : 

Brt 

x/ 

and H2~ : H2(X;C) --~ H2(BFker~;C) + _ is surjective for any 

~l(X)-module C. 

Such a pair (~,~) is realizable if there exists an acyclic 

= ~ and map f : Y ~X with Y a Poincar~ space, ~I(Y) = F,~I~ 
+ 

~y = ~. 

Our problem then becomes : given a Poincar~ space X and a 

pair (~,~) as in (i.i), is this pair realizable ? The answer that 

we are able to give to this more precise problem is contained in 

Theorem (1.2) below. Recall that a group G is called locally perfect 

if any finitely generated subgroup of G is contained is a finitely 

generated perfect subgroup of G. 

(1.2) Theorem Let X be a Poincar~ space of formal dimension na4. 

i) a pair (~,~) as in (i.I) determines an element ~(~,~) in the 

Wall surgery obstruction group L (~). If (~,~) is realizable, 
n 

then o(~,~) = 0. 

such that the ii) If ~' : X --~ BF er~ is another lifting of ~x pair 

(~,~') satisfies to the conditions of (i,i), then 

a(~,~) = ~(~,~'). 

iil) If in addition nk5 and ker~ is locally perfect, then ~(~,~) = 0 

implies that (~,~) is realizable. 

(1.3) Remarks : a) The Wall group used in (1.2) is the obstruction 

group for surgery to a homotopy equivalence (sometimes called Lh). 
n 

Recall that the group Ln( ) fits in the exact sequence : 

J L (F) n J Ln(~I(X)) , L n(~) J Ln_ I(F) 

b) The same theory holds for simple Poincar~ spaces [Wa, Chapter 2]. 

using simple acyclic maps (the Whitehead torsion of an acyclic 
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map f : Y --* X is well defined in Wh(z I(X)) ;if this torsion 

vanishers, the acyclic map is called simple). The relevant Wall 

group is then L s(q0). 
n 

c) The same theory holds for non-orientable Poincar@ spaces. The 

relevant Wall group is then Ln(~ , Wl(X)) , where Wl(X) : ~l(X)~/2~ 

is the orientation character for X. 

Proof of (1.2) : Write BF + for BFkerq 0. Let us consider the pull-back 

diagram : 

T ~ BF 

X ~" , BF + 

The fiber of g is the same as the fiber of I, therefore g is an 

acyclic map. If F is the homotopy theoretic fiber of ~ one has the 

following diagram : 

~2(B[ +) ~ ~I(F) ~ F , F/ker%0 , 1 

Hence Zl(T) = F if ~2 ~ is surjective. But this is the case, as can 

be seen by the following diagram : 

w 2(X) ~ , l!2(X) 

I 
~2(BF+) ---- ' H2(BF+) 

, H2 (X;~I (X)) 

- - - . - .  H 2 ( B r  ; 7r I ( X ) )  

the right-hand vertical arrow being surjective by Part b) of (l.1). 

Let Z be a space . We denote by ~(Z) (Poincar~ bordism 

groupl the bordism group of maps f : U --~ Z where U is an oriented 

Poincar~ space of formal dimension n. According to the theory of 

Quinn ([Qn], see [HV2] for proofs), these groups fit in a natural 

long exact sequence : 

Hn+I(Z;MSG) , Ln(~I(Z)) -- ~P(z) ~ H (Z;MSG) 
n n 

(n->4) 
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If Z' is a subspace of Z, one defines ~P(z,z') similarly, 
n 

using Poincar~ pairs, and on gets a corresponding sequence. 

Specializing to Z = X,Z' = T and using the fact that T -~ X is an 

acyclic map, one gets the following commutative diagram in which 

the rows and columns are exact : 

Hn+I(T;MSG) ~ Ln(F) ~ ~P(T) , H (T;MSG) 
n n l 

H I(X;MSG) , L (~i n n n 

n n 

This permits us to define ~(~,~) as the image of 

~P _ ~P(x) --~ ~(X,T) ~L (~). [id x] 6 n(X) under the composite mad n n 

Now, suppose that (~,~) is realizable by an acyclic map 

f : y --. X with Y a Poincar~ space. Thus, f factors through a map 

f : Y --~ T representing a class in ~P(T). As f is acyclic, its 
n 

mapping cylinder constitutes a Poincar~ cobordism from id X to f. 

Therefore, the class [id x] is mapped to zero in ~P(x,T) (since f 
n 

factors through T) and (~,~) = 0, This proves part i) of (1.2). 

