Splitting of Hermitian Forms over Group Rings.

by Hambleton, I.; Riehm, C. in Inventiones mathematicae volume 45; pp. 19 - 34

Terms and Conditions

The Göttingen State and University Library provides access to digitized documents strictly for noncommercial educational, research and private purposes and makes no warranty with regard to their use for other purposes. Some of our collections are protected by copyright. Publication and/or broadcast in any form (including electronic) requires prior written permission from the Göttingen State- and University Library.

Each copy of any part of this document must contain these Terms and Conditions. With the usage of the library's online-systems to access or download a digitizied document you accept these Terms and Conditions.

Reproductions of materials on the web site may not be made for or donated to other repositories, nor may they be further reproduced without written permission from the Göttingen State- and University Library.

For reproduction requests and permissions, please contact us. If citing materials, please give proper attribution of the source.

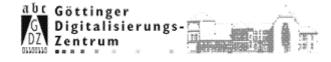
Contact:

Niedersaechsische Staats- und Universitaetsbibliothek Göttingen Digitalisierungszentrum 37070 Göttingen Germany E-Mail: gdz@www.sub.uni-goettingen.de

Purchase a CD-ROM

The Goettingen State and University Library offers CD-ROMs containing whole volumes / monographs in PDF for Adobe Acrobat. The PDF-version contains the table of contents as bookmarks, which allows easy navigation in the document. For availability and pricing, please contact:

Niedersaechsische Staats- und Universitaetsbibliothek Göttingen Digitalisierungszentrum 37070 Göttingen Germany E-Mail: gdz@www.sub.uni-goettingen.de



Splitting of Hermitian Forms over Group Rings

I. Hambleton* and C. Riehm*

Department of Mathematics, McMaster University, Hamilton, Ontario, L8S 4K1

Let Π be a cyclic group of prime order p. According to a theorem of Reiner [16], a finitely generated $\mathbb{Z}\Pi$ -module M which is torsion free over \mathbb{Z} has a decomposition into $\mathbb{Z}\Pi$ -submodules

$$M = M_{(0)} \oplus M_{(1)} \oplus M_{(2)} \tag{1}$$

where $M_{(2)}$ is projective over $\mathbb{Z}\Pi$, Π operates trivially on $M_{(0)}$ and through p^{th} roots of 1 on $M_{(1)}$. We call such a splitting a Reiner splitting.

Let $h: M \times M \to \mathbb{Z}\Pi$ be a non-singular hermitian or skew hermitian form with respect to the involution on $\mathbb{Z}\Pi$ which inverts the elements of Π . Our main concern is with conditions for the existence of an *orthogonal* Reiner splitting

$$M = M_{(0)} \perp M_{(1)} \perp M_{(2)}. \tag{2}$$

Such splittings do not always exist (see Example 8) and are of interest in topology (see § 5).

It is well-known [19] that M is the pull-back of a \mathbb{Z} -module M_0 and a Λ_1 -module M_1 where $\Lambda_1 = \mathbb{Z}[\tau]$, τ a primitive p^{th} root of 1. We show that h is the pull-back of "almost unimodular" forms $h_0 \colon M_0 \times M_0 \to \mathbb{Z}$ and $h_1 \colon M_1 \times M_1 \to \Lambda_1$ (Ths. 3 and 6), and further that h has an orthogonal Reiner splitting if and only if h_0 and h_1 have "Jordan splittings" (Th. 7). In §§ 3 and 4 we give conditions under which h_0 and h_1 have Jordan splittings, principally under the assumption of indefiniteness which allows the very effective spinor genus theory of quadratic and hermitian forms to be used.

In § 5 we deal with the topological case. A smooth p-fold covering $\tilde{X}^{2l} \to X^{2l}$ of closed oriented manifolds gives rise to a non-singular ε -hermitian form h on $M = H^l(X; \mathbb{Z})/T$ orsion (we refer to such forms as "geometric"). Conditions on h implied by the geometry are determined (the most important coming from the Π -signature theorem of [1]) and, when combined with earlier results, show that a geometric h always has an orthogonal Reiner splitting if it is skew hermitian (Th. 30). Necessary and sufficient conditions involving the signature $\sigma(h_0)$ are

^{*} Research supported by N.R.C. grants A4000 and A8778 resp.

given in Theorems 31 and 32 when h is hermitian and h_0 and h_1 are indefinite. It is also shown (Th. 33) that a geometric hermitian form has an orthogonal Reiner splitting if $M_{(0)} = 0$. These theorems yield information about the construction of \tilde{X} as an equivariant handlebody. This approach was used in [13] (p odd) and [9] (p=2) and the results of § 5 can be used to extend them.

In a final section, § 6, analogous results for the non-orientable case when p = 2 and the involution is $a + b T \mapsto a - b T$ $(a, b \in \mathbb{Z}, \Pi = \{1, T\})$ are given.

§ 1. Modules over $\mathbb{Z}\Pi$

The results in this section are either contained in [19] or easily derived therefrom. M is the pull-back of a diagram $M_0 \rightarrow M_p \leftarrow M_1$ where both maps are epimorphisms, M_i is a projective Λ_i -module ($\Lambda_0 = \mathbb{Z}$) and M_p is an \mathbb{F}_p -module. The given maps of M, M_0 and M_1 onto M_p are all denoted $x \mapsto x_p$, so that

$$M = \{(x_0, x_1) \in M_0 \oplus M_1: \ x_{0p} = x_{1p}\}. \tag{3}$$

Similarly the maps $M \to M_i$ are denoted by $x \mapsto x_i$ (i = 0, 1). We often consider M_0 and M_1 as submodules of $M_0 \oplus M_1$. All of this applies when $M = \Lambda := \mathbb{Z}\Pi$, in which case $\Lambda_p = \mathbb{F}_p$. We put $\Gamma = \mathbb{Z} \oplus \Lambda_1$.

A Reiner splitting (1) is not unique but M is characterized by r_0 , r_1 , r_2 and cls M where r_i =number of summands in a direct sum decomposition of $M_{(i)}$ into indecomposables, and cls $M:=\operatorname{cls} M_1=$ the ideal class of Λ_1 belonging to M_1 . We have $r_i+r_2=\operatorname{rank}_{A_i}M_i$ (i=0,1), $r_2=\operatorname{rank}_{\mathbb{F}_p}M_p$. If two of the summands in (1) are zero, say $M=M_{(i)}$ for i=0,1 or 2, we say M is of type i.

Proposition 1. For i=0 or 1, let N_i be a direct summand of M_i .

- (a) N_i is a direct summand of M (of type i) if and only if the image N_{ip} of N_i in M_p is 0.
- (b) There is a submodule N_{i+1} (indices mod 2) of M_{i+1} such that the pull-back N of $N_i \rightarrow N_{ip} \leftarrow N_{i+1}$ is a direct summand of M of type 2 if and only if $\operatorname{rank}_{\mathbb{F}_p} N_{ip} = \operatorname{rank}_{A_i} N_i$.

