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Abstract. We introduce a new stable range invariant for the classification of closed,
oriented topological 4-manifolds (up to s-cobordism), after stabilization by connected
sum with a uniformly bounded number of copies of S2 × S2.

1. Introduction

Due to recent work on the stable classification of topological 4-manifolds, the outline of
a general theory is emerging (see [22], [23], [24], [25], [26]). The most effective approach
so far is a development of the original results of Wall [45, Theorem 3], [44, Theorem 1]: if
M and N are closed, simply connected, smooth 4-manifolds with isomorphic intersection
forms, then M#r(S2 × S2) is diffeomorphic to N#r(S2 × S2), for some r ≥ 0. If this
conclusion holds, we say that M and N are stably diffeomorphic. The analogous notion
for topological 4-manifolds is stable homeomorphism.

The following result of Kreck [30] provides a fruitful starting point for studying the
stable classification problem in general:

Theorem (Kreck [30, Theorem 2]). Suppose that M and N are closed, smooth, spin 4-
manifolds, with the same fundamental group π and equal Euler characteristics. If M and
N are spin bordant over K(π, 1), then M#r(S2×S2) is diffeomorphic to N#r(S2×S2),
for some r ≥ 0.

In this note, we consider the computability of the number of stabilizations.

Question. If M#r(S2 × S2) is homeomophic to N#r(S2 × S2), can one determine the
minimum value of r needed ? Is there a uniform estimate for the number of stabilizations,
depending only on the fundamental group as M and N vary ?

The case of simply connected smooth 4-manifolds is still not completely settled: no
examples are known which require at least two copies of S2 × S2 (instead of one copy)
to achieve stable diffeomorphism. For stable homeomorphism of topological 4-manifolds
with finite fundamental group, one copy of S2 × S2 will suffice (see [16, Theorem B]).

Remark 1.1. One obstacle to determining optimal stabilization bounds is the failure of
the 5-dimensional s-cobordism theorem for smooth manifolds, and its unknown status (in
general) for topological manifolds. To avoid this problem, we will aim for stability bounds
for s-cobordisms rather than for homeomorphisms or diffeomorphisms.
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Our main result uses a new stable range (integer) invariant sr(π), depending only on a
given finitely presented group π (see Definition 4.1). We will assume the assembly map
properties (W-AA) for π given in Definition 3.1, and restrict attention to groups of type
F, meaning that there exists a finite aspherical n-complex with fundamental group π, for
some n ≥ 0. In this case, we say that π is geometrically n-dimensional (g-dim(π) ≤ n).

Theorem A. Let π be an discrete group of type F satisfying properties (W-AA). Let M
and N be closed, smooth, spin 4-manifolds with fundamental group π, which are oriented
homotopy equivalent. Then M#r(S2 × S2) is smoothly s-cobordant to N#r(S2 × S2),
provided that r ≥ sr(π).

Remark 1.2. A similar result holds for topological 4-manifolds. If M and N are smooth
and simply-connected, Theorem A (with r = 0) was proved by Wall [45, Theorem 2]. In
this case, the homotopy type is determined by the intersection form.

Example 1.3. For π a right-angled Artin group with g-dim(π) ≤ 4 the assembly map
conditions hold, and sr(π) ≤ 6 by Proposition 4.5.

For a non-simply connected 4-manifold M , the basic homotopy invariants are the funda-
mental group π := π1(M), the second homotopy group π2(M), the equivariant intersection
form sM on π2(M), and the first k-invariant, kM ∈ H3(π; π2(M)). These invariants give
the quadratic 2-type

Q(M) := [π1(M), π2(M), kM , sM ]

whose isometry type largely determines the classification up to s-cobordism of closed
oriented topological 4-manifolds with geometrically 2-dimensional fundamental groups
(see [19] for the precise conditions). The appropriate notion of (oriented) isometry is
given in Definition 2.3.

Question. How strong an invariant is the quadratic 2-type ? Does Q(M) determine the
homotopy type of M ? The stable homeomorphism type (if M is spin) ?

We will concentrate on geometrically finite fundamental groups, which in particular are
torsion-free (see [25, Proposition 9.2] for an example with π = Z × Z/p, showing that
Q(M) does not determine the homotopy type for M = L3(p, q)× S1).

Here is a sample application of the stable range invariant for manifolds M with a given
quadratic 2-type. In the statement, d(π) denotes the minimal number of generators for π
a finitely generated group.

Theorem B. Let π be the fundamental group of a closed, oriented, aspherical 3-manifold.
Suppose that M and N are closed, topological, spin 4-manifolds with fundamental group
π, and isometric oriented quadratic 2-types. If M and N are stably homeomorphic, then
M#r(S2 × S2) is s-cobordant to N#r(S2 × S2), provided that r ≥ 2d(π).

For manifolds with fundamental groups in this class, the stable classification was com-
pletely carried out by Kasprowski, Land, Powell and Teichner [22] (compare [13, Theo-
rem B]). We remark that stable range invariants for noetherian rings due to Bass [4],
Stafford [39] and Vaserstein [43] have previously been used to obtain bounds on the num-
ber of stabilizations required (for example, see [16, Theorem B] for finite fundamental
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group, and [9, Theorem 1.1], [27, Theorem 2.1]). It is not clear at present how these more
“arithmetic” stability bounds are related to the L-theory bound used here. Another kind
of “non-cancellation” result arises from relating invariants of finite 2-complexes to the
stabilization of their 4-manifold thickened doubles (see [29]).
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2. The quadratic 2-type

Here is a brief summary of the definitions in [15] and [19].

Definition 2.1. For an oriented 4-manifold M , the equivariant intersection form is the
triple (π1(M,x0), π2(M,x0), sM), where x0 ∈M is a base point and

sM : π2(M,x0)⊗Z π2(M,x0)→ Λ,

where Λ := Z[π1(M,x0)]. This pairing is derived from the cup product on H2
c (M̃ ;Z),

where M̃ is the universal cover of M ; we identify H2
c (M̃ ;Z) with π2(M) via Poincaré

duality and the Hurewicz Theorem, and so sM is defined by

sM(x, y) =
∑
g∈π

ε0(x̃ ∪ ỹg−1) · g ∈ Z[π],

where x̃, ỹ ∈ H2
c (M̃ ;Z) are the images of x, y ∈ π2(M) under the composite isomorphism

π2(M)→ H2(M̃ ;Z)→ H2
c (M̃ ;Z) and ε0 is given by ε0 : H4

c (M̃ ;Z)→ H0(M̃ ;Z) = Z.
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Alternately, we can identify H2
c (M̃ ;Z) = H2(M ; Λ), and define sM via cup product

and evaluation on the image tr[M ] ∈ HLF
4 (M ;Z) of the fundamental class of M under

transfer.

Unless otherwise mentioned, we work with pointed spaces and maps, and our modules
are right Λ-modules. The pairing sM is Λ-hermitian, meaning that for all λ ∈ Λ, we have

sM(x, y · λ) = sM(x, y) · λ and sM(y, x) = sM(x, y),

where λ 7→ λ̄ is the involution on Λ given by the orientation character of M . This
involution is determined by ḡ = g−1 for g ∈ π1(M,x0). For later reference, we note that
when M is spin the term ε0(x̃, ỹ) ≡ 0 (mod 2), so sM is an even hermitian form.

