
h(Z(G)) for The surgery group L 3 
by 
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R. James Milgram 

G a finite 2-group 

In [C-M,2] a theorem is proved which expresses L~(Z(G)) as a 

simple functor of the rational representation ring R @(G) when G 

is a finite 2-group. In the appendix to [C-M,2] one of us shows 

~hat the 2-primary part of K (Z(G)) is the quotient of a finite group 
o 

depending only on R~(G) and the order of G . 

Here we determine the structure of LP(z(G)) , and provide a 
o 

complete determination of a factorization of the map d in the Ranicki- 

Rothenberg sequence 

, ... + L~i(Z(G) ) d_~ Hod(Z/2, ~o(Z(G)) ) _~8 L2i-lh (Z(G)) ÷ L~i_I(Z(G)) +Hev +" 

through the group alluded to above. In particular we apply our results 

to obtain L~(Z(G)) , the surgery obstruction group, when G is a 

generalized quaternion 2-group. This in turn leads to examples of the 

existence of semi-free group actions on homotopy spheres which do not admit 

balanced splittings, (see [A-HI for definitions, and the reduction to 

properties of * in particular pp, 8-9). 

In detail we have 

Theorem A: Let G be a finite 2-group, then LP(z(G)) = Z %(G) where 
o 

g(G) is the number of irreducible real representations of G 

Theorem B: For G a finite 2-group the kernel K in the map 

0 + K + L~(Z(G)) + L~(Z(G)) 
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is known once the map D : W~(G) " D(G) is known, where W~(G) is given 

inn [C-M,2 Appendix,especially A.7, A.8], for ~ sufficiently large. 

Indeed in §2,3, we give all the information needed to determine K 

explicitly. Also, note that W% (G) depends only on the rational representa- 

tion ring of G , while the ~ is determined by I G I We remark 

that even the extension is determined from the information in ~ , though 

we don't explain this here. Finally, we point out that the map d in 

* LPod(Z(G)) ÷ Hev(Z/2,K~Z(G))) is already implicitly determined in [C-M,2] 

our techniques here can also be used to determine the map 

L~(Z(G)) ÷ Hev(Z/2,Ko(Z(G))) 

and in each case a theorem similar to B holds. 

In §4, we apply these results to the generalized quaternion groups. 

2 i 2 
Theorem C: Let Q2i, 2 be the generalized quaternion group {x,ylx = y 

d is surjective in * for i = 0 and L~(Z(Q2i,2)) = (Z/2) i+l then 

into L~(Z(Q2i , o  2 )) " injects 

The application to balanced splittings results since [F-K-W], [M] 

show that the Swan homomorphism T is onto the 2-torsion in K°(Z(Q2i,2 ))" 

See also, §4.1, 4.2. 

= ( x y )  2 } 
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The proof of theorem A. 

Consider the diagrams of long exact sequences 

i.i 

.... Hod(Z/2,Ko(~(G))) ÷ Lh(~(G)) -~ L~(@(G)) ÷ Hev(Z/2,F,o) .... 

~ .od~ZI2 L~)~) + ~($2<~)~ ~ ,~$~))~ ~ev~ZI~ L) 

1.2 

.... LhI(~(G)) -> L~ 't°r(Z(G)) -> L p(Z(G)) ÷ Lh(@(G)) .... 

I i r i i 
^ 

h ^ ~ ~ , tor~ i~ (~  ~ ( z ~ ( ~  ~o(;~Q~ . . . .  . . . .  L I (~(G) ) - -  51 

From [C-M,2 p. 33-35] or [R] we have that 

1.3 
^ 

L~((0(G)) = LP(G2(G)) = 0 . 

