```
The surgery group }\mp@subsup{L}{3}{h}(\underset{by}{(G)
                                    by
                            Ian Hambleton
R. James Milgram
```

In [C-M,2] a theorem is proved which expresses $L_{3}^{p}(Z(G))$ as a simple functor of the rational representation ring $R_{Q}{ }^{(G)}$ when G is a finite 2-group. In the appendix to [C-M,2] one of us shows that the 2 -primary part of $\widetilde{\mathrm{K}}_{\mathrm{O}}(Z(\mathrm{G}))$ is the quotient of a finite group depending only on $R_{Q}(G)$ and the order of G.

Here we determine the structure of $L_{o}^{p}(Z(G))$, and provide a complete determination of a factorization of the map d in the RanickiRothenberg sequence

$$
* \ldots \rightarrow L_{2 i}^{p}(Z(G)) \xrightarrow{d} H_{o d}\left(Z / 2, \tilde{K}_{o}(Z(G))\right) \xrightarrow{\partial} \mathrm{L}_{2 i-1}^{h}(Z(G)) \rightarrow L_{2 i-1}^{p}(Z(G)) \rightarrow H_{e v} \rightarrow .
$$

through the group alluded to above. In particular we apply our results to obtain $L_{3}^{h}(Z(G))$, the surgery obstruction group, when G is a generalized quaternion 2 -group. This in turn leads to examples of the existence of semi-free group actions on homotopy spheres which do not admit balanced splittings, (see $[A-H]$ for definitions, and the reduction to properties of $*$ in particular pp. 8-9).

In detail we have

Theorem A: Let G be a finite 2-group, then $L_{o}^{P}(Z(G))=Z^{\ell(G)}$ where $\ell(G)$ is the number of irreducible real representations of G. Theorem B: For G a finite 2-group the kernel K in the map

$$
0 \rightarrow \mathrm{~K} \rightarrow \mathrm{~L}_{3}^{\mathrm{h}}(\mathrm{Z}(\mathrm{G})) \rightarrow \mathrm{L}_{3}^{\mathrm{p}}(\mathrm{Z}(\mathrm{G}))
$$

is known once the map $\varphi: W_{\ell}(G) \rightarrow D(G)$ is known, where $W_{\ell}(G)$ is given in [C-M,2 Appendix, especially A.7, A.8], for ℓ sufficiently large.

Indeed in $\S 2,3$, we give all the information needed to determine K explicitly. Also, note that $W_{\ell}(G)$ depends only on the rational representation ring of G, while the ℓ is determined by $|G|$. We remark that even the extension is determined from the information in φ, though we don't explain this here. Finally, we point out that the map d in * $L_{o d}^{P}(Z(G)) \rightarrow H_{e v}(Z / 2, \widetilde{K}(Z(G)))$ is already implicitly determined in [C-M,2], our techniques here can also be used to determine the map

$$
\mathrm{L}_{2}^{\mathrm{p}}(\mathrm{Z}(\mathrm{G})) \rightarrow \mathrm{H}_{\mathrm{ev}}\left(Z / 2, \widetilde{\mathrm{~K}}_{\mathrm{o}}(Z(G))\right)
$$

and in each case a theorem similar to B holds.

In $\mathbf{5}_{4}$, we apply these results to the generalized quaternion groups.
Theorem C : Let $Q_{2^{i}, 2}$ be the generalized quaternion group $\left\{x, y \mid x^{2^{i}}=y^{2}=(x y)^{2}\right\}$
then d is surjective in $*$ for $i=0$ and $L_{3}^{h}\left(Z\left(Q_{2}^{i}, 2\right)\right)=(Z / 2)^{i+1}$ injects into $L_{3}^{p}\left(Z\left(Q_{2}^{i}, 2\right)\right)$.

The application to balanced splittings results since [F-K-W], [M] show that the Swan homomorphism T is onto the 2 -torsion in $\tilde{K}_{0}\left(Z_{2}^{i}, 2\right)$. See also, §4.1, 4.2.
51. The proof of theorem A.

