by
Ian Hambleton ${ }^{(*)}$

Let π be a finite group and $f: M^{n} \rightarrow N^{n}$ a surgery problem of closed topological n-manifolds ($n \geqslant 5$) with $\pi_{1} N=\pi$ and $w_{1} N=w . \quad A$ basic question is: what elements of L_{h}^{h} (π, w) are the surgery obstructions of such problems? If $C_{n}^{h}(\pi, w)$ denotes the subgroup of $L_{n}^{h}(\pi, w)$ generated by these surgery obstructions $\sigma(f)$, we can ask for (i) a calculation of C_{n}^{h}, (ii) specific invariants of $f: M^{n} \rightarrow N^{n}$ which detect $\sigma(f)$ and (iii) specific examples of surgery problems with arbitrary obstruction in C_{n}^{h}.

Wall proved in [W2] that $\sigma(f)$ is detected by restriction to the 2-Sylow subgroup of π so it is natural to assume that π is a 2 -group. Furthermore the calculation of $L_{n}^{h}(\pi, w)$ is still complicated because of K_{0} or K_{1} difficulties (see [W3] and [HM] for more details). In this paper we answer the analogous questions (i) - (iii) about the image $\bar{C}_{n}^{h}(\pi, w)$ of C_{n}^{h} in $L_{n}^{p}(\pi, w)$. These groups are the geometric surgery obstruction groups of Mamary [M] or Taylor [T]; algebraically they are L-groups of quadratic forms on projective (instead of free) $Z \pi$ modules [R1]. The appropriate version of (ii) is then to ask for invariants detecting $\sigma(f \times i d)$ where $f \times i d: M \times S^{1} \rightarrow N \times S^{1}$ and the answer to (i) is now possible because the groups L^{p} are easier to calculate than L^{h}. We give in Section 3 a calculation of $L_{n}^{p}(\pi, w)$ for π a finite 2 -group with arbitrary orientation character along the

[^0]lines of [HM, ThmA] and define invariants which detect the elements not in $\overline{\mathrm{C}}_{\mathrm{n}}^{\mathrm{h}}(\pi, w)$.

It has been known [W1, p 176] for some time that part (ii) can be attacked by factoring $\sigma:[N, G / T o p] \rightarrow L_{n}^{h}(\pi, w)$ through $\Omega_{n}(B \pi \quad \times G / T o p)$ and using bordism calculations to restrict the images of σ. This was carried out and the image of σ evaluated in L^{p} by Morgan and Pardon (unpublished) for π abelian and by Taylor and Williams [TW] for π an arbitrary 2 -group (in the orientable case $w \equiv 1$).

Another approach is based on the LN-groups of Wall [W1, 12C], which are obstructions to codimension 1 splitting problems. These groups can be used to define invariants which vanish on closed manifold surgery problems but still detect a large part of the Wall group and some calculations for dihedral and quaternion groups, based on [W3] were carried out in an earlier version of this work (*). Cappell and Shaneson independently discovered this technique [CSi], [CS2] and exploited it to analyse an interesting surgery problem with obstruction not zero in $C_{1}^{h}(Q 8)$ detected by a codimension 3 Arf invariant. This example showed that the list of invariants found by Morgan-Pardon (signature, codim. $0,1,2$ Arf) was insufficient in L^{h} for π non-abelian.

Our results show that these invariants are in fact sufficient for all 2-groups in L^{p}. The higher co-dimension Arf invariants all vanish in L^{p} so algebraically they are in the image of $H^{n}\left(\tilde{K}_{o}(\pi)\right) \rightarrow L_{n}^{h}(\pi)$. It would be interesting to know the complete list of invariants for L^{h}. This has been named the "oozing problem" by John Morgan.

In Section 1 we describe Wall's LN-groups and develop some of their properties. Theorem 3 answers a question in [Wl, p. 242]. In

[^1]Section 2 the sequences of Section 1 are used tofine splitting invariants which generalize those of Browder and Livesay [BL] and the A-invariant described there is recognized as a "twisted" transfer homomorphism (Lemma 5). The calculation of $\mathrm{L}_{\mathrm{n}}^{\mathrm{p}}(\pi, w)$ for π a finite 2group is given in Section 3 based on the sequence in [HM, Section 1] which relates the L^{p} groups to L^{h} groups for summands of an involution-invariant maximal order in $Q \pi$ containing 2π. These in turn are computed by referring to [W3] for L^{s} and applying the results of [HM, Section 4] in the L^{s} - L^{h} Rothenberg sequence. These are summarized in Proposition 9, Theorem 10 and Table 1 . The LN-groups needed for Section 5 are also calculated in Proposition 11 and Table 2. Our answer to question (iii) on the realization of elements in $\overline{\mathrm{c}}^{\mathrm{h}}$ by specific surgery problems is in Section 4. It is a special case of a construction found with W.-C. Hsiang. In Section 5 we apply the L^{p} and $L N$ results to prove that the cup product on $H^{1}(\pi ; Z / 2)$ and the A, B invariants detect all elements of $L_{n}^{p}(\pi, w)$ not in $\bar{C}_{n}^{h}(\pi, w)$ when π is a special 2-group (i.e. cyclic, dihedral, semidihedral or quaternion). The computation of $\overline{\mathrm{C}}_{\mathrm{n}}^{\mathrm{h}}$ for these groups π is in Propositions 12-16. Finally in Section 6 we prove our main result, Theorem 17 , answering questions (i)-(iii) in L^{p} for a general 2 -group.

While working on these questions I have had many stimulating and helpful conversations with Wu-Chung Hsiang, Ib Madsen, Jim Milgram, Bob Oliver, Larry Taylor and Bruce Williams. I also appreciated very much the hospitality of the University of Geneva where lectured on these results during the Spring of 1980 .

1. Obstructions to Codimension One Splitting

First we recall the LN-groups of Wall. Let $\rho \subset \pi$ be an inclusion of groups where ρ is of index 2 and X Y Y aniversal 2 -fold cover inducing $\rho \rightarrow \pi$. Let Z be a $K(\rho, 1)$ meeting the mapping cylinder M_{Y} of p in X and write $K(\rho \rightarrow \pi)$ for the triad $\left(M_{Y} \cup Z ; Z, X\right)$. Wall then considers a cobordism group of objects consisting of: a finite Poincaré pair ($\left.N^{n}, M\right)$ and a manifold pair ($\left.W^{n+1}, V\right)$, afinite Poincaré embedding $(N, M) \rightarrow(W, V)$ and a smoothing of the embedding $M \rightarrow V$ together with a map $(W ; N, W-N) \rightarrow K(\rho \rightarrow \pi)$ compatible with $w\left(M_{Y} \cup Z\right)$. These cobordism groups are denoted $L_{n}(\rho \rightarrow \pi)$ and Wall proves

Theorem ([Wl, 11.6]).
There is a natural exact sequence

$$
\begin{equation*}
\ldots L_{n+1}(\pi) \not L_{n+2}(\rho \rightarrow \pi) \rightarrow L_{n}(\rho \rightarrow \pi) \rightarrow L_{n}(\pi) \rightarrow \ldots \tag{1.1}
\end{equation*}
$$

Remarks (i) For ($\rho \subset \pi$) $=(1 \subset Z / 2)$ the LN-groups were first discovered by Browder-Livesay [BL] and this sequence by Lopez de Medrano [LM],
(ii) In Wall's treatment the L^{s} groups are understood,
(iii) If $\phi: \pi \rightarrow Z / 2$ denotes the homomorphism with kernel ρ and $w: \pi \rightarrow Z / 2$ the orientation character for $M_{Y} \cup Z$ the groups $L_{k}(\pi)$ have orientation $w \phi$ while the relative ones $L_{k}(\rho \rightarrow \pi)$ have orientation w,
(iv) Geometrically the first map j is obtained by pulling back the orientation line bundle over the surgery problem.

In [Wl, l2C] Wall gives implicitly another cobordism description of these LN-groups along the lines of [BL]. Let (N_{1}^{n}, M_{1}) be a manifold pair with a map to Y compatible with $w(Y)$. Form E, the pull-back of M_{Y} over N_{1} and let $\partial E=\partial_{0} E \cup \partial_{1} E$ where $\partial_{1} E$ is the pull-back over M_{1}.

The objects in the new cobordism group will be manifold pairs ($\mathrm{W}^{\mathrm{n}+1}, \mathrm{~V}$) together with a homotopy equivalence

$$
h:(W, V) \rightarrow\left(E, \partial_{1} E\right)
$$

such that h is transverse regular on $M_{1} \subset \partial_{1} E$ and the induced map $\partial_{1} h: M=h^{-1}\left(M_{1}\right) \rightarrow M_{1}$ is a homotopy equivalence. The resulting cobordism group is again $\mathrm{LN}_{\mathrm{n}}(\rho \rightarrow \pi)$. This involves the appropriate version of Wall's $\pi-\pi$ Theorem. In this formulation there are versions for compact smooth, PL on \quad mapifolds with different assumptions on the torsion of h. Using the methods of [PR] there is a version for paracompact manifolds modelled on $N \times R$. These different versions lead to groups $L N^{s}, L N^{h}$ and $L N^{p}$.

The main result of [W1, 12C] is the following expression for the LN-groups in terms of ordinary L-groups. Recall from [w3] that if R is a ring with involution and $u \in R^{x}$ such that $u^{\alpha}=u^{-1}$ and $x^{\alpha \alpha}=u x u^{-1}$ for all $x \varepsilon R$, there are Wall groups $L_{n}(R, \alpha, u)$.