To prove ii), let us consider the pull-back diagram 

T' , BF 

X , F + 

and form again the pull-back diagram 

, T a 

T , X 

in which all the maps are now acyclic. Then the composed map 

-~ X is also acyclic. Denote by ~: ~=~I(T) ~,~l(X) the induced 

homomorphism. One has a commutative diagram 
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~P (X, T) 
n 

z ' 
~n(X,T,) ~ / / ~ /  

(~) 

Therefore, o(~,~) and o(~,~') are both image of a single element 

of L (~). This proves Part ii) of (1.2). 
n 

Let us finally prove part iii) of (1.2). If ~(~,~) = 0, 

then there is a map 80 : Y0 --~ T representing a class in ~P(T)n such 

that gob 0 is Poincar~ cobordant to id X. To show that (~,e) is 

realizable, we shall find a representative 8 : Y --~ T of the class 

~0 such that ~i ~ and 8, : H,(Y;Z~I(X)) --~ H,(T;Z~I(X)) are 

isomorphisms. 

By construction of the space T, the group ker~ acts 

trivially on ~2(T) (use [HH, Proposition 5.4] to the maps i and g). 

As ker~ is locally perfect, one can construct, as in [H2, proof of 

Theorem 3.1],a finite complex T 1 and a commutative diagram : 

~0 
Y0 , T ~ ~ X 

such that gl is an acyclic map and 71y is an isomorphism. Thus, 

T 1 is a finite complex satisfying Poincar~ duality with coefficients 

~I(X) and 81 can be covered by a map of the Spivak bundles. By 

surgery with coefficients for Poincar~ spaces (the Cappell-Shaneson 

type of generalization of [Qn, Corollary 1.4]; for proofs, see[HV2]), 

the map B 1 determines an element ~(~i ) 6 Fn(~), where Fn(~) is the 

Cappell-Shaneson surgery obstruction group Fh(~F --~ ~I(X)) defined 
n 

in [CS]. The existence of the required map B : Y --~ T will be 

implied by the nullity of ~(81 ) . 

As in [HI,§3] , it can be checked (see [HV2]) that the 

image of ~(~i ) under the homomorphism Fn(~) --~ Ln(~ I(X)) is the 
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obstruction to glOBl being Poincar~ cobordant to a homotopy equi- 

valence. The latter is obviously zero since, by construction, 

glOBl = go~ 0 is Poincar~ cobordant to id x. Since both F and ~I(X) 

are finitely presented, ker~ locally perfect is equivalent to ker<p 

being the normal closure of a finitely generated perfect group. 

Therefore, the homomorphism ~n(~) --*Ln(Zl(X)) is an isomorphism 

[HI, Theorem i]. Then o(B]) = 0 and Part ii) of (1.2) is proved. 
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2. The invariant ~(~,~)as part of a total surgery obstruction 

theory 

Let X be a Poincar6 space of formal dimension na4. By (1.2) 

to each pair (~,~) as in (i.i), one can associate the element 

o(~,~) 6 L (~). This gives a large collection of invariants associa- 
n 

ted to X. In this context, Theorem 2.1 of [HVl] may be rephrased as 

follows : 

(2.1) Theorem Let X be a Poincar6 space of formal dimension na5. 

Let (~,~) be a pair as in (i.i) with ker~ locally perfect. If X has 

the homotopy type of a topological closed manifold then o(~,~) = 0. 

Thus, the elements o(~,~) occurs as obstruction for X being 

homotopy equivalent to a closed topological manifold and we can 

except some relationship between our o(~,~)'s and the total surgery 

obstruction of [Ra]. We are indebted to A. Ranicki for pointing out 

a mistake in our first draft of this section. 

Let X be a Poincar6 space of formal dimension a5. According 

to [Ra], there is an exact sequence : 

(2.1) .... ~m+l (X) ~ Hm(X~L_0) ~ Lm(~l (X)) ~ ~m(X) ~ Hm_l (X~L_0) .... 

and an element s(X) 6 ~n(X) which vanishes if and only if X is 

homotopy equivalent to a closed topological manifold. Here the 

groups are defined for ma0 by 

~(X)m = ~m (O* : X¢~0 --~0(~i (x))) 

where o, is the assembly map andS0 is the 1-connective covering of 

the spectrum L0(1) (see [Ra, p.285]; we use the notations of [Ra]). 

Observe that our definition of~m(X) slightly differs from the one 

in [Ra] (we take the whole spectrum IL0(~l(X)) instead of its 

1-connective covering). This difference only affects the group 

~0(X). Since the be extended to assembly map o, can 

~, : X¢~0(1)--~ ~0(~l(X)) we can define : <(X) : ~m(~,). This 

gives the exact sequences : 

m~/l(X)-~Hm(~-0(1))" a m(~T i(x)) ~ ~(x)'Hm- I¢~0¢1))) 
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and 

(2.2) .... Hm(X;Z) --~ <(X) _~m ~m(X)--~ Hm_I(X;Z ) .... 

Let us define s(X) = ln(S(X))6 ~n(X). 