Consider the diagrams of long exact sequences
1.1

$$
\cdots \rightarrow L_{1}^{h}(\mathbb{Q}(G)) \rightarrow L_{1}^{p, \operatorname{tor}}(Z(G)) \rightarrow L_{0}^{p}(Z(G)) \rightarrow L_{0}^{h}(\mathbb{Q}(G)) \rightarrow \cdots
$$

1.2

From [C-M, 2 p. 33-35] or [R] we have that
1.3

$$
L_{1}^{p}(\mathbb{Q}(G))=L_{1}^{p}\left(\hat{\mathbb{C}}_{2}(G)\right)=0
$$

Since G is a finite group $K_{0}(\mathbb{C}(G))=R_{\mathbb{C}}(G)$, $=Z^{\ell}$ where ℓ is the number of irreducible \mathbb{C} representations of G. Also, since G is a 2-group we have that
1.4

$$
K_{0}\left(\hat{\mathbb{Q}}_{2}(G)\right) \cong K_{0}(\mathbb{Q}(G))
$$

under the natural inclusion [s] . Hence in 1.1 s is an isomorphism and \bar{s} is a surjection of $\left.L_{1}^{h}(\mathbb{C} G)\right) \rightarrow L_{1}^{h}\left(\hat{C}_{2}(G)\right)$.

$$
\begin{aligned}
& \downarrow \bar{s} \quad \downarrow r \quad \downarrow \\
& \cdots \rightarrow \mathrm{~L}_{1}^{\mathrm{h}}\left(\hat{\mathscr{C}}_{2}(\mathrm{G})\right) \xrightarrow{\partial} \mathrm{L}_{1}^{\mathrm{h}, \operatorname{tor}}\left(\hat{\mathrm{Z}}_{2}(\mathrm{G})\right) \rightarrow \mathrm{L}_{\mathrm{o}}^{\mathrm{h}}\left(\hat{\mathrm{Z}}_{2}(\mathrm{G})\right)^{\mathrm{i}} \mathrm{~L}_{\mathrm{o}}^{\mathrm{h}}\left(\hat{\mathbb{C}}_{2}(\mathrm{Q})\right) \rightarrow \cdots
\end{aligned}
$$

$$
\begin{aligned}
& \cdots \rightarrow H_{o d}\left(Z / 2, \tilde{K}_{o}(\mathbb{Q}(G))\right) \rightarrow L_{1}^{h}(\mathbb{Q}(G)) \rightarrow L_{1}^{p}(\mathbb{Q}(G)) \rightarrow H_{e v}\left(Z / 2, \tilde{K}_{o}\right) \cdots \rightarrow \\
& \downarrow \text { s } \downarrow \text { s } \downarrow \\
& \cdots \rightarrow H_{o d}\left(Z / 2, \tilde{K}_{o}\left(\hat{\mathscr{C}}_{2}(G)\right)\right) \rightarrow L_{1}^{h}\left(\hat{\mathbb{C}}_{2}(G)\right) \rightarrow L_{1}^{p}\left(\hat{\mathbb{Q}}_{2}(G)\right) \rightarrow H_{e v}\left(Z / 2, \tilde{K}_{o}\right) \cdots \rightarrow
\end{aligned}
$$

Now consider 1.2. In $[C-M, 2, p .31]$ we have shown that $L_{o}^{h}\left(\hat{Z}_{2}(G)\right)=Z / 2$ injects into $L_{o}^{h}\left(\hat{\mathbb{K}}_{2}(G)\right)$. So
1.5

$$
\partial: L_{1}^{h}\left(\hat{\mathbb{C}}_{2}(G)\right) \rightarrow L_{1}^{h, \operatorname{tor}}\left(\hat{Z}_{2}(G)\right)
$$

is ontc. But from $[C-M, 1$ §2] and $[C-M, 2, p .10]$ (or arguments totally analogous to those) we have that

$$
r: L_{1}^{p, \operatorname{tor}}(Z(G)) \rightarrow L_{1}^{h, \operatorname{tor}}\left(\hat{Z}_{2}(G)\right)
$$

is an isomorphism. Hence from the surjectivity of ∂ and \bar{s} it follows that the map
1.6

$$
L_{o}^{p}(Z(G))+L_{o}^{h}(Q(G))
$$

is an injection.
At this point, consider the diagram of exact sequences

where \mathscr{A} is a Z-maximal order containing $Z(G)$ in $\mathbb{C}(G)$, which shows that

$$
\mathrm{L}_{\mathrm{o}}^{\mathrm{p}}(\mathrm{Z}(\mathrm{G})) \longleftrightarrow i m: \mathrm{L}_{\mathrm{o}}^{\mathrm{p}}(\mathscr{A}(\mathrm{G})) \longleftrightarrow \mathrm{L}_{\mathrm{o}}^{\mathrm{p}}(\mathbb{C}(\mathrm{G}))
$$