Proof. The proof of (a) and the necessity of (b) are contained in the argument on page 79, [19]. For the sufficiency in (b) write $M_i = N_i \oplus P_1 \oplus \cdots \oplus P_k$ where rank P_j is 1 for all j. Then N_{ip} and the P_{jp} span the vector space M_p . By renumbering if necessary we may suppose that $M_p = N_{ip} \oplus P_{1p} \oplus \cdots \oplus P_{lp}$ where all the summands are non-zero. Let $Q_i = N_i \oplus P_1 \oplus \cdots \oplus P_l$ and write $M_i = Q_i \oplus Q_i'$ where $Q_i' = P_{l+1} \oplus \cdots \oplus P_k$. There is a commutative diagram

since Q_i' is a projective Λ_i -module. Then $M_i = Q_i \oplus Q_i''$ where $Q_i'' = (1 - \Theta) Q_i'$ and $Q_{ip}'' = 0$. It now follows by Swan's proof that there is a submodule N_{i+1} of M_{i+1} of the required kind. \square

Proposition 2. (a) Suppose $\chi_p \in \text{Hom}(M_p, \mathbb{F}_p)$ and i = 0, or 1. Then one can find $\chi_i \in \text{Hom}_{A_i}(M_i, \Lambda_i)$ such that

commutes.

(b) If $\chi_i \in \operatorname{Hom}_{\Lambda_i}(M_i, \Lambda_i)$ has the property that its composite with $\Lambda_i \to \mathbb{F}_p$ factors through $M_i \to M_p$, then there exists $\chi_{i+1} \in \operatorname{Hom}_{\Lambda_{i+1}}(M_{i+1}, \Lambda_{i+1})$ such that $\chi_0 \oplus \chi_1 \in \operatorname{Hom}(M, \Lambda)$.

§ 2. Hermitian Forms

Let $\bar{}$ denote the usual involution on Λ , the identity on \mathbb{Z} and "complex conjugation" on Λ_1 . Let $\varepsilon = \pm 1$ and let $h \colon M \times M \to \Lambda$ be an ε -hermitian form ($\bar{}$ -linear in the second variable). It has a unique extension to an ε -hermitian form $\tilde{h} \colon V \times V \to \mathbb{Q}\Pi$ where $V = M \otimes_{\mathbb{Z}} \mathbb{Q}$. Fix a generator T of Π and a primitive p^{th} root of 1, τ , in Λ_1 . Identify $\mathbb{Q}\Pi = \mathbb{Q} \oplus F_1$ so that $T = (1, \tau)$, where $F_1 = \text{field}$ of quotients of Λ_1 . Then $V = V_0 \oplus V_1$ where V_0 (resp. V_1) is a \mathbb{Q} -space (resp. F_1 -space) and this leads to an orthogonal splitting $\tilde{h} = \tilde{h}_0 \oplus \tilde{h}_1$ where \tilde{h}_0 is an ε -symmetric form on V_0 and \tilde{h}_1 is an ε -hermitian form on V_1 .

If $x \in M_0 \oplus M_1$, $px \in M$ and so the map $x \mapsto \frac{1}{p}(px)$ is a Γ -isomorphism $M_0 \oplus M_1 \simeq \Gamma M \subseteq V$ where $\Gamma = \mathbb{Z} \oplus \Lambda_1$. We identify via this map, so the M_i are lattices in V_i . Define h_i to be the restriction of $\tilde{h_i}$ to M_i (i=0,1). Thus

$$h(x, y) = (h_0(x_0, y_0), h_1(x_1, y_1)) \in \Lambda$$
(4)

so there is an ε -symmetric bilinear form $h_p: M_p \times M_p \to \mathbb{F}_p$ satisfying

$$h_n(x_n, y_n) = h_0(x_0, y_0)_n = h_1(x_1, y_1)_n = h(x, y)_n.$$
(5)

Now suppose h is non-degenerate, i.e. the adjoint map $M \to M^*$ given by $y \mapsto h(, y)$ is injective. Then for i = 0 and 1, $\tilde{h_i}$ is non-degenerate and

$$M_i^{\sharp} = \{ y \in V_i : h_i(M_i, y) \subseteq \Lambda_i \}$$

is a lattice containing M_i and isomorphic to M_i^* via h_i . We define the *Jordan invariants* of h_i to be the invariant factors of M_i in M_i^* . If $M_i \rightarrow M_i^*$ is bijective, i.e. all Jordan invariants are $= \Lambda_i$, h_i is non-singular or unimodular.

Define $\pi_0 = p$, and $\pi_1 = \tau - \tau^{-1}$ if p is odd, $\pi_1 = 2$ if p = 2. When p is odd, $(\pi_1) = \pi_1 \Lambda_1$ is the only ramified prime in Λ_1 . We call h_i almost unimodular if its Jordan invariants are all Λ_i or (π_i) , i.e. $\pi_i M_i^* \subseteq M_i$.

Theorem 3. Let h be an ε -hermitian form on M. Then there are unique ε -hermitian forms h_i : $M_i \times M_i \to \Lambda_i$ (i = 0, 1) satisfying (4) and there is an ε -symmetric form h_p : $M_p \times M_p \to \mathbb{F}_p$ satisfying (5).

Moreover if h is non-singular, h_p is non-singular and h_0 and h_1 are almost unimodular; in fact

$$M_0^{\#}/M_0 \simeq (\mathbb{Z}/(p))^{r_0}, \quad M_1^{\#}/M_1 \simeq (\Lambda_1/(\pi_1))^{r_1}.$$
 (6)

We note that it follows from §1 that the number of Jordan invariants of h_i which $= \Lambda_i$ is r_2 for both i = 0 and 1.

Proof. By what has already been proved we may assume h non-singular. Now $M_i = M_{(i)} \oplus M_{(2)i}$ for i = 0, 1 so $M_i^* = M'_{(i)} \oplus M'_{(2)i}$ where e.g., $M'_{(i)}$ is the annihilator in M_i^* of $M_{(2)i}$. It suffices to show that

$$M_i = \pi_i M'_{(i)} \oplus M'_{(2)i}. \tag{7}$$

Now $h_i(M_i, M_{(i)})_p = h_p(M_p, M_{(i)p}) = 0$ (Prop. 1(a)), so the left side \subseteq right side. But by Proposition 1, $\ker(M_i \to M_p) = M_{(i)} \oplus \pi_i M_{(2)i}$ whose inner product with the right side of (7) is $= (\pi_i)$, so if x_i is in the right side and $\chi_i = h_i(\cdot, x_i) \in M_i^*$, it follows from Proposition 2(b) and the non-singularity of h that $h_i(\cdot, y_i) = h_i(\cdot, x_i) \in M_i^*$ for some $y_i \in M_i$, so $x_i = y_i \in M_i$ and (7) follows. The non-singularity of h_p is a consequence of $M_i^{(\pi_i)} = M_{(i)} \oplus \pi_i M_{(2)i}$ and

Proposition 4. h_p is non-singular iff $\ker(M_i \to M_p) = M_i^{(\pi_i)}$ for i = 0 or 1.

Here, for any ideal A of Λ_i ,

$$M_i^A = \{x \in M_i: h_i(x, M_i) \subseteq A\}.$$

For the next two results, we do not assume that a form h is given on M, but only that M is the pull-back of (epimorphisms) $M_0 \rightarrow M_p \leftarrow M_1$. Lemma 5 follows easily from the definitions.

Lemma 5. Suppose an almost unimodular form h_i is given on the Λ_i -module M_i . Then there are modules P' and Q' such that

$$M_i^* = P' \oplus Q', \quad M_i = P' \oplus \pi_i Q'.$$

Let P (resp. Q) be the annihilator of Q' (resp. P') in M_i . Then

$$M_i = P \oplus Q$$
, $M_i^{(\pi_i)} = \pi_i P \oplus Q$, $M_i^* = P \oplus \pi_i^{-1} Q$.