Since G is a finite group Ko(~(G)) = R (G) , = Z ~ where E is the 

number of irreducible ~ representations of G Also, since G is a 

2-group we have that 

1.4 Ko(~2(G)) ~ Ko(~(G)) 

under the natural inclusion [s] . Hence in i.i s is an isomorphism 

and s is a surjection of Lh(~G))÷ Lh(~2(G)) . 
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Now consider 1.2. In [C-M,2, p. 31] we have shown that L~(Z2(G)) = Z/2 

injects into L~($2(G)) . So 

h ^ h,tor(~2(G) ) 1.5 ~ : LI(~2(G)) ÷ L I 

is onto. But from [C-M,I §2] and [C-M,2, p. i0] (or arguments totally 

analogous to those) we have that 

^ 

r : LP't°r(Z(G))I ÷ Llh't°r(Z2(G)) 

is an isomorphism. Hence from the surjectivity of ~ and s it follows 

that the map 

1.6 LP(z(G))o ÷ L~(~(G)) 

is an injection. 

At this point, consider the diagram of exact sequences 

I i 
LP (Z(G)) + LP (~,d/(G)) 

O 

I l 
0 ~ Lh(~(G)) + LP(~(G)) .~ Hod(Z/2,Ko) 

where d[( is a Z-mamLmal order containing Z(G) in ~( G ) , which shows 

that 
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LP(z(G))o c > im : L~(~I£(G))  c ~ LoP(~(G)) 

Now, L~(~(G))n = '']I LP(Ri (G))o , where R.I is the ith irreducible 

i 

representation algebra. These are classified as to type in [C-M,2, p. 26]. 

Using Morita equivalence, the results of [M-H,pp. l17-118]for the type 

4.3(ii) and 4.3 (i~)representations (in the notation of [C-M,2, p. 26]), 

[M-H, p. 95] for the type 4.3(ii) representations and a direct calculation 

in the 4.3(i) case we see that im LP(df(G))o in L~(~(G)) is a direct 

sum of Z's and the proof of theorem A is complete. 

Remark 1.8: Similar techniques can be applied to calculate L~(Z(G)) 

for G a finite 2-group when i © 1,2, as well. These results will be 

written down in their entirety in [C-M-P] where the general case of G 

a 2-hyperelementary group will also be studied. 

Remark 1.9: It is not true for finite 2 groups that Lh(z(G))o = Z%' as Ko(Z(G))(2 ) 

tends to grow very large and L~(Z(G)) is zero except for some Z/2's 

coming from the type 4.3(i) representations of [C-M,2, p. 26]. So 

L~(Z(G)) = Z ~ ~ (Z/2) s . The Z's may be detected via the Atiyah-Singer 

G-signature theorem [P], but we have no idea of what occurs with the Z/2's. 
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§2. Factoring the map d . 

Throughout this section we assume that the reader is familiar with 

the appendix in [C-M,2]. 

Begin with the local-global pull-back diagram 

2 . 1  

z(c) 

z 2 ( c )  

, d{ (C) 

i 

^ 

÷~l{(G) ~Z 2 

where .~(G) is a maximal Z-order for Z(G) in ~(G) and ~£1(G) ~zZ2 
^ 

is a maximal Z 2 order. 

2.1 allows us to construct projective Z(G) modules together with 

non-singular forms by mixing forms over Z2(G) with forms over ~£1(G) 

on ~(G) ~zZ2 . Specifically, let (~(G) n, An), (Z2(G) n, Bn ) be 
^ 

suitable forms and assume there is a Cn in GLn611L(G) hZ2) so that 

2.2 C n • i(An)Cn = J(Bn) 

Then on the projective module W defined by C n , 

2.3 

Z2(G)n jn 

÷ ~f{ (GT)n 

/ 
,,t/(G)~zZ 2 

1% 
- - +  J / l  (c) ®zZ2 
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2.2 gives a form which becomes A when tensoring W with ~(G) 
n 

on tensoring with Z2(G) . We denote the form on W by 

, and B 
n 

[W, An, Bn, Cn] 

In the appendix to [C-M,2], the group D(G) c K (ZG) is described on 
o 

^ 

page A.2, see in particular Theorem 1.4, as a quotient of KI(,s~(G)~zZ 2) • 

Then the following lemma is clear. 