Now, $L_{o}^{p}(\mathbb{C}(G))=\prod_{i} L_{o}^{p}\left(R_{i}(G)\right)$, where R_{i} is the ith irreducible
representation algebra. These are classified as to type in [C-M,2, p. 26]. Using Morita equivalence, the results of [M-H,pp, 117-118] for the type 4.3(ii) and 4.3 (iv)representations (in the notation of [C-M,2, p. 26]), [M-H, p. 95] for the type 4.3 (ii) representations and a direct calculation in the $4.3(\mathrm{i})$ case we see that im $\mathrm{L}_{\mathrm{o}}^{\mathrm{P}}(\mathscr{A}(G))$ in $\mathrm{L}_{\mathrm{O}}^{\mathrm{P}}(\mathbb{C}(G))$ is a direct sum of Z 's and the proof of theorem A is complete.

Remark 1.8: Similar techniques can be applied to calculate $L_{i}^{p}(Z(G))$ for G a finite 2 -group when $i=1,2$, as well. These results will be written down in their entirety in $[C-M-P]$ where the general case of G a 2-hyperelementary group will also be studied.

Remark 1.9: It is not true for finite 2 groups that $L_{o}^{h}(Z(G))=Z^{\ell}$, as $K_{o}(Z(G))(2)$ tends to grow very large and $L_{1}^{P}(Z(G))$ is zero except for some $Z / 2$'s coming from the type $4.3(i)$ representations of $[C-M, 2, p .26]$. So $L_{o}^{h}(Z(G))=Z^{\ell} \oplus(Z / 2)^{s}$. The Z^{\prime} 's may be detected via the Atiyah-Singer G-signature theorem [P], but we have no idea of what occurs with the $Z / 2$'s.
§2. Factoring the map d .
Throughout this section we assume that the reader is familiar with the appendix in $[C-M, 2]$.

Begin with the local-global pu11-back diagram
2.1

where $\mathscr{A}(\mathrm{G})$ is a maximal Z -order for $\mathrm{Z}(\mathrm{G})$ in $\mathbb{C}(\mathrm{G})$ and $\mathscr{A}(\mathrm{G}) \hat{\mathrm{Z}}_{\mathrm{Z}} \hat{\mathrm{Z}}_{2}$ is a maximal \hat{Z}_{2} order.
2.1 allows us to construct projective $Z(G)$ modules together with non-singular forms by mixing forms over $\hat{Z}_{2}(G)$ with forms over $\mathscr{A}(\mathrm{G})$ on $\mathscr{H}(G) \otimes_{Z_{2}} \hat{Z}_{2}$. Specifically, let $\left(\mathscr{H}(G)^{n}, A_{n}\right),\left(\hat{Z}_{2}(G)^{n}, B_{n}\right)$ be suitable forms and assume there is a C_{n} in $\left.G L_{n} G(G)(G) \otimes_{Z} \hat{Z}_{2}\right)$ so that
2.2

$$
C_{n} \cdot i\left(A_{n}\right) C_{n}^{*}=j\left(B_{n}\right)
$$

Then on the projective module W defined by C_{n},
2.3

2.2 gives a form which becomes A_{n} when tensoring W with $\mathcal{H} /(G)$, and B_{n} on tensoring with $\hat{Z}_{2}(G)$. We denote the form on W by

$$
\left[W, A_{n}, B_{n}, C_{n}\right]
$$

In the appendix to $[C-M, 2]$, the group $D(G) \subset \widetilde{K}_{o}(Z G)$ is described on page A.2, see in particular Theorem 1.4 , as a quotient of $K_{1}\left(\mathbb{N}(G) \otimes_{2} \hat{Z}_{2}\right)$. Then the following lemma is clear.