Let B := B(M) denote the algebraic 2-type of a closed oriented topological 4-manifold
M with infinite fundamental group π. In particular, the classifying map c : M → B
is 3-connected and B is 3-co-connected. The space B is determined up to homotopy
equivalence by the algebraic data [π1(M), π2(M), kM ].

Notation: In the rest of the paper, if the coefficients for homology groups are not ex-
plicitly stated, then we mean integral homology H∗(−;Z).

We will assume that π is infinite and one-ended, or equivalently that H1(π; Λ) = 0. By

Poincaré duality, this implies that H3(M̃ ;Z) = H3(M ; Λ) = 0. Under these assumptions,

H4(M) ∼= H4(M, M̃) ∼= H4(B, B̃) ∼= Z

(see the proof of Proposition 6.3(i) for the details), and we let µM ∈ H4(B, B̃) denote the
image µM = c∗[M ] of the fundamental class of M under this composite. We regard the
class µM as an orientation of the quadratic 2-type.

Definition 2.2. The oriented quadratic 2-type is the 4-tuple:

Q(M) := [π1(M,x0), π2(M), kM , sM ]

together with the class µM ∈ H4(B, B̃).

Definition 2.3. An orientation-preserving isometry of quadratic 2-typesQ(M) andQ(N)
is a triple (α, β, φ), such that

(i) α : π1(M,x0)→ π1(N, x′0) is an isomorphism of fundamental groups;
(ii) β : (π2(M), sM) → (π2(N), sN) is an α-invariant isometry of the equivariant in-

tersection forms, such that (α∗, β−1
∗ )(kN) = kM ;

(iii) φ : B(M)→ B(N) is a base-point preserving homotopy equivalence lifting (α, β),
such that φ∗(µM) = µN .

In addition, the following diagram

0 // H2(π; Λ) // H2(N ; Λ)
eN //

∼= β∗

��

HomΛ(H2(N ; Λ),Λ) //

∼= β∗

��

H3(π; Λ) // 0

0 // H2(π; Λ) // H2(M ; Λ)
eM // HomΛ(H2(M ; Λ),Λ) // H3(π; Λ) // 0
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arising from the universal coefficient spectral sequence commutes, with maps eM , eN
induced by evaluation, and β after identifying π := π1(M,x0) ∼= π1(N, x′0) via α. We
will assume throughout that our manifolds are connected, so that a change of base points
leads to isometric intersection forms. By a stable isometry, we mean an oriented isometry
of quadratic 2-types after adding a hyperbolic form H(Λr) to both sides.

Remark 2.4. Recall that there is an exact sequence of groups

1→ H2(π; π2(B))→ Aut•(B)→ Isom([π1(M), π2(M), kM ])→ 1

detemining the group Aut•(B) of base-point preserving homotopy self-equivalences of
B up to extension (see Møller [36, §4]). In Proposition 6.3(iv) we will show that the
image φ∗(µM) depends only the isometry induced by φ on the algebraic 2-type of M . In
particular, this implies that the condition (iii) above is independent of the choice of φ.

3. Modified surgery and assembly maps

A standard approach to the classification of topological 4-manifolds uses the theory of
“modified surgery” due to Matthias Kreck [30, §6]. We briefly recall some of the features
of modified surgery in our setting (see [30, Theorem 4, p. 735] for the notation):

• Let M and N be closed, oriented topological 4-manifolds with the same Euler
characteristic, which admit normal 1-smoothings in a fibration B → BSTOP .
• If W is a normal B-bordism between these two 1-smoothings, with normal B-

structure ν̄, then there exists an obstruction Θ(W, ν̄) ∈ `5(π1(B)) which is elemen-
tary if and only if (W, ν̄) is B-bordant relative to the boundary to an s-cobordism.
• Let π := π1(B) and Λ := Z[π] denote the integral group ring of the fundamental

group. The elements of `5(π) are represented by pairs (H(Λr), V ), where V is a
half-rank direct summand of the hyperbolic form H(Λr).
• In a pair (H(Λr), V ), if the quadratic form vanishes on V , then the element

Θ(W, ν̄) lies in the image of L5(Zπ) → `5(π) (see [30, Proposition 8, p. 739]
or [30, p. 734] for criteria to ensure that this will happen).

In many applications of modified surgery, the last step involves using assembly maps in
K-theory and L-theory to eliminate an obstruction in L5(Zπ). We will give an overview
of this technique, starting with a description of the relevant assembly maps.

Let L = L(Z) denote the non-connective periodic L-spectrum of the integers, and let L•
denote its 0-connective cover (with the spaceG/TOP in dimension zero). By construction,
we have an identification Ω4L(i) = L(i), for i ∈ Z. The connective assembly maps (for
k ≥ 0)

A•n+4k(π) : Hn+4k(π;L•)→ Lsn+4k(Z[π])

are related to maps in the geometric surgery exact sequence. The (non-connective) as-
sembly maps (for n ≥ 5) can be expressed as the composite:

An(π) : Hn(π;L) = lim−→
k

Hn+4k(π;L•)
lim−→A•

n+4k(π)

−−−−−−−−→ lim−→
k

Lsn+4k(Z[π]) −−−→ Lsn(Z[π])

where the maps to the direct limit are induced by suspension and the composition:

Bπ+ ∧ Σ4kL(i)→ Bπ+ ∧ Σ4kΩ4kL(i)→ Bπ+ ∧ L(i).
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The periodicity isomorphisms Lsn(Z[π]) ∼= Lsn+4k(Z[π]) are defined geometrically by “cross-
ing” with CP 2 (see [21, §§10-11] and [32, §7.3] for the connection between assembly maps
and surgery).

We will be interested in the assembly maps A5(π) and A•4(π). Note that

A•5(π) : H5(π;L•) ∼= H1(π;Z)⊕H3(π;Z/2)
I1⊕κ3−−−−→ Ls5(Z[π]),

but in general the groups H5(π;L) involve the higher homology of π (localized at 2) and
KO∗(π) (localized at odd primes), as explained in [42, Theorem A]. The two compo-
nents of A•5(π) are given by “universal homomorphisms” I1(π) : H1(π;Z)→ Ls5(Z[π]) and
κ3(π) : H3(π;Z/2)→ Ls5(Z[π]) (see [20, §1C]). If g-dim(π) ≤ 4 then H5(π;L•) ∼= H5(π;L)
and A•5(π) = A5(π).

To obtain concrete applications, it is convenient to assume the following conditions.

Definition 3.1. A group π satisfies properties (W-A) whenever

(i) The Whitehead group Wh(π) vanishes.
(ii) The assembly map A5 : H5(π;L)→ Ls5(Z[π]) is surjective.

If, in addition, the assembly map A•4(π) : H4(π;L•) → L4(Z[π]) is injective, we say that
π satisfies properties (W-AA). In particular, since H4(π;L•) ∼= H0(π;Z)⊕H2(π;Z/2) the
condition (W-AA) implies that the second component κ2(π) : H2(π;Z/2) → Ls4(Z[π]) of
the assembly map A•4(π) is injective (see [20, §1]).