Theorem 6. Let $\varepsilon = \pm 1$ and suppose ε -hermitian forms h_0 , h_1 and h_p are given on M_0 , M_1 and M_p satisfying for i = 0 and 1

$$h_i(x_i, y_i)_p = h_p(x_{ip}, y_{ip})$$
 (8)

for all x_i and y_i in M_i . Then there is a unique ε -hermitian form $h: M \times M \to \Lambda$ satisfying (4). h_0 and h_1 are the component forms of h as defined in Theorem 3. The form h is non-singular iff h_0 and h_1 are almost unimodular and h_n is non-singular.

Proof. Only the sufficiency of the last statement will be verified. Let $\eta \in M^*$. As in the definition of h_0 and h_1 from h, one can show that $\eta = \eta_0 \oplus \eta_1$ where $\eta_i \in M_i^*$ = $\operatorname{Hom}_{A_i}(M_i, A_i)$ for i = 0, 1. Then $\eta_i = \tilde{h}_i(\cdot, y_i)$ for some y_i in M_i^* . Since $M_i^{(\pi_i)} \subseteq \ker(M_i \to M_p)$ by (8), $M_i^{(\pi_i)} \subseteq M$ and so $\eta_i(M_i^{(\pi_i)})_p = \eta_{i+1}(0)_p = 0$ (indices mod 2). It follows easily from Lemma 5 that $y_i \in M_i$. Moreover $\eta \in M^*$ implies $h_0(x_0, y_0)_p = h_1(x_1, y_1)_p$ for all x in M, whence $y_0 = y_1 = y_1$ by (8) and the non-degeneracy of h_p . Thus $y \in M$ and since $h(\cdot, y) = \eta$, h is non-singular. \square

Let h_i be a non-degenerate form on M_i . Then h_i (or M_i) is called A-modular (A an ideal in A_i) if the Jordan invariants of M_i are all = A. A splitting $M_i = N_1 \perp N_2 \perp \ldots \perp N_t$ is called a Jordan splitting if for each μ , N_{μ} is A_{μ} -modular with $A_{\mu} \neq A_{\nu}$ when $\mu \neq \nu$. A Jordan splitting for an almost unimodular lattice is of the form $N_1 \perp N_2$ where N_1 is unimodular or 0, N_2 is (π_i) -modular or 0.

Theorem 7. If $h: M \times M \to \Lambda$ is a non-singular ε -hermitian form, M has an orthogonal Reiner splitting if and only if M_0 and M_1 have Jordan splittings with respect to h_0 and h_1 resp.

Proof. Since M_0 and M_1 are orthogonal with respect to \tilde{h} , their submodules $M_{(0)}$ and $M_{(1)}$ (from any Jordan splitting) are orthogonal with respect to h. If (2) is an orthogonal Reiner splitting, it follows easily from (7) that $M_i = M_{(2)i} \perp M_{(i)}$ is a Jordan splitting. Conversely if $M_i = J_i \perp K_i$ is a Jordan splitting (i = 0, 1), $M_i^{(n_i)} = \pi_i J_i \perp K_i$, so by Propositions 4 and 1, $M = K_0 \perp K_1 \perp J$ is an orthogonal Reiner splitting where J is the pull-back of $J_0 \rightarrow M_p \leftarrow J_1$. \square

Example 8. Let p=5. Then $\rho=\tau+\tau^{-1}$ is a root of $X^2+X-1=0$, so $\rho=\frac{1}{2}(-1+\sqrt{5})$ (choosing a suitable embedding $\Lambda_1\to\mathbb{C}$) and is a unit. Define $M=\Lambda x\oplus\Lambda y$ where $\Lambda x=\mathbb{Z}x$ is of type 0 and Λy is of type 2, and let h be the hermitian form on M with matrix $\begin{pmatrix} 3\Sigma & \Sigma \\ \Sigma & T+T^{-1} \end{pmatrix}$ with respect to the generators x, y, where $\Sigma=1+T+\cdots+T^{p-1}$. By projecting the matrix entries into Λ_0 and Λ_1 , we see that the matrices of h_0 and h_1 are resp. $\begin{pmatrix} 15 & 5 \\ 5 & 2 \end{pmatrix}$ and (ρ) . Thus h_1 is unimodular and h_0 is almost unimodular (since its discriminant is 5 and so its invariant factors are 1 and 5), so h is non-singular by Theorem 6. But h_0 does not have a Jordan splitting since otherwise $2=\pm(a^2+5b^2)$ would be solvable in \mathbb{Z} and 2 would be a quadratic residue (mod 5). Thus h does not have an orthogonal Reiner splitting by Theorem 7. \square

Proposition 9. (a) Suppose h_i is an almost unimodular ε -hermitian form whose Jordan invariants Λ_i and (π_i) have multiplicity r_2 and r_i resp. Then for i=0,1, the form $h_i^{\sharp} := \pi_i \tilde{h_i}$ on M_i^{\sharp} is almost unimodular, in fact has Jordan invariants Λ_i (r_i times) and (π_i) (r_2 times).

(b) If $M_i = J \perp K$ is a Jordan splitting with respect to h_i , then $M_i^* = \pi_i^{-1} K \perp J$ is a Jordan splitting with respect to h_i^* , and conversely.

(c) The map $x \mapsto \pi_i x$: $\pi_i^{-1} M_i \to M_i$ gives an isometry $h_i^{\#} \simeq \eta h_i$ where $\eta = \pm 1$. If p is odd and i = 1, $\eta = -1$ and $h_i^{\#}$ is $(-\epsilon)$ -hermitian; otherwise $\eta = 1$ and $h_i^{\#}$ is ϵ -hermitian.

Proposition 10. Assume h is a non-singular ε -hermitian form.

- (a) When p=2 and $\varepsilon=-1$, r_0 , r_1 and r_2 are all even integers.
- (b) When p is odd and $\varepsilon = -1$, r_0 and r_2 are even.
- (c) When p is odd and $\varepsilon = 1$, r_1 is even.

Proof. Proposition 9 follows from the definitions and Lemma 5. The forms h_{ip} on $M_{ip} = M_i / M_i^{(\pi_i)}$ and $(h_i^*)_p$ on $(M_i^*)_p = M_i^* / (M_i^*)^{(\pi_i)}$ are non-degenerate and Proposition 10 follows easily from Proposition 9 and the fact that an alternating form has even rank. \square

Proposition 11. Suppose that h_i is almost unimodular and that N is an isotropic direct summand of M_i of rank 1. Then there is a submodule P of rank 1 such that $N \oplus P$ is an orthogonal direct summand of M_i , and $h_i(N, M_i) = h_i(P, M_i) = \Lambda_i$ or (π_i) .

Proof. Since $\pi_i M_i^* \subseteq M_i$, $h_i(N, M_i) = \Lambda_i$ or (π_i) . Suppose first that it is Λ_i . Define P to be a direct complement in M_i of the orthogonal complement of N. Then L = N + P is non-singular and so splits M_i orthogonally since the composite of the canonical homomorphisms $L \to M_i \to M_i^* \to L^*$ is an isomorphism. If $h_i(N, M_i) = (\pi_i)$, apply the first case to (M_i^*, h_i^*) and $\pi_i^{-1}N$ (the condition $h_i^*(\pi_i^{-1}N, M_i^*) = \Lambda_i$ follows from Lemma 5) and then use $M_i = (M_i^*, h_i^*)^{(\pi_i)}$. \square

§ 3. Jordan Splittings over Λ_1

Throughout this section p is odd and h_1 is an almost unimodular ε -hermitian form on M_1 with Jordan invariants Λ_1 and (π_1) of multiplicity r_2 and r_1 resp. If f is any form, we set f(x, x) = f(x).