Lemma 2.4: The image of $\left[C_{n}\right]$ in $D(G) \subset \tilde{K}_{o}(Z(G))$ represents

$$
d\left(\left[W, A_{n}, B_{n}, C_{n}\right]\right)
$$

Throughout the remainder of this section we assume $B_{n}=\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)$ so that C_{n} makes A_{2} 2-1ocally equivalent to a hyperbolic form. (Actually, this assumption holds for every element of $\left.L_{o}^{p}(Z(G)).\right)$

Lemma 2.5: Let A_{n} be itself hyperbolic except at a single representation $M_{n}(F)$ where F is a formally real field, then

$$
d\left(W, A_{n}, B_{n}, C_{n}\right)=1
$$

Proof: At $M_{n}\left(F \hat{\otimes}_{\mathbb{Q}_{2}}\right)$ we have

$$
\left(\begin{array}{ll}
0 & I \\
I & 0
\end{array}\right)=C_{n} A_{n} C_{n}^{*}
$$

and taking determinants $\pm 1=\left(\operatorname{det} C_{n}\right)^{2} \operatorname{det}\left(A_{n}\right)$ but $\operatorname{det}\left(A_{n}\right)$ is a unit in $z\left(\rho_{2}{ }^{i}+\rho_{2^{-1}}^{-1}\right)$, the ring of algebraic integers in F. Now, use the unit
calculations of $\S 4$ of $[C-M, 2]$, in particular $4.6,4.7$ to see that $\operatorname{det}\left(C_{n}\right)$ is likewise a unit in $Z\left(\rho_{2}{ }^{i}+\rho_{2^{i}}^{-1}\right)$, hence in the kernel of d.

Lemma 2.6: Let A_{n} be hyperbolic except at a representation $M_{n}(\mathscr{O}(F))$
where $\mathscr{Q}(F)$ is the type $4.3(\mathrm{i})(\mathrm{a})$ simple algebra of $[C-M, 2]$, then the class of A in the Witt ring is determined by its multisignature at the various real places of F, and if A_{n} has signature 0 except at the $i^{\text {th }}$ place ω_{i}, where it has signature ± 2, then

$$
d\left[W, A_{n}, B_{n}, C_{n}\right]=\left(E_{i}^{-1}\right)
$$

where ε_{i} is any unit of F positive at all $\omega_{j}, j \neq i$ and negative at ω_{i}.

Proof: The maximal order $\mathscr{A l}(\mathrm{G})$ can be chosen to be $M_{\mathrm{n}}\left(\theta_{\mathscr{Q}(\mathrm{F})}\right) \oplus \mathscr{A}{ }^{1}$ where $\mathscr{O}_{\mathscr{Q}(\mathrm{F})}$ is a maximal order in $\mathscr{\mathcal { Z }}(\mathrm{F})$. Indeed we can take
2.7

$$
\theta_{Q(F)}=z\left(\frac{1+i+j+k}{2}, i, j\right) \otimes_{Z_{2}}^{z}\left(\rho_{2}+\rho_{2}^{-1}\right)
$$

In this $\sigma_{\mathscr{Q}(F)}, 1=\frac{1+i+j+k}{2}+\frac{1-i-j-k}{2}$ and so all elements of the center are even. Now consider the form $A_{n}=\left[\left(\begin{array}{cc}\varepsilon_{i} & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right]$.

As $F \neq \mathbb{C}, \theta_{\mathscr{Z}(F)} \otimes_{Z} \hat{Z}_{2}=M_{2}\left(\hat{Z}_{2}\left(\rho_{2 \ell}+\rho_{2}^{-1}\right)\right)$ [C-M,2, Theorem 4.3.(i)], and the involution is given up to equivalence by

$$
\left(\begin{array}{ll}
a & b \\
c & d
\end{array}\right) \rightarrow\left(\begin{array}{rr}
d & -b \\
-c & a
\end{array}\right),\left(\begin{array}{ll}
\varepsilon_{i} & \\
& \\
& -1
\end{array}\right) \longmapsto\left(\begin{array}{llll}
\varepsilon_{i} & 0 & & \\
0 & \varepsilon_{i} & 0 & \\
& 0 & -1 & 0 \\
& & 0 & -1
\end{array}\right)
$$