Theorem $2 L_{n}(\rho \rightarrow \pi, w) \cong L_{n}\left(Z_{\rho}, \alpha,-w(t) g_{0}^{-1}\right)$ where $t \varepsilon \pi$ generates $\pi / \rho, \mathrm{t}^{2}=\mathrm{g}_{0} \varepsilon \rho$ and $\mathrm{x}^{\alpha}=\mathrm{w}(\mathrm{x}) \mathrm{t}^{-1} \mathrm{x}^{-1} \mathrm{t}$ for all $\mathrm{x} \varepsilon \rho$.

Remarks

(1) In [W1] this was proved under the assumption that t is central of order 2. Similar techniques suffice for the general case. (ii) The result hold for LN^{s}, LN^{h} or LN^{p} (see also [R3]). Our first result is

Theorem 3 There is a natural isomorphism of the exact sequence of Theorem 1 with the sequence:
$(1.2) \ldots L_{n+1}\left(Z_{\rho} \rightarrow Z_{\pi}, \alpha, u\right) \rightarrow L_{n}\left(Z_{\rho}, \alpha, u\right) \rightarrow L_{n}\left(Z_{\pi}, \alpha, u\right) \ldots$
where $u=(-1) w(t) g_{0}^{-1}$ as above. The isomorphism for the middle term is that of Th. 2 and for the last term "scaling by t".

Proof (Sketch). One approach is to follow the spectrum method of Quinn [Q] and Ranicki [R2]. Let $\underline{\underline{L}}(Z \pi, w \phi)$ denote the simplicial monoid with n-simplices of algebraic Poincaré ($n+2$)-ads over ($\mathrm{Z} \pi$, $\omega \phi$). Similarly let $\operatorname{LN}(\rho \rightarrow \pi, \omega)$ be a simplicial set of algebraic codimension 1 splitting problems. Then Wall's chapter 12C can be interpreted to give the left vertical arrow in a diagram:

$$
\begin{aligned}
& \underline{\underline{L N}}(\rho \rightarrow \pi, w) \rightarrow \underline{\underline{L}}(Z \pi, w \phi) \\
& \downarrow \quad \downarrow \\
& \underline{L}(\mathrm{Z} \rho, \alpha, \mathrm{u}) \rightarrow \underline{\mathrm{L}}(\mathrm{Z} \pi, \alpha, \mathrm{u})
\end{aligned}
$$

The right vertical map is scaling and both induce isomorphisms on homotopy groups. The long exact sequences of homotopy groups are the two sequences (1.1) and (1.2).

2. The A, B, Invariants

We define two invariants for splitting problems. First consider the homomorphism(where $\rho=\operatorname{ker}(\phi: \pi \rightarrow Z / 2)$)

$$
A: \quad L_{n}(\pi, w) \rightarrow L_{n-2}(\rho \rightarrow \pi)
$$

defined by the composition of $L_{n}(\pi, W) \rightarrow L_{n}(\rho \rightarrow \pi)$ and the map $L_{n}(\rho \rightarrow \pi) \rightarrow N_{n-2}(\rho \rightarrow \pi)$ from Theorem 1 .

This homomorphism can be given a more geometrical definition by choosing a manifold X^{n-1} with $\pi_{1} X=\pi$ and $w_{1} X=w$ and considering the action of $x \varepsilon L_{n}(\pi, w)$ on the base point id: $X \rightarrow X$ in $S(X)$ via the Wall realization theorem [W1]. This produces a new element f: $M^{n-1} \rightarrow X$ in
$S(X)$ and so a splitting problem relative to any $\rho<\pi$ of index 2 . A(x) is just the cobordism class of this splitting problem in $\operatorname{LN}_{\mathrm{n}-2}(\rho \rightarrow \pi)$.

In the case $n \equiv 0(4),(\rho \subset \pi)=(1 \subset Z / 2)$ and $w \equiv 1$, this is the α-invariant of Atiyah-Singer. From the geometrical definition it follows that $A(x)=0$ if x acts trivially on $S\left(X^{n-1}\right)$ for some compact Top manifold X as above. The subgroup of $L_{n}^{h}(\pi, w)$ generated by all such x is called the inertia subgroup $I_{n}^{h}(\pi, w)$ so we have $I_{h}^{h}(\pi, w) \subset$ ker $A(\rho \rightarrow \pi)$ for any subgroup $\rho \subset \pi$ of index $2 . \quad$ Since $I_{n}^{h}(\pi, w) \subset C_{n}^{h}(\pi, w)$, the subgroup of $L_{n}^{h}(\pi, w)$ generated by closed manifold surgery problems, and $A(x)=0$ for $x \in C_{n}^{h}(\pi, w)$ also, the $A-$ invariant can be used to estimate the size of $C_{n}^{h}(\pi, w)$. our results in Section 6 will show that the images of $I_{n}^{h}(\pi, w)$ and $C_{n}^{h}(\pi, w)$ in $L_{n}^{p}(\pi, w)$ are equal for π a finite 2 -group.

Question: $\quad \operatorname{Are} I_{n}^{h}(\pi, w)$ and $C_{n}^{h}(\pi, w)$ always equal for any finite group π ?

To define the next invariant we let $A_{n}(\rho \rightarrow \pi)=$ ker A and choose a (possibly different) subgroup $\rho^{\prime}=\pi$ of index 2. Define

$$
B: \quad A_{n}(\rho \rightarrow \pi) \rightarrow \overline{L N}_{n-3}\left(\rho^{\prime} \rightarrow \pi, w \phi\right)
$$

as follows: if $x \varepsilon A_{n}(\rho \rightarrow \pi)$ choose $y \varepsilon L_{n}(\pi, w \phi)$ mapping to x in sequence (1.1) and consider $A(y) \varepsilon L_{n-3}\left(\rho^{\prime} \rightarrow \pi, w \phi\right)$. The indeterminacy in $A(y)$ is the image of the composite

$$
\begin{aligned}
& Y: L_{n-1}(\rho \rightarrow \pi, w) \rightarrow L_{n-1}(\\
&(\pi, w \phi) \\
& \downarrow \\
& L_{n-1}\left(\rho^{\prime} \rightarrow \pi, w \phi\right) \rightarrow \mathrm{LN}_{n-3}\left(\rho^{\prime} \rightarrow \pi, w \phi\right) .
\end{aligned}
$$

Abstract

where the horizontal maps come from two sequences of type (1.1). We define $\overline{L N}_{n-3}\left(\rho^{\prime} \rightarrow \pi, w \phi\right)$ to be the quotient by Imr and let $B(x)=A(y)$. If $x \in I_{n}^{h}(\pi, w)$ then $A(x)=0$ and $B(x)=0$. We can identify the composite γ algebraically (Lemma 6) when $\rho^{\prime}=\rho$ by considering a functor $\Phi: \quad \underline{=}(Z \rho, \alpha, u) \rightarrow \underline{Q}(Z \rho, \alpha, u)$ where α, u are as in Theorem 2 and $\underline{=}(2 \rho, \alpha, u)$ is the category of quadratic forms over ($2 \rho, \alpha, u$) on free (or projective) modules [W3]. If (M,f) represents a quadratic form then $\Phi(M, f)$ is represented by the module $M \quad t\left((m \otimes t) \cdot x=m\left(t x t^{-1}\right) \otimes t\right)$ and form $\bar{f}(m \otimes t, n \otimes t)=t^{-1} f(m, n) t$. This induces a homomorphism

$$
\Phi: L_{n}\left(Z_{\rho}, \alpha, u\right) \rightarrow L_{n}(Z \rho, \alpha, u)
$$

Lemma 4. The composite

$$
L_{n}\left(Z_{\rho}, \alpha, u\right) \xrightarrow{\mathbf{i}_{*}} L_{n}(Z \pi, \alpha, u) \xrightarrow{\mathbf{i}^{*}} L_{n}(Z \rho, \alpha, u)
$$

is $1+\Phi$, where i_{*} is the inclusion map and i^{*} the restriction.

The map A can be identifed as just the transfer of the twisted anti-structures.

Lemma 5. The composite

$$
L_{n}(\pi, w) \xrightarrow{S_{*}} L_{n}\left(Z \pi, \alpha, w(t) g_{0}^{-1}\right) \xrightarrow{i^{*}} L_{n}\left(Z \rho, \alpha, w(t) g_{0}^{-1}\right)
$$

is the map A where S_{*} is induced by "scaling by t" under the identification

$$
L_{n}\left(Z_{\rho}, \alpha, w(t) g_{0}^{-1}\right) \cong L N_{n-2}(\rho+\pi, w) \text { of } T h .2
$$

Proof: From Theorem 3 we have a commutative diagrams ($u=w(t) g_{0}^{-1}$)
(2.1)

$$
\begin{aligned}
& L_{n}(\pi, w) \quad{ }_{\sim}^{S}{ }_{*} L_{n}\left(\pi, \alpha^{\prime}, u\right) \\
& \psi \quad \downarrow \quad j_{*} \\
& \begin{array}{cc}
\mathrm{L}_{\mathrm{n}}(\rho \rightarrow \pi, w) \longrightarrow & \mathrm{L}_{\mathrm{n}+\mathrm{I}}(\rho \rightarrow \pi, \alpha, u) \\
& +\quad \partial_{1}
\end{array} \\
& \mathrm{LN}_{\mathrm{n}-2}(\rho \rightarrow \pi, w) \rightarrow \mathrm{L}_{\mathrm{n}}\left(Z_{\rho}, \alpha, u\right)
\end{aligned}
$$

where $\alpha^{\prime}(x)=w^{\prime}(x) t^{-1} x^{-1} t$ for $x \quad \pi \quad$ differs from $\alpha(x)=\phi(x) w(x) t^{-1} x^{-1} t$ on elements of $\pi-\rho$. The map j_{*} is analogous to that of (1.1) and the composite $\partial_{*} j_{*}=i^{*}$. We have used the identification $L_{i}(R, \alpha, u)=L_{i+2}(R, \alpha,-u)$ given in [W3].