Proposition 12. Suppose h_1 is isotropic and unimodular, $\varepsilon = 1$, and M_1 is of rank 2. Then $h_1(M_1) = \Lambda_1^0 :=$ subring of elements of Λ_1 fixed by $\bar{}$.

Proof. Consider M_1 as a lattice in V_1 and write $M_1 = Ax_1 + Bx_2$ where $h_1(x_1) = 0$ and $h_1(x_1, x_2) = 1$. Since M_1 is unimodular, $B = \bar{A}^{-1}$, and, since the trace $\operatorname{Tr}\left(\sum_{1}^{\frac{1}{2}(p-1)}\tau^i\right)$ from Λ_1 to Λ_1^0 is -1, $\operatorname{Tr}\Lambda_1 = \Lambda_1^0$ and it follows that we may suppose $h_1(x_2) = 0$ as well. By (7.2), [2], we may assume that A is an integral ideal such that the conjugate $\bar{\mathfrak{P}}$ of any prime divisor \mathfrak{P} of A is not a prime divisor of A. Consider the lattice $\Lambda_1 y_1 \perp A\bar{A}^{-1}y_2$ on V_1 with $h(y_1) = 1$, $h(y_2) = -1$. It is unimodular and is split by the isotropic module $B(y_1 + y_2)$ where $B = \Lambda_1 \cap A\bar{A}^{-1} = A$ and so by the previous argument must be isometric to M_1 . Thus $1 = h_1(ax_1 + bx_2) = \operatorname{Tr}(a\bar{b})$ for some $ax_1 + bx_2 \in M_1$ so if $c \in \Lambda_1^0$, $c = h_1(cax_1 + bx_2) \in h_1(M_1)$. \square

The ring Λ_1^0 (or its field of quotients F_1^0) has $\frac{1}{2}(p-1)$ distinct imbeddings into \mathbb{R} and corresponding to each of them h_1 has a signature which we denote $\sigma_i(h_1)$, $1 \le i \le \frac{1}{2}(p-1)$.

Theorem 13. h_1 has a Jordan splitting if

$$|\sigma_i(h_1)| \le r_2$$
 for all i, when $\varepsilon = 1$,
 $|\sigma_i(h_1)| \le r_1$ for all i, when $\varepsilon = -1$.

Proof. By Proposition 9 it suffices to consider $\varepsilon=1$, and we may assume $r_2 \ge 1$ and $r_1 \ge 2$ by Proposition 10(c). Thus h_1 is isotropic [17] so by Proposition 11, M_1 is split orthogonally by a unimodular or (π_1) -modular isotropic plane H. Suppose H is unimodular. Then we can find $x \in M_1 - \pi_1 M$ which is orthogonal to H and satisfies $h_1(x, M_1) \subseteq (\pi_1)$. Thus $h_1(x) \in (\pi_1) \cap \Lambda_1^0 = \pi_1^2 \Lambda_1^0$ so by Proposition 12 we can find $y \in \pi_1 H$ so that x + y is isotropic. Thus A(x + y) is a direct summand of M_1 for an ideal $A \not\equiv (\pi_1^{-1})$. Thus $h_1(A(x + y), M_1) = (\pi_1)$ so by Proposition 11 we may suppose that H is (π_1) -modular. The theorem now follows by induction. \square

When $\sigma_1(h_1) = \sigma_2(h_1) = \cdots = \sigma_{\frac{1}{2}(p-1)}(h_1)$, we shall say that h_1 has equal signatures; this is the case when h arises geometrically (cf. Th. 27).

Lemma 14. If M_1 is indefinite and if some lattice L in its genus has a Jordan splitting, then M_1 also has a Jordan splitting. Moreover, if L has a Jordan splitting in which each of the two components has equal signatures, then M_1 has a Jordan splitting with the same property.

Proof. We may assume h_1 is not unimodular or (π_1) -modular. Let $L = N \perp P$ be a Jordan splitting. Denote by J the set of ideals A of A_1 with norm (from F_1 to F_1^0) = A_1^0 , and by J_0 the set of principal ideals aA_1 with norm a=1. By 5.2(i), [17] there are lattices $N_1 = N$, N_2, \ldots, N_s in the genus of N such that the s ideals $\lfloor N/N_i \rfloor$ (= product of the invariant factors of N_i in N) run over a complete set of representatives of J/J_0 . Define $L_i = N_i \perp P$ for $i=1,\ldots,s$. Then $\lfloor L/L_i \rfloor = \lfloor N/N_i \rfloor$ and since the L_i are all in the genus of M_1 , they represent all classes in that genus. (As remarked on p. 244 of [21], the group $E(A)/f_A(E_0)$ in the proof of 5.24(i) on p. 400, [17], is trivial and so by that proof two indefinite lattices R and S in the same genus are in the same class iff $\lfloor R/S \rfloor = aA_1$ with norm a=1. See also 5.28, [17].) Thus M_1 is equivalent to one of the L_i and so has a Jordan splitting. The last statement of the lemma follows easily. \square

Theorem 15. If h_1 is indefinite with equal signature, M_1 has a Jordan splitting in which each of the two components has equal signatures.

Proof. By Proposition 9 we may suppose $\varepsilon=1$. Since $\pi_1 \notin F_1^0$ but $\pi_1^2 \in F_1^0$, $\pi_1^2 < 0$ at each real place of F_1^0 and it is easy to see that there is an hermitian space W_1 of dimension r_1 with diagonal form $\langle \pm 1, ..., \pm 1, \pm \pi_1^{r_1} \rangle$ of determinant $\pi_1^{r_1}$ such that the number of positive (resp. negative) entries is \leq the number of positive (resp. negative) entries in a diagonalization of $V_1 = F_1 M_1$. We may therefore suppose that $V_1 = W_0 \perp W_1$ by a theorem of Landherr (5.8, [17]). Since det M_1 is a unit at all finite primes $\pm (\pi_1^2)$, W_0 supports a unimodular lattice J by Proposition 6, [20], and local class field theory. Similarly by considering $\pi_1^{-1} h_1$ on W_1 , we see that W_1 supports a (π_1) -modular lattice K. Since $J \perp K$ is in the genus of M_1 by Theorems 7.1 and 8.2 of [11] and Proposition 3.2 of [17], the theorem follows from Lemma 15.

§ 4. Jordan Splittings over Z

Throughout this section we consider the almost unimodular lattice M_0 with ε -symmetric bilinear form h_0 , with Jordan invariants \mathbb{Z} and (p) of multiplicity r_2 and r_0 resp. The results apply also to M_1 when p=2.

If $\varepsilon = -1$, M_0 has a Jordan splitting by a theorem of Frobenius (Th. 1, § 5, [3]) so we may assume h_0 is symmetric. If the rank of M_0 is 2, the existence of a Jordan splitting is easily determined by reduction theory (see e.g. [6]) so we may assume rank $M_0 \ge 3$.