Now, we remark that it is sufficient to study C_{n} in $\sigma_{\mathscr{Q}(F)} \mathscr{Q}_{Z} \hat{\mathbb{Q}}_{2}$, since, by $[C-M, 2, A-4]$ no information is lost by using $K^{\prime}=i m K_{1}\left(\theta \otimes \hat{Z}_{2}\right)$ in $K_{1}\left(\sigma \otimes \hat{Q}_{2}\right)$. Here we may choose

$$
c_{2}=c^{1}\left(\begin{array}{cccc}
\varepsilon_{i}^{-1} & & & \\
& 1 & & \\
& & 1 & \\
& & & 1
\end{array}\right)
$$

where $\quad C^{1}$ effects the isomorphism $\left(\begin{array}{ll}0 & I \\ I & 0\end{array}\right)=C^{1}\left(\begin{array}{lll}1 & 0 & \\ 0 & 1 & \\ & & -1\end{array}\right)$
which is valid over \mathbb{C}, and clearly det $C^{1}=+1$. Thus, $\operatorname{det} C_{2}=\left(\varepsilon_{i}^{-1}\right)$ and 2.6 follows.

The situation is slightly different at the ordinary quaternion algebra $\mathscr{R}(\mathbb{0})$.

Lemma 2.8: Let A_{n} be hyperbolic except at $M_{n}\left(\mathscr{Q}(\mathbb{D})\right.$), then A_{n} has signature $2 i$ and

$$
d\left(\left[W, A_{n}, B_{n}, C_{n}\right]\right)=(-1)_{2}^{i}
$$

Proof: We may assume $\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right)=A_{n}$. Now there is a $\vee \varepsilon \hat{Z}_{2} \mathbb{\&}_{Z} Z\left(i, j, \frac{i+j+k+1}{2}\right)$ with norm $v \bar{v}=-1$. Set

$$
\mathrm{C}_{2}=\left(\begin{array}{cc}
\frac{1}{2} & \frac{1}{2} \\
-1 & 1
\end{array}\right)\left(\begin{array}{cc}
v & 0 \\
0 & 1
\end{array}\right)
$$

and $N\left(C_{2}\right)=-1$.
The remaining cases are all type $I I$ algebras of the form $M_{n}\left(Z_{2_{i}}\right)$)
or $M_{n}\left(Z\left(\rho_{2^{i}}-\rho_{2^{i}}^{-1}\right)\right)$.
§3. The type II algebras and theoren B.
We begin by obtaining the structure of the units over complex conjugation t in the rings $\hat{z}_{2}\left(\rho_{2}\right), \hat{Z}_{2}\left(\tau_{i}\right)$ where $\tau_{i}=\rho_{2^{i}}-\rho_{2}^{-1}$. For the next 2 results we assume $i \geqslant 3$.

Theorem 3.1: Let $\varepsilon_{1}=1+\rho_{2^{i}}+\rho_{2^{i}}^{-1}=1+\lambda_{i}$. There is a unit $\nu(i)$ such that $V(i) t(\nu(i))=-1$ and as a module over t we have $\hat{Z}_{2}\left(\rho_{2}\right)=\hat{Z}_{2+} \times \vec{M}_{-} \times I \hat{Z}_{2}(t) / t^{2}=$ Moreover \hat{Z}_{2+} is generated by ε_{1}, and M_{-}is the module $\hat{Z}_{2} \times z / 2^{i}$ with t action $t(a, b)=\left(-a,-b+2^{i-1}\right)$. The generators of M_{-}are v and ρ_{2}. Proof: Using Artin reciprocity the norms in $\hat{Z}_{2}\left(\lambda_{i}\right)$ of $\hat{Z}_{2}\left(\rho_{2}\right)$ have index 2 and ε_{1} is not a norm since its norm in \hat{Z}_{2} is -1 . Now $\left(\hat{Z}_{2}\left(\rho_{2}\right)\right)^{\cdot}=Z / 2^{i} \times\left(\hat{Z}_{2}\right)^{2^{i-1}}$ and $\hat{Z}_{2}\left(\lambda_{i}\right)^{\cdot}=z / 2 \times\left(\hat{Z}_{2}\right)^{2^{i-2}}$. Write the generators of this latter group $-1, \varepsilon_{1}, n_{2} \ldots n_{2}{ }_{i-2}$ where the n_{i} are all norms, say $n_{i}=w_{i} \cdot t\left(w_{i}\right)$. Clearly, the $w_{i}, \varepsilon_{1}, v$ and $\rho 2^{i}$ generate $\hat{Z}_{2}\left(\rho_{2^{i}}\right)$ and 3.1 follows directly.

