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n+k 
Let 23 be a hornotopy (n+k)-sphere and p : G )< ~E~- 2] a smooth semi- 

free action of a finite group G on 23 with fixed-point set a manifold F n of dimen- 

sion no A decomposition of 23 into two G-invariant disks will be called a splitting 

of the action and the induced splitting of 2] G denoted F = FI<9 F 2. We ask whether 

every such action has a splitting with Hi(F1) ~Hi(F2) for i> 0 (these are called 

balanced spl[ttin~s )o 

One class of actions for which balanced splittings exist is obtained by 

the "twisted double" construction. Namely, let p : G XD n+k~ D n+k be a semi-free 

action of G on an (n+k)-disko Let Z = D<_) D where q~ : 8D -* 8D is an equivariant 

d[ffeomorphism. Our interest in the problem considered here arose from trying to 

understand the conditions under which a given seml-free action is a twisted double. 

An action that admits a balanced splitting resembles a twisted double at least homo- 

logically and thus exhibits some symmetry. On the other hand, an action with no 

balanced splitting is rather strongly asymmetrical. 

In this paper we introduce a semi-characteristic [nvar[ant of the action 

to detect the existence of balanced splittings and construct some examples of actions 

whose semi-characteristic invar[ant is nonzero. Such actions have no balanced 

splitting. For most of our results, the arguments are outlined here so that the 

reader who is familiar with work in this area (e.g., by L. Jones [i] and R. Oliver 

[2]) can follow them. Full details will appear elsewhere. 

Before beginning a precise description of the results, we remark that 

the fixed-point set F will be assumed nonempty and connected throughout to avoid 
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t r i v i a l  c a s e s .  In a d d i t i o n ,  a l t h o u g h  the  s t r u c t u r e  of t he  g r o u p s  G is  k n o w n  ( s e e  [7]) ,  

s i n c e  t h e y  a l l  a d m i t  f r e e  l i n e a r  r e p r e s e n t a t i o n s ,  t h i s  c l a s s i f i c a t i o n  is  no t  u s e d  in 

the  present situation. 

The first named author would like to thank Mclviaster University for its 

hospitality during the period when the research contained in this paper was done. 

i. Statement of Results 

In o r d e r  to p r o v i d e  a n  a l g e b r a i c  s e t t i n g  f o r  the  i n v a r i a n t ,  two c a t e g o r i e s  

of finitely-generated ~_/3-modules will be useful. Let ~)'(G) denote the category of 

finite Abelian groups of order prime to ]G]. If we regard the groups in ~r(G) as 

trivial G-modules, then there is an inclusion ~(G) ~ ~(G) (from a result of Rim 

[4]) where ~(G) iS the category of cohomologically trivial modules. The Grothen- 

dieck groups of these categories are G0(~(G)) and G0(~'(G)) and a further result 

of Rim [4] allows the identification, 

GO(C'(G)) ~o(ZG). 

F i n a l l y ,  l e t  A(G) = I m ( G 0 ( ~ ( G ) )  ~ K 0 ( 2 Z G ) )  and  n o t e  t h a t  A(G)  is  j u s t  the  i m a g e  of  

a : KI(Z/IGI)-~K0(ZG) considered by Swan [5]. 

Now let F n he the fixed-point set of a semi-free action of G on n+k. 

It follows from Smith theory that H.(F) ¢ ~)'(G) for i < n. Similarly, if the decom- 
I 

position F = FI~J F Z is induced by a splitting of the action, then Hi(Fj) (Jg"(G) 

(j = 1,2) for all i, and Hi(F0) (~(G) for i < n-I where F 0 = FI(-~ F Z. Any 

decomposition of F satisfying these necessary conditions will he called a s_plittin~ 

of F. 

Definition I. Let X be a finite CW complex with 3. (X) e i~'(G) for i > 0. Then 

×G(X) = : c  (-1)i[~i(x)] in ~,o(ZC). 
i > 0  
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T h e o r e m A .  L e t  (2~,p) b e  a s m o o t h  s e m i - f r e e  a c t i o n  of  a f i n i t e  g r o u p  G o n  a 

h o m o t o p y  ( n + k ) - s p h e r e  2; w i t h  f i x e d - p o i n t  s e t  F n .  I f  i <  n <  k - 2 ,  t h e n  a s p l i t t i n g  

F = F 1[.9 F 2 i s  i n d u c e d  b y  a s p l i t t i n g  o f  t h e  a c t i o n  if a n d  o n l y  i f  XG(F1)  = 0.  