If L is any lattice (with a bilinear form), we shall denote its p-adic completion $\mathbb{Z}_p \otimes_{\mathbb{Z}} L$ by L_p in this section only. A lattice L with form f over \mathbb{Z} or \mathbb{Z}_2 is called even if $f(x) \in 2\mathbb{Z}_2$ for all x, otherwise it is called odd; the lattice L with form af, where a is a scalar, is denoted by $a \circ L$. We record several useful results:

Theorem 16 (see 93:29, [15]). Let $L \perp K$ and $L' = J' \perp K'$ be Jordan splittings of almost unimodular \mathbb{Z}_2 -lattices. Then L and L' are equivalent if and only if

- (a) they are equivalent over \mathbb{Q}_2 ,
- (b) J and J' have the same parity, and $\frac{1}{2} \circ K$ and $\frac{1}{2} \circ K'$ have the same parity,
- (c) det $J \equiv \det J' \mod 2^s \mathbb{Z}_2$ where s = 1 when J and $\frac{1}{2} \circ K$ are odd, s = 2 when one is odd and the other is even, s = 3 when both are even,
- (d) when J is odd and K is even, $J \perp \langle \det J \cdot \det J' \rangle$ and $J' \perp \langle 1 \rangle$ are equivalent over \mathbb{Q}_2 .

Theorem 17 (see Satz 5, [12] and Th. 4.2, [7]). Let L and L' be almost unimodular indefinite \mathbb{Z} -lattices of rank ≥ 3 . If L and L' are in the same genus, then they are equivalent.

Theorem 18 (see 93:18, [15]). An even unimodular lattice over \mathbb{Z}_2 is an orthogonal direct sum of planes all of which have matrices $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ except possibly for one with matrix $\begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix}$.

 σ denotes the signature and [] is the greatest integer function.

Theorem 19. If p is odd, an indefinite even lattice M_0 has a Jordan splitting if and only if r_0 is even and

- (a) $\sigma(M_0) \equiv 0 \pmod{8}$,
- (b) $|\sigma(M_0)| \le 8[r_0/8] + 8[r_2/8]$.

Remark. The conditions r_0 even and (a) are equivalent to the *p*-modular Jordan component of L_p being hyperbolic or, equally well, to $(h_0^{\sharp})_p$ being hyperbolic. See Proposition 20.

Proof. We note first that M_{02} even and unimodular implies rank $M_0 = r_2 + r_0$ is even. The necessity follows from the fact that the signatures of the Jordan components of M_0 are $\equiv 0 \pmod{8}$ since they are even and modular ([18]).

Conversely we may assume $\sigma(M_0) \ge 0$ by scaling by -1 if necessary. Write $\sigma(M_0) = 8m_2 + 8m_0$ with $m_i \in \mathbb{Z}$, $0 \le 8m_i \le r_i$ for i = 0, 2. Define $s_i = \frac{1}{2}(r_i - 8m_i)$, $L_{(i)}$

 $=(s_iH)\perp (m_i\Gamma_8)$ where H is a hyperbolic plane $\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ and Γ_8 is the even positive definite unimodular lattice of rank 8. Put $L=L_{(2)}\perp (p\circ L_{(0)})$. Then $\sigma(L)=\sigma(M_0)$ so $L_\infty\simeq M_{0,\infty}$, so $\det L=\det M_0$ since both are $\pm p^{r_0}$, so $L_q\simeq M_{0,q}$ for all $q\pm 2,p$. If $M_{0,p}=J_p\perp K_p$ is a Jordan splitting, $\det K_p=\det (p\circ L_{(0)})$ by Proposition 20, so $\det J_p=\det L_{(2)}$ and $L_p\simeq M_{0,p}$. By Hilbert reciprocity, L and M_0 are equivalent over \mathbb{Q}_2 , hence over \mathbb{Z}_2 since they are even and unimodular. Thus $L\simeq M_0$ by Theorem 17, so M_0 has a Jordan splitting. \square

Proposition 20. Suppose that both h_0 and $h_0^{\#}$ are even. Then the p-modular Jordan component of M_0 is hyperbolic if and only if r_0 is even and $\sigma(M_0) \equiv 0 \pmod{8}$.

Proof. Define

$$a(M_0) = \sum e^{2\pi i \psi(u)} \in \mathbb{C}$$

where the sum is over all $u \in M_0^\#/M_0$ and, if $u = x + M_0$, $\psi(u) = \frac{1}{2}\tilde{h}_0(x) + \mathbb{Z} \in \mathbb{Q}/\mathbb{Z}$. Put $A(M_0) = \operatorname{Arg} a(M_0) \in \mathbb{R}/\mathbb{Z}$. Then, [5], $A(M_0) \in \frac{1}{8}\mathbb{Z}/\mathbb{Z}$ and, if we consider $A(M_0)$ to be in $\mathbb{Z}/8\mathbb{Z}$ by multiplying it by 8,

$$\sigma(M_0) \equiv A(M_0) \pmod{8}.$$

If $M_{0p} = J \perp K$ is a Jordan splitting at p, $M_0^*/M_0 = p^{-1}K/K = :k$ and $a(M_0)$ is equal to

$$a(k) := \sum_{u \in k} e^{2 \pi i g(u)/p}$$

where $g: k \to \mathbb{F}_p$ is the quadratic form induced by $\frac{1}{2}h_0^{\#}$. Note that A(k) = A(k') + A(k'') if $k = k' \perp k''$. If p = 2, $h_0^{\#}$ is even by hypothesis; a direct computation shows that $A\begin{pmatrix} 0 & 2 \\ 2 & 0 \end{pmatrix} = 0$ and $A\begin{pmatrix} 4 & 2 \\ 2 & 4 \end{pmatrix} = 4$ so the proposition follows by Th. 18.

Suppose p is odd. If $\alpha \in \mathbb{F}_p^{\times}$ then $a(\langle \alpha \rangle)$ is a quadratic Gauss sum and can be evaluated using pages 85–87, [14]. The result is $A(\langle \alpha, \beta \rangle) = 0$ if $\langle \alpha, \beta \rangle$ is a hyperbolic plane, otherwise $A(\langle \alpha, \beta \rangle) = 4$. The proposition follows since K is hyperbolic iff k is hyperbolic. \square

Theorem 21. Let p be odd and let M_0 be odd, indefinite and of rank ≥ 3 . Then M_0 has a Jordan splitting if and only if, when $p \equiv 1 \pmod{4}$, $(h_0^*)_p$ has determinant 1.

Proof. If $M_0 = J \perp K$ is a Jordan splitting, det $K = \pm p^{r_0}$, whence the necessity. Conversely it is easy to see that one can choose $J = \langle \pm 1, ..., \pm 1 \rangle$ and $K = \langle \pm p, ..., \pm p \rangle$ so that $J \perp K \simeq M_0$ using Theorems 16 and 17. \square

Theorem 22. Let p = 2 and suppose that h_0 is indefinite and even and that h_0^* is even. Then r_0 and r_2 are even. Moreover M_0 has a Jordan splitting if and only if

- (a) $\sigma(M_0) \equiv 0 \pmod{8}$.
- (b) $|\sigma(M_0)| \le 8[r_0/8] + 8[r_2/8]$.

The proof is very similar to Theorem 19 and is omitted.