Similarly, we have

Theorem 3.2: In $\hat{Z}_{2}\left(\tau_{i+1}\right)$ there is a unit $v(i+1)$ with $v(i+1) t(\nu(i+1))=-1$ and as a module over t we have

$$
\hat{z}_{2}\left(\tau_{i+1}\right) \cdot=\hat{z}_{2}^{+} \times M_{-} \times \Pi \hat{z}_{2}(t) / t^{2}=1
$$

Moreover, $\hat{\mathrm{Z}}_{2}^{+}, \mathrm{M}_{-}$are given as in 3.1.

Remark 3.3: The only differences in these 2 discriptions comes on comparing the images of global units, which give all but I of the η_{i} and are the same. However, in $\hat{Z}_{2}\left(\tau_{i+1}\right)-\hat{z}_{2}\left(\lambda_{i}\right), \epsilon_{1} 5$ is the remaining η_{i} while in $\hat{Z}_{2}\left(\rho_{2}\right)-\hat{Z}_{2}\left(\lambda_{i}\right)$ the remaining η_{i} can be taken to be 5 .

Remark 3.4: The cases not covered in the above are $\hat{z}_{2}(i)-\hat{z}_{2}$ where $\hat{Z}_{2}(i)^{\cdot}=z / 4 \times \hat{Z}_{2}(t) / t^{2}=1$ with generators $i, i+2 i$, and $\hat{Z}_{2}(\sqrt{-2})-\hat{Z}_{2}$ where $\hat{Z}_{2}(\sqrt{-2})=Z / 2 \times \hat{Z}_{2}(t) / t^{2}=1 \quad$ with generators $-1,1+\sqrt{-2}$. Hence, as in $[C-M, 2, A .8, A .9]$ on factoring out global units (and typos) we have
$3.5 \quad W_{\ell}\left(\hat{Z}_{2}\left(\rho_{2}\right), t\right)=\left(z / 2^{\ell}\right) 2_{-}^{i-2} \times z / 2^{\ell}(t) / t^{2}=1$
with generators $\nu, w_{j}, 1+2 i$, where $\left(w_{j}\right) t\left(w_{j}\right)=\eta_{j}$ a global unit, for $i \geqslant 3$
3.6

$$
W_{Q}\left(\hat{Z}_{2}(i), t\right)=z / 2^{\ell}(t) / t^{2}=1
$$

Also,
3.7

$$
W_{\ell}\left(\hat{z}_{2}\left(\tau_{i+1}\right), t\right)=\left(z / 2^{\ell}\right)^{2^{i-2}} \times z / 2^{\ell}(t) / t^{2}=1
$$

with generators $\nu, w_{j}, w, w t(w)=5 \varepsilon_{1}, i \geqslant 3$ and $w_{j} t\left(w_{j}\right)=r_{j}$ a global unit, while
3.8

$$
W_{\ell}\left(\hat{Z}_{2}(\sqrt{-2}), t\right)=z / 2^{\ell}(t) / t^{2}=1
$$

with generator $1+\sqrt{-2}$.

Now we have

Theorem 3.9: The image of d in the W_{ℓ} above is precisely the w_{j} with norm a global unit.

Proof: From [M-H,p. 118, example 2] we have that ker(rank homomorphism) $r: W\left(\hat{\mathbb{Q}}_{2}\left(\rho_{2}\right) \rightarrow Z / 2\right.$ is $z / 2$ generated by $\left\langle\varepsilon_{1}\right\rangle-\langle 1\rangle, r: W\left(\hat{\mathbb{Q}}_{2}\left(\tau_{i+1}\right)\right) \rightarrow Z / 2$ is $\left.\left\langle\varepsilon_{1}\right\rangle-<1\right\rangle$ for $i \geqslant 3$ and $\left.\left.<-1\right\rangle-<1\right\rangle$ in the remaining cases. In particular, the forms $\left.\left\langle\eta_{1}\right\rangle-<1\right\rangle$ for η_{1} a global unit are all trivial. But rationally $\left(\begin{array}{ll}w_{i}^{-1} & 0 \\ 0 & 1\end{array}\right)\left(\begin{array}{cc}\eta_{i} & 0 \\ 0 & -1\end{array}\right)\left(\begin{array}{ll}t\left(w_{i}^{-1}\right) & 0 \\ 0 & 1\end{array}\right)=\left(\begin{array}{ll}1 & 0 \\ 0 & -1\end{array}\right)$

So 3.9 follows, on checking from $\S 1$ that the $\left\langle\eta_{i}\right\rangle-\langle 1\rangle,\langle-1\rangle-\langle 1\rangle$, $\left.2 \ll \varepsilon_{1}\right\rangle-\langle 1\rangle$ generate the piece of $L_{o}^{P}(Z(G))$ coming from this representation.