As a consequence of (2.1) in the proof of Lemma 5:

Lemma 6.

The diagram

$$
\begin{gathered}
\mathrm{LN}_{\mathrm{n}-1}(\rho \rightarrow \pi, \mathrm{w}) \xrightarrow{\gamma} \mathrm{LN}_{\mathrm{n}-3}(\rho \rightarrow \pi, \mathrm{w} \phi) \\
\| \\
\mathrm{L}_{\mathrm{n}-1}\left(\rho, \alpha,-w(\mathrm{t}) \mathrm{g}_{0}^{-1}\right) \xrightarrow{1+\Phi} \mathrm{L}_{\mathrm{n}-1}\left(\rho, \alpha,-w(\mathrm{t}) \mathrm{g}_{0}^{-1}\right)
\end{gathered}
$$

commutes, where the vertical isomorphisms are from Th. 2 .
3. Calculation of $L^{p}(\pi, \omega)$

In this section we adapt the method described in [HM, Section l] to compute $L_{n}^{p}(\pi, w)$ for π finite 2 -group and $w: \pi \rightarrow Z / 2$ an arbitrary orientation character. The first step is to identify the types of simple involuted algebras in $Q \pi$ corresponding to the absolutely
 is a proper subgroup $\rho \quad \pi$ and a character ξ of ρ such that $\xi^{*}=\chi$, $Q(\xi)=Q(x)$ and ξ is $Q(x)$-primitive $[F]$. If $D(x)$, the summand of $Q \pi$ containing x, is involution invariant then we can distinguish two cases:
(i) when $D(\xi)$ is involution invariant also (in $Q \rho$) or
(ii) when distinct summands $D(\xi)$ and $D\left(\xi^{t}\right), t \notin \rho$ are permuted by the involution. In case (i) ker $\xi \leqslant k e r w$ so that it suffices to consider the summands of $Q(\rho / k e r \xi)$, or equivalently to determine the summands of $Q \pi$ for special 2-groups (cyclic, dihedral, semi-dihedral, quaternion) with arbitrary orientation character. Otherwise if case (ii) applies whenever χ is induced by ξ as above we say that χ is $W-Q(X)-p r i m i t i v e$.

The following eight types (D, τ) must be distinguished to fully describe the summands in $Q \pi$ where D is a simple involuted algebra, τ the (anti-) involution on D and ζ denotes a primitive $2^{k}-t h$ root of 1 .
(3.1) $\quad 0 a: \quad Q(\zeta+\bar{\zeta}), \zeta^{\tau}=\vec{\zeta} \quad\left(\begin{array}{ll}k & 1\end{array}\right)$
$\mathrm{Ob}: \quad \mathrm{Q}(\zeta-\bar{\zeta}), \zeta^{\tau}=-\bar{\zeta}(k \geqslant 3)$
Oc: $\quad Q(i), i^{\top}=i$
Ua: $\quad Q(\zeta), \zeta^{\tau}=\bar{\zeta}$
Ub: $\quad Q(\zeta), \zeta^{\tau}=-\bar{\zeta} \quad(k \geqslant 3)$
Uc: $\quad Q(\zeta+\bar{\zeta}), \zeta^{\tau}=-\bar{\zeta} \quad(k \geqslant 3)$

Ud: $\quad Q(\zeta-\bar{\zeta}), \zeta^{\tau}=-\bar{\zeta} \quad(k>3)$
Ue: $\quad \Gamma_{k}=\left(\frac{-1,-1}{Q(\zeta+\bar{\zeta})}\right), \quad \zeta^{\tau}=-\bar{\zeta} \quad(k \geqslant 3)$ and $e_{1}^{\tau}=-e_{1}$, $e_{2}^{\tau}=-e_{2}$ where $\left\{1, e_{1}, e_{2}, e_{1} e_{2}\right\}$ is the usual basis of Γ_{k} over its centre $Q(\zeta+\bar{\zeta})$.
Sp: $\quad r_{k}, \zeta^{\tau}=\bar{\zeta} \quad(k \geqslant 2)$ and $e_{1}^{\tau}=-e_{1}, e_{2}^{\tau}=-e_{2}$.
GL: D is the sum of two simple algebras interchanged by the involution.

Now the result corresponding to [HM,1.3] is

Theorem 7. Let π be a finite 2 -group and $w: \pi \rightarrow z / 2$ an orientation character. Under the involution induced on $Q \pi$ by $x \rightarrow w(x) x^{-1}$ ($x \in \pi$), the involution-invariant indecomposable summands of $Q \pi$ are either type GL or isomorphic to one of:
(1) $M_{\ell}(D)$ with involution $A \rightarrow X A^{\top} X^{-1}$ for some $X \in M_{\ell}(D)$, where A^{\top} is τ-conjugate transpose, $X^{\top}=\lambda X$ for $\lambda= \pm 1$, and ($\left.D, \tau\right)$ is in (3.1).
(2) $M_{\ell}(D)$ with involution as in (1) and $D=D(\xi)$ for some $w-Q(\xi)-$ primitive character of a subgroup $\rho \subset \pi$.

As in the orientable case, it follows that there exists an involution-invariant maximal order $\mathcal{M} \subset Q \pi$ containing Z_{π} which splits as $\mathcal{M}=\prod_{\nu} \mathcal{M}_{\nu}$ where \mathcal{M}_{ν} is a maximal order in an involution-invariant summand of $Q \pi$. A list of the types occurring for primitive characters can be made from (3.1) replacing Q by Z except for Ue, $S p$ where a maximal order in Γ_{k} must be chosen. Our method of calculation will rely on the sequence [$\mathrm{HM}, ~ 1.4]$:

$$
\begin{equation*}
\ldots+L_{n+1}^{h}\left(\hat{\mu}_{2}\right) \rightarrow L_{n}^{p}\left(Z_{\pi}\right)+L_{n}^{h}\left(\hat{z}_{2} \pi\right) \oplus L_{n}^{h}(\mathcal{M}) \rightarrow L_{h}^{h}\left(\hat{\mu}_{2}\right)+\ldots \tag{3.2}
\end{equation*}
$$

so we need (by Theorem 7) to compute L^{h}-groups for the anti-structures ($\mathscr{N}, \tau, \pm 1$) where \mathscr{N} is Morita equivalent to a simple summand of \mathscr{M} and τ the involution. For the summands corresponding to $Q(x)$-primitive characters x of π, this is done by using the results of [W3] together with calculations of $H^{*}\left(K_{1}(\mathcal{N})\right.$ from [$H M$, Section 4] to find L^{h} through the $L^{s}-L^{h}$ Rothenberg sequence. For the remaining summands we need some further properties of the A, B-invariants. Let (\mathcal{K}, α, u) denote an anti-structure on the maximal order \mathcal{M}, induced by an anti-structure ($2 \pi, \alpha, u$), so that

$$
(\boldsymbol{M}, \alpha, u)=\prod_{v}\left(\mathcal{M}_{v}, \alpha_{v}, u_{v}\right) .
$$

Proposition 8.

(1) There is a commutative diagram of exact sequences:

$$
L_{i}\left(\hat{z}_{2 \pi}\right) \cong \quad \begin{gathered}
\psi \\
L_{i}^{h}\left(\hat{z}_{2} \pi\right)
\end{gathered}
$$

with the middle horizontal sequence from (3.2).
(2) Let $Q \pi=M_{v} D_{\nu}$ and define

$$
\Lambda_{i}\left(D_{v}, \alpha_{v}, u_{v}\right)=L_{i+1}^{h}\left(\mu_{v} \rightarrow\left(\mu_{v} \hat{S}_{2}, \alpha_{v}, u_{v}\right)\right.
$$

$$
\begin{aligned}
& \ldots L_{i+1}^{h}\left(\hat{\mu}_{2}\right) \rightarrow L_{i+1}^{p}\left(z_{\pi} \rightarrow \hat{z}_{2}{ }^{\pi}\right) \rightarrow L_{i}^{h}(\mathcal{M}) \rightarrow L_{i}^{h}\left(\hat{\mu}_{2}\right) \\
& \text { ॥ } \downarrow \text { ॥ } \\
& L_{i+1}\left(\hat{\mu}_{2}\right) \quad \rightarrow \quad L_{i}^{p}\left(Z_{\pi}\right) \rightarrow L_{i}^{h}\left(\hat{z}_{2} \pi\right) \oplus L_{i}^{h}(\mu) \rightarrow L_{i}^{h}\left(\hat{\mu}_{2}\right)
\end{aligned}
$$

$$
\mathrm{L}_{\mathrm{i}+1}^{\mathrm{p}}\left(\mathrm{z}_{\pi} \rightarrow \hat{z}_{2} \pi\right) \cong \Pi_{v} \Lambda_{i}\left(\mathrm{D}_{v}, \alpha_{v}, u_{v}\right)
$$