Theorem 23. Let p=2 and suppose that h_0 is indefinite and even and that $h_0^{\#}$ is odd. Then r_2 is even. Moreover M_0 has a Jordan splitting if and only if

- (a) $\sigma(M_0) \equiv s \pmod{8}$ for some integer s satisfying $|s| \leq r_0$,
- (b) $|\sigma(M_0)| \le r_0 + 8[r_2/8]$.

Remark. Condition (a) is obviously vacuous when $r_0 \ge 4$.

Proof. The unimodular Jordan component of M_{02} is even, hence r_2 is even. If $M_0 = J \perp K$ is a Jordan splitting, $\sigma(J) \equiv 0 \pmod{8}$ since J is even and unimodular; thus (a) and (b) follow from $\sigma(M_0) = \sigma(J) + \sigma(K)$.

Conversely we may assume $\sigma(M_0) \ge 0$ and rank $M_0 \ge 3$. Let s be the largest integer $\le \sigma(M_0)$ satisfying (a). If $\sigma(M_0) = s$, define

$$J = \frac{1}{2}r_2H$$
, $K = s\langle 1 \rangle \perp \frac{1}{2}(r_0 - s)H$.

If $\sigma(M_0) > s$ then $s > r_0 - 8$ so

$$\sigma(M_0) - s < r_0 + 8 \lceil r_2/8 \rceil - r_0 + 8 = 8 \lceil r_2/8 \rceil + 8$$

so $\sigma(M_0) - s \le 8[r_2/8]$. Define $t = (\sigma(M_0) - s)/8$ and

$$J = t\Gamma_8 \perp \frac{1}{2}(r_2 - 8t)H$$
, $K = s\langle 1 \rangle \perp \frac{1}{2}(r_0 - |s|)H$

where $s\langle 1 \rangle$ is interpreted as $(-s)\langle -1 \rangle$ if s<0 and as 0 if s=0. Put $L=J\perp(2\circ K)$. Then one can check that $M_0\simeq L$ using Theorems 16 and 17 (note that a unimodular Jordan component of M_{02} , being even, has determinant $\equiv (-1)^{\frac{1}{2}r_2} \pmod{4}$ by Theorem 18). \square

Theorem 24. Let p=2 and suppose that h_0 is indefinite and odd and that h_0^* is even. Then r_0 is even. Moreover M_0 has a Jordan splitting if and only if

- (a) $\sigma(M_0) \equiv s \pmod{8}$ for some integer s satisfying $|s| \leq r_2$,
- (b) $|\sigma(M_0)| \le r_2 + 8[r_0/8]$.

Proof. Interchange the roles of h_0 and h_0^* and apply Theorem 23 and Proposition 9. \square

Theorem 25. Let p=2 and suppose that h_0 is indefinite of rank ≤ 3 and odd and that $h_0^{\#}$ is odd. Then M_0 has a Jordan splitting.

Proof. One shows in the usual way that

$$M_0 \simeq \langle \pm 1, ..., \pm 1 \rangle \perp \langle \pm 2, ..., \pm 2 \rangle$$
).

As a supplementary result we have

Theorem 26. If p is odd, M_0 has a Jordan splitting if either (a) or (b) holds:

- (a) $|\sigma(h_0)| \leq r_2$ and $(h_0^*)_p$ is hyperbolic.
- (b) $|\sigma(h_0)| \leq r_0$ and h_{0p} is hyperbolic.

Proof. Assume (a). Then r_0 is even and we may assume that it and r_2 are > 0. Then h_0 is indefinite and by Theorem 21 we may assume it is even as well. By Proposition 20, $\sigma(M_0) \equiv 0 \pmod{8}$, so $|\sigma(M_0)| \leq 8 \lceil r_2/8 \rceil$ and the theorem follows from Theorem 19. Under assumption (b), the result follows by using the first part and Proposition 9. \square

§ 5. Geometric Forms

Let X be a smooth, closed, oriented manifold of dimension 2l and Π a finite group that acts differentiably on X, preserving the orientation. The integral bilinear form B(x,y)=(xy)[X] on $M=H^{l}(X;\mathbb{Z})/T$ orsion is Π -invariant, unimodular and ε -symmetric where $\varepsilon=(-1)^{l}$. If we set

$$h(x, y) = \sum_{g \in \Pi} B(g^{-1}x, y)g$$

then $h: M \times M \to \mathbb{Z}\Pi$ is a non-singular ε -hermitian form and $B = \varepsilon_1 h$ where $\varepsilon_1: \Lambda \to \mathbb{Z}$ is the augmentation, $\varepsilon_1(\sum m_{\varepsilon}g) = m_1$.

Extend B and h to $W = \mathbb{R} \otimes_{\mathbb{Z}} M$ and choose on W a positive definite inner product \langle , \rangle invariant under Π . Define $A \in \operatorname{End}_{\mathbb{R}} W$ by $B(x, y) = \langle x, Ay \rangle$. Then A commutes with Π , and its adjoint $A^* = \varepsilon A$.

Suppose now that l is even. Then the positive and negative eigen-spaces of A give a decomposition $W = W^+ \perp W^-$ invariant under Π . The two real representations ρ^+ and ρ^- of Π thus defined are independent of the choice of $\langle \, , \, \rangle$. The Π -signature of X is defined as

$$\operatorname{Sign}(\Pi, X) = \rho^{+} - \rho^{-} \in RO(\Pi) \subset R(\Pi)$$

and the value of its character on $g \in \Pi$ is Sign(g, X).

Suppose l is odd. Then A is skew adjoint so $J = A/(AA^*)^{\frac{1}{2}}$ satisfies $J^2 = -1$. Thus W yields a complex representation ρ of Π and the Π -signature in this case is

$$\operatorname{Sign}(\Pi, X) = \rho - \rho^* \in R(\Pi)$$

where ρ^* is the contragredient representation.

\Pi-Signature Theorem (p. 582, [1]). If Π acts freely on X then $\operatorname{Sign}(g, X) = 0$ for all $g \neq 1$ in Π .

We now specialize to the case Π cyclic of prime order p and we refer to the ε -hermitian forms that arise from manifolds with free Π -action as geometric.

Theorem 27 (C.T.C. Wall). If h is a geometric ε -hermitian form and p is odd, then h_1 has equal signatures.

Proof. The argument is similar to that on page 175, [22]. $\Omega_{2l}(B\Pi) = \Omega_{2l} \oplus \tilde{\Omega}_{2l}(B\Pi)$ and each $\sigma_i(h_1)$ is a bordism invariant, defining a homomorphism $\sigma_i \colon \Omega_{2l}(B\Pi) \to \mathbb{Z}$. Since $\Omega_{2H}(B\Pi)$ is a *p*-torsion group it suffices to compute on the summand Ω_{2l} (corresponding to trivial *p*-fold covers) where the result is clear. \square

We say that h has equal signatures if $\sigma_i(h_1) = \sigma(h_0)$ for all i. We define the signature of a non-degenerate alternating form to be 0.

Theorem 28. If h is a geometric hermitian form, r_0 and r_1 are even and h has equal signatures. In addition when p=2, h_0^* and h_1^* are even while h_0 and h_1 are both even or both odd.

Proof. Suppose p=2. If $x\in M$, $h_0(x_0,x_0)\equiv h_1(x_1,x_1) \pmod{2}$ and so h_0 is odd iff h_1 is odd (this is obviously independent of h being geometric). Now by Theorem 7.4, [4], $\varepsilon_1 h(x,Tx)\equiv 0 \pmod{2}$ for all x in M, which is equivalent to $h_0(x_0,x_0)\equiv h_1(x_1,x_1) \pmod{4}$. If $z\in M_0^\#$ then $(2z,0)\in M$ whence $h_0^\#(z,z)=2\tilde{h}_0(z,z)$ is even. Thus $h_0^\#$ is even and $h_1^\#$ is similarly even.