Finally, putting 3.9 together with $2.5-2.8$, and checking, again using $\S 1$, that every element in $L_{o}^{P}(Z(G))$ goes to 0 in $L_{0}\left(\mathscr{M}(G) \& \hat{Z}_{2}\right)$, we see that we have completely determined d so theorem B follows.

54. The proof of theorem C.

We use the notation of $[C-M, 2$, Appendix], and begin by observing that according to $[F-K-W], D\left(Q_{2}, 2\right)=\widetilde{K}_{0}\left(Z\left(Q_{2^{i}, 2}\right)\right)(2)=Z / 2$, and in particular, for $Q_{2,2}$, the element ($\left.1_{\mathbb{Q}}, 1_{--}, 1_{-+}, 1_{+-},<3\right\rangle_{++}$) (where \mathscr{Q} is the quaternion representation and (\pm, \pm) are the 1 dimensional representations) represents the generator.

But the unit $1+x+y$ in $\hat{z}_{2}\left(Q_{2,2}\right)$ has image $\langle 3,1,1,1,3\rangle$, and $1+2 \mathrm{xy}+2 \mathrm{y} \mapsto\langle 1,1,1,3,3\rangle 1+2 \mathrm{x} \mapsto\langle-3,1,1,3,3\rangle$ so the product $(1+x+y)(1+2 x)(1+2 x y+2 y)^{-1} \mapsto<-9,1,1,1,3>$ and, on factoring out squares, we have that $(-1,1,1,1,1)$ also generates $D\left(Q_{2,2}\right)$. By 2.8 this last element is in the image of d. On the other
 Swan homomorphism T . Hence we have

Theorem 4.1: For $G=Q_{2,2}, K_{o}(G)=D(G)=Z / 2$ is in the image of both T and d.

More generally

Theorem 4.2: a) The Swan homomorphism

$$
\left.T:\left(Z / 2^{i+2}\right) \cdot \rightarrow \underset{2^{i}, 2}{ }\right)=z / 2
$$

is surjective.
b) For $Q_{2^{i}, 2}$, $i>1$ the non-trivial element in $D\left(Q_{2^{i}, 2}\right)$ is represented by ε_{1} at the quaternion algebra and ones at the remaining representations.

Proof: We display the representations as $\mathscr{Q}, M_{2}\left(Q\left(\lambda_{i}\right)\right), M_{2}\left(Q\left(\lambda_{i-1}\right)\right), \ldots$, $M_{2}(Q), Q_{--}, Q_{-}, Q_{+-}, Q_{+}+$where $\lambda_{i}=\rho_{2^{i}}+\rho_{2^{i}}^{-1}$ then in $W_{l}\left(Q_{i^{i}, 2}\right)$ we have for $i \geqslant 3$

$$
\begin{array}{ll}
1+x^{2^{i-2}}+y & \mapsto(3,1,3,3, \ldots, 3,1 \ldots 3,1,3) \\
1+2 y & \longmapsto(-3,3,3, \ldots, 3,1,3,1,3) \\
1+2 x^{2^{i-2}} & \longmapsto(-3,1,9 \ldots 9,1,3,1,3) \\
1+2 x^{2^{i-3}} & \mapsto(-3,3,1,9 \ldots 9,1,3,1,3)
\end{array}
$$

etc. provided $2^{i-j}>1$.
Comparing successive terms and factoring out squares we have

$$
\begin{array}{ll}
(1,3,1, \ldots & , 1)= \\
(1,1,3,1, \ldots & , 1)= \\
(1,1,1,3,1 \ldots & , 1)= \\
(1,1, \ldots, & 3,1,1,1,1)= \\
(-1,1,1, \ldots, \ldots, & 1)=1
\end{array}
$$