Remark 3.2. In the rest of the paper, we will usually be assuming that Wh(π) = 0, and
we will write L∗(Z[π]) (undecorated) to mean any of the L-theories based on subgroups
of the Whitehead group. The Farrell-Jones assembly map conjectures [10] are usually ex-
pressed with target L−∞(Z[π]), the L-theory with decorations based on the non-connective
K-spectrum. For torsion-free groups, these conjectures imply results about the assembly
maps used in Definition 3.1 (see [33, Conjecture 1.19 and Corollary 2.11]).

Lemma 3.3. Let π be a torsion-free discrete group which satisfies the Farrell-Jones iso-
morphism conjectures in K-theory and L-theory. Then the (connective) assembly map
A•4(π) is injective.

Proof. Let L(2) denote the 2-localization of the periodic L-spectrum. If π satisfies the
Farrell-Jones isomorphism conjectures inK-theory and L-theory, then the (non-connective)
assembly map

A4(π) : H4(π;L)→ L−∞4 (Z[π])

is an isomorphism. If π is torsion-free, the isomorphism holds for Ls by [33, Corollary
2.11] and we can omit the decorations. Hence the 2-localization

A4(π) : H4(π;L)(2) → L4(Z[π])(2)

is also an isomorphism. Since the L-spectra localized at 2 are products of Eilenberg-
MacLane spectra, the comparison map

i• : H4(π;L•)(2) → H4(π;L)(2)
∼= H4(π;L(2))

is an injection (both are products of certain 2-local homology groups of π).
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We have a commutative diagram:

H4(π;L•)
i• //

��

��

H4(π;L) ≈
A4 //

��

L4(Z[π])

��
H4(π;L•)(2)

// i• // H4(π;L)(2) ≈
A4 // L4(Z[π])(2)

Moreover, since H4(π;L•) ∼= H0(π;Z)⊕H2(π;Z/2), the 2-localization map

H4(π;L•)→ H4(π;L•)(2)

is injective, and hence the assembly map A•4(π) : H4(π;L•)→ L4(Z[π]) is injective, �

Remark 3.4. We conclude from Lemma 3.3 that the properties (W-AA) hold for the
assembly maps into the surgery obstructions groups Ls∗(Z[π]), whenever the group π is
torsion-free and satisfies the Farrell-Jones isomorphism conjectures in K-theory and L-
theory (see [32, Theorem 11.2(5)]). These conjectures have been verified for many classes
of groups, and in particular for all right-angled Artin groups (see [2], [1]).

From surgery theory, we know that the action of elements in the image ImA•5(M) ⊆
L5(Zπ) of the assembly map on Θ(W, ν̄) ∈ `5(π1(B)) can be defined geometrically by the
action of degree 1 normal maps on the B-bordism (W, ν̄). Here

A•5(M) : H5(M ;L•) = H1(M ;Z)⊕H3(M ;Z/2)→ L5(Z[π])

is defined by the surgery obstructions of degree 1 normal maps

F : (U, ∂0U, ∂1U)→ (M × I,M × 0,M × 1).

By definition, ∂0U = ∂1U = M , and F restricted to both boundary components is a
homeomorphism. Such inertial normal cobordisms can be glued to (W, ν̄) to produce a
newB-bordism (W ′, ν̄) betweenM andN , with surgery obstruction Θ(W ′, ν̄) = Θ(W, ν̄)+
σ(F ) (see the proof of [19, Theorem 2.6]).

This is the argument used in [19, Theorem C] for the final step, where the fundamental
groups π were assumed geometrically 2-dimensional, to eliminate the obstruction Θ(W, ν̄),
and thus obtain an s-cobordism between M and N . We assumed that the assemby map
A•5(π) was surjective.

In [13, Theorem 11.2], the same argument was proposed to obtain a classification of
closed, spin+, topological 4-manifolds with fundamental group π of cohomological dimen-
sion ≤ 3 (up to s-cobordism), after stabilization by connected sum with at most b3(π)
copies of S2 × S2. The goal of this work was to obtain an s-cobordism after a uniformly
bounded number of stabliizations, where the bound depends only on the fundamental
group.

However, there was an error in this outline for [13, Theorem 11.2] which is now addressed
in Section 8 by using the new stable range invariant (see [14]). We record the issue which
led to the error (as a “warning”), since it may arise in other applications of modified
surgery.
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Caveat: The domain of the (connective) assembly map:

A•5(π) : H5(π;L•) = H1(π;Z)⊕H3(π;Z/2)→ L5(Z[π])

is expressed in terms of the group homology of π. However, the above construction can
only realize the action of elements in the image of the partial assembly map

H5(M ;L•) = H1(M ;Z)⊕H3(M ;Z/2)→ H5(π;L•)→ L5(Z[π])

from the homology of M . Since the reference map M → B is 2-connected, the summand
H1(M ;Z) ∼= H1(π;Z). However, if the map H3(M ;Z/2) → H3(π;Z/2) is not surjective,
we will not be able to realize all possible obstructions by this construction.

Remark 3.5. The statements of [19, Theorems 2.2 & 2.6] are a bit misleading, since
they appear (incorrectly) to be stated for arbitrary fundamental groups. However, the
goal of [19] was to study fundamental groups π of geometric (and hence cohomological)
dimension at most two. In these cases, H3(π;Z/2) = 0 so the domain of A•5(π) is just
H1(π;Z), and the problem above does not arise. In contrast, if cd π = 3 and π1(M) = π,
then by Poincaré duality:

H1(M ;Z/2)

∩[M ]∼=
��

H1(π;Z/2)

c∗[M ]

��

∼=
oo

H3(M ;Z/2) // H3(π;Z/2)

and the map H3(M ;Z/2)→ H3(π;Z/2) is zero since 0 = c∗[M ] ∈ H4(π;Z/2).

4. A stable range for L-theory

For any finitely presented group π, the odd dimensional surgery obstruction groups are
defined as L5(Z[π]) = SU(Λ)/RU(Λ), in the notation of Wall [46, Chap. 6]. Here SU(Λ)
is the limit of the automorphism groups SUr(Λ) of the hyperbolic (quadratic) form H(Λr)
under certain injective maps

. . . SUr(Λ)→ SUr+1(Λ)→ · · · → SU(Λ),

and RU(Λ) is a suitable subgroup determined by the surgery data, so that L5(Z[π]) is an
abelian group. To define a stable range, we will assume that the fundamental groups are
geometrically n-dimensional (g-dim(π) ≤ n), meaning that there exists a finite aspherical
n-complex with fundamental group π.

We introduce a measure f the “stability” of elements of L5(Z[π]) in the image of the
assembly map. The first factor of the comparison map

i• : H5(π;L•) = H1(π;Z)⊕H3(π;Z/2)→ H5(π;L)

defines a subgroup

I1(π) := {i•(u, 0)) |u ∈ H1(π;Z)} ⊂ H5(π;L)

Definition 4.1. For an element x ∈ L5(Z[π]), we denote its stable L5-range by:

sr(x) = min{r ≥ 0 : x is represented by a matrix in SUr(Λ)}.
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The stable L5-range of a group π of type F is defined as:

sr(π) = minS{max{sr(A5(α)) : α ∈ S ⊂ H5(π;L)}},

over all subsets S which project to generating sets of the quotient H5(π;L)/I1(π).