We now observe that the spectrum argument for Theorem 3 is equally valid for $\hat{Z}_{2} \pi$ or the relative groups of $2 \pi \rightarrow \hat{Z}_{2} \pi$. Therefore we have A (and B) invariants defined for these groups also (using a subgroup $\rho \subset \pi$ of index 2) which are compatible with those of Z_{π} :

$$
\begin{aligned}
& \rightarrow \mathrm{L}_{\mathrm{i}}^{\mathrm{p}}\left(\mathrm{Z}_{\pi}\right) \rightarrow \mathrm{L}_{\mathrm{i}}^{\mathrm{h}}\left(\hat{\mathrm{Z}}_{2} \pi\right) \rightarrow \mathrm{L}_{\mathrm{i}}^{\mathrm{p}}\left(\mathrm{Z} \pi \rightarrow \hat{Z}_{2} \pi\right) \rightarrow \ldots \\
& \downarrow \text { A } \downarrow \text { A } \downarrow \text { A } \\
& \rightarrow L_{i}^{P}(Z \rho, \alpha, u) \rightarrow L_{i}^{h}\left(\hat{Z}_{2} \rho, \alpha, u\right) \rightarrow L_{i}^{P}\left(Z_{\rho} \rightarrow \hat{Z}_{2} \rho, \alpha, u\right) \rightarrow \ldots
\end{aligned}
$$

is a commutative diagram with ($Z \rho, \alpha, u$) the anti-structure of Theorem 2 (Note that $A=0$ on $L_{i}^{h}\left(\hat{Z}_{2} \pi\right)$ since $L_{i}^{h}\left(\hat{Z}_{2} \rho\right) \xrightarrow{m} L_{i}\left(\hat{Z}_{2} \pi\right)$.) Again Lemma 5 identifies these maps A as the twisted transfer maps. This interpretation also makes sense on $L_{i}^{h}(\mathcal{M})$ since \boldsymbol{H}, $\operatorname{maximal}$ involution-invariant order for $Z \rho$, can be chosen so that \mathscr{M} contains the image of M under the usual augmentation $\varepsilon: Q \pi \rightarrow Q \rho$ where $\varepsilon(x)=0$ if $x \notin \rho$ and then an augmentation map $\varepsilon: \mathcal{M} \rightarrow \boldsymbol{N}$ is defined by restriction. If $h: P \times P \rightarrow \mathcal{M}$ is the form over $\mathcal{M}, \varepsilon o h: ~ P \times p \rightarrow \mathbb{N}$ is the restricted from over \mathscr{W}. From this definition it is clear that if $\mathcal{M}_{\nu} \subset \mathcal{M}$ corresponds to an absolutely irreducible character x of π, then the image of A restricted to $L_{i}^{h}\left(\mathcal{M}_{\nu}\right)$ lies in the summands $L_{i}^{h}\left(\mathcal{H}_{v}, \alpha, u\right)$ corresponding to characters ξ of ρ with $\xi^{*}=x$. Now we can deal with the summands corresponding to $w-Q(x)-p r i m i t i v e ~ c h a r a c t e r s$ χ -

Proposition 9. Let x be a $w-Q(x)$-primitive character of π and ξ a character on $\rho \mathcal{C} \pi$ of index 2 with $\xi^{*}=X$ and $Q(\xi)=Q(x)$.
(1) The summand $D(\xi) \subset Q \rho$ corresponding to ξ is involution-invariant in the twisted anti-structure ($Q \rho, \alpha, u$).
(2) If $(D(\chi), \tau, 1)$ corresponds to χ under the usual anti-structure on $Q \pi$, the map A followed by projection induces an isomorphism

$$
A: \Lambda_{i}^{h}(D(x), \tau, 1) \stackrel{\approx}{\rightarrow} \Lambda_{i}^{h}(D(\xi), \alpha, u)
$$

From this result we can see that a complete computation of $L_{*}^{p}(2 \pi)$ by our method will depend on calculation of $\operatorname{LN}_{*}^{p}\left(Z_{\rho} \rightarrow Z \pi\right)$ also. In fact it is enough to give this calculation when ρ is a special 2-group since then the preceeding method (which applies to ($\mathrm{Z} \rho, \alpha, \mathrm{u}$) as well) gives an inductive procedure. Here we will only carry out the last step for p cyclic since this suffices for our application. First we state the L^{p} results.

Theorem 10 . Let π be a finite $2-g r o u p$ and $Q \pi=\|_{\nu} D_{v}$ where D_{v} are indecomposable, involution-invariant algebras. The groups $\Lambda_{*}\left(D_{\nu}\right)$ are zerofor D_{ν} of type $G L$ but for summands corresponding to the other types (3.1): (here Σ denotes the group of signatures)
(1) $\Lambda_{0}\left(D_{\nu}\right)=\Sigma$ for D_{ν} of type Oa, Ua, Ud or $S p$.
(2) $\Lambda_{1}\left(D_{v}\right)=2 / 2$ if D_{v} has type Ub, Uc, Ue;
$\Lambda_{1}\left(D_{v}\right)=(Z / 2)^{2^{n-2}+1}$ if D_{v} has type S_{p} and centre of degree 2^{n-2} over Q.
(3) $\Lambda_{2}\left(D_{v}\right)=\Sigma$ if D_{v} has type Ua or Ud;
$\Lambda_{2}\left(D_{v}\right)=(Z / 2)^{2^{n-2}-1}$ if D_{v} has type $S p$ and centre of degree 2^{n-2} over Q.
(4) $\Lambda_{3}\left(D_{v}\right)=Z / 2$ if D_{v} has type $0 a, U b$, Uc or Ue;
$\Lambda_{3}\left(D_{\nu}\right)$ is order 2^{m+2} if D_{ν} is type ob or oc and centre of degree 2m over Q.
(5) The map $L_{2 k}^{p}(Z \pi) \rightarrow L_{2 k}^{h}\left(\hat{Z}_{2} \pi\right)=Z / 2$ is onto (and splits) if $k=1$, or if $k=0$ and the map $w: \pi \rightarrow Z / 2$ is non-trivial but does not factor through the projection $Z / 4 \rightarrow Z / 2$.
(6) The map $L_{0}^{h}\left(\hat{Z}_{2} \pi\right) \rightarrow L_{0}^{h}\left(Z_{\pi} \rightarrow \hat{Z}_{2} \pi\right)$ hits diagonally (a) the elements from characters of degree 1 and type 0 if $w \equiv 1$ or (b) the elements from $L_{0}^{h}\left(\hat{M}_{2}\right)$ for characters of degree l and type oc if wfl.

Remark: The fact that $L_{0}^{P}(Z \pi)$ splits whenever it is onto $L_{0}^{P}\left(\hat{Z}_{2} \pi\right)$ follows from the fact that there is a codim 2 Arf invariant problem (Section 4) with obstruction non-zero in $I_{0}^{p}\left(\hat{Z}_{2} \pi\right)$ in that case.

As a corollary to this Theorem we can compute $L^{\text {p }}$ for special 2-groups (Table 1). Note that when making these calculations the Morita equivalence and scaling needed to reduce D_{ν} to one of the types given may change the unit by -1 . This is denoted by $0 a^{-}$for example in the case of the dihedral groups.

In the LN calculation for cyclic 2-groups two new types appear:

$$
\begin{align*}
& \text { od: } Q(\zeta), \zeta^{\tau}=\zeta(k \geqslant 3) \tag{3.3}\\
& \text { Uf: } Q(\zeta), \zeta^{\tau}=-\zeta(k \geqslant 3) .
\end{align*}
$$

Proposition 11.
Let $L_{i+1}^{p}\left(Z_{\rho} \rightarrow \hat{Z}_{2} \rho, \alpha, u\right)=\operatorname{M\Lambda }_{i}\left(D_{\nu}, \alpha, u\right)$ where $Q \rho=\pi D_{\nu}$. Then for D_{ν} of the type $0 d, \Lambda_{3}\left(D_{v}\right)$ has order 2^{m+2} when the centre of D_{v} has degree 2 m over Q and $\Lambda_{i}\left(D_{\nu}\right)=0$ for $i \neq 3$; for D_{ν} of type Uf, $\Lambda_{i}\left(D_{v}\right)=z / 2$ for $i=1,3$ and zero otherwise.

The $L N$ groups for ρ cyclic are now given in Table 2. Note that if ρ is cyclic and type $0 a, 0 c$ or od is present, $L_{0}^{h}\left(\hat{Z}_{2} \rho, \alpha, u\right)$ injects into $L_{0}^{p}\left(Z \rho \rightarrow \hat{Z}_{2} \rho, \alpha, u\right)$ and hits (diagonally) the contribution to the group from $L_{0}{ }_{0}\left(\hat{M}_{2}\right)$ for these summands. Similarly if type oa is present, $L_{2}^{h}\left(\hat{Z}_{2} \rho, \alpha, u\right)$ injects into $L_{2}^{p}\left(Z \rho+\hat{Z}_{2} \rho, \alpha, u\right)$.

4. Codimension k Arf Invariants

Let π be a finite 2 -group and $\rho \subset \pi$ a subgroup of index 2 . If X^{n-1} is a closed $P L$ manifold of dimension $n-1$ with $\pi_{1} X=\pi$ and $w=w_{1}(X)$, we can construct some elements in $I_{n}^{h}(\pi, w)$ whose surgery obstructions are related to splitting invariants. (This construction is a special case of one which arose in work with Wu-Chung Hsiang). Let $X \rightarrow B \pi \rightarrow B(\pi / \rho)=B Z / 2$ be the composite of the classifying map for $\pi_{1} X$ with the reduction and form

$$
\mathrm{f}: \mathrm{X} \rightarrow \mathrm{RP}^{\ell}
$$

for some $\ell \gg n$ by simplicial approximation. If f is made transuerse regular to $R P^{\ell-k}$ for some $k \geqslant 0$ we obtain $X_{k}=f^{-1}\left(R P^{\ell-k}\right) \subset X$. When the fundamental class [X_{k}] of X_{k} represents a non-zero class in $H_{n-k}(X ; Z / 2)$ let $k<[n / 2]$ and choose an embedded submanifold $S_{k} \subset X$ of codimension k representing the Poincare dual of [X_{k}] under the isomorphism $H^{k}(X ; Z / 2)=\operatorname{HOM}\left(H_{n}(X ; Z / 2), Z / 2\right)$. Now let (E, ∂E) denote the disk and sphere bundle of the normal bundle to $S_{k} x\left(\frac{1}{2}\right)$ in $X \times I$ and consider [E, a E; G/TOP, *]. Assume n-k $U_{k} \varepsilon[E, \partial E ; G / T O P, *]$ be the THOM class of the normal bundle. This defines a surgery problem (relaE) with target E and so we obtain a normal map

$$
\mathrm{F}: \mathrm{W}^{\mathrm{n}} \rightarrow \mathrm{X} \times \mathrm{I}
$$

which is a homeomorphism on $\partial_{ \pm} W$ by replacing the interior of E with the surgery problem. The surgery obstruction $\sigma(F) \varepsilon L_{n}^{h}(\pi, w)$ for this problem is by definition the "codimension k Arf invariant". Clearly $\sigma(F) \varepsilon I_{n}^{h}(\pi, w)$ and this surgery problem exists only when $\left(f *_{\alpha}\right)^{k} \neq 0$ where $0 \neq \alpha \varepsilon H^{1}\left(R P^{\ell} ; Z / 2\right)$.
5. Closed Manifold Obstructions for Special 2-Groups