If (~,~) is any pair for X as in (I.i), consider the pull-back 

diagram : 

T ~ BF 

X ~ ~ BF + 

which gives rise to the following diagram : 

(2.3) 

H n(i~_0) -~ Ln (P) ,J(T)n '' Hn-IIT'~L0)- 

Hn(X~L 0) --~ L!(zI(X)) ~ ~!X) 
I ~nl xn ~ Hn-liX~-0) 

0 ~ L n (~) ~- , ,T) 3 0 

in which rows and collumns are exact. One has also the corresponding 

diagram for-~P(X). Let q : ~(X) --~ Lm(~) be the composed homo- m m m 
morphism <(X) --~ <(X,T)~Lm(~). Define ~m : ~m (x) -~ L (~) m 
a c c o r d i n g l y ,  a n d  n o t i c e  t h a t  ~m = ~m°tm" 

(2.4) Proposition In L (~), one has the equalities : n 

Nn(S(X)) = n nCs(x)) = o(<0,~). 

Proof This follows directly from the definitions, since there is a 

homomorphism 6 x : ~ P ( x )  ~ ~ ( X )  s u c h  t h a t  t h e  f o l l o w i n a  d i a g r a m  
n n ~ 

~X l 

L n(~) ~ , a P(X,T) 6X'T ~ ~(X,T) ~ X,T) 

commutes and dx([idx]) = s(x) [Ra,pp.307-308]. 
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(2.5) Corollary Let X be a Poincar~ complex of formal dimension 

na5, and let (~,~) a pair as in (i.i). Suppose that the Spivak 

bundle for X has a TOP-reduction ~ which defines a surgery obstru- 

ction ~(~)6 Ln(~l(X)). Then, o(~,~) is the image of a(~) under the 

homomorphism Ln(nl(X)) --~ Ln(~). 

Proof By [Ra,p. 298] , the element o(~) has image s(X) under the 

homomorphism Ln(~I(X)) --~ ~(X).n The result thus follows from (2.4). 

Thus, if s(X) = 0, one has a(~,~) = 0 for any pair (~,~) as in (i.i). 

A converse to this fact might be obtained by considering some "test 

pairs" (~X,~X) for X as follows : let ~i' i=0,1,..., and 

~= UiS~i be the smallest classes of groups such that : 

$~0 contains the trivial group 

G 6 ~/, iff at least one of the following 
1 

conditions holds : 

or 

(a) there exist groups G1,G 2 and G 0 = GING2, all in ~i-1 such 

that G = GI, G G 2 and the inclusionS G0cG i are ~---closed in 

the sense of 0[Cl] : if g 6 G i and g2 6 G O then g £ G O . 

(b) G = G0×Z, with G O 6 ~/i-i 

(2.6) Proposition Let X be a finite complex of dimension n. Then 

there exists a pair (~X : r X --~ Zl(X),~ x) satisfying I) and 2) of 

(i.i) such that : 

i) r x c Y 

2) BF x is a finite complex of dimension n 

3) ~X is a homotopy equivalence. 

The pair (~X,~X) is associated to a triangulation of X, according an 

algorithm as in [B-D-H] or [Ma]. Its construction is given in §4. 

Recall that a standard conjecture is that K0(G) = 0 = Wh(G) 

for G 6 ~(i) (or even for G such that BG is a finite complex). 

(2.7) Theorem Suppose that K0(G) = Wh(G) = 0 for all G 6~. Then, 

for X a Poincar~ space of formal dimension na5, the following con- 

ditions are equivalent : 

(i) P. Vogel informs us that he has recently obtained a proof of 

this conjecture. 
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l) s(x) = 0 

2) o(~,~) = 0 for any pair (~,~) for X as in (i.i) 

3) O(~X,~X) = 0 for some pair (~X,eX) of (2. 6). 

Proof : Condition i) implies Condition 2) by (2.4). The implication 

from 2) to 3) is straightforward. Therefore it remains to prove that 

3) implies__ i). As the map ~X is a homotopy equivalence, the diagram 

for ~(X) similar to (2.3) gives the long exact sequence : m 

(2.8) . ~°m (BFx) ~(X) ~m . . . .  Lm(~ X) --~ ~m_I(BFx) .... 

Therefore, it suffices to establish that ~m(BFx) = 0 

for man. As dim BF X = n, this follows from the following lemma : 

(2.9) Lemma Let G 6 ~/such that K0(P) = 0 = Wh(P) for any subgroup 

P of G with P6~/. Then the homomorphism 

~m : Hm(G'-~L0(1)) --~ Lm(G) 

induced by the assembly map ~, is an isomorphism for m adim BG and 

is injective for m = dim BG - I. 