Remark 4.2. In defining the stable range sr(π), we quotient out the subgroup I1(π),
since in our setting H1(M ;Z) ∼= H1(π;Z) and stabilization is not needed to realize these
obstructions. If π = Z is infinite cyclic, Ronnie Lee1 (see [8, Example 1.6]) showed that
sr(x) ≤ 1, for all x ∈ L5(Z[π]).

Remark 4.3. If g-dim(π) <∞, then H5(π;L) will be a finitely generated abelian group,
and the stable range sr(π) will be finite. Without this assumption sr(π) could be infinite,
since there are finitely presented groups with H3(π;Z/2) of infinite rank (see Stallings
[40]). The Stallings group π is a possible example, since it has cd π = 3 and satisfies the
Farrell-Jones conjectures (see [5] and [6, Theorem 1.1]).

In the following statement, we let d(π) denote the minimal number of generators for a
finitely generated discrete group.

Lemma 4.4. Let π denote the fundamental group of a closed, orientable 3-manifold. Then
sr(π) ≤ 2d(π).

Proof. Let N3 be a closed, orientable 3-manifold with fundamental group π. By definition
of the assembly map, we need to determine the minimum representative in SUr(Λ) for
the surgery obstruction of the degree one normal map

g := (id×f) : N × T 2 → N × S2

given by the the product of the Arf invariant one normal map f : T 2 → S2 with the
identity on N . After surgery on the generators of

K1(g) = ker{H1(N × T 2; Λ)→ H1(N × S2; Λ)} = Z⊕ Z

we get a 2-connected normal map with K2(g′) = I(ρ)⊕I(ρ), where I(ρ) := ker{Z[π]→ Z}
is the augmentation ideal of the group ring Z[π]. According to the recipe provided by
Wall [46, Chap. 6, pp. 58-59], the surgery obstruction is represented in SUr(Λ), where
r ≥ 2d(π) since an epimorphism Λr → I(ρ) requires r ≥ d(π). �

Corollary 4.5. Let π be a right-angled Artin group with g-dim(π) ≤ 4. Then sr(π) ≤ 6.

Proof. Every right-angled Artin group π has g-dim(π) <∞ since it is defined by a finite
graph. As remarked above, A•5(π) = A5(π) if g-dim(π) ≤ 4. The homology group
H3(π;Z/2) has Z/2-rank b3(π), which is equal to the number of 3-cliques in the defining
graph for π. Moreover, since each 3-clique determines a subgroup Z3 ⊆ π, the group
H3(π;Z/2) is generated by the images of the fundamental classes under all the induced
maps H3(T 3;Z/2)→ H3(π;Z/2). It is therefore enough to determine the stable range for
ρ = Z3. �

1I am indebted to Danny Ruberman for providing Ronnie Lee’s notes: available on request
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Remark 4.6. If π is a right-angled Artin group with g-dim(π) ≤ n, then a similar
argument shows that sr(π) ≤ sr(Zn) whenever H5(π;L) is generated by the images of
toral subgroups of π. Note that sr(Zn) ≤ n+ 3 (see [39, Theorem B]).

We will use a stable range condition to realize the action of L5(Z[π]) on a B-bordism,
after a suitable stabilization. The following statement is an application of this result in
the setting of Kreck [30, Theorem 4].

Proposition 4.7. Let π be a discrete group of type F satisfying properties (W-A). Let M
and N be closed, oriented topological 4-manifolds with the same Euler characteristic, which
admit normal 1-smoothings in a fibration B → BSTOP . Suppose that (W, ν̄) is a normal
B-bordism between these two 1-smoothings. If r ≥ sr(π), then for any x ∈ L5(Z[π]) there
exists a B-bordism (W ′, ν̄) between the stabilized 1-smoothings M ′ := M # r(S2×S2) and
N ′ := N # r(S2 × S2), with Θ(W ′, ν̄) = Θ(W, ν̄) + x ∈ `5(π).

Proof. By property (W-A), the assembly map A5(π) : H5(π;L) → L5(Z[π]) is surjective.
The elements x ∈ L5(Z[π]) in the image of H1(π;Z) ∼= H1(M ;Z) are realized without
stabilization (see the discussion following Remark 3.4). For the elements x = A5(α) ∈
L5(Z[π]) in the image of α ∈ H5(π;L), we use the stabilized version of Wall realization
due to Cappell and Shaneson [8, Theorem 3.1].

Any element is the image of a finite sum α =
∑
αi of elements of H5(π;L), which each

have stable L-range at most sr(π), after subtracting an element of I1(π) if necessary. Pick
r ≥ sr(π) and let M ′ := M # r(S2 × S2). The realization construction can be done (for
each term αi of the finite sum) in small disjoint intervals

M ′ × [ti−1, ti] ⊂M ′ × [0, 1],

with 0 = t0 < t1 < · · · < tk = 1, to produce degree one normal maps

Fi : (Ui, ∂0Ui, ∂1Ui)→ (M ′ × [ti−1, ti],M
′ × ti−1,M × ti), 1 ≤ i ≤ k,

such that ∂0Ui = ∂1Ui = M ′ = M # r(S2 × S2). The restrictions of Fi to the boundary
components have the property that Fi | ∂0U = id, and Fi | ∂1U := fi is a simple homotopy
equivalence. In other words, this construction produces elements of the structure set
S(M ′) represented by self-equivalences of M ′.

These normal bordisms can be glued (at disjoint levels) into a collar M ′× [0, 1] attached
to the stablization W\ r(S2 × S2 × I) of the given B-bordism, and the reference map
to B extended through M . After including all these bordisms, the induced homotopy
equivalence with target M ′×1 is the composite f := f1◦f2◦· · ·◦fk.The surgery obstruction
over the collar M ′ × [0, 1] is x = A5(α) =

∑
A5(αi), and the result follows. �

The following application of the theory in Kreck [30, §6] may be useful in cases where
a potentially harder bordism calculation is feasible.

Corollary 4.8. If M and N are closed, oriented or topological 4-manifolds which admit
B-bordant normal 2-smoothings in the same fibration B → BSTOP , then they are s-
cobordant after at most sr(π) stabilizations, provided their fundamental group has type F
and satisfies properties (W-A).
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Proof. For normal 2-smoothings of M and N , the reference maps are 3-connected. In this
case, Kreck [30, p. 734] shows that the surgery obstruction Θ(W, ν̄) of a B-bordism (W, ν̄)
lies in the image of L5(Z[π])→ `5(π). The result now follows from Proposition 4.7. �

Remark 4.9. The results of Cappell and Shaneson [8, Theorem 3.1] and Kreck [30,
Theorem 4] also apply in the smooth category, and we obtain the analogous smooth
versions of Proposition 4.7 and Corollary 4.8 for normal smoothings in fibrations B →
BSO.