In this section we will use the calculations of Section 3 and the fact that the A, B invariants of Section 2 vanish on closed manifold obstructions to compute $\bar{I}_{n}^{h}(\pi, w)=\operatorname{Im}\left(I_{n}^{h}(\pi, w) \rightarrow L_{n}^{p}(\pi, w)\right)$ for πa special 2 -group. It will then be observed that $\bar{C}_{n}^{h}(\pi, w)=\bar{I}_{n}^{h}(\pi, w)$ by giving explicit surgery problems for each element. Essentially we show that the A, B invariants detect the elements not in $\overline{\mathrm{I}}_{\mathrm{n}}^{\mathrm{h}}(\pi, w)$ by calculating the maps in the $L N$ sequences of (l. 1). Those in $\overline{\mathrm{I}}_{\mathrm{n}}^{\mathrm{h}}(\pi, w)$ are all detected by the ordinary signature (arising from the map $L_{0}(\pi, w) \rightarrow L_{0}(1)=Z$ defined when $\left.w \equiv 1\right)$ and Arf invariants in codimensions $\leqslant 2$.
(a) \quad cyclic

From Table 1 , the torsion in $L_{n}^{p}(\pi, w)$ comes from $L_{n}^{p}\left(\hat{Z}_{2} \pi\right)$ or the representation of types $0 a, O c, U b$. For $\pi=(Z / 2, \pm)$ the answer is well-known: codim. 0,1 Arf invariants ($w \equiv 1$) and codim 0,2 Arf invariants ($w \neq 1$) account for all the torsion. If $\pi=(Z / 4,+)$ no new classes arise but if $\pi=(2 / 4,-)$ there is a codim 1 Arf invariant (and no codim. 2 Arf). Consider the splitting diagram (of sequences (1.1) combined with the usual relative sequences).

$$
\left.\begin{array}{c}
\substack{\downarrow \\
\downarrow \\
\mathrm{L}_{3}^{\mathrm{p}}(\mathrm{Z} / 4,-) \\
\downarrow} \\
\downarrow
\end{array}\right)=(\mathrm{Z} / 2)^{2}
$$

$\mathrm{LN}_{2}(\mathrm{Z} / 2 \rightarrow \mathrm{Z} / 4,-) \rightarrow \mathrm{L}_{2}(\mathrm{Z} / 4,+) \rightarrow \mathrm{re} 1 \rightarrow 0$

\\|	\\|		
8 Z	\longrightarrow	42 (1)	Z/2
		\downarrow	
$\mathrm{L}_{1}(\mathrm{Z} / 4,-) \rightarrow \mathrm{L}_{2}(\mathrm{Z} / 2 \rightarrow \mathrm{Z} / 4,+)$			
11			
0			

This diagram shows that one $Z / 2$ in $L_{3}^{p}(Z / 4,-)$ is detected by the codim. 1 Arf invariant while the other has $A=0$ but $B \neq 0$ so does not iie in
 Arf again detects. If $\pi=\left(Z / 2^{n},-\right)$, the part from type $O c$ is detected by projection $\left(Z / 2^{n},-\right) \rightarrow(Z / 4,-)$ and for the rest consider:

$$
\begin{aligned}
& L_{1}\left(Z / 2^{n},-\right)=(Z / 2)^{t} \quad(t y p e U b) \\
& + \\
& L_{0} \rightarrow L_{o}\left(Z / 2^{n},+\right) \rightarrow L_{1}\left(z / 2^{n-1} \rightarrow Z / 2^{n},-\right)
\end{aligned}
$$

Since coker $\left(L_{0}\left(Z / 2^{n-1} \rightarrow Z / 2^{n},-\right) \rightarrow L_{o}\left(Z / 2^{n},+\right)\right)$ is free abelian, $A \neq 0$ on all of $L_{1}\left(Z / 2^{n},-\right)$. A similar argument works in $L_{3}\left(Z / 2^{n},-\right)$ for the type Ub contribution

Proposition 12 For $\pi=Z / 2^{n}$ and $\ell \equiv 0,1,2,3(\bmod 4):$

$$
\overline{\mathrm{C}}_{\ell}(\pi,+)=\mathrm{Z}, 0, \mathrm{Z} / 2, \mathrm{Z} / 2
$$

and

$$
\bar{C}_{2}(\pi,-)=\left\{\begin{array}{cll}
Z / 2, & 0, Z / 2, & 0
\end{array} \text { if } n=1 .\right.
$$

(b) π dihedral

Here for $w=(+,+)$ we must consider only L_{3}^{p}. Since $L_{3}^{p}\left(D 2^{n}\right)=(Z / 2)^{n+1}$ and $L_{3}^{p}\left(Z / 2^{n-1}\right)=Z / 2$ injects:

$$
\begin{aligned}
& \mathrm{L}_{3}\left(\mathrm{z} / 2^{\mathrm{n}},-\right)=\mathrm{z} / 2 \\
& \\
& \psi \\
& \mathrm{~L}_{3}\left(\mathrm{D} 2^{\mathrm{n}}\right)=(\mathrm{z} / 2)^{\mathrm{n}+1}
\end{aligned}
$$

\downarrow

$$
\begin{gathered}
0 \rightarrow \mathrm{~L}_{2}\left(\mathrm{D} 2^{\mathrm{n}}+-\right) \rightarrow \mathrm{rel} \\
\mathrm{z} / 2 \oplus \Sigma
\end{gathered}
$$

Here Σ denotes the signature part of L_{2} and rel is the relative group in the vertical sequence. Therefore ker $A=(Z / 2)^{2}$ and these are both in $C_{3}\left(D 2^{n}\right)$: one from $C_{3}\left(Z / 2^{n-1}\right)$ and the other a codim. 1 Arf.

For $\left(D 2^{n},+-\right), L_{1}^{p}=(Z / 2)^{n-2}$ and $A \neq 0$ on all these. For ($D 2^{n},-+$) we first calculate that

$$
L_{1}^{\mathrm{p}}\left(\mathrm{z} / 2^{\mathrm{n}-1},-\right) \stackrel{\sim}{\rightleftharpoons} \mathrm{L}_{1}^{\mathrm{p}}\left(\mathrm{D} 2^{\mathrm{n}},-+\right)
$$

so that we take $\rho=D 2^{n-1}$ instead to compute the A-invariant. Then

$$
\begin{aligned}
& \begin{array}{l}
0 \\
+
\end{array} \\
& \mathrm{L}_{1}^{\mathrm{p}}\left(\mathrm{D} 2^{\mathrm{n}},-+\right)=(\mathrm{Z} / 2)^{\mathrm{n}-2} \\
& L_{o}^{\mathrm{p}}\left(\mathrm{D} 2^{\mathrm{n}},++\right) \rightarrow r e 1 \\
& \Sigma \\
& L_{o}^{p}\left(D 2^{n-1},++\right)=\Sigma^{\prime}
\end{aligned}
$$

The transfer map $L_{o}^{p}\left(D 2^{n}\right) \rightarrow L_{o}^{p}\left(D 2^{n-1}\right)$ is injective on the cokernel of $L_{o}^{p}\left(D 2^{n-1} \rightarrow D 2^{n}\right) \rightarrow L_{o}^{p}\left(D 2^{n}\right)$ so $A \neq 0$ on all of $L_{1}^{p}\left(D 2^{n},-+\right)$.

In $L_{3}^{p}\left(D 2^{n},-+\right)$ the type Uc classes are not hit from $L^{p}{ }_{3}\left(z / 2^{n-1},-\right)$ so that since $L_{2}^{p}\left(D 2^{n},--\right)=z / 2$ (hit from $\left.\mathrm{LN}_{2}\left(\mathrm{Z} / 2^{\mathrm{n}-1} \rightarrow \mathrm{D} 2^{\mathrm{n}}\right)\right)$ the A -invariant detects

$$
\operatorname{coker}\left(L_{3}^{P}\left(Z / 2^{n-1},-\right) \rightarrow L_{3}^{p}\left(D 2^{n},-+\right)\right)
$$

Finally the type 0a class is hit from $\frac{\mathrm{L}}{\mathrm{p}} \mathrm{f}\left(\mathrm{Z} / 2^{\mathrm{n}-1}\right.$, -) so is in $\overline{\mathrm{C}}_{3}\left(\mathrm{D} 2^{\mathrm{n}},-+\right)$.