Proof We shall prove Lemma (2.9) for G 6~j by induction on j, using 

the classical idea of S. Cappell [C3] . The class dO contains only 

the trivial group and Hm(Pt'_JL0(1))is isomorphic to Lm(1) for m>-0 

(this is the main point where we need the spectrum_~ 0(I) instead of 

_]L0 ). Also H_l(Pt~_0(1)) = 0, thus lemma (2.9) is proved for G 6~0. 

If now G 6 ~, then 

Hm(BGo~_O(1))-~ Hm(BGI~_0(Ii~Hm(BG2~_O(1))-~ HmiBG~Lo(1))-~ Hm_II(BG0~L0(1)) 

i 
Lm(G 0) , Lm(GI) (9 Lm(G 2) ~ Lm(G) ~ Lm_ I(G O ) 

in the first case and 

i "-~ Hm(i0~]L0(1))-~ im(GdL0(]))-~ im-l(G0~IL0(1})--~ i 

0---~ Lm(G 0) , Lm(G) , Lm_I(G 0) , 0 
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in the second case, in which all the rows are exact. The exact 

sequences involving L-groups are those of [CI] . As dim BG 1 and 

dim BG 2 are s dim BG and dim BG 0 s dim BG-I (in both cases), the 

induction step follows from the five lemma. 

Using Exact sequences (2.2) and (2.3) together with Lemma 

(2.9), one obtains the followinq theorem : 

(2.10) Theorem Suppose that K0(G) = 0 = Wh(G), for all G 6S~. Let 

X be a Poincar~ space of formal dimension na5 and let (~X,~X) be a 

pair as in (2.6). Then : 

a) n m : ~Pm(X) --~ Lm(~ x) is an isomorphism for man+2 

b) One has an exact sequence : 

0 ~n+l (X) qn+l Ln+ 1 (~X) ~ ~(X) nn --~ , --~ --~ ~ L (~X) n n 

Finally, we mention the following proposition which will 

be of interest in Remlarks 4 and 5 below : 

(2.11) Proposition Let G be a group as in (2.9) such that BG is a 

(finite) complex of dimension n . Let X be a space with ~I(X) = G 

and such that the canonical map X -~ BG induces an isomorphism on 

integral_ homology. Then ~(X)m =~mm ~(x) = 0 for m>n, ~n(X) ~ ~ and 

~(x) = 0. 
n 

Proof This follows from Lemma (2.9) and from the comparison of the 

exact sequences (2.1) and (2.1 bis) for X and for BG. 

2.12) Remarks i) If one is interested in Statements (2.9), (2.10) 

and (2.11) only modulo 2-torsion, one can drop the assumption 

K0(G) = 0 = Wh(G) for G 6 ~/as well as the condition V----closed in 

the definition of the class ~/(this would simplify §4). Indeed, the 

exact sequences of surgery groups used in the proof of (2.9) always 

exist when all the groups are tensored by 211/2]. 

2) From Proposition (2.11), it follows that ~(B~ n) = 0 for m>n and 
m 

~(BZ n) = ~. This result is mentioned in [Ra, p.310]. 
n 
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3) The class ~has been chosen minimal in order to obtain (2.6) 

and (2.7). But Lemma (2.9) is valid for a larger class in which we 

allow HNN-extension (with the relevant ~--closed condition). As in 

2), one is then able to prove for instance that ~(X) = 0 for m>3 
m 

and ~3(X) = • for X belonging to a large class of sufficiently 

large 3-manifolds (the result is valid mod 2-torsion for all suffi- 

ciently large 3-manifolds). 

4) We now construct a Poincar~ space Y of formal dimension n such 

that a(~,~) = 0 for all pairs (~,~) for Y as in (i.i) but which is 

not homotopy equivalent to a closed topological manifold. We assume 

that K0(G) = 0 = Wh(G) for all G 6~/ thus it suffices to prove that 

~(Y) = 0 by (2.7). 

We apply (2.6) to the case X = S n. We thus obtain a group 

F n 6~/such that BF is a finite complex of dimension n and 
n 

H,(BFn;~) ~ H,(sn;~). 

The Atiyah-Hirzebruch spectral sequence shows that 

Hm(BFn~_0) = Lm(1) for l~m~n and the homomorphism Hm(BFn'_~0) --~Lm(Fn) 

induced by the assembly map coincides with the inclusion 

Lm(1) --~ Lm(Fn). Thus, the reduced surgery group 

~n(Fn) = coker(Ln(1) --~ Ln(Fn)) is isomorphic to ~n(BF n) = ~ by 

(2.1) and (2.11). 