The proof of Theorem A. Let M and N are closed, smooth, spin 4-manifolds with fun-
damental group π, and let f : N → M be an oriented homotopy equivalence. In the
setting of modified surgery, we have normal 2-smoothings (N, f) and (M, id) into the
same fibration B → BSO, where B = M ×BSPIN .

Under our assembly conditions (W-AA), the homomorphism κ2 : H2(π;Z/2)→: L4(Z[π])
is injective (see Lemma 3.3). It follows that the normal invariant

η(f) ∈ [M,G/TOP ] ∼= H4(M ;L0) ∼= H2(M ;Z/2)⊕ Z

has trivial surgery obstruction, and lies in the image

Im{π2(M)⊗ Z/2→ H2(M ;Z/2)} = ker{H2(M ;Z/2)→ H2(π;Z/2)}

since the surgery obstruction is determined by the ordinary signature difference and κ2(π)
(see [20, §1]). By [28, Theorem 19], these normal invariants are all realized by homotopy
self-equivalences (pinch maps) of M . Hence we may assume that the normal invariant
η(f) is trivial. Therefore, there exists a normal cobordism

(F, b) : (W,∂0W,∂1W )→ (M × I,M × 0,M × 1)

with F |∂0W = id: M → M and F |∂1W = f : N → M . In other words, we have two
B-bordant normal 2-smoothings in the same fibration M × BSPIN → BSTOP . We
now apply Corollary 4.8 to complete the proof. �

5. Homotopy self-equvalences of 4-manifolds

We will recall a braid diagram relating homotopy self-equivalences to bordism the-
ory (see Hambleton and Kreck [17]). The proof of Theorem B will use an approach to
cancellation introduced by Pamuk [37,38] based on this braid.

Let Aut•(M) denote the group of homotopy classes of homotopy self-equivalences, pre-
serving both the given orientation on M and a fixed base-point x0 ∈ M . There are also
“pointed” versions of the space E•(B) of base-point preserving homotopy equivalences of
B (the algebraic 2-type of M). The main result of [17] for spin manifolds is expressed in
a commutative braid of interlocking exact sequences:
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ΩSpin
5 (M)

$$

''

H̃(M)

$$

δ

&&
Aut•(B)

β

$$

ΩSpin
5 (B)

$$

::

Aut•(M)

α

$$

::

ΩSpin
4 (B)

π1(E•(B))

::

88
Ω̂Spin

5 (B,M)

γ
::

88
Ω̂Spin

4 (M)

::

valid for any closed, oriented smooth or topological spin 4-manifold M (see [17, Theorem
2.16]). The maps labelled α and β are not necessarily group homomorphisms, so exactness
is understood in the sense of “pointed sets” (meaning that image = kernel, where kernel
is the pre-image of the base point).

Here is an informal description of the other objects in the braid.

(i) The group H(M) consists of oriented h-cobordisms W 5 from M to M , under
the equivalence relation induced by h-cobordism relative to the boundary. The
orientation of W induces opposite orientations on the two boundary components
M . An h-cobordism gives a homotopy self-equivalence of M , and we get a homo-
morphism H(M)→ Aut(M).

(ii) The natural map c : M → B is 3-connected, and we refer to this as the classifying
map of M . There is an induced homomorphism Aut(M)→ Aut(B), the group of
homotopy classes of homotopy self-equivalences of B, by obstruction theory and
the naturality of the construction.

(iii) If M is a spin manifold, we use the smooth (or topological) bordism groups
ΩSpin
n (B). By imposing the requirement that the reference maps to M must have

degree zero, we obtain modified bordism groups Ω̂Spin
4 (M) and Ω̂Spin

5 (B,M).

(iv) The map α : Aut•(M) → Ω̂Spin
4 (M) is given by α(f) = [M, f ]− [M, id], and the

map β : Aut•(B)→ ΩSpin
4 (B) is given by β(φ) = [M,φ ◦ c]− [M, c]. For the map

γ, see [17, §2.5].

(v) A variation of H(M), denoted H̃(M), will also be useful. This is the group
of oriented bordisms (W,∂−W,∂+W ) with ∂±W = M , equipped with a map
F : W → M . We require the restrictions F |∂±W to the boundary components
to be homotopy equivalences (and the identity on the component ∂−W ). The
equivalence relation on these objects is induced by bordism (extending the map
to M) relative to the boundary (see [17, Section 2.2] for the details).

6. The image of the fundamental class

Let B := B(M) denote the algebraic 2-type of a closed oriented topological 4-manifold
Mwith infinite fundamental group π. We will indicate the places where we assume that
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π has one end, or equivalently that H1(π; Λ) = 0. By Poincaré duality, this implies that

H3(M̃ ;Z) = H3(M ; Λ) = 0. Since π3(B) = 0, we also have H3(B̃;Z) = 0.

Remark 6.1. For some applications we will assume that the end homology He
1(Eπ) = 0.

This imposes restrictions on the low-dimenaional cohomology of π, via the exact sequence

0→ ExtZ(H2
e (Eπ),Z)→ He

1(Eπ;Z)→ HomZ(H1
e (Eπ),Z),→ 0

from [31, Proposition 2.9], and the isomorphisms Hq
e (Eπ) ∼= Hq+1(π; Λ), for q > 0.

Therefore if He
1(Eπ;Z) = 0 then H2(π; Λ) is all torsion and H3(π; Λ is torsion-free. For

example, He
1(Eπ) = 0 whenever Hq(π; Λ) = 0 for q = 2, 3.

The statement that H2(π; Λ) is free abelian for all finitely-presented groups (which
would imply that π2(M) is free abelian) is said to be a conjecture of Hopf [12, Remark
4.5]). The conjecture is still open, although it has been verified in some cases (see [34,35]).

Our most general result so far about the image of fundamental class requires some group
cohomology conditions (introduced in [13, Definition 3.1]). In the setting of Theorem B,
these conditions are satisfied.

Definition 6.2. A finitely presented group π has tame cohomology if the following con-
ditions hold:

(i) HomΛ(H2(π; Λ),Λ) = 0
(ii) HomΛ(H3(π; Λ),Λ) = 0
(iii) Ext1

Λ(H3(π; Λ),Λ) = 0.

In applications of the braid diagram, it is important to understand the maps in the
exact sequence

ΩSpin
5 (B)→ H̃(M)

δ−→ Aut•(B)
β−→ ΩSpin

4 (B).

In particular, if φ : B → B is a homotopy self-equivalence, we need to understand the
image φ∗(c∗[M ]) ∈ H4(B;Z) of the fundamental class [M ] ∈ H4(M ;Z) in order to compute

β(φ) = [M,φ ◦ c]− [M, c] ∈ ΩSpin
4 (B).

We first need some information about H4(B;Z). Recall that we have an expression

H4(B̃;Z) ∼= Γ(π2(B)), in terms of Whitehead’s Γ-functor (see [47, Chap. II]). In addition,

we have the orientation class µM ∈ H4(B, B̃) = Z, given in Definition 2.2 as the image

of the fundamental class [M ] ∈ H4(M) under the composition H4(M) → H4(M, M̃)
c∗−→

H4(B, B̃).

Proposition 6.3. Suppose that π has one end.