Proposition 13. For $\pi=D 2^{n}$ and $\ell \equiv 0,1,2,3(\bmod 4)$:
$\overline{\mathrm{C}}_{\ell}(\pi,++)=\mathrm{z}, 0, \mathrm{z} / 2,(\mathrm{z} / 2)^{2}$
$\overline{\mathrm{C}}_{\ell}(\pi,+-)=\mathrm{Z} / 2,0, \mathrm{Z} / 2,0$
$\bar{C}_{\ell}(\pi,-+)=z / 2,0, z / 2, Z / 2$
(c) π semi-dihedral

Since the projection $L_{i}^{p}\left(S D 2^{n}\right) \rightarrow L_{i}^{p}\left(D 2^{n-1}\right)$ detects the torsion classes except from the 0 b representation, it suffices to consider these in $L_{3}^{p}\left(S D 2^{n},-+\right)$. However these elements are not hit from
$L_{3}^{P}\left(\operatorname{SD} 2^{n-1},++\right)$ and the inclusion map $L_{2}\left(Q 2^{n-1},++\right) \rightarrow L_{2}\left(S D 2^{n},++\right)$ does not hit the signatures at the 0 b representation. Therefore a combination of the A-invariants for $D 2^{n-1} \subset \operatorname{SD}^{n}{ }^{n}$ and $Q 2^{n-1} \in \operatorname{SD}^{n}$ (in codimension one) detects these elements. A similar arguments works for $L_{1}^{p}\left(S D 2^{n},--\right)$.

Proposition 14 The projection map

$$
L_{i}^{p}\left(S D 2^{n}, w\right) \rightarrow L_{i}^{p}\left(D 2^{n-1}, w\right)
$$

induces an isomorphism on $\overline{\mathrm{C}}_{\ell}$.
(d) \quad quaternion

First let $\pi=Q 8$ and $w \equiv 1$.
From the diagram:

$$
\begin{array}{cc}
\mathrm{L}_{3}(\mathrm{Z} / 4)=\mathrm{Z} / 2 \\
f \\
& \mathrm{~L}_{3}(\mathrm{Q} 8)=(\mathrm{Z} / 2)^{3} \\
\mathrm{Z} \mathrm{\oplus} \mathrm{Z} / 2 & \downarrow \\
\| & \\
\mathrm{L}_{2}(\mathrm{Q} 8,+-) \rightarrow & \mathrm{rel} \rightarrow \mathrm{Z} / 2 \rightarrow 0
\end{array}
$$

we see that $\bar{C}_{3}(Q 8,++)=(Z / 2)^{2}$ and the other generator of L_{3} has $A \neq 0$.

$$
\begin{aligned}
& 0 \\
& L_{1}(Q 8)=(Z / 2)^{2} \\
& 0+L_{0}(Q 8,+-) \rightarrow r e 1 \rightarrow Z / 2 \\
& \text { || } \\
& \text { Z/2 }
\end{aligned}
$$

so the A-invariant detects one $Z / 2$ in $L_{1}(Q 8)$. The other is detected by the codim 2 Arf invariant in $L_{0}(Q 8,+-)$ since by projection $L_{o}(Q 8,+-) \xrightarrow{\approx} L_{o}(Z / 2,-)$ and the $s p l i t t i n g$ diagram is natural. Since $\alpha^{3}=0$ for $\alpha \in H^{1}(Q 8 ; 2 / 2)$ the codimension 3 Arf invariant does not exist and $\bar{C}_{1}(Q 8)=0$. Notice that in the Cappell-Shaneson example different index 2 subgroups were used to do the iterated splittings. They exploited the fact that $\alpha^{2} \beta \neq 0$ for α, β generators of $H^{1}(Q 8 ; Z / 2)$.

For $(Q 8,-+)$ one $Z / 2$ of $L_{3}^{p}(Q 8,-+)=(Z / 2)^{2}$ is in the image of $\bar{C}_{3}(Z / 4,-)$ and the other is detected by the A-invariant.

Proposition 15 For $\pi=Q 8$ and $\ell=0,1,2,3(\bmod 4)$
$\overline{\mathrm{C}}_{\ell}(\pi,++)=\mathrm{Z}, 0, \mathrm{Z} / 2,(\mathrm{Z} / 2)^{2}$
$\overline{\mathrm{C}}_{\ell}(\pi,+-)=\mathrm{Z} / 2,0, \mathrm{Z} / 2, \mathrm{Z} / 2$

Next let $\pi=Q 2^{n}$ for $n \geqslant 4$. Since

$$
\mathrm{L}_{2}^{\mathrm{p}}\left(\mathrm{Z} / 2^{\mathrm{n}-1}\right) \rightarrow \mathrm{L}_{2}\left(\mathrm{Q} 2^{\mathrm{n}}\right)
$$

is onto (w m) and the torsion-free part of $L_{2}^{p}\left(Z / 2^{n-1}\right)$ can be detected by the A-invariant (modulo the image of $\left.L_{2}^{P}\left(Z / 2^{n-2}\right)\right), \vec{C}_{2}\left(Q 2^{n},++\right)=Z / 2$
detected by the ordinary Arf invariant.
This can be seen considering the Frobenius inclusion

$$
Q 2^{n} \subset Z / 2^{n-1} 2 Z / 2=\left(Z / 2^{n-1} \times z / 2^{n-1}\right) \times Z / 2
$$

into the wreath product. This has the property that if x is the type Sp character on $Q 2^{n}$ induced from ξ on $Z / 2^{n-1} \subset Q 2^{n}$ then x extends to $\tilde{\chi}$ which is induced from $\xi \times 1$ on $Z / 2^{n-1} \times Z / 2^{n-1}$. Since the translates of $\xi \times 1$ in the wreath product are distinct the construction at the end of Section 5 eliminates the other elements of $L_{2}\left(Q 2^{n}\right)$.

The same argument proves the $\bar{C}_{0}\left(Q 2^{n},+\infty\right)=Z / 2$. Now in the splitting diagram ker $A \subset L_{1}\left(Q 2^{n},++\right)$ is detected by $L_{0}\left(Q 2^{n},+-\right)$ so $\bar{C}_{1}\left(Q 2^{n},++\right)=0$ as for $Q 8$. Similarly, in $L_{3}\left(Q 2^{n},+-\right)$ the image of $L_{3}(\mathrm{Z} / 4,-)$ gives one closed manifold class. The remaining elements in ker A are detected by $L_{2}\left(Q 2^{n},++\right)$ so $\bar{C}_{3}\left(Q 2^{n},+-\right)=Z / 2$. For ($Q 2^{n},-+$) the diagram:

$$
\begin{aligned}
& \mathrm{L}_{3}^{\mathrm{p}}\left(\mathrm{Q} 2^{\mathrm{n}-1},++\right) \\
& \downarrow \\
& \mathrm{L}_{3}^{\mathrm{p}}\left(\mathrm{Q} 2^{\mathrm{n}},-+\right) \\
& \downarrow \\
\mathrm{L}_{2}^{\mathrm{P}}\left(\mathrm{Q} 2^{\mathrm{n}},++\right) \rightarrow & \mathrm{re} 1
\end{aligned}
$$

and the fact that the Ue class in $L_{3}^{P}\left(Q 2^{n},-+\right)$ is not hit from $L_{3}^{p}\left(Q 2^{n-1},++\right)$ shows that the projection

$$
\overline{\mathrm{C}}_{3}\left(\mathrm{Q} 2^{\mathrm{n}},-+\right) \rightarrow \overline{\mathrm{C}}_{3}\left(\mathrm{D} 2^{\mathrm{n}-1},-+\right)
$$

is an isomorphism．A similar argument proves that $\bar{C}_{1}\left(Q 2^{n},--\right)=0$ using the splitting diagram with subgroup（Q $2^{n-1},+-$ ）．

Proposition 16 Let $\pi=Q 2^{\mathrm{n}}, \mathrm{n} \geqslant 4$ and $\ell=0,1,2,3(\bmod 4)$ ，
$\overline{\mathrm{C}}_{\ell}\left(\mathrm{Q} 2^{\mathrm{n}},++\right)=\mathrm{Z}, 0, \mathrm{Z} / 2,(\mathrm{Z} / 2)^{2}$
$\overline{\mathrm{C}}_{\ell}\left(\mathrm{Q} 2^{\mathrm{n}},+-\right)=\mathrm{Z} / 2,0, \mathrm{Z} / 2, \mathrm{Z} / 2$
$\overline{\mathrm{C}}_{\ell}\left(\mathrm{Q} 2^{\mathrm{n}},-+\right)=\mathrm{Z} / 2,0, \mathrm{Z} / 2, \mathrm{Z} / 2$

6．Closed Manifold Obstructions for Arbitrary 2－Groups

In this section we will give the calculation of $\bar{C}_{\ell}(\pi, w)$ for πa finite $2-g r o u p$ in terms of the characters of π ．

Theorem 17 Let π be a finite $2-g r o u p$ and $w: \pi \rightarrow Z / 2$ an orientation character．
 $\overline{\mathrm{C}}_{3}(\pi) \stackrel{\approx}{\leftrightarrows} \overline{\mathrm{C}}_{3}(\pi /[\pi, \pi]) \subset \mathrm{H}_{1}(\pi ; \mathrm{Z} / 2)$.