T h e  s u f f i c i e n c y  p a r t  of T h e o r e m  A i s  p r o v e d  b y  a n  e q u i v a r t a n t  h a n d l e  

a t t a c h i n g  a r g u m e n t  s i m i l a r  to  t h e  a r g u m e n t  g i v e n  b y  J o n e s  [1]. T h e  n e c e s s i t y  i s  

i i 
o b t a i n e d  b y  o b s e r v i n g  t h a t  XG(F1)  = - ~ (-1) [HI(D1,  F1) ] = N (-1) [C[ (D1 ,  F1) ] = 0 

i >  0 i > 0  

w h e r e  D 1 i s  a G - i n v a r i a n t  d i s k  s u c h  t h a t  F 1 : D I ( ~  F .  N o t e  t h a t  XG(F1)  = ± X G ( F z )  , 

s o  t h a t  s t a t e m e n t  d o e s  n o t  d e p e n d  on  t h e  o r d e r i n g  of  F 1 a n d  F Z. 

If w e  n o w  a s  s u m e  t h a t  F = F 1q)  F z is a b a l a n c e d  s p l i t t i n g  ( t h a t  i s ,  

H I ( F  1) - -~HI(FZ) f o r  i >  0 in  a d d i t i o n  to  t h e  c o n d i t i o n s  a b o v e ) ,  t h e n  XG(F1)  d e t e r -  

m i n e s  a s e m i - c h a r a c t e r i s t i c  [ n v a r i a n t  of t h e  a c t i o n .  

Definition Z. 

for i < n and 

Let X be a finite CW complex of dimension n with H.(X) ~ ~(G) 
[ 

2 
IHm(X) I = q when n = Z m + l .  I n  G0(~[Z(G)) se___! 

(x) = [ 
m-l 

i_E1 (-I)~[Hi(X)] if 

m-l 

x (-ll'[Hi(X)]+(-llm[z/q] if 
i=l 

n=Zm 

n : 2m+l . 

Now let x~-~x be the involution on K0(ZG) induced by sending [P] to 

.[p* n 
]. Then we wish to define xI(X) to be the cohomology class in H (~--/Z;A(G)) 

represented by the image of xA(X). This will make sense if we assume that when 
2 

n = Zm+l, ZxA(X ) : 0 in A(G) (because the subgroup A(G) is actually fixed by the 
2 

involution -- ). However, we assert that xI(F n) is well defined for F = 5~ G 

provided IHm(F) I is a square when n : 2m+l. Since the resulting class is an 

hnvariant of the action, w e  denote it XI(~,P). 

T h e o r e m  B.  L e t  (2], p) b e  a s m o o t h  s e m i - f r e e  G - a c t i o n  on  a h o m o t o p y  ( n + k ) -  
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n 
sphere with fixed-point se___}_t F and 1 < n < k-Z (n ~ 3, 4). 

i) If n = 2m, the action, ha____~s a balanced splitting. 

ii) If n = 2m+l, the action has a balanced splitting if and only if 

square and X±(~,P) = 0. 
2 

IHm(F) I is a 

Among the actions obtained by the twisted double construction are those 

for which ~ = DLJ D with ~= identity. These are called strong doubles. 

homological conditions on the splitting of F n are strengthened to include 

If the 

ker(Hm_l(l~0) -~ Hm_I(FI)) = ker(Hm_l(F 0) -~Hn_I(F2)) 

for m = [Z], we call it a strong balanced splitting. Such a condition is sat[stied 

for all m > 0 if the splitting arises from a splitting of (2] , p) as a strong double. 

