The surgery group Lg(Z(G)) for G a finite 2-group
by
Ian Hambleton
R. James Milgram

In [C-M,2] a theorem is proved which expresses Lg(Z(G)) as a

simple functor of the rational representation ring R _(G) when G

Q
is a finite 2-group. In the appendix to [C-M,2] one of us shows
that the 2-primary part of EO(Z( G)) is the quotient of a finite group
depending only on RQ(G) and the order of G .

Here we determine the structure of LE(Z( G)) , and provide a

complete determination of a factorization of the map d 1in the Ranicki-

Rothenberg sequence

h

L. Lgi(z(c;)) 4, B 4(2/2, io(Z(G))) 2 Loio1

(z(6)) » 1, (2(6)) »H_ .
through the group alluded to above. In particular we apply our results

to obtain Lg(Z(G)) , the surgery obstruction group, when G 1is a
generalized quaternion 2-group. This in turn leads to examples of the
existence of semi-free group actions on homotopy spheres which do not admit
balanced splittings, (see [A-H] for definitions, and the reduction to
properties of * in particular pp. 8-9).

In detail we have

ZQ(G) where

Theorem A: Let G be a finite 2-group, then LE(Z(G)) =

2(G) is the number of irreducible real representations of G

Theorem B: For G a finite 2-group the kernel K in the map

h
0+ K > 1,(2(6)) » L§(2(6)
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is known once the map ¢ : wl(c) -~ D(G) 1is known, where WR(G) is given

in [C-M,2 Appendix,especially A.7, A.8], for & sufficiently large.

Indeed in §2,3, we give all the information needed to determine K

explicitly. Also, note that W, (G) depends only on the rational representa-

2

tion ring of G , while the £ is determined by | cl . We remark

that even the extension is determined from the information in ¢ , though

we don't explain this here., Finally, we point out that the map d in

* de(Z(G)) - Hev(Z/Z,EéZ(G))) is already implicitly determined in [C-M,2],

our techniques here can also be used to determine the map
p ~
L5 (z2(6)) ~ H_ (2/2,K_(2(6)))

and in each case a theorem similar to B holds.

In §4, we apply these results to the generalized quaternion groups.

i
2
Theorem C: Let Q 5 be the generalized quaternion group {x,y|x =
27,2
h i+l
then d is surjective in * for i =0 and L3(Z(Q 5 ) = (2/2)
27,2

P
injects into L3(Z(Q 1 »
27,2

The application to balanced splittings results since [F-K-W], [M]

show that the Swan homomorphism T 1is onto the 2-torsion in KO(Z(Q i )
27,2

See also, §4.1, 4.2.

y2 = (xy)z}

).
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§1. The proof of theorem A.

Consider the diagrams of long exact sequences

e o % St 5P N T )eee >
H (2/2,8 (£(6))) + Li(@(6) ~ L (@(6)) ~ K, (Z/2,K)

1.1 ls lg l l

cee B (/2,8 (5, (6))) > LI(EL0) > LR (g (@) B (2/2,K )eee >

tor

eee » 1D + 1Ps > 1P 5 b 3 e
L (@(G)) + Ly (z(6)) » L (2(G)) + L _(2(G))

[ ool
h,tor [ h 2 i h.~ o e
1 (2, (6> L (Z,(6))> L (g, (Q)

R O R
From {C-M,2 p. 33-35] or [R] we have that
1.3 L7 = Lﬁ(&z(c)) =0 .
Since G is a finite group KO(Q(G)) = R@(G) , = ZQ where & is the

number of irreducible ¢ representations of G . Also, since G is a

2-group we have that

1.4 K (£,(6)) = K_(9(6))

under the natural inclusion [s] . Hence in 1.1 s is an isomorphism

and s is a surjection of L?(QG)) > L2(¢é(G))
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Now consider 1.2. 1In [C-M,2, p. 31] we have shown that LE(ZZ(G)) = 7/2
injects into LE(CQ(G)) . So

o h” , (h,tor 2
1.5 9 : Ll(q;z(c)) Ly (zz(c))

is onte. But from [C-M,1 §2] and [C-M,2, p. 10} (or arguments totally
analogous to those) we have that

~

h, tor
(2,(6))

p,tor
L 1

r o (z(G)) ~ L

is an isomorphism. Hence from the surjectivity of 9 and s it follows

that the map
p h
1.6 LO(Z(G)) A LO(Q(G))

is an injection.