Lemma 2.4: The image of [C n] in D(G) C Ko(Z(G)) represents 

d([W, A , B , C ]) 
n n n 

Throughout the remainder of this section we assume B = so 
n 0 

that C makes A 2 2-1ocally equivalent to a hyperbolic form. 
n 

t h i s  a s s u m p t i o n  h o l d s  f o r  eve ry  e l em en t  of  L P ( z ( G ) ) . )  
o 

(Actually, 

Lemma 2.5: Let A be itself hyperbolic except at a single representation 
n 

Mn(F) where F is a formally real field, then 

d(W, A n , B n, C n) = 1 . 

A 
Proof: At Mn(F ~ ~) we have 

and taking determinants ±i = (det Cn)2det(An ) but det (An) is a unit in 

Z(P2i + P21 i) , the ring of algebraic integers in F . Now, use the unit 
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calculations of §4 of [C-M,2], in particular 4.6, 4.7 to see that det (C n) 

is likewise a unit in Z(P2i + p-l) , hence in the kernel of d . 
2 i 

Lemma 2.6: Let An be hyperbolic except at a representation Mn(~(F) ) 

where ~(F) is the type 4.3(i)(a) simple algebra of [C-M,2], then the class of 

A in the Witt ring is determined by its multisignature at the various 

real places of F , and if A n has signature 0 except at the i th place 

i ' where it has signature ±2 , then 

d[W, An, Bn, Cn] = (ci I) 

where g. is any unit of F positive at all ~ . , j # i and negative l j 

at ~ . • 
-- i 

i 
Proof: The maximal order .J(l(G) can be chosen to be Mn(@~(F)) ~d( 

where ~(F) is a maximal order in ~(F) . Indeed we can take 

= z(l+i+J +k 
2.7 ~(F) 2 

In this o~ )~-(F'' 1 = l+i+j+k2 + l-i-j-k2 

i j> 

and so all elements of the center 

are even. Now consider the form A =n ~i -~) ' I Ol ~II 

^ M2 (Z2 (p2%+ 2~ As F ~ ~, ~(F)~zZ2 = p )) 

involution is given up to equivalence by 

[C-M,2, Theorem 4.3.(i)], and the 

I ° 
( ii) ' i 

- a 0 - 1  

0 - 
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Now, we remark that it is sufficient to study C 
n 

by [C-M,2,A-4] no information is lost by using 

KI(W ~ 2 )  • 

where C I 

Here we may choose 

C2 CI i 
= i i/ 

effects the isomorphism I 0 = 

^ 

in ~O~(F)~Z~2, since, 

K' = im KI(@~ 52) in 

0 0 ) c i 

-i 0 

0 -i 

over ~ , and clearly det C I = +i. Thus, det C 2 = (gi l)- which is valid 

and 2.6 follows. 

The situation is slightly different at the ordinary quaternion algebra 

~(~) 

Lemma 2.8: Let A n be hyperbolic except at M (~(~)) then A has 
n ' n 

signature 2i and 

1 i d([W, An, Bn, Cn]) = (-)~ 

Proof: We may assume (~ 01) = An N°w there is a v g Z2 ~Z Z(i'j' 

with norm vv = -i . Set 

l ! v 0 

i+j+k+l) 
2 

and N(C 2) = -i . 

The remaining eases are all type 

or M (Z(P . - P-~ )). 
n 2 z 2 z 

II algebras of the form Mn(Z(P i )) 
2 
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§3. The type II algebras and theorem B. 

We begin by obtaining the structure of the units over complex conjuga- 
^ 

tion t in the rings Z2(P2 i), Z2(T i) where Tz = p2 l'-p-~2 l . For the 
] 

next 2 results we assume i ~ 3 . 

Theorem 3.1: Let gl = 1 + 02i + P-~ = 1 + % There is a unit ~(i) such 
- -  21 i 

^ 

that V(i)t(V(i))=-i and as a module over t we have Z2(02i)'= Z2 +x ~_x ~ Z2(t)/t2= 

A 

Moreover Z2+ is generated by E 1 , and M is the module Z 2 × Z/2 i with 

t action t(a,b) = (-a,-b+2 i-l) . The generators of M are Y and P . • 
-- 21 

^ 
Proof: Using Artin reciprocity the norms in Z2(% i) of Z2(02i) have index 

Write the 

2 and gl is not a norm since its norm in Z 2 is -i . Now 

(Z2(P2i))" = Z/2 i x (Z2)2i-I ^ ^ and Z2(~i)' = Z/2 x (Z2)2i-2 

generators of this latter group -i, El, n 2 ... n2i_2 where the 

all norms say n I = w. • t(w.) . Clearly, the w i, gl' v and 

generate Z2(02i)" and 3.1 follows directly. 