These are detected by signature，codim 0 Arf，and codim 1 Arf respectively．
（2）If w⿻三丨⿻二丨䒑口，$\overline{\mathrm{C}}_{0}=\mathrm{Z} / 2$ when w does not factor through $Z / 4$ ，otherwise $\overline{\mathrm{C}}_{0}=0, \overline{\mathrm{C}}_{1}=0, \overline{\mathrm{C}}_{2}=\mathrm{z} / 2$ and $^{\left(\mathrm{c}_{3}\right.}=(\mathrm{z} / 2)_{\mathrm{s}}$ where $s \leqslant \#\{s u m m a n d s$ of $Q \pi$ of type $S p, O a$ and $O c\}$ ．These are detected by the codim 2 ，codim 0 and codim l Arf invariants．

Proof：Let $f: M^{n} \rightarrow N^{n}(n \geqslant 5)$ represents a surgery problem of closed TOP n－manifolds with $\sigma(f) \varepsilon L_{n}^{h}(\pi, w)$ ．The result is first proved in dimension 4 by calculating the possible image of $\left[X^{4}, G / T O P\right]$ in $L_{4}^{p}(\pi, w)$ so we assume inductively that it is true for dimensions＜n ．We let
$a=i_{*} \sigma(f) \varepsilon L_{n}^{P}(\pi, w)$ and assume that $a=\left(a_{X}\right) \varepsilon \Pi_{X} \Lambda_{n}(D(X))$ using the description of L^{p} in Proposition 8. This is possible since any contribution to $i_{*} \sigma(f)$ from $L_{n}\left(\hat{Z}_{2} \pi\right)$ can be eliminated by taking the sum of this problem with a simply-connected surgery problem or a codim 2 Arf invariant. Furthermore by Proposition 9 we can assume that $a_{X}=0$ unless X is induced from a primitive character.

Let x be a character of π for which a $\neq 0$ and choose $\rho \in \pi$ with a character $\xi \operatorname{such} \operatorname{that} \xi^{*}=\chi, Q(\xi)=Q(x), \quad \xi$ is primitive and $\rho / k e r \quad \xi$ a special 2 -group.

Lemma 18 By the inductive assumption (and subtracting off codim k Arf invariants as before) we can assume that there exists b $\varepsilon L_{n}^{p}(\rho, w) s u c h$ that b has image a under the map

$$
L_{n}^{p}(\rho, w) \rightarrow L_{n}^{p}(\pi, w)
$$

Assuming this we notice that by construction $b_{\xi} \neq 0$ hits and ${ }_{\gamma}$ is detected by

$$
L_{n}^{P}(\rho, w) \rightarrow L_{n}^{P}(\rho / k \operatorname{ler} \xi, w)
$$

If $N=N_{1} \cup N_{2}$ where $\pi_{1} N_{1}=\pi$ and $\pi_{1} N_{2}=\pi_{1}\left(\partial N_{2}\right)=\rho$, we can assume $\operatorname{that}_{\mathrm{f}}^{\mathrm{f}} \mathrm{f}_{1} \mathrm{U}_{2} \mathrm{wheref}_{1}: \mathrm{M}_{1}=\mathrm{f}^{-1}\left(\mathrm{~N}_{1}\right) \rightarrow \mathrm{N}_{1}$ is a homotopy equivalence and $f_{2}: M_{2}=f^{-1}\left(N_{2}\right) \rightarrow N_{2}$ is a problem over ofith obstruction b. Now define $\tilde{\mathbf{f}}_{1}: \tilde{M}_{1} \rightarrow \tilde{N}_{1} \quad\left(t h e \operatorname{covering} \operatorname{with}_{1}=\rho\right)$ assuming $\rho \propto \pi$ and observe that the splitting problem $\partial \tilde{\mathrm{f}}_{1}: \partial \tilde{M}_{1} \rightarrow \boldsymbol{T}_{1}$
 because it is null-bordant using ($\left.\tilde{M}_{1}, \tilde{f}_{1}\right)$ and the second description
of Section 1 for LN. This splitting problem is also the boundary of $1 \pi: \rho!$ copies of $f_{2}: M_{2} \rightarrow N_{2}$ where the copy corresponding to a coset t ρ has fundamental group identified as \quad $\rho t^{-1} \in \pi \cdot \quad$ Since $\rho<\pi$ the characters ξ^{t} determine distinct summands of Qo and since the Ainvariant splits according to the decomposition of Qo (see the discussion following Prop. 8) it follows that $A\left(b_{\xi}\right)=0$. If o is not normal in π we modify the argument by first identifying in pairs (using covering homeomorphisms) those boundary components of (\tilde{M}_{1}, \tilde{f}_{1}) for cosets to such that $t \rho t^{-1} \neq \rho . \quad$ Similarly, $B\left(b_{\xi}\right)=0$ and by naturality (choosing $\rho_{o} \geqslant \operatorname{ker} \xi$) the same is true for the image of b_{ξ} in $L_{n}^{\mathrm{P}}(\rho / \mathrm{ker} \xi, w)$. The calculations of Section 5 now imply the desired descripton of b_{ξ}. Since b_{ξ} and hence a is represented by a codim k Arf invariant for $k \leqslant 2$ it can be subtracted off and the argument repeated.

Proof of Lemma 18 Consider the splitting diagram:

$$
\begin{aligned}
& L_{n}^{p}(p, w) \\
& \downarrow \\
& L_{n}^{p}(\pi, w) \\
& \downarrow> \\
& L_{n-1}^{P}(\pi, W \phi) \rightarrow L_{n}^{p}(\rho \rightarrow \pi, W) \rightarrow L_{n-2}(\rho \rightarrow \pi, W)
\end{aligned}
$$

Since $f: M \rightarrow N$ is a closed manifold problem there exists a normal map g: $M^{\prime} \rightarrow N^{\prime}$ induced from f by transversality on a characteristic codimension 1 submanifold $N^{\prime} \subset N$ corresponding to the subgroup $\rho \subset \pi$ of index 2 (see Section 4). Then $i_{*} \sigma(g) \varepsilon L_{n-1}^{p}(\pi, w \phi)$ hits the image of $i_{*} \sigma(f)$ in $L_{n}^{p}(\rho \rightarrow \pi, w)$ and by the inductive assumption $i_{*} \sigma(g)$ can be represented as a sum of suitable ($n-1$)-dimensional (simply-connected)
signature or codim k Arf invariant problems for $k \leqslant 2$.
However the signature problem does not exist in codimension 1 (the complement of a tubular neighbourhood of $N^{\prime} \subset N$ provides a nul1bordism) and the codim. O Arf invariant on N^{\prime} gives a codim 1 Arf invariant on N. The other terms in the sum, codim 1 or 2 Arf invariants, do not give rise to non-zero elements in $L_{n}^{p}(\rho \rightarrow \pi, w)$ even when they exist because they lie in summands of $L_{n-1}^{p}(\pi, w \phi)$ detected by representations on subquotients of π of the form ($2 / 2, \pm$) or $2 / 4,-)$ and the calculations of Section 5 apply.

This argument shows that by adding suitable n-dimensional closed manifold problems to $f: M \rightarrow N$ we can assume that the image of $i_{*} \sigma(f)$ in $L_{n}^{p}(\rho \rightarrow \pi, w)$ is zero.