At this point, consider the diagram of exact sequences

1 J

P
Lo (2(0) ——— 1P ((6))

J l

— h —_— Pie —_— K
0 L (€(6) L, (@(6) Hod(Z/Z,Ko)

where g7 is a Z-maximal order containing Z2Z(G) in @(G) , which shows

that
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LY (2(6)) S im : LP(H(6)) —— 1D (x(6))

Now, LE(@(G)) = ll Lg(Ri(G)) , where Ri is the ith irreducible
i

representation algebra. These are classified as to type in [C-M,2, p. 26].
Using Morita equivalence, the results of [M-H,pp. 117-118] for the type
4,3(ii) and 4.3 (iv)representations (in the notation of [C-M,2, p. 26]),
[M-H, p. 95] for the type 4.3(ii) representations and a direct calculation
in the 4.3(i) case we see that im LEGAY(G)) in LS(@(G)) is a direct

sum of Z's and the proof of theorem A is complete.

Remark 1.8: Similar techniques can be applied to calculate L?(Z(G))
for G a finite 2-group when 1 = 1,2, as well. These results will be
written down in their entirety in [C-M-P] where the general case of G

a 2-hyperelementary group will also be studied.

Remark 1.9: Tt is not true for finite 2 groups that L:(Z(G)) = ZZ, as Ko(Z(G))(Z)

tends to grow very large and L?(Z(G)) is zero except for some 2Z/2's

coming from the type 4.3(i) representations of [C-M,2, p. 26]. So

L

LZ(Z(G)) = 2" @ (2/2)® . The 2's may be detected via the Atiyah-Singer

G-signature theorem [P], but we have no idea of what occurs with the Z/2's,
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§2. Factoring the map d

Throughout this section we assume that the reader is familiar with
the appendix in [C-M,2].

Begin with the local-global pull-back diagram

2(G) ————— > (G)

}

2, (6)

g//[(G)@RZZZ

where .4/(G) is a maximal Z-order for Z(G) in @(G) and 4 (G) 622

~

2
is a maximal 22 order.
2.1 allows us to construct projective Z(G) modules together with

non-singular forms by mixing forms over ZZ(G) with forms over . (G)

o n > n
A & . ifi o
on A(G) ZZ2 Specifically, let (#(G) , An), (ZZ(G) s Bn) be

suitable forms and assume there is a Cn in GLnCA7(G) @%ZZ) so that
2.2 i )* j (B
’ Cn 1(An Cn = n)
Then on the projective module W defined by Cn ,

n
W———— "”(GT)

£

2.3 QJY(G)QEZZ

1(:
n
0

~ n 3 ~
ZZ(G) —_— ./l(c)@zzz
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2.2 gives a form which becomes An when tensoring W with #(G) , and B

~

on tensoring with ZZ(G) . We denote the form on W by

(W, A, B, C_]

In the appendix to [C-M,2], the group D(G) C EO(ZG) is described on
page A.2, see in particular Theorem 1.4, as a quotient of KlCAV(G)QZZZ)

Then the following lemma is clear.

Lemma 2.4: The image of [Cn] in D(G) C EO(Z(G)) represents

d(lw, A, B Cn])

0 1
Throughout the remainder of this section we assume B = (I 0) s0

that Cn makes A2 2-locally equivalent to a hyperbolic form. (Actually,

this assumption holds for every element of LE(Z(G)).)

Lemma 2.5: Let An be itself hyperbolic except at a single representation

Mn(F) where F 1is a formally real field, then

dW, A, B, C) =1 .
n n n

Proof: At Mn(F %tgﬁ) we have

(03] -
1 0

and taking determinants *1 = (det Cn)zdet(An) but det (An) is a unit in

-1
zZ(p i + P i) , the ring of algebraic integers in F . Now, use the unit
2 2
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calculations of §4 of [C-M,2], in particular 4.6, 4.7 to see that det (Cn)

is likewise a unit in Z(p i + D_i) , hence in the kernel of d .
2 2

Lemma 2.6: Let An be hyperbolic except at a representation Mn(.?Z(F))

where @2(F) 1is the type 4.3(i)(a) simple algebra of [C-M,2], then the class of

A in the Witt ring is determined by its multisignature at the various

real places of F , and if An has signature 0 except at the ith place

®, where it has signature *2 , then

where Ei is any unit of F positive at all mj », j#1 and negative

Proof: The maximal order .#/(G) can be chosen to be Mn(eQ(F)) @,//[1
where ﬁQ(F) is a maximal order in 2(F) . Indeed we can take

S S -1
2.7 Z( 3 »i,3) @Zz(p ot P )

%@ ,

In this 6Q(F)’ 1= 1+1;J+k + 1—1-2-_]—1( and so all elements of the center

are even. Now consider the form A = (Ei 0) ,(0 l) .
v 0 -1 10

A ~ 4 )
As F# @G, Q;.:Z(F)@ZZZ = M2(22(029’+ 022-')) [c-M,2, Theorem 4.3.(1)], and the

involution is given up to equivalence by
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Now, we remark that it is sufficient to study Cn in %é(F)Qzﬁb’ since,

by [C-M,2,A-4] no information is lost by using K' = im Kl(68 22) in

K1(0’® gb) . Here we may choose
el
i
1
C2 = C1 1
1
1 0 I) 1 1 0
where C° effects the isomorphism (I 0 = C 0 1
-1 0
0 -1
. . . 1 ~1
which is valid over § , and clearly det C = +1. Thus, det C2 = (f«i )

and 2.6 follows.