Similarly, we have 

n. are 
i 

P . 

21 

Theorem 3.2: In Z2(Ti+I) there is a unit ~(i+l) with ~(i+l)t(v(i+l)) = -i 

and as a module over t we have 

^ ^+ 
Z2(Ti+l)" = Z 2 × M_ × ~ Z2(t)/t 2 = i 

^+ 
Moreover, Z 2 , M_ are given as in 3.1. 
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Remark 3.3: 

the images of global units, which give all but 1 of the 
^ 

However, in Z2(Ti+I)-- Z2(%i) , £15 is the remaining Ni while in 
^ ^ 

Z2(O2i)--Z2(% i) the remaining n i can be taken to be 5 . 

^ A 

Remark 3.4: The cases not covered in the above are Z2(i)--Z 2 where 

Z2(i)'= Z/4 × Z2(t)/t2=l with generators i , i + 2i , and Z2(~--2)--Z2 

where Z2( -~)" = Z/2 × Z2(t)/t2=l with generators -i, i + /f2 . 

Hence, as in [C-M,2, A.8, A.9] on factoring out global units (and 

The only differences in these 2 discriptions comes on comparing 

N. and are the same. 
I 

typos) we have 

3.5 W~(Z2(P2i),t) = (Z/2~)2 i-2 × Z/2~(t)/t2=l 

with generators ~, wj, i+2i, where (w.)t(w.)3 J = n.j a global unit, for i ~ 3 

3.6 W£(Z2(i),t) = Z/2~(t)/t2=i 

Also, 

3.7 W~(Z2(Ti+I),t ) = (Z/2~) 2i-2 x Z/2 ~ (t)/t2=l 

with generators ~, wo,] w, wt(w) = 5el,i ~ 3 and w.t(w.) = Tl. a global 
J J J 

unit, while 

3.8 W%(Z2(~i-2),t ) = Z/2~(t)/t2=l 

with generator i + ~ . 
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Now we have 

Theorem 3.9: The image of d in the W E above is precisely the w. 
3 

with norm a global unit. 

Proof: From [M-H,p. 118, example 2] we have that ker(rank homomorphism) 

~2 (02i) ^ 
r : W( ÷ Z/2 is Z~2 generated by <el > ~ <i> , r : W(@2(Ii+I)) + Z/2 is 

~i >- <i> for i ~ 3 and < -i>- <i> in the remaining cases. In particular, 

the forms <NI > - <I> for N a global unit are all trivial. But 
I 

rationally 

So 3.9 follows, on checking from §i that the <D .> - <i> , <-i> - <i> , 
i 

2 ( < e  1 > -  < 1 > )  g e n e r a t e  t h e  p i e c e  o f  LP(z(G))o coming f rom t h i s  

r e p r e s e n t a t i o n .  

F i n a l l y ,  p u t t i n g  3 .9  t o g e t h e r  w i t h  2 . 5 - 2 . 8 ,  and c h e c k i n g ,  a g a i n  u s i n g  §1, 

t h a t  e v e r y  e l e m e n t  i n  LP(z (G) )  goes  to  0 i n  L ( ,~(G)  ~ Z2 ) , we s e e  
o o Z 

that we have completely determined d so theorem B follows. 
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§4. The proof of theorem C. 

We use the notation of [C-M,2, Appendix], and begin by observing 

that according to [F-K-W], D(Q i ) = vL(Z(Q i ))t2)~ = Z/2 , and in 
2 ,2 2 ,2 

particular, for Q2,2 ' the element (i~ ,I__,i_+ ,i+_ , <3>++) 

(where ~ is the quaternion representation and (±,+-) are the 1 dimensional 

representations) represents the generator. 