(*) $\tilde{\mathrm{L}}_{0}$		L_{1}	\widetilde{L}_{2}	L_{3}	$\mathrm{E}\left(\mathrm{from} \hat{\mathrm{z}}_{2}{ }^{\text {m }}\right.$)
$\mathrm{Ua}_{\mathrm{z} / 2^{\mathrm{n}}, \mathrm{O}} \mathrm{x}^{\text {a }}=\mathrm{x}^{-1}$	$\begin{array}{ll} \Sigma & \begin{array}{l} \mathrm{Ua} \\ \mathrm{Oa} \end{array} \end{array}$	0	Ua	z/2 0a	$\begin{array}{ll} \hline 0 & (*=0) \\ z / 2 & (*=2) \end{array}$
$\begin{aligned} & \mathrm{z} / 2^{\mathrm{n}}, \overline{\mathrm{x}}=-\mathrm{x}^{-1} \\ & \text { Ub, oc, GL } \end{aligned}$	0	Z/2 Ub	0	$\begin{aligned} & 2 / 2 \quad \mathrm{Ub} \\ & (z / 2)^{2} \quad o c \end{aligned}$	$\begin{aligned} & 0(n>2), Z / 2(n=1) \\ & z / 2 \end{aligned}$
$\underset{\mathrm{oa}}{\mathrm{D}^{\mathrm{n}}}(+,+), \mathrm{n}>3$	$\Sigma \quad 0 \mathrm{a}$	0	0	$\begin{aligned} & (z / 2)^{r-1} \text { 0a } \\ & r=\#\{t y p e \quad 0 a\} \end{aligned}$	$\begin{aligned} & 0 \\ & z / 2 \end{aligned}$
	0	$\left.\begin{array}{l} (\mathrm{z} / 2)^{\mathrm{r}} \\ \mathrm{r}=\# \end{array} \text { type } 0 \mathrm{a}^{-}\right\}$	$\Sigma 0 a^{-}$	0	$\begin{aligned} & \mathrm{z} / 2 \\ & \mathrm{z} / 2 \end{aligned}$
$\begin{aligned} & \mathrm{D}^{\mathrm{n}}(-+) \text { or }(--) \\ & \mathrm{Uc}(\mathrm{n}>4), 0 \mathrm{a}, \mathrm{GL} \end{aligned}$	Oa	Z/2 Uc	0	$\begin{array}{ll} \hline z / 2 & \mathrm{Uc} \\ & 0 \mathrm{a} \end{array}$	$\begin{aligned} & \mathrm{z} / 2 \\ & \mathrm{z} / 2 \end{aligned}$
$\begin{aligned} & \operatorname{SD} 2^{n}(++), n>4 \\ & \text { Ud, 0a } \end{aligned}$	$\begin{array}{ll} \Sigma & 0 \mathrm{Oa} \\ & \mathrm{Ud} \end{array}$	0	$\Sigma \mathrm{Ud}$	$\begin{aligned} & (z / 2)^{r-1} \\ & r=\#\{\text { type 0a }\} \end{aligned}$	$\begin{aligned} & 0 \\ & z / 2 \end{aligned}$
${\mathrm{SD} 2^{\mathrm{n}}(+-)}_{\mathrm{Ud}^{-}, \mathrm{Oa}^{2}, \mathrm{GL}}$	Ud	$\begin{aligned} & (\mathrm{z} / 2)^{\mathrm{r}} \\ & \mathrm{r}=\# \text { type 0a- }\} \end{aligned}$	$\Sigma \quad \begin{aligned} & \mathrm{Oa}^{-} \\ & \mathrm{Ud} \end{aligned}$	0	$\begin{aligned} & z / 2 \\ & z / 2 \end{aligned}$
$\begin{aligned} & \operatorname{SD2}^{\mathrm{n}}(-+) \\ & \mathrm{Ob}, \mathrm{Uc}(\mathrm{n} \geqslant 5), \mathrm{Oa}, \mathrm{GL} \end{aligned}$	$\Sigma \quad 0 \mathrm{a}$	2/2 Uc	0	$\begin{aligned} & \mathrm{z} / 2 \mathrm{Oa} \\ & \text { order } 2^{\mathrm{n}-4+2}\left(* \partial_{b}\right. \\ & \mathrm{Z} / 2 \mathrm{Uc} \end{aligned}$	$\begin{aligned} & z / 2 \\ & z / 2 \end{aligned}$
$\mathrm{Q}_{\mathrm{p}} \mathrm{S}^{\mathrm{n}},{ }^{(++)}$	$\Sigma \begin{array}{ll} \\ \Sigma\end{array} \begin{aligned} & 0 \\ & S_{p}\end{aligned}$	$(z / 2)^{2^{n-3}}+1 \mathrm{~S}_{\mathrm{p}}$	$(z / 2)^{22^{n-3}-1} S_{p}$		$\mathrm{O}_{\mathrm{Z} / 2}$
$\operatorname{SD2}^{\mathrm{S}}{ }^{\mathrm{n}}(--)(\mathrm{Uc}(\mathrm{n} \geqslant 5), 0 \mathrm{a}, \mathrm{GL}$	Σ 0a	$\begin{aligned} & \mathrm{Z} / 2 \mathrm{Uc} \\ & \text { order } 2^{\mathrm{n}-4+2}{ }^{(*)} \mathrm{Ob}^{-} \end{aligned}$	-	$\begin{array}{ll} \hline \mathrm{Z} / 2 & \mathrm{Oa} \\ \mathrm{Z} / 2 & \mathrm{Uc} \end{array}$	$\begin{aligned} & z / 2 \\ & z / 2 \end{aligned}$
$\begin{aligned} & \mathrm{Q2}^{\mathrm{n}}(+,-) \\ & \mathrm{Sp}^{-}, \mathrm{Oa}^{-}(\mathrm{n} \geqslant 4), \mathrm{GL} \end{aligned}$	$\begin{gathered} (z / 2)^{2^{n-3}-1} \\ s_{p}^{-} \end{gathered}$	$\begin{aligned} & (z / 2)^{\mathrm{r}} \\ & \mathrm{r}=\#\left\{\text { type } 0 \mathrm{a}^{-}\right\} \end{aligned}$	$\Sigma{ }^{\text {¢ }}$	$(z / 2)^{2^{\mathrm{n}-3}+1} \mathrm{~S}^{-}$	$\begin{aligned} & z / 2 \\ & z / 2 \end{aligned}$
$\begin{aligned} & \text { Q2 }{ }^{\mathrm{n}}(-+) \text { or }(--)(\mathrm{n}>4) \\ & \mathrm{Ue}, \mathrm{Uc}(\mathrm{n} \geqslant 5), \quad 0 \mathrm{a}, \mathrm{GL} \end{aligned}$	Σ 0a	$2 / 2{ }^{\text {U }}$ Ue	0	$\mathrm{z} / 2$ Uc Ue Oa	$\begin{aligned} & z / 2 \\ & z / 2 \end{aligned}$

*) The order of the summand for type $0 b^{+}$or $0 b^{-}$is 2^{S} where s is listed in the table.
$E_{2 k}=I_{m}\left(L_{2 k}^{P}(Z \pi) \rightarrow L_{2 k}^{P}\left(\hat{Z}_{2} \pi\right)\right)$
Table $2-L_{*}^{p}(Z \rho, \alpha, u)$ for $p<\pi$ cyclic of index $2, \pi$ a special 2-group

$(\neq) \tilde{L}_{0} \quad \mathrm{~L}_{1}$			$\tilde{L}_{2} \quad \mathrm{~L}_{3}$		E(from $\hat{z}_{2}{ }^{\text {I }}$)
$\begin{aligned} & z / 2^{n} \quad \bar{x}=x^{-1}, \quad u=x \\ & U J \quad(n \geqslant 2), 0 a^{-}, 0 a^{+} \end{aligned}$	$\begin{array}{ll} \hline \Sigma & 0 a^{+} \\ & U_{j} \end{array}$	0	$\begin{array}{ll} \Sigma & \mathrm{Oa}^{-} \\ & \mathrm{Uj}_{j} \end{array}$	0	$\begin{aligned} & 0 \\ & 0 \end{aligned}$
$\begin{aligned} & z / 2^{n}, \quad \bar{x}=x, \quad u=1 \\ & \text { od } \quad(n>3), \quad 0 c, \quad \text { oa } \end{aligned}$	Σ 0a	0	0	order 2^{m+2} $\mathrm{Od}^{(*)}$ order 8 0 c z/2 $0 a$	$\begin{aligned} & 0 \\ & \mathrm{z} / 2 \end{aligned}$
$\begin{aligned} & \mathrm{Z} / 2^{\mathrm{n}}, \overline{\mathrm{x}}=\mathrm{x}^{2^{\mathrm{n}-1}+1}, \mathrm{u}=1 \\ & \text { Uf, od, oc, oa } \end{aligned}$	Σ Oa	$\mathrm{z} / 2 \mathrm{l}$ uf	0		${ }_{z / 2}^{0}$
$\begin{aligned} & z / 2^{n}, \quad \bar{x}=x, \quad u=x^{2^{n-1}}(n>3) \\ & O d^{-}, O d^{+}, \text {oc, } O a \end{aligned}$	$\Sigma 0 \mathrm{a}$	order $2^{\mathrm{m}+1} \mathrm{Od}^{(*)}$	0	order 2^{m+2} Od order 8 Oc $/ 2$ Oa	0
$\begin{aligned} & z / 2^{n}, \quad \bar{x}=-\mathrm{x}, \mathrm{u}=1 \\ & \text { Uf, Ua, GL } \end{aligned}$	$\Sigma \mathrm{Ua}$	z/2 Uf	$\Sigma \mathrm{Ua}$	z/2 Uf	$\begin{aligned} & z / 2 \\ & z / 2 \end{aligned}$
$\begin{aligned} & z / 2^{n}, \bar{x}=-x^{2^{n-1}+1}, u=1 \\ & \text { od, Uf, Ua, GL } \end{aligned}$	$\Sigma \mathrm{Ja}$	(z/2) Uf	$\Sigma \quad \mathrm{Ua}$	$\begin{aligned} & \text { order } 2^{m+1} \text { od } \\ & \text { } / \text { (*) } \\ & \text { Uf } \end{aligned}$	$\begin{aligned} & 0 \\ & z / 2 \end{aligned}$
$\begin{aligned} & z / 2^{n}, \bar{x}=-x, u=x^{n-1} \\ & \mathrm{Uf}^{-}, \mathrm{Uf}^{+}, \text {Ua, GL } \end{aligned}$	$\Sigma \mathrm{Ua}$	$\begin{array}{cc}\mathrm{z} / 2 & \mathrm{Uf}{ }^{-} \\ & \mathrm{Uf}^{+}\end{array}$	Σ Ua	$\begin{array}{ll}\mathrm{z/2} & \mathrm{Uf}^{-} \\ & \mathrm{Uf}^{+}\end{array}$	$\begin{aligned} & \mathrm{z} / 2 \\ & \mathrm{z} / 2 \end{aligned}$
$\begin{aligned} & \mathrm{z} / 2, \quad \overline{\mathrm{x}}=-\mathrm{x}, \mathrm{u}=\mathrm{x} \\ & \text { GL } \end{aligned}$	0	0	0	0	$\begin{aligned} & \mathrm{z} / 2 \\ & \mathrm{z} / 2 \end{aligned}$
$\begin{aligned} & z / 4, \quad \bar{x}=x, \quad u=x^{2} \\ & 0 c, ~ 0 a \end{aligned}$	Σ 0a	$(\mathrm{z} / 2)^{2} \mathrm{Oc}^{-}$	0	z/2 0a	$\begin{aligned} & 0 \\ & 0 \end{aligned}$

*) $m=$ \# of complex places in the centre of a type Od representation
[BL]
[CS1]
[F]
[HM]
[LM]
[M]
[PR]
[Q]
[R1] A. Ranicki, "The algebraic theory of surgery I", Proc. London Math. Soc. (3) $40(1980), 87-192$.
[R2] A. Ranicki, "The total surgery obstruction", Algebraic Topology: Aarhus 1978, Springer LN 763(1979), 275-315.
[R3] A. Ranicki, "Exact sequences in the algebraic theory of surgery", preprint (1980).
[T] L. Taylor, "Surgery on paracompact manifolds". Berkeley Ph.D. Thesis (1972).
L. Taylor and B. Williams, "Surgery on closed manifolds", preprint (1980).
[W1] C.T.C. Wall, Surgery on Compact Manifolds. Academic Press: London, New York 1970.
[W2] C.T.C. Wall, "Formulae for surgery obstructions", Topology 15 (1976), 189-210.

Department of Mathematical Sciences
McMaster University
Hamilton, Ontario, Canada L8S 4K1

Apri1 7, 1981
IH. I/A/IH1.I
/mf

[^0]: * Research partially supported by NSERC grant A4000.

[^1]: * These results including those of Sections l, 2 in this paper were presented at the Ontario Topology Seminar, October 15,1977 at the University of Waterloo.