Return to p arbitrary. Now $W^+ = \mathbb{R}^{d_0^+} \perp \mathbb{R}[\tau]^{d_1^+}$ as an $\mathbb{R}\Pi$ -module. Define d_0^- and d_1^- similarly. It is easy to see that the Π -signature theorem is equivalent to

$$d_0^+ - d_1^+ = d_0^- - d_1^-$$

Since $r_i + r_2 = d_i^+ + d_i^-$ for i = 0, 1, we deduce $r_0 \equiv r_1 \pmod{2}$. Thus r_0 and r_1 are even by Proposition 10(c) when p is odd, by Corollary 9, [8] when p = 2.

Now ε_1 is 1/p times the **Z**-algebra trace of Λ and the latter is the direct sum of the algebra traces of **Z** and Λ_1 . It follows that $\sigma(\varepsilon_1 h) = \sigma(h_0) + \sigma(\operatorname{Tr} h_1)$. But since $\dim_{\mathbb{R}} W^+ = d_0^+ + (p-1)d_1^+$ with a similar formula for $\dim_{\mathbb{R}} W^-$, $\sigma(\varepsilon_1 h) = \dim W^+ - \dim W^- = p \sigma(h_0)$ and so $\sigma(\operatorname{Tr} h_1) = (p-1)\sigma(h_0)$. This finishes the proof for p=2, and for p odd it follows from Theorem 27 and the following lemma.

Lemma 29. If p is odd and h_1 is hermitian,

$$\sigma(\operatorname{Tr} h_1) = 2 \sum_{i=1}^{\frac{1}{2}(p-1)} \sigma_i(h_1).$$

Proof. By taking an orthogonal decomposition of h_1 (over F_1) one reduces to the case of rank 1, say h_1 is the form $xa\bar{y}$ on $F_1\times F_1$. Now extend by \mathbb{R} to an $\mathbb{R}[\tau]$ form. Since $\mathbb{R}[\tau] = \mathbb{C}^{\frac{1}{2}(p-1)}$, $\operatorname{Tr}(xa\bar{y}) = \sum \operatorname{Tr}_{\mathbb{C}/\mathbb{R}}(x_ia_i\bar{y}_i)$ where, e.g., $a_1,\ldots,a_{\frac{1}{2}(p-1)}$ are the conjugates of $a\in F_1^0$. But $\sigma(\operatorname{Tr}(x_ia_i\bar{y}_i)) = 2\operatorname{sign} a_i = 2\sigma_i(h_1)$. \square

Theorem 30. If p is odd and h is a geometric skew hermitian form, r_0 and r_1 are even and h has equal signatures.

Proof. Consider $U = \mathbb{C}u$ as a real space with basis $\{u, iu\}$, $(i = \sqrt{-1})$. Then i has matrix $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$. If g is a non-zero skew hermitian form on U, say g(u, u) = ai, $a \in \mathbb{R}$, then if G is the matrix of g,

$$J := G/\sqrt{G^t \cdot G} = \begin{pmatrix} 0 & \operatorname{sign} a \\ -\operatorname{sign} a & 0 \end{pmatrix}.$$

If we put a complex structure on U by making i act as J, we get the original one if a < 0 or its conjugate if a > 0.

Now consider $h: W \times W \to \mathbb{R}\Pi$. Choose a decomposition $R\Pi = \mathbb{R} \oplus \mathbb{C}^{\frac{1}{2}(p-1)}$ in which $T = (1, \zeta, \zeta^2, ..., \zeta^{\frac{1}{2}(p-1)})$ with $\zeta = \exp\left(\frac{2\pi i}{p}\right)$. Then $W = W_0 \perp W_1 \perp ...$

 $\perp W_{\frac{1}{2}(p-1)}$ where W_0 is a real vector space W_j , $j \geq 1$, is a complex space on which T acts as ζ^j . Let $h_0, h_{1,1}, \ldots, h_{1,\frac{1}{2}(p-1)}$ be the component forms. If $1 \leq j \leq \frac{1}{2}(p-1)$, decompose W_j orthogonally into (complex) lines and use the procedure above to put a new complex structure on each of them. This

yields $W_j = U_j \perp U_{-j}$ where T acts on U_j as ζ^j and on U_{-j} as ζ^{-j} , and $W = \sum_{|j| \le \frac{1}{2}(p-1)} U_j$ where $U_0 = W_0$. The Π -signature theorem says that the representation of Π on $W' = \sum_{j \ne 0} U_j$ is real. The characteristic polynomial of T on W' is $f = \prod_{j \ne 0} (X - \zeta^j)^{m_j}$ where $m_j = \dim_{\mathbb{C}} U_j$. Since $f \in \mathbb{R}[X]$, $f = \bar{f}$ so $m_j = m_{-j}$ for all j, i.e. the index $\sigma_j(h_1)$ of the skew hermitian form $h_{1,j}$ is 0. Thus h has equal signatures and the evenness of r_0 and r_2 follows easily from this.

Theorem 31. If h is a geometric skew hermitian form on M, then M admits an orthogonal Reiner splitting.

Proof. Since h_0 is skew symmetric it has a Jordan splitting by a theorem of Frobenius (§ 5, [3]) and so has h_1 if p = 2. If p is odd, h_1 has a Jordan splitting by Theorems 15 and 30, so the theorem follows by Theorem 7. \square

Theorem 32. Let p be odd. If h is a geometric hermitian form with indefinite component forms h_0 and h_1 , M has an orthogonal Reiner splitting if and only if, when h_0 is even, $|\sigma(h_0)| \le 8[r_0/8] + 8[r_2/8]$.

Proof. The necessity follows from Theorems 7 and 19. Conversely h_1 has a Jordan splitting by Theorems 15 and 28. By Theorems 19 and 21, and Proposition 20, it suffices to show that $(h_0^{\#})_p$ is hyperbolic.

Suppose that h arises from the p-fold covering γ : $\tilde{X}^{4k} \to X^{4k}$. Then $M = H^{2k}(\tilde{X}, \mathbb{Z})/\text{Torsion}$ and we put $N = H^{2k}(X, \mathbb{Z})/\text{Torsion}$. The map $\gamma^* \colon N \to M$ has image $\subseteq M_0$ and is a monomorphism since it induces an isomorphism $\mathbb{Q} \otimes_{\mathbb{Z}} N \to \mathbb{Q} \otimes_{\mathbb{Z}} M$ (Ch. 3, [4]). Let $g \colon N \times N \to \mathbb{Z}$ be the cup-product pairing; it is unimodular by Poincaré duality. Then for all $x, y \in N$,

$$p^{2}g(x, y) = h_{0}(\gamma^{*}x, \gamma^{*}y).$$
 (9)

If $t^*\colon M\to N$ is induced by the cohomology transfer map, $t^*\gamma^*(x)=px$ for all x (ibid) so $\gamma^*N\supseteq pM_0$. Also $\gamma^*N\subseteq M\cap M_0=M_0^{(p)}$ by Proposition 4. By Lemma 5 and (9), the map $\frac{1}{p}\gamma^*\colon (N,g)\to (M_0^\#,\tilde{h}_0)$ is an isometry onto a unimodular submodule $N'\supseteq M_0=(M_0^\#)^{(p)}$. Since the discriminant of $(M_0^\#,\tilde{h}_0)$ is $\pm p^{-r_0}$, the index of N' in $M_0^\#$ is $p^{\pm r_0}$, hence its image in $(M_0^\#)_p=M_0^\#/M_0$ has dimension $\frac{1}{2}r_0$. But this image is a totally isotropic subspace since $h_0^\#=p\tilde{h}_0$ and so $(h_0^\#)_p$ is hyperbolic. \square

Theorem 33. Let p=2. If h is a geometric hermitian form with indefinite component forms h_0 and h_1 , M has an orthogonal Reiner splitting if and only if

$$|\sigma(h_0)| \le r_2 + 8 \min\{[r_0/8], [r_1/8]\}$$

and

$$\sigma(h_0) \equiv s \pmod{8}$$

where s = 0 if h_0 is even, otherwise $|s| \le r_2$.