Let us consider the Poincar~ homology sphere bordism group 
PHS 

~n (BF n) defined in [H3], whose elements are represented by maps 

f : I --~ BFn, where I is an oriented Poincar~ space with the homolo- 

gy of S n. For na6, the theory of [H3] gives an isomorphism : 

~PHSn (BFn) ~ ~n (Sn) @ ~n(Fn) ~ ~ @ ~ 

so that the class of f : E --~ BF corresponds to the pair 
n 

(degf, f,(o)), where o6 Ln(~I(E)) is the surgery obstruction for any 

surgery problem with target E. As F n is finitely presented and 

HI(Fn;Z) = H2(Fn;Z) = 0, it actually follows from [H3, "proof of the 

,, ~HS (BFn) surjectivity of o n ] that for any class of ~ has a repre- 

sentative f : E --~ BF n with ~i f an isomorphism . Therefore, the pair 

(l,k) with k~0 corresponds to a map f : Y --* BF such that : 
n 
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- f induces an isomorphism on the fundamental groups 

- f induces an isomorphism on integral homology (since deqf = i) 

- Y has not the homotopy type of a closed topological manifold 

(otherwise k would be zero). 

- s(Y) = 0 (since ~(Y) = 0 by (2.11)). 
n 

5) The following is a version of the Novikov Conjecture : if G is 

a group such that BG is a Poincar~ space of formal dimension n, then 

a) J_(BG) = 0 for m>n and ~(BG) = Z 
n 

b) s (BG) = 0 

Proposition (2.11) shows that a) is satisfied if G 6~ 

(modulo the vanishing assumptions on K0 and Wh). On the other hand, 

the space Y of Remark 4) above has fundamental group F 6~/, the 
n 

same integral homology as BF n and thus satisfies a) by (2.11). 

But s(Y) #0. This shows some independence between condition a) and 

b) and emphasizes the importance of the assumption that BG itself 

be a Poincar~ space in the Novik~v conjecture. 
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3. Homotopy equivalences of closed manifolds 

As one might except, the results of §i and 2 have analogues 

for homotopy equivalences of closed manifolds. We give here the 

"simple homotopy" version of this theory, which seems more natural 

in this framework. 

(3.1) Theorem Let j : M --~ N be a simple homotopy equivalence 

between closed manifolds of dimension ha5. Then any pair (~,~) for 

N as in (i.i) with ker~ locally perfect determines an element 

a(j,~,~) 6 L s (~) such that the following three conditions are 
n+l 

equivalent : 

a) there is a commutative diagram : 

a N 
M J-~ N ~ BF 

M j,N ~ + , BF 

where M and N are closed manifolds, fM and fN are simple 

acyclic maps and j_ is a simple homotopy equivalence. 

b) any commutative diagram 

a N 
N -, BF 

M J .~ N ~ , BF + 

with N_ a closed manifold and fN a simple acyclic map can be 

completed in a diagram as in a) . 

c) ~(j,~,~) = 0. 

Proof Recall that in the proof of (1.2) we checked that in the 

pull-back diagram : 

T ~ BF 

N ~-, BF + 

the map g is acyclic, ~I(T) = F and ker~ acts trivially on ~2(T). 

By [H2, Theorem 3.1], there is a commutative diagram : 
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N , T 

such that fN is a simple acyclic map and z l(N_) = H I(T) = F. (This 

existence of fN shows that b) implies a).) 

For P a closed manifold of dimension n, let ~ToP(P) be 

the Sullivan-Wall set of topological structures on P [Wa, Chapter i0] 

According to [Ra, p.277] there is an identification ~ToP(P) 

--~ ~n+l(P). Let h : Q_ --~ N_ represent a class in ~Top(N-)" 

_ 0 + Using a simple plus cobordism (W,Q ,Q) (i.e. __-~W) one gets a 

simple homotopy equivalence h + ~T : Q--~ N whose class in op(N) 

is well defined. One checks that this correspondance [h] --* [h +] is 

actually given by the composite : 

~Top(N )~-~ ~+I(N ) fN* ~n + (N) -~ ~T Finally, observe 
- - 1 OP (N) . 

that one has the following commutative diagram : 

fN* 
O~n+l (N_) ~ (N) n+l 

n+l ( ) 

The map ~n+l(N_) --~ ~+I(T) is an isomorphism by the 

Ranicki exact sequence [Ra, p.276] indeed the map N ~ T induces 

an isomorphism on the funcamental groups and on the homology. 

These considerations make Theorem (3.1) straightforward if 

we define o(j,~,~) to be the image of [j]6~op(N)~ under the compo- 

map ~Top(N)_.~ ~n+l(N) ~n+] ~ nn+ I(~) (see (2.3) and (~.4))_ . site 

If (~N,~N) is a pair for N as in (2.6), the homomorphism 

~n+l : ~n+l (N) --~ Ln+I(~N) is injective by (2.10). One thus obtains 

the analogue of (2.7) : 

(3.2) Theorem Let j : M --~ N as in (3.1). Assume that K0(G) = 

= Wh(G) = 0 for all G 6.~. Then, the following conditions are 

equivalent : 
i) j is homotopic to a homeomorphism 

2) o(j ,q0,~) = 0 for all pair (~0,~) for N as in (I.i) 

3) (j,q0N,~ N) = 0 for some pair (~0N,~ N) for N as in 

(2.6) 
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4. Proof of Proposition (2.6) 

our proof makes use of Statements (4.1)-(4.4) below. The 

proof of (4.1) is given at the end of this section. 