(i) The map c∗ : H4(M ;Z)→ H4(B;Z) is injective.

(ii) The composition ω : H4(M ;Z)
c∗−→ H4(B;Z)

∩−→ HomΛ(H2(B;Z), H2(B;Z)) in-
duces the ordinary intersection form qM .

(iii) If φ ∈ Aut•(B) is orientation-preserving, so that φ∗(µM) = µM ∈ H4(B, B̃), then

c∗[M ]− φ∗(c∗[M ]) ∈ Im(H4(B̃;Z)⊗Λ Z→ H4(B;Z)).

(iv) If φ ∈ Aut•(B) induces the identity on [π1(M), π2(M), kM ], then φ∗(µM) = µM ∈
H4(B, B̃).
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Proof. Here we will use homology with integer coeffiicients unless otherwise stated. For

part (i) we compare that spectral sequences of the coverings M̃ → M and B̃ → B, and

note thatH3(M̃) = H4(M̃) = 0 under our assumptions. The terms E2
p,q = TorΛ

p (Z, Hq(M̃))
are mapped isomorphically for q ≤ 3. We have a commutative diagram:

H5(π;Z)
d35.0 // TorΛ

2 (Z, H2(M̃)) // H4(M, M̃)

��

// H4(π;Z)

H5(π;Z)
d35.0 // TorΛ

2 (Z, H2(B̃)) // H4(B, B̃) // H4(π;Z)

We see that Z = H4(M) ∼= H4(M, M̃) ∼= H4(B, B̃) under the natural maps, and part (i)
follows. By definition, [M ] 7→ µM under this composite isomorphism.

For any a, b ∈ H2(M), we have x = a∩ [M ] and y = b ∩ [M ] in H2(M) under Poincaré
duality. Then qM(x, y) = 〈a ∪ b, [M ]〉 = 〈a ∩ [M ], b〉. Since c is a 3-equivalence,

qM(x, y) = 〈c∗ā ∪ c∗b̄, [M ]〉 = 〈ā ∪ b̄, c∗[M ]〉
for some ā, b̄ ∈ H2(B). Therefore qM(x, y) = 〈ω([M ])(a), b〉. This gives part (ii).

For part (iii), we have c∗[M ]− φ∗(c∗[M ]) ∈ Im(H4(B̃;Z)⊗Λ Z→ H4(B;Z)), since µM
generates H4(B, B̃), and φ∗(µM) = µM by assumption.

For part (iv), we consider the exact sequence:

· · · → H5(π;Z)
d35.0−−−→ TorΛ

2 (Z, H2(B̃))→ H4(B, B̃)→ H4(π;Z)→ . . .

obtained from the spectral sequence of the covering B̃ → B. Since H4(B, B̃) ∼= Z, and φ
acts trivially on π1(M) and π2(M), the result follows. �

We recall from Definition 2.1 that the class tr[M ] ∈ HLF
4 (M̃ ;Z) ∼= H4(M ; Λ̂) induces

the equivariant intersection form sM on π2(M). In this expression,

Λ̂ = {
∑

ng · g | for g ∈ G, and ng ∈ Z}

denotes the formal (possibly infinite) integer linear sums of group elements (see Section
9). The transfer map can be expressed as the change of coefficients homomorphism

tr : H4(M ;Z) → H4(M ; Λ̂) via the map 1 7→ Σ̂ :=
∑
{g | g ∈ π}. The image of the

transfer map therefore lands in the π-fixed subgroup HLF
4 (M̃ ;Z)π.

We now translate this information to B. The transfer map

tr : H4(B;Z)→ H4(B; Λ̂)π ∼= HLF

4 (B̃;Z)π

is similarly defined by the coefficient inclusion Z ⊂ Λ̂ and the identification provided by
Corollary 9.3. Define a map

ω : HLF

4 (B̃;Z)π → HomΛ(H2(B; Λ), H2(B; Λ))

by setting ω(z) = z ∩ c, for z ∈ HLF
4 (B̃;Z)π and c ∈ H2(B; Λ).

If α ∈ Im(H4(B̃;Z) ⊗Λ Z → H4(B;Z)), we can pick a lift α̂ ∈ H4(B̃;Z), and then

the restriction of the transfer map tr(α) ∈ HLF
4 (B̃;Z)π is just the image of α̂ ⊗Λ Σ̂ ∈
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H4(B̃;Z)⊗Λ Λ̂. This expression is independent of the choice of lift α̂ 7→ α, since elements

of the form (1− g)⊗Λ Σ̂ = 0 for all g ∈ π.

Definition 6.4. A Λ-module L is called torsionless if there exists an Λ-embedding L ⊂ F ,
where F is a finitely generated free Λ-module. The module L is called strongly torsionless
if additionally the induced map Γ(L)⊗Λ Z→ Γ(F )⊗Λ Z is injective.

We remark that these properties depend only on the stable class of the module. Note

that if L = H2(B̃) ∼= π2(M), we have Γ(L) = H4(B̃). For the terminology see [3, §4.4,
pp. 476-477] and the statement that the dual of a finitely generated Λ-module embeds in
a finitely generated free module.

Lemma 6.5. Assume that π has one end. Then

(i) The image ω(tr(c∗[M ])) induces the equivariant intersection form sM .

(ii) The natural map H4(B̃)⊗Λ Λ̂→ H4(B; Λ̂) ∼= HLF
4 (B̃) is injective.

(iii) If H2(B̃) is strongly torsionless, and π has tame cohomology, then the composite

H4(B̃)⊗Λ Z tr−−→ HLF

4 (B̃)π
ω−−→ HomΛ(H2(B; Λ), H2(B; Λ))

is injective.

Proof. The first statement follows from the definition of sM . Since c : M → B is a 3-
equivalence, the cap product

∩ tr(c∗[M ]) : H2(B; Λ)→ H2(B; Λ)

is an isomorphism by Poincaré duality. The hermitian form induced by the cup product

H2(B; Λ)×H2(B; Λ)→ H4(B; Λ)→ H4(M ; Λ) ∼= Z
may be identified with sM (see Definition 2.1). For part (ii) we compare the spectral

sequences under the map H4(M ; Λ̂)→ H4(B; Λ̂), starting with

E2
p,q(M) = TorΛ

p (Hq(M̃), Λ̂)→ E2
p,q(B) = TorΛ

p (Hq(B̃), Λ̂).

Note that H3(M̃) = H1(π; Λ) = 0, by our assumption that π has one end. Since

Hk(M ; Λ̂) = 0 for k ≥ 5 and H4(M̃) = 0, the differential d5,0
3 is injective, and the

differential d6,0
3 is surjective (in the spectral sequence for H4(M ; Λ̂)). By comparison,

there are no non-zero differemtials hitting the (0, 4) position in the spectral sequence for

H4(B; Λ̂). Hence the term E2
0,4(B) = H4(B̃)⊗Λ Λ̂ survives, and injects into H4(B; Λ̂).