Theorem C. Under the same hypotheses as Theorem B, (~,p) has a strong bal- 

anced s p l i t t i n g  if a n d  o n l y  i f  X i (2~ , p )  = 0 a n d  I H m  (Fn)  I i s  a s q u a r e  ( w h e n  n = 2 r e + l ) .  
2 

n 
Remark. A (strong) balanced splitting of the fixed-point set F exists always for 

n = Z m  a n d  f o r  n = Z m + l  if a n d  o n l y  i f  [ H m ( F ) [  is  a s q u a r e ,  T h e r e  a r e  e x a m p l e s  

of actions with n = 2m+l and IHm(F) I a nonsquare (e.g., a Brieskorn example of 

S 5 an involution on with fixed-point set a lens space). 

Finally, we have some examples to show that the semi-characteristic 

invariant can be nonzero. Since the exponent of A(G) divides the Artin exponent 

of G [6], if IGI is odd X±(~,p) is always zero. Otherwise the Sylow 2-subgroup 
2 

SyI2(G) is cyclic or generalized quaternion Q2 ~ of order 2 ~ [7], and our examples 

concern this second case. The fixed-point sets of these examples are actually 

strong doubles. 

Theorem D. Let G be a finite group with Sylz(G ) = Q2 ~ admitting a free linear 

representation of dimension d and n, k integers such that 5 < n< k-2. Then 
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there exists a semi-free G-action p on a homotopy (n+k)-sphere Z with dim(5", G) = n 

and XI(~,P) / 0 provided k = 0 (modd) and n~l (rood4) (when f = 3) o__r_r n~0,1 
2 

(rood4) (when f >__ 4). 

Remarks. 

l) If n = 2 (mod4), we have the more complete result (valid for any G admitting a 

free representation) that each element of Hn(z/2;A(G)) can arise as the X±- 
2 

obstruction to the existence of a strong balanced splitting. 

2) If ( E , P )  a n d  (~E,p ' )  a r e  c o n c o r d a n t  a c t i o n s ,  t h e n  X I ( ~ , p )  = X A ( ~ , p '  ). T h i s  
a 

means that the examples above are not concordant to linear actions. 

2. Proof of Theorem B. 

In this section we outline the proof of Theorem B. 

L e m m a  1. If  F n (n / 3 , 4 )  is  a c l o s e d  o r i e n t a b l e  m a n i f o l d  w i t h  H . ( F )  ~ ~y(G)  f o r  
- -  [ 

[ <  n,  t h e n  F h a s  a ( s t r o n g )  b a l a n c e d  s p l i t t i n ~  if a n d  o n l y  i f  [ H m ( F ) ]  is  a s q u a r e  

w h e n  n = 2 m + l .  

If n = 2 m ,  w e  s t a r t  w i t h  a h a n d l e b o d y  N 0~_ F t h a t  c a r r i e s  a l l  h a n d l e s  

of  F of  i n d e x  < m - 1  in a g i v e n  h a n d l e  d e c o m p o s i t i o n .  O n l y  e n o u g h  h a n d l e s  o f  i n d e x  

m are added to make Hm_I(N0) ~Hm_I(F ) without creating any m-dimensional 

homology. If n = 2m+l and IHm(F)I is a square, there exists a short exact 

sequence of the form 

0 ~ T - - ~ H  ( F ) ~  T ~ O .  
m 

To N0~ F, as before consisting of handles of index <__ m-l, can be 

attached handles of index m and m+l to get NI~_ F such that HI(NI) ~Hi(F ) for 

[< m-l, Hm(NI) ~ T and Hi(N1) = 0 for [> m. 



201 

For the necessity when n = 2m+l, let F = FILflF 2 be a balanced splitting 

and factor the exact sequence of the pair (F, F I) into 

0 -* A-* Hm_I(F I) -~ Hm_I(F) --... -* HI(F, F I) -- 0 

0-* B-* Hm(F I)-Hm(F)-~Hm(F,F I)-A- 0 

0-- H2m(FI)-*Hzm(F)-* ... -- Hm+I(F,F I)-*B-* 0 

and use formal manipulations and i°oincar4 duality to show [A] = [B] in G0(~r(G)). 

The middle sequence then shows 

[Ha(F)] = 2[Hm(FI) ] - 2[A] in G0(~)'(G)). 

Since  G 0 ( ~ ( G ) )  is  the  f r e e  A b e l i a n  g r o u p  on g e n e r a t o r s  [ Z / p ]  w h e r e  p is a 

p r i m e  no t  d iv id ing  [G] ,  ]Hm(F) ] is a s q u a r e .  