(4.1) Lemma Let R. (i£I) be a familly of groups having a common 
l 

s u b g r o u p  B a n d  l e t  R b e  t h e  a m a l g a l l l a t e d  p r o d u c t  ( . B ) i 6 i  R i .  L e t  

S be a subgroup of R and let S. = SNR • Suppose that the following 
1 1 

c o n d i t i o n s  h o l d  : 

l) the union of S!sgenerates S 
1 

2) S. is V--closed in R. for all i 
1 1 

3) if sib~ i6 B with si,~ i6 S i and b6 B, then b6 S i. 

Then S is V---closed in R. 

(4.2) Examples a) Condition 3) holds trivially if Bc S i for all 

i6_I. For i n s t a n c e ,  i f  B = 1 ,  c a s e  o f  a f r e e  p r o d u c t .  

b) If B is V:--closed in R. for all i61, then B is V--closed in R 
l 

(case S. = B). 
1 

c )  I f  J 6  I a n d  B i s  V - - - c l o s e d  i n  R i f o r  i 6 I \ J ,  t h e n  t h e  s u b g r o u p  

generated by Ui£ J R i is V---closed in R. (Take S i = R.I for i6J and 

S. = B for i~J). 
1 

(4.3) Lemma If G 1 and G 2 are groups in ~, so is GIXG 2. 

Proof Let G 1 6 ~ m and G 2 £ ~n" The proof is by induction on m+n. 

The statement is trivial if m+n = 0 and the induction step is 

easily obtained, using the isomorphisms 

GIX(G2, G G3) = (GIXG2),GIxG(GIXG3) and GlX(~xG) = (GlXG) X~. 

There exists an acyclic group A in ~4 such that (4.4) Lemma 

dim BA = 2. (G a~y~l~c means that H,(BG;Z) = 0 where ~ is endowed 

with the trivial G-action). 

Proof : Let G = ~a,bJa 3 = b5> (the group of the (3.5)-torus knot; 

one could take another (p,q)-knot with p and q relatively prime 

odd integers). The group G belongs to ~2" One has G/[G,G] infinite 

cyclic generated by m = a-lb 2. The commutator group [G,G] is free 
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of rank 8 on [ai,b ~] ~ for i = 1,2 and l~j~4. The center ~(G) of G 

3 
is infinite cyclic on a . 

(4.4.a) Sublemma The equation mkxm -k = x -I is possible in G only 
k -k i 

if x = i. The equation m xm = x is possible in G iff x = m z 

with z 6 ~(G). 

As the proof of (4.1), our proof of (4.4.a) uses the Serre 

theory of groups acting on trees. It is also posponed till the end 

of this section. 

The element u = [a,b] generates a ~--closed subgroup U in G. 

Indeed, U is ~'-closed in [G,G] (since u is part of a basis of [G,G]) 

and [G,G] is %/---closed in G (since G/[G,G] has no 2-torsion). On 

the other hand, the element m generates a subgroup M of G which is 

also ~--closed. Indeed, suppose that g2 = m k. As G/[G, G] is 
i 

infinite cyclic generated by m, one has k = 2i and g = ym with 
2i 2 i i i -i 2i 

y£ [G,G]. Then, one has m = g = ym ym = ym ym m which implies 
i -i -i 

m ym = y . Thus y = 1 by (4.4.a). 

Let G 1 and G 2 be two copies of G, with corresponding 

elements ml,u I and m2,u 2. By the above, the group P = Gl*G2/{ml=u2 } 

is in the class ~q. By the Mayer-Vietoris sequence for amalgamated 

products, one checks easily that H,(P) = 0 if * ~ 0,I and HI(P) = Z, 

generated by m 2. 

Let us consider the subgroup Q of P generated by u I and m 2. 

As MN U = (i) in G, Q is free on u I and m 2 [Se, Corollary p.14]. 

and we have QN G 1 = U 1 and QN G 2 = M 2. We will prove that Q is 

~--closed in P, using (4.1) with R i = Gi, Q = S, S 1 = U 1 and 

S 2 = M 2 . It just remains to check Condition 3) of (4.1) which 

we do by showing that the equations miuSm j = u t and uimSu j = m t 

are possible in G only if s = t = i. 

Let us first consider the equation miuSm j = u t. Passing to 

G/[G,G] shows that j = -i. Thus u t is the image of u s under an 

automorphism of the free group [G,G]. This implies that t = ±s. 