This follows easily from Theorems 28, 22, 24.

Theorem 34. If h is a geometric hermitian form and if $r_0 = 0$, then M has an orthogonal Reiner splitting.

Remark. Such forms arise when l is even and \tilde{X}^{2l} is (l-1)-connected. Thus Theorem 34 can be used to generalize results of [13].

Proof. Since h has equal signatures and $|\sigma(h_0)| \le r_2$, h_1 is indefinite (under the assumption $r_1 \ne 0$) and the theorem follows easily from Theorems 28, 22, 24.

Summary. The following conditions are necessary in order that the non-singular ε -hermitian form h be geometric. (The conditions are not independent.)

- (i) h has equal signatures (Ths. 28 and 30).
- (ii) When $\varepsilon = 1$, $h_0^{\#}$ and $h_1^{\#}$ are even when p = 2, and h_0 and h_1 are both even or both odd (Th. 28).
 - (iii) r_0 and r_1 are even (Ths. 28 and 30).
 - (iv) r_2 is even unless $\varepsilon = 1$ and h_0 is odd (Prop. 10, Th. 18).
- (v) If p is odd, $(h_0^*)_p$ is hyperbolic (proof of Th. 32); if in addition h_0 is even, $\sigma(h_0) \equiv 0 \pmod{8}$ (Prop. 20).
 - (vi) If p=2 and $x \in M$, $h_0(x_0, x_0) \equiv h_1(x_1, x_1) \pmod{4}$ (proof of Th. 28).

§ 6. The Non-Orientable Case

We now consider the forms which arise in geometry from 2-fold covers $\tilde{X}^{2l} \rightarrow X^{2l}$ of closed manifolds where \tilde{X} is orientable and X is non-orientable and prove that an orthogonal Reiner splitting always exists.

Theorem. Let p=2 and suppose h is a non-singular hermitian or skew hermitian form on M with respect to the involution $a+bT\mapsto a-bT$ on Λ . In any Reiner splitting (1), $M_{(0)}$ and $M_{(1)}$ are totally isotropic, and there is a Reiner splitting in which $M_{(0)} \oplus M_{(1)}$ is orthogonal to $M_{(2)}$.

Proof. If h is skew hermitian, Th is hermitian so we need only consider the hermitian case. The proof is similar to (and much easier than) those in § 2 and so we merely sketch it.

Extend h to $\Gamma M \times \Gamma M \to \Gamma = \mathbb{Z} \oplus \mathbb{Z}$; since $\overline{(a,b)} = (b,a)$, M_0 and M_1 are totally isotropic and there is a non-degenerate pairing $\eta: M_0 \times M_1 \to \mathbb{Z}$ such that

$$h(x, y) = (\eta(x_0, y_1), \eta(y_0, x_1)).$$

If $\eta': M_0 \rightarrow M_1^*$ is the associated monomorphism, one can show that

$$\eta'(M_0) = 2M_{(1)}^* \oplus M_{(2)1}^* \tag{10}$$

for any Reiner splitting (1) where $M_{(1)}^*$, e.g., is the annihilator in M_1^* of $M_{(2)1}$ (cf. proof of Th. 3). We let $M_0 = M'_{(0)} \oplus M'_{(2)0}$ be the inverse image of (10). It follows that $M = M'_{(0)} \oplus M_{(1)} \oplus M'_{(2)}$ is the desired splitting where $M'_{(2)}$ is the (type 2) pullback of $M'_{(2)0} \to M_p \leftarrow M_{(2)1}$. \square

References

- 1. Atiyah, M., Singer, I.: The index of elliptic operators, III. Ann. of Math. 87, 546-604 (1968)
- Bak, A., Scharlau, W.: Grothendieck and Witt Groups of Orders and Finite Groups. Inventiones Math. 23, 207–240 (1974)
- Bourbaki, N.: Formes Sesquilinéaires et Formes Quadratiques, Algèbre, Ch. 9, Paris: Hermann, 1959
- 4. Bredon, G.E.: Introduction to Compact Transformation Groups. New York: Academic Press 1972
- 5. Brumfiel, G., Morgan, J.W.: Quadratic functions, the index modulo 8, and a Z/4-Hirzebruch formula. Topology 12, 105–122 (1973)
- 6. Dickson, L.E.: Introduction to the Theory of Numbers. New York: Dover 1957
- 7. Earnest, A.G., Hsia, J.S.: Spinor norms of local integral rotations, II. Pacific J. Math. 61, 71-86 (1975)
- 8. Gibbs, D.E.: Some results on orientation-preserving involutions. Trans. Amer. Math. Soc. 218, 321-332 (1976)
- 9. Hambleton, I.: Free involutions on highly-connected manifolds. Ph. D. Thesis, Yale University 1973
- Hirzebruch, F., Newmann, W.D., Koh, S.S.: Differentiable Manifolds and Quadratic Forms. New York: Marcel Dekker 1971
- 11. Jacobowitz, R.: Hermitian forms over local fields. Amer. J. Math. 84, 441-465 (1962)
- Kneser, M.: Klassenzahlen indefiniter quadratischer Formen in drei oder mehr Veränderlichen. Arch. Math., 323-332 (1956)
- 13. Lance, T.: Free cyclic actions on manifolds. Comment Math. Helv. 50, 59-80 (1975)
- 14. Lang, S.: Algebraic Number Theory. New York: Addison-Wesley 1970
- 15. O'Meara, O.T.: Introduction to Quadratic Forms. Berlin-Göttingen-Heidelberg: Springer 1963
- Reiner, I.: Integral representations of cyclic groups of prime order. Proc. Amer. Math. Soc. 8, 142-146 (1957)
- 17. Shimura, G.: Arithmetic of unitary groups. Ann. of Math. 79, 369-409 (1964)
- 18. Serre, J.-P.: A Course in Arithmetic. Berlin-Heidelberg-New York: Springer 1970
- 19. Swan, R.: K-Theory of Finite Groups and Orders. Lecture Notes in Math. 149. Berlin-Heidelberg-New York: Springer 1970
- 20. Wall, C.T.C.: On the classification of hermitian forms, I. Compositio Math. 22, 425-451 (1970)
- 21. Wall, C.T.C.: Surgery of non-simply-connected manifolds, Ann. of Math. 84, 217-276 (1966)
- 22. Wall, C.T.C.: Surgery on Compact Manifolds. London-New York: Academic Press, 1970

Received March 4, 1977