For part (iii): since L = H2(B̃) = H2(B; Λ) is torsionless there exists an Λ-embedding
e : L ⊂ F , where F is a finitely generated free Λ-module. Let P denote the 2-stage
Postnikov tower with π1(P ) = π, π2(P ) = F , and k-invariant pushed forward by the

induced map H3(π; π2(B))
e∗−−→ H3(π; π2(P )). We have a commutative diagram

(6.6)

H4(B̃)⊗Λ Z tr //

e∗
��

HLF
4 (B̃)π

ωB //

e∗
��

HomΛ(H2(B; Λ), H2(B; Λ))

Hom(e∗, e∗)
��

H4(P̃ )⊗Λ Z tr // HLF
4 (P̃ )π

ωP // HomΛ(H2(P ; Λ), H2(P ; Λ))



16 IAN HAMBLETON

The left-hand vertical arrow is injective since H4(P̃ ) = Γ(F ) and we have assumed that
L is strongly torsionless. We also need some more information about the sequence

0→ H2(π; Λ)→ H2(P ; Λ)→ Hom〈(π2(P ),Λ)→ H3(π; Λ)→ 0.

Under the tame cohomology assumption (ii) of Definition 6.2, we have an injection:

0→ HomΛ(HomΛ(π2(P ),Λ), π2(P ))→ HomΛ(H2(P ; Λ), π2(P ))

after applying HomΛ(−, π2(P )) to each term, since π2(P ) = H2(P ; Λ) is free over Λ. If
we add conditions (i) and (iii), then we get an isomorphism

HomΛ(HomΛ(π2(P ),Λ), π2(P )) ∼= HomΛ(H2(P ; Λ), π2(P )).

As a consequence, we can use the identification ωP : HLF
4 (P̃ )π → HomΛ(HomΛ(F,Λ), F )

in studying the diagram (6.6).
To show that the lower horizontal composite ωP ◦ tr is injective, we recall the proof

of [19, Lemma 5.15]. If F = Λr, we have a Z-base {ai} for F consisting of elements
ai = gej, for some g ∈ π, where {ej} denotes a Λ-base for F . Following [47, p. 63], define

F ∗ = {φ : F → Z |φ(ai) = 0 for almost all i}.
Let {a∗i } denote the dual basis for F ∗. We say that a homomorphism f : F ∗ → F is
admissible of f(a∗i ) = 0 for almost all i, and that f is symmetric if a∗fb∗ = b∗fa∗ for all
a∗, b∗ ∈ F ∗. Then

Γ(F ) ∼= {f : F ∗ → F | f is symmetric and admissible}.
We now observe that HomΛ(F,Λ) ∼= F ∗, and we have a commutative diagram:

HLF
4 (P̃ ;Z)π

ω // HomZ(F ∗, F )π

Γ(F )π

tr

99

H4(P̃ ;Z)π

N

OO

// // Homa
Z(F ∗, F )π

N

OO

where Homa denotes the admissible homomorphisms, and the norm maps N : Lπ → Lπ

are formally defined for any Λ-module by applying the operator Σ̂ =
∑
{g | g ∈ π}. Here

Lπ = L ⊗Λ Z is the co-fixed set, and Lπ is the fixed set. For the middle term, the norm

map N is induced by the coefficient map H4(P ;Z) → H4(P ; Λ̂) ∼= HLF
4 (P̃ ;Z) sending

1→ Σ̂ ∈ Λ̂. The right-hand norm map in the diagram is the direct sum of the norm maps

N : Homa
Z(Λ∗,Λ)π → HomZ(Λ∗,Λ)π

and the rest of the argument to show thatN is injective is explained in detail on [19, p. 144]
(note that the reference to Whitehead [47] has been corrected here). To check that the
map

H4(P̃ ;Z)π → Homa
Z(F ∗, F )π

is injective (but not bijective), it is convenient to use the description for Γ(Λ) given
in [15, Lemma 2.2]. Hence ωP ◦ tr is injective, and from diagram (6.6) we conclude that
ωB ◦ tr is injective as required. �
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Corollary 6.7. Suppose that π has one end, and π has tame cohomology. If H2(B̃) is
strongly torsionless, and φ ∈ Aut•(B) induces an oriented isometry of the quadratic 2-type
Q(M), then φ∗(c∗[M ]) = c∗[M ] ∈ H4(B;Z).

Proof. By Proposition 6.3 (iii), we have

α := c∗[M ]− φ∗(c∗[M ]) ∈ Im(H4(B̃;Z)⊗Λ Z→ H4(B;Z)).

since φ is oriented. Since φ is an isometry of the quadratic 2-type, Lemma 6.5(i) gives
ω(tr(c∗[M ])) = ω(tr(φ∗(c∗[M ]))), and Lemma 6.5(iii) implies that c∗[M ] = φ∗(c∗[M ]). �

7. Applications

In this section we will describe a general process for establishing results like Theorem
B.

Theorem 7.1. Let π be a discrete group of type F with one end, satisfying properties
(W-AA). Let M and N be closed, smooth (topological), spin 4-manifolds with fundamental
group π, and isometric oriented quadratic 2-types. If M and N are stably diffeomorphic
(homeomorphic) and the composite

H4(B̃)⊗Λ Z tr−−→ HLF

4 (B̃)π
ω−−→ HomΛ(H2(B; Λ), H2(B; Λ))

is injective, then M#r(S2×S2) is s-cobordant to N#r(S2×S2), provided that r ≥ sr(π).

We will discuss the topological case, and note that the arguments in the smooth case
follow the same steps. If M and N are stably homeomorphic, then we can construct
a 5-dimensional spin bordism (V ;M,N) between M and N over K(π, 1) (with respect
to compatible spin structures). By [11, Chapter 9], there is a topological handlebody
structure on V relative to its boundary.

As in the proof of the h-cobordism theorem, we may assume that V consists of 2-handles
and 3-handles, so that at a middle level V1/2 ≈M#t(S2×S2) ≈ N#t(S2×S2), for some
t ≥ 0.

Proof. Here are the remaining steps in the proof.

(i) Let θ : [π1(M,x0), π2(M), kM , sM ]
∼=−→ [π1(N, x0), π2(N), kN , sN ] be an orientation-

preserving isometry of the quadratic 2-types of M and N , and use it together
with a given isomorphism of their fundamental groups to identify their algebraic
2-types B := B(M) = B(N).

(ii) Let h : N#t(S2× S2)→M#t(S2× S2) be a stable orientation-preserving home-
omorphism, with

h∗ : π2(N)⊕H(Λt)
∼=−→ π2(M)⊕H(Λt)

the induced isometry of their stabilized equivariant intersection forms. We may
assume that the k-invariants are preserved. Let Mt := M#t(S2 × S2) and let Bt

denote the stabilized algebraic 2-type for M#t(S2 × S2) and N#t(S2 × S2).
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(iii) Let γ := h∗ ◦ (θ ⊕ idt) be the induced oriented self-isometry of the stabilized
quadratic 2-type of Mt, where idt : H(Λt) → H(Λt) denotes the identity map on
the added hyperbolic summand. Then there exists a homotopy self-equivalence
φ : Bt → Bt such that c−1

∗ ◦ φ∗ ◦ c∗ = γ.