One checks easily that this contradicts (4.4.a). 

As for the equation uimSu j = m t, one must have s = t for 

homological reasons. The equation is then equivalent to mSuJm -s = u -i 
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which drives us back to the former case. 

Let ~ be another copy of P. By the above, the group 

A = PxP/{m2=~l, Ul=~ 2 } belongs to ~/4' Using the Mayer-Vietoris 

sequence again, one checks that A is acyclic.Observe that dim BA=2. 

(4.5) Remarks on the proof of (4.4) : a) The subgroup UICGICQCA 

generated by u I is ~--closed in A. Indeed, U 1 is ~--closed in 

Q = UlXM 1 and Q is ~closed in A by (4.2.b). 

b) Acyclic groups can be obtained by the amalgamation of two copies 

of a free group F of rank 2 over a suitable subgroup 5 (see [BDH , 

p.ll]). Problem : find such a situation where S is ~--closed in F. 

(4.6) Proof of Proposition(2.6)Following the procedure of [Ma], we 

consider for any polyedron L (polyedron = finite simplicial complex) 

the following condition ~(L) : 

Condition ~(L) : There exists a map t : (UL,TL) --~ (CL,L) (where 

CL denotes the cone over L) such that, for each connected 

subpolyedron M of L, one has : 

a) tlt-l(cM) : t-I(cM) --~ CM and tlt-l(M) : t-l(M) --~ M are acyclic 

maps 

b) t-I(cM) = BFcM and t-l(M) = BF M , where F M and FCM are groups 

in ~/ ;moreover,dim BF H = dim M and dimFB CM = dimM + 1 

c) ker(FM --~ ~I(M)) is locally perfect 

d) If M' is a connected subpolyedron of L containing M, the inclu- 

sion t-I(cM,M)c t-I(cM',M ') induces four homomorphisms 

i M' * iCM 

F M , ~ FCM, 

which are all monomorphisms and ~--closed (a monomorphismy : G ~ G' 

is ~--closed if y~G) is ~---closed in G'). 

We shall prove that Condition ~//(L) holds by induction on 

dimL . 

dim L = 0 One takes t to be the identity map. 

dim L = 1 One takes t to be the identity map on TL = L and on the 
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1-skeleton UL (1) of UL which is LU C(L(0)). Let A be the acyclic 

group constructed for (4.4) and u I E A be the element considered in 

(4.5.a). Then BA can be taken to be a polyedron having a 

subpolyedron isomorphic to the boundary of a 2-simplex which re- 

present the class u I. Form the polyedron 

UL = UL(1)II ( ~i O (CA) G) /{30 = (Ul) O} 

where (BA) ° is a copy of BA and o runs over the set of 2-cells 

of CL. One easily check Conditions a)-d), using (4.4), (4.5.a), 

(4.2.b) and (4.2.c) for the latter. 

~ ! ~ _ ~  : one assumes by induction that /~(L) holds if 

dimL ~n-l. By induction on the number of n-cells of L, it is enough 

to prove that ~/(L 0) implies /~(L) when L is the union of L 0 with 

one n-simplex o. As na2, 3o is connected and one may assume that 

L 0 is connected. 

As /~(L0) holds, t-l(c~o) = U~o and t-l(~o) = T~o are 

subpolyedra of UL 0 and TL 0 respectively. Let TL be TL 0 U U'~o, 

where U'~o is another copy of U~o attached to T3o and extend t to 

TL by sending U'~o to o . Then TL = BF L where F L is the free product 

FL0*Fc,3o with amalgamation over F3o (where C'3o is another copy of 

C3o). Observe also that t-I(Lu CL 0) = BF L U CL ' where FLU CL is 
0 

the free product FC,~o*FcL 0 with amalgamation over F~o and h~at 

*F~o)Fc3 ° FC,~o( = FI(~o ) is a subgroup of FLU CL 0 As in [BDH, 

Theorem 6.1] one embedds Fy(3o ) into the acyclic group 

(AxF3o)*FC3 ° = FCZ~o (amalgamation over F~o; A is the acyclic group 

of (4.4)) by sending g --* g if gE FC~ ° and g --* aga -I if gE FC,~o, 

where a A - {i}. Take UL = TLU UL 0 U m where m is the mapping 

cylinder of the above embedding and extend t to UL by sending m 

onto Co. One easily check Condition a)-c) of ~(L) (observe that 

FCZ~o 6 ~/by (4.4) and (4.3)). For Condition d), one checks that 

the monomorphisms Fy --* F X corresponding to all the inclusion 

Y --~ X of the following diagram : 
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(2) 

C' 2o ~ , 3o , L 0 , L 

121 111~ C L 0 /  

CZ~O --~ CL 

are ~--closed. This is done as follows : 

- inclusions ~i) are V'--closed because w/~(L 0) holds. 