The n e x t  s t ep  is  to d e t e r m i n e  the r e l a t i o n s h i p  b e t w e e n  XG(F 1) and 

X±(E,P)  w h e n  F = EG has  a b a l a n c e d  sp l i t t i ng  F = F I [ - ) F  2. 

n 
Lemma Z. Suppose F = FIeF 2 is a b a l a n c e d  splitting. 

[) If n = 2re+l, x,(F) = XG(F I) and 27~(F) = 0. 

[[) If n = 2m, 

[2m-1 ) 
Z E (-l)m[A] ~½(F) = XG(F 1) - ~ ~=m(-1) [H~(F1)] + 

whe re  

A = ker(Hm_l(F I) -~ Hm_I(F)). 

From the sketch proof for Lemma i, 
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m - 1  

~(F) = z (-l#[Hi(F) ] + (-l)=[TZ/q] 
2 i=l 

2 
( w h e r e  . , IHm(F)I = q a n d  n = 2 r e + l )  

i 
= (-l)rn[A] + Z (-l) [H[(FI) ] + (-l)m([Hm(Fl)]-[A]) 

i / m  

= ×G (Fl)" 

]By taking the full sequence of the pair (F-pt,Fl), we obtain 2XG(FI) = XG(F-pt ) = 0. 

The argument for i) is similar. 

Recall now that XA(IE,p) lies in 
2 

n (A(G)/2A(G) , n = 2m 

H (~/2;A(G)) = ~ {x~ A(G) I2x=0}, n = 2m+l. 

Clearly, Lernma 2 shows that Xi(2],p) is well defined. The proof of Theorem B 
2 

when n = 2m+l is now an immediate consequence of Lemmas i, 2 and Theorem A. 

For n = 2m there is one more ingredient. This is a simple method 

for changing one balanced splitting to a new one. Let M (f,p) denote a regular 
n 

f+l 
n e J . g h b o r h o o d  o f  t h e  c o m p l e x  S ~ t,J e e m b e d d e d  in  S n ( w h e r e  1 < ~ < n - 4  a n d  

P 

(p, I G I )  = 1). T h e n  S n h a s  a s p l i t t i n g  i n t o  t w o  t h i c k e n e d  M o o r e  s p a c e s  

S (~, p) = M n ( ~ ,  p)~-) (S n - (~, p)) .  

If F n = FI~-; F 2 is a splitting, there is another splitting F = l~i ~-JF~ obtained by 

connected sum along F 0 and OM: 

n o 

F ~Fn~:sn(f,p)= (FI~- M (~,p))~(Fz=~= (sn-Mn(~,p))). 
n 

n 
If a splitting of F is understood, F~: S (i,p) means this new splitting. 

n 

L e m m a  3. Suppose F = FIk-JF 2 

1 <  ~ <  n - 4 .  

is a (strong) balanced splitting (p, 1GI/= i and 
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n n 
i) F n ~  S ( ~ , p ) : ~ S  ( n - £ - Z , p )  is a b a l a n c e d  s p l i t t i n g  ( a s t r o n g  b a l a n c e d  s p l i t t i n g  

u n l e s s  n = 2 m  a n d  I = m - l ) .  

[i) F 2 m ~  - s Z m ( m - l , p )  is a b a l a n c e d  s p l i t t i n g .  

t i t)  If F n = F 1' [.fl F 2' is the  new  s p l i t t i n g  __in i) 

XG(F { 
: j~ x G (F l) ! 

L XG(FI) + (-I/Z[Z/p] if 

n = Zm+l 

n=2m . 

iv) F o r  the  s p l i t t i n g  i n  i i ) ,  

XG(F  {) = X G ( F  1) + ( - 1 ) m - l [ 7 - / p ] .  

If n = Z m ,  a b a l a n c e d  s p l i t t i n g  of E G c a n  now be  o b t a i n e d  w i t h  

XG(~ G) = 0 u s i n g  L e m m a  1 a n d  t h i s  c o n s t r u c t i o n .  E s s e n t i a l l y  the  s a m e  a r g u m e n t  

g i v e s  the  p r o o f  of T h e o r e m  C a l s o .  