Next use

$$
\begin{aligned}
& 1+x+y^{2} \mapsto(1,3, \ldots, \quad 3,1,1,3,3) \\
& \begin{array}{rlrl}
\begin{array}{l}
3 \\
2^{i-1} \\
\\
-x^{-2^{i-1}}
\end{array} \longmapsto(9,9, \ldots, \quad 9,3,3,3,3) \\
\longmapsto(5,1,1, \ldots, \ldots & 1)
\end{array} \\
& \text { These imply }(3,1, \ldots, \ldots \text {, 1) }= \\
& \begin{array}{lll}
(1 \ldots, \ldots, & 1,3,1,3,1)= \\
(1 \ldots, \ldots, & 1,1,3,3,1)= \\
(1 \ldots, \ldots, & 1,1,1,3,3)=1
\end{array}
\end{aligned}
$$

Finally, note

$$
\begin{aligned}
& 1+x^{s}+y \rightarrow(3+\lambda(s), 1, \ldots, \ldots 1,3) \delta \text { odd } \\
&(3+\lambda(s), 1, \ldots, \ldots) \delta \text { even }
\end{aligned}
$$

where

These relations show

$$
(1, \ldots, \ldots, 1,3)
$$

generates $D\left(Q_{2}{ }^{i}, 2\right)$ and prove (a).
To prove (b) we do arithmetic in $\hat{Z}_{2}\left(\lambda_{i}\right)$ but factor out squares.
doing this we can factor out by the ideal $4\left(\lambda_{i}\right)$. Thus

$$
(1+\lambda(s)) \sim(1+\lambda(s))^{3}=(1+3 \lambda(s))\left(1+3 \lambda(s)^{2}\right)
$$

but

$$
\lambda(s)^{2}=\lambda(2 s)+2
$$

so

$$
\begin{aligned}
\left(1+3 \lambda(s)^{2}\right) & =(-1+3 \lambda(2 s)) \\
& \sim-1(1+5 \lambda(2 s)) \\
& \sim-1(1+\lambda(2 s))
\end{aligned}
$$

Whence,

$$
(1+3 \lambda(s)) \sim(-1)(1+\lambda(s))(1+\lambda(2 s))
$$

and we obtain

$$
(-1)^{i}(1+3 \lambda(s))(1+3 \lambda(2 s)) \cdots\left(1+3 \lambda\left(2^{i} s\right)\right) \sim(1+\lambda(s))
$$

Using the already determined relations we now have

$$
(1+\lambda(s), 1, \ldots 1,1) \sim(1,1, \ldots 1,3)
$$

for s odd. On the other hand, $\delta_{s}=1+\lambda(s)$ is a global unit, as we see from $[C-M, 2, p .27$, lemma 4.5], with norm -1 , and -1 together with the δ_{s} generate the global units mod squares. Hence, ε_{i} is an odd product of the $\delta_{s},-1$ and squares, which completes the proof.

Bibliography

[A-H] D. Anderson, I. Hambleton, "Balanced splittings of semi-free actions on homotopy spheres", these proceedings.
[C-M,1] G. Carlsson, R. J. Milgram, "Some exact sequences in the theory of Hermitian forms", J. Pure and Applied Algebra.
[C-M,2] \qquad , \qquad , "The structure of odd L-groups", these proceedings.
\qquad , \qquad , W. Pardon (to appear).
[F-K-W], A. Fröhlich, M. E. Keating, S. M. J. Wilson, "The class groups of quaternion and dihedral 2-groups", Mathematika 21 (1974) 64-71.
[M] R. J. Milgram, "Evaluating the Swan finiteness obstruction for periodic groups", Stanford (1978).
[M-H] J. Milnor, D. Husemoller, Symmetric Bilinear Forms, Springer Verlag, 1973.
[P] T. Petri, "The Atiyah-Singer invariant, the Wall groups $L_{n}(\pi, 1)$ and the function $\left(t e^{x}+1\right) /\left(t e^{x}-1\right)^{\prime \prime}$, Ann. of Math. 92 (1970) 174-187.
[R] A. Ranicki, "On the algebraic L-theory of semi-simple rings", J. of Algebra 50 (1978) 242-243.
[S] R. Swan, E. G. Evans, K-theory of Finite Groups and Orders, Springer Verlag, Lecture Notes in Mathematics \#149 (1970).
[W] C. T. C. Wall, "Formulae for the surgery obstruction", Topology 15 (1976) 189-210.

Institute for Advanced Study Stanford University

November 13, 1978