The situation is slightly different at the ordinary quaternion algebra

20

Lemma 2.8: Let A  be hyperbolic except at Mn(EQ((D) , then A ~ has

signature 2i and

i
(W, A, B, €D = (-1,

n’ “n
Lo - A Gt
Proof: We may assume = A . Now there is a v € Z, &,2(i,j, )
e 0 1 n 2 7 2
with norm v =-1. Set
1 1
= = v
2 2 0
C =
2\ 1/ Vo1

and N(CZ) = -1 .

The remaining cases are all type 1II algebras of the form Mn(Z(p i))

2
or M (z(p , - D_i )
n 2 2
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§3. The type II algebras and theorem B.

We begin by obtaining the structure of the units over complex conjuga-

- n 2.
LM Xz, (8)/e7=

tion t 1in the rings Z. (P ,), Z2.(T.,) where T, =p .—O'% . For the
2 i 201 i i i
2 2 2
next 2 results we assume i = 3
Theorem 3.1: Let € =1+ p ., + D_% =1+ A, . There is a unit V(i) such
I — — l 1 1 1 —— I
2 2
that V(i)t(V(i)=-1 and as a module over t we have ZZ(D i)'= Z2
2
Moreover Zz+ is generated by El , and M_ is the module Z2 x z/2% with
t action t(a,b) = (—a,—b+21—1) . The generators of M are V and P i
2
Proof: Using Artin reciprocity the norms in ZZ(Ai) of ZZ(D i) have index
2
2 and El is not a norm since its norm in Z2 is -1 . Now
~ 1 ~ 2i—l ~ ~ 21-2
(Z,(p )" =1z/2" %X (z.) and Z,(}X.)" = 2/2 % (Z,) Write the
2 5t 2 201 2
generators of this latter group -1, €, n, ... n . where the n, are
1 2 21-2 i
= . € A%
all norms, say o, wi t(wi) . Clearly, the LT 10 and pzl

generate ZZ(D i)' and 3.1 follows directly.
2
Similarly, we have

A

Theorem 3.2: In Z (T, .) there is a unit V(i+l) with V(E+1)t(V(i+l)) = -1

20 i+l

and as a module over t we have

~ ~

. + > 2
Zy(Ti ) = 2y X M_ XM Zy(e)/t" =1

o+
Moreover, 22 , M are given as in 3.1.
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Remark 3.3: The only differences in these 2 discriptions comes on comparing
the images of global units, which give all but 1 of the ni and are the same.
. T _ e . .. . .

However, in 22( i+1) Zz(ki) , 15 is the remaining ni while in

. A s Y By
Z2(pzi) z,( i) the remaining 1N, can be taken to be 5

Remark 3.4: The cases not covered in the above are Zz(i)—-—-Z2 where

Zz(i)'= Z/4 % Zz(t)/t2=1 with generators i , i + 21 , and ZZ(/:E)——ZZ
2 . : 2 ,
where ZZ(J:f) = 7/2 % Zz(t)/t =1 with generators -1, 1 + V=2 .

Hence, as in [C-M,2, A.8, A.9] on factoring out global units (and

typos) we have

N i-2
3.5 W2y )ae) = (z/zg)f x 22" (0 /e%oy
2

with generators V, wj, 1+2i, where (wj)t(wj) = nj a global unit, for i =3

3.6 W (2, (.0 = 2/2% 0 /e
Also,
3.7 Wy (2 (T, 0,0 = 212 % g (/e
with generators V, wj, w, wt(w) = SEI,i 2 3 and wjt(wj) = nj a global

unit, while
2 2 2
3.8 WQ(ZZ(/Cf),t) = 7/27(t)/t =1

with generator 1 + /-2 .



Now we have

Theorem 3.9: The image of d in the WSL above is precisely the w,

with norm a global unit.