- " (2) " " " inclusions (~) are, using 

(4.2.b) and (4.2.c). 

- if inclusion (3) is V--closed, then inclusions (4) are V--closed, 

using several times (4.2.b) and (4.2.c). For instance, the 

inclusion Lc CL has to be decomposed : 

LcL U C~c (CZ~o U L) U LU C~o(CL0 )' etc. 

It thus remains to prove that Inclusion (3) is V---closed. 

To simplify the notation, write Inclusion(3) under the form 

G'*H G --* (AxH)*H G (G' a copy of G). As for the proof of (4.4.a) and 

(4.1), we shall use the Serre theory of amalgamated product acting 

on trees [Se, 4 and 5]. Recall that an amalgamated product 

RI*BR 2 = R acts on a tree T R characterised by the following 

properties : there is a fundamental domain which is a segment 

~ Q isomorphic to the quotient tree R~R with isotropy 

groups Rp = RI,R Q = R 2 and R e = B. Applying this to R = (AxH)*HG 

and making the normal closure G of G act on T R, one see that a 

fundamental domain isomorphic to G~R is given by the following 

tree : 

Set of edges in Q 
bijection with ~ ~ ~ p  
A - {i} (x6 A-{l}) 

e Q 

-i 
The isotropy group are : Rxe = H and RxQ = xGx . Using 

[Se,§5] one deduces that G is the free product of the groups 
-i 

xGx (x 6 A) amalgamated over their common subgroup H. Therefore, 

the subgroup G'*HG of R which is the subgroup generated by G and 

aGa -I is V---closed in G by (4.2.c) (the inclusion Hc AxH is 

V--closed since A6~ and groups in~/have no 2-torsion). On the 
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other hand, G is ~--closed in R since R/G = A has no 2-torsion. 

Therefore, G'*HG is ~--closed in R. 

Proof of Sublemma (4.4.a) Observe that the first statement is 
k -k -i 2k -2k 

implied by the second since m xm = x implies that m xm = x. 

To establish the second statement, observe that the tree T G has 
P e 

fundamental domain with isotropy groups Gp ~a>, 

GQ = <b> and Ge = ~(G). One has the following situation in T G : 

me 

-i b 2 a e ~ ~e e 

By [Se, Proposition 25 §6], one deduces that the subgraph 

drawn above is part of an infinite chain L on which m acts by a 

translation of amplitude 2. Observe that the orientations of the 

edges of L imply that m is a generator of the oriented-automo- 
k 

morphisms group of L. Now, if m commutes with xl one deduces from 
i 

[Se, Propositions 25 and 27 §6] that xL = L and thus xe = m e for 

some i. As G e = ~(G), this implies that xm-i£ ~(G). 

Proof of Lemma (4.1) The Serre tree T R has here fundamental 

domain (isomorphic to R~R) a cone on the set of vertices 

{Pi}i6i (the cone vertex is called P; the edge from Pi to P is 

called e i) , and the isotropy groups are Rp. = Ri, Rp = Re. = B. 
1 1 

Let T S be the smallest subgraph of T R such that 

{ei;i6I}c {Edges T S} and ST S = T S. As S is generated by S i = Sp , 

T S is connected by the obvious generalisation of [Se, Lemme 2, ~.49] 

and thus T S is a subtree of T R- 

2 
Let g6 R such that g 6 S. As an oriented automorphism of 

TR, g has either a fixed vertex or there is an infinite chain L 

in T on which g acts by a non-trivial translation [Se, Proposition 

25 §6]. Suppose that g has a fixed vertex V. Hence g2V = V and, 

as gT SN T S ~ ~, g must fix the whole path joining V to T S- 
-i 

Therefore one may suppose that V 6 T S which implies that g = trit 

with r. 6 R (for some i) and t6 S. Thus, r 2 = t-lg2t6 SD R. = S • . o 

1 1 1 1 1 

AS S. is ~--closed in R., one has t-lgt 6 S. and then g6 S. 
1 1 l 
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It then remains to check the case where g translates a 

chain L. As g26 S, one has Lc T S (otherwise gT S T S = ~). Therefore, 

by replacing if necessary g by one of its conjugate by an element 

of S, one may suppose that L contains the edge e i for some i6I. 

As TSD OrbitR(P) : Orbits(P) , there is h6 S such that 

b = h-lg6 R = B. One has g2 = hbhb6 S which means bhb6 S. As 
P 

T S ES . Lc , the vertex Pi is common to the edges e i and sie i with s i l 

Observe that the path joining hb(s e.) to P. contains s.e.,and 
l I 1 1 1 

therefore bhb(siei) 6 T S implies that bsie i6 T S. The latter means 

bs. = ~.b for some s. 6 S. and ~6 B. This contradicts Condition 3) 
1 1 1 1 

of (4.1). 
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