3. C o n s t r u c t i o n  of E x a m p l e s  

If X is a n y  f i n i t e  CW c o m p l e x w L t h  H . ( X ) ~  ~ ' ( G ) f o r  [>_0 ,  a G a n y  
t 

g r o u p  w i t h  a f r e e  l i n e a r  r e p r e s e n t a t i o n ,  l e t  N 1 be  a r e g u l a r  n e i g h b o r h o o d  of X in 

n = IR n ~fk IR a n d  M rn  X w h e r e  5 < n < k - 2  a n d  ~V k is a f r e e  r e p r e s e n t a t i o n  

s p a c e  fo r  G of  r e a l  d i m e n s i o n  k. By t he  s a m e  m e t h o d  a s  t h a t  u s e d  f o r  T h e o r e m  

m m 
A, there exists a ([T]-l)-connected G-invariant compact manifold (M I is a 

submanlfold of M except possibly when m = 2s) such that MIG = NI, HI(M1) = 0 

m (_l )S[Hs(  m f o r  i fi [ - ~ ]  a n d  M1) ] = XG(N1) : XG(X ) f o r  s = [ T  ]. If  m = Zs ,  t he  f i n a l  

h a n d l e  a t t a c h i n g  to p r o d u c e  M 1 m u s t  b e  d o n e  so  t h a t  the  c y c l e s  r e p r e s e n t i n g  Hs(M1) 

h a v e  z e r o  e q u i v a r i a n t  s e l f - i n t e r s e c t i o n .  U s i n g  t h i s  m a n i f o l d  M1, we  w i l l  t r y  to 

c o n s t r u c t  a n  a c t i o n  on  s o m e  ( n + k ) - s p h e r e  w i t h  f i x e d - p o i n t  s e t  F n t he  d o u b I e  of N 1. 

S i n c e  A(G) is a l s o  t he  i m a g e  of the  Swan  h o m o m o r p h l s m ,  

(-1) XG(X ) = [ Z / r ]  ( = Or) f o r  s o m e  i n t e g e r  r p r i m e  to IGI. if  m = Z s + l ,  a f t e r  
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a f u r t h e r  s u r g e r y  on  M 1 ( u s i n g  t h e  b u n d l e  m a p  VMl~V/vi )  , w e  o b t a i n  M~ w i t h  

Hi(/Vl[) = 0, i~/ s and Hs{MM{)= Z/r. Let W m be thedouble of Iv[ I (m=2s)or 

m 
(m = 2s+l). This is a smooth, semi-free, ([-~-]-l)-connected G-manifold with 

W G t h e  d o u b l e  o f  N 1 a n d  

[ P ® p  , m = 2s 

Hs(W) = 
L ~ _ / r  ~ Z / r  , m : Z s + l .  

where p is a projective 7G-module. Moreover, t h e  geometric self-intersection 

(self-linking) is trivial on P and P (both copies of Z/r), and the intersection 

form (linking form) is hyperbolic. This means that the obstruction doing surgery 

on W to obtain a homotopy sphere can be formulated in terms of the "hyperbolic 

map" in the Ranicki-Rothenberg sequence [3]: 

m 
1. W i._.ss e q u i v a r t a n t l y  c o b o r d a n t  to  a s e m i - f r e e  a c t i o n  ( ~ ,  9) on  a 

homotopy m-sphere with ~G = F if ]H(XG(X)) = 0. 

To obtain the examples referred to in the Remarks following Theorem 

D, we note that ]H(x) = 0 for any x ~ A(G) when ]H : H0(~-/Z,K0(ZG))-~ Lh(TG). 

Clearly, any element of A(G) arises as XG(X) for some suitable X (e.g., a 

Moore space). For Theorem D itself, we note that when I-I< G is a subgroup, the 

restriction A(G)-* A(H) is onto (Ullom [6]). The existence of the desired examples 

now follows from: 

Proposition 2. Let ]H : Hm(z/Z;K0(ZG))_ -~ Lm(2zG)h be the hyperbolic map. 

i) If G = Q8, ]I-] = 0 when m ~ 1 (mod4) and ~-I ~injective when m- 1 (rood4). 

ii) l__f G = Q2 ~ (~ >__4), I-] = 0 when m = 2,3 (rood4). 
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