Proof: From [M-H,p. 118, example 2} we have that ker(rank homomorphism)

r w(Qz(o i) + 2/2 is /2 generated by <£1>‘ <1>, r : W(QZ(Ti-O-l)) > 2/2 is

2
<El> - <1> for 123 and <-1>- <1> in the remaining cases. In particular,

the forms <n > - <1> for n, a global unit are all trivial. But

w‘il 0 n. o\ftwhH o 1 0
rationally - . =

0 1 0 -1 0 1 0-1

So 3.9 follows, on checking from §1 that the <ni> -<1>,<-1>-<1>,
2(<e 1> - <1>) generate the piece of LE(Z(G)) coming from this
representation.

Finally, putting 3.9 together with 2.5-2.8, and checking, again using §1,
that every element in Lg(Z(G)) goes to 0 in LO(/ﬂ(G) ézigz) , we see

that we have completely determined d so theorem B follows.
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§4. The proof of theorem C.

We use the notation of [C-M,2, Appendix], and begin by observing

that according to [F-K-W], D(Q2i 2) = E;(Z(in 2))(2) = Z/2 , and in

particular, for the element (1 1 1 <3> )

Q2’2’ Q’l__) T R U ++

(where 2 is the quaternion representation and (*,*) are the 1 dimensional
representations) represents the generator.

But the unit 1 4+ x + y in EZ(QZ,Z) has image < 3,1,1,1,3 >,
and 1 + 2xy + 2y +—<1,1,1,3,3 > 1 + 2x > <-3,1,1,3,3 >
so the product (1 + x + y)(1 + 2x)(1 + 2xy + 2y)_1 — <-9,1,1,1,3 >
and, on factoring out squares, we have that (-1,1,1,1,1) also generates
D(QZ,Z) . By 2.8 this last element is in the image of d . On the other
hand, by definition the elements (1,...1,0 ) are the image of the

++
Swan homomorphism T . Hence we have

Theorem 4.1: For G = Q2 2,KO(G) = D(G) = Z/2 is in the image of both T
>
and 4 .

More generally

Theorem 4.2: a) The Swan homomorphism

T o(z/2Y% = (o L) =

27,2
is surjective.

b) For. Q i , 1.> 1 the non-trivial element in D(Q i ) is
27,2 27,2

represented by El at the quaternion algebra dnd ones at the remaining

representations.
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.

Proof: We display the representations as 2, M2(Q (Ai)) s MZ(Q(Xi_l)),..

MZ(Q)’ Q> 41 Qs Q, , where Ai =0 .+ O_i then in WéQ i ) we have
2 2 27,2
for i 23
’ 21—2
1+ x +y —(,1,3,3,...,3,1__3,1,3)

1+ 2y —¢3, 3,3,...,3,1, 3,1,3)
21—2

1+ 2x —¢3,1,9 ... 9,1, 3,1,3)
p1-3

1+ 2x +(-3,3,1,9 ... 9,1, 3,1,3)

etc. provided 2779 >1

Comparing successive terms and factoring out squares we have

1,3,1,... , )=
(1,1,3,1,... , )=
(1,1,1,3,1... , )=

1,1,..., 3,1,1,1,)=

1,1,1,... ,

Next use
1+ x + y2 (1,3 5o 3,1,1,3,3)
. 3 (9,9 ..., 9,3,3,3,3)
L2 2T > (5,1,1,... , ... 1)
These imply (3,1,..., y 1) =
(T .ooey ool 1,3,1,3,1) =
a ..., ..., 1,1,3,3,1) =
@ ..., ..., 1,1,1,3,3) = 1
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Finally, note

1+x°+y — (3 +XAs), 1,..., ... 1,3) & odd

(3 + A(s),1,..., ...) & even

-8

where A(s) = p°, + p °
i i

2 2

These relations show
a,..., ..., 1,3

generates D(Q ., ) and prove (a).
2,2
3 ~
To prove (b) we do arithmetic in Zz(Xi) but factor out squares.

doing this we can factor out by the ideal A(Xi) . Thus

(L + A(s))~(1 + X(s))3= 1+ 3X(s))(l+—3k(s)2)

but
A 2
(s)” = A(2s8) + 2
so
(1 + 3 (s)?) = (-1 + 3A(28))

~ -1(1 + 5Ax(2s))

~ -1(1 + A(2s))
Whence,

(1 + 3X(s)) ~ (-1) (1 + A(s)) (1 + A(2s))
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and we obtain

oA+ AEN A+ 3r@s)) 0 @+ A2 ~ @+ A

Using the already determined relations we now have

1+ X(s),1,... 1,1) ~ (1,1,... 1,3)

for s odd. On the other hand, 55 =1+ A(s) is a global unit, as we
see from [C-M,2, p. 27, lemma 4.5], with norm -1, and -1 together
with the Gs generate the global units mod squares. Hence, Ei is an

odd product of the 55 , =1 and squares, which completes the proof.
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