But the unit 1 + x + y in Z2(Q 2 2 ) has image < 3,1,1,1,3 > , 

and 1 + 2xy + 2y e-+ < 1,1,1,3,3 > 1 + 2x ~-+ <-3,1,1,3,3 > 

So the product (i + x + y)(l + 2x)(l + 2xy + 2y) -I e-+ <-9,1,1,1,3 > 

and, on factoring out squares, we have that (-I,i,i,i,I) also generates 

D(Q2, 2) . By 2.8 this last element is in the image of d . On the other 

hand, by definition the elements (l,...l,e) are the image of the 
++ 

Swan homomorphism T . Hence we have 

Theorem 4.1: For G = Q2,2,Ko(G) = D(G) = Z/2 is in the image of both T 

and d . 

More generally 

Theorem 4.2: a) The Swan homomorphism 

T : (z/2i+2) " --4 D(0 i ) = Z/2 
2 ,2 

is surjective. 

b) For Q2i, 2 , i > i the non-trivial element in D(Q2i,2) is 

represented by E 1 at the quaternion algebra and ones at the remaining 

representations. 



88 

Proof: 

-i 
M2(Q), Q_ ,Q_ +, Q+ _, Q+ + where %i = P2 i+ P2 i then in 

for i ~ 3 

2i-2 
1 + x + y ~(3,1,3,3,...,3,1 3,1,3) 

We display the representations as ~, M2( Q (%i)) , M2(Q(Xi_I) ) ..... 

W~i, 2) we have 

~-+63 , 3,3,...,3,1, 3,1,3) 

~3,1,9 ... 9,1, 3,1,3) 

~-+(-3,3,1,9 ... 9,1, 3,1,3) 

1 + 2y 

1 + 2x 2i-2 

1 + 2x 2i-3 

etc. provided 2 l-j > 1 . 

Comparing successive terms and factoring out squares we have 

(1,3,1 .... , ])= 

(1,1,3,1 .... , I)= 

(1,1,1,3,1... , i)= 

(i,i,... , 3,1,1,1,1)= 

(-1,1,1 ........ , 1)= 1 

Next use 

1 + X + y2 F-+(I,3 ,... , 3,1,1,3,3) 

3 

2 i-I _2i-i 
i +x - x 

~--+(9,9 .... , 9,3,3,3,3) 

I---+(5,1,1 ........ i) 

These imply (3,1,..., ... , 

(i ....... , 

(i ....... , 

(i ....... , 

i) = 

1,3,1,3,1) = 

1,1,3,3,1) = 

1,1,1,3,3) = i 
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where 

I + x s + y --+ (3 + l(s), I ..... ... i}3) ~ odd 

(3 + l(s),l ..... ...) 6 even 

k(s) = pS. + p-S 
21 21 

These relations show 

( i  . . . .  , . . . .  1 , 3 )  

generates D(Q2i 2) and prove (a). 

To prove (b) we do arithmetic in Z2(li) but factor out squares. 

doing this we can factor out by the ideal 4(1 i) • Thus 

(i + l(s))~(l + l(s)) 3= (i + 31(s))(l+Bl(s) 2) 

but 

so 

Whence, 

l(s) 2 = l(2s) + 2 

(I + 31(s) 2) = (-i + 31(2s)) 

-i(i + 51(2s)) 

-l(l + ~(2s)) 

(I + 31(s)) ~ (-i) (i + l(s)) (i + l(2s)) . 
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and we obtain 

(-l)i(l + 3l(s))(l+ 3~(2s)) ''' (i + 3~(2is)) ~ (i + l(s)) 

Using the already determined relations we now have 

(i + ~(s),l .... i,i) ~ (i,i .... 1,3) 

for s odd. On the other hand, ~ = i + %(s) is a global unit, as we 
s 

see from [C-M,2,  p.  27,  lemma 4 . 5 ] ,  w i t h  norm - 1 ,  and -1  t o g e t h e r  

with the ~s generate the global units mod squares. Hence, e. is an 
i 

odd p r o d u c t  o f  t h e  6 , - 1  and s q u a r e s ,  w h i c h  c o m p l e t e s  t h e  p r o o f .  
s 
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