(iv) By Proposition 6.3(iii), we have

α := φ∗(c∗[Mt])− c∗[Mt] ∈ Im{H4(B̃t;Z)→ H4(Bt;Z)},

since φ induces an oriented isometry of the quadratic 2-type. Moreover, since the
composite ω ◦ tr is injective (by assumption), it follows from Lemma 6.5(i) that
φ∗(c∗[Mt]) = c∗[Mt] ∈ H4(Bt;Z).

(v) By [18, Theorem 1.1], there exists a homotopy self-equivalence g : Mt →Mt such
that c ◦ g ' φ ◦ c. Since κ2 : H2(π;Z/2) → L4(Z[π]) is injective (by condition
(W-AA)), the normal invariant η(g) ∈ H2(Mt;Z/2) lies in ker{H2(Mt;Z/2) →
H2(π;Z/2)}. By [28, Theorem 19], after composing g with suitable self-equivalences
given by pinch maps inducing the identity on π2(Mt), we may assume that the
normal invariant η(g) ∈ H2(Mt;Z/2) vanishes. Therefore (M, g) is normally
cobordant to (M, id) and we have

α(g) = [Mt, f ]− [Mt, id] = 0 ∈ Ω̂Spin
4 (Mt).

(vi) We use the braid for the stabilized Mt and its 2-type Bt to show that [φ] is the im-

age of an element [(W,F )] ∈ H̃(Mt) under the map δ : H̃(Mt) → Aut•(Bt). The
image of [(W,F )] in Aut•(Mt) in the braid is represented by the self-equivalence
g := F |∂+W : Mt → Mt. Note that [g] 7→ [φ] ∈ Aut•(Bt) under the map
Aut•(Mt)→ Aut•(Bt) in the braid, so that g∗ = h∗ ◦ (θ ⊕ idt).

(vii) There is an exact sequence:

L6(Z[π])→ H(Mt)→ H̃(Mt)→ L5(Z[π])

and the map H̃(Mt) → L5(Z[π]) is given by the (modified) surgery obstruction
of the map F : W →Mt × I, relative to the boundaries (see [17, p. 163]).

(viii) We now apply Corollary 4.8 to (W,F ), regarded as a bordism from the normal
2-smoothing id : Mt → Mt to itself, over the reference map F : W → M . For
any given r ≥ sr(π), we can realize an element [αr] = −σ(F ) ∈ L5(Z[π]), with
αr ∈ SUr(Λ), by a stabilized normal cobordism, and attach it to (W,F ) along
Mt#r(S

2 × S2) = ∂+W#r(S2 × S2) (see the proof of [8, Theorem 3.1]).
The resulting cobordism has zero surgery obstruction, so after performing

surgery (relative to the boundary), the result is an s-cobordism (W ′, F ′) of
Mt#r(S

2 × S2). By construction, F ′|∂−W = idMt#r(S2×S2) and

F ′|∂+W = f ◦ g : Mt#r(S
2 × S2)→Mt#r(S

2 × S2),

where (Mt#r(S
2 × S2), f) is a (simple) homotopy self-equivalence, such that f∗

induces the identity on π2(Mt).
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(ix) We now return to decompose the spin bordism between M and N as follows:

V = M × [0, 1/4] ∪ {2-handles} ∪ {3-handles} ∪N × [3/4, 1]

As above, let V1/2 denote a middle level containing no critical points, so that the
2-handles are all attached below V1/2, and the 3-handles attached all above V1/2.

Let V = V [0, 1/2] ∪ V [1/2, 1] denote the lower and upper parts of V , joined
along their common boundary V (1/2) by the stable homeomorphism

h : M#t(S2 × S2)→ N#t(S2 × S2)

used in the steps above. We then stabilize V to V ′ by connected sum with
r(S2 × S2 × [0, 1]) along small disjoint embeddings of D4 × [0, 1] ⊂ V , so that
∂−V

′ = Mr := M#r(S2 × S2) and ∂+V
′ = Nr := N#r(S2 × S2). We now have

the stabilized decomposition

V ′ = V ′[0, 1/2] ∪ V ′[1/2, 1],

where ∂+V
′[0, 1/2] = Mt#r(S

2 × S2) and ∂−V
′[1/2, 1] = Nt#r(S

2 × S2). The
final step is to glue the s-cobordism (W ′, F ′) in between the two halves to produce
V ′′ = V ′[0, 1/2] ∪W ′ ∪ V ′[1/2, 1], with ∂±V

′′ = ∂±V
′.

(x) We claim that V ′′ is an s-cobordism from Mr to Nr. To see this, we check that
the new attaching maps of the 3-handles cancel the ascending 2-handles. To keep
track of the induced maps, let LM = π2(M), LN = π2(N), Ht = H(Λt) and
Hr = H(Λr). Then

π2(Mt#r(S
2 × S2)) = LM ⊕Ht ⊕Hr.

The bordisms V ′[0, 1/2]∪W ′ and V ′[1/2, 1] are glued together along ∂−V
′[1/2, 1]

by attaching the 3-handles. The attaching maps are algebraically determined by
the induced map on homology;

(h−1
∗ ⊕ idr) ◦ f∗ ◦ (g∗ ⊕ idr) : LM ⊕Ht ⊕Hr → LN ⊕Ht ⊕Hr.

Since f∗ induces the identity on π2(Mt) = LM ⊕Ht, and h−1
∗ ◦ g∗ = θ ⊕ idt. we

have (
(h−1
∗ ⊕ idr) ◦ f∗ ◦ (g∗ ⊕ idr)

)
(u, v, 0) = (θ(u), v, 0),

for all (u, v, 0) ∈ LM ⊕Ht ⊕Hr.
This formula shows that the 3-handles from V ′[1/2, 1] (the upper half ) alge-

braically cancel the 2-handles from V ′[0, 1/2] (the lower half), and these together
give a standard hyperbolic base for the summand Ht. Hence V ′′ is an s-cobordism
between Mr and Nr, and the proof of Theorem 7.1 is complete.

�

The proof of Theorem B. If π = π1(M) is the fundamental group of a closed, oriented
aspherical 3-manifold, then the Farrell-Jones conjectures hold for π (see [1, Corollary
1.3]) and π has the properties (W-AA). Moreover, g-dim(π) = 3, H1(π; Λ) = 0 and
H3(π; Λ) = Z.
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By [13, Lemma 6.1] we know that π2(M)∗ is a stably free Λ-module, and sinceH2(π; Λ) =
0, we have a short exact sequence

0→ H2(M ; Λ)→ HomΛ(π2(M),Λ)→ H3(π; Λ)→ 0

which is isomorphic (by Shanuel’s Lemma) to

0→ I(π)⊕ F0 → Λ⊕ F0 → Z→ 0,

after stabilization if necessary, where I(π) denotes the augmentation ideal of Z[π], F0

is a (stably) free, finitely generated Λ-module, and L := I(π) ⊕ F0 is a stabilization of
π2(M) ∼= H2(M ; Λ). Let F = Λ ⊕ F0 so that L = I(π) ⊕ F0 embeds in F with quotient
Z. In particular, π2(M) is torsionless.

By [13, Proposition 4.1], the fundamental group π has tame cohomology. It is now easy
to verify the other conditions of Lemma 6.5 needed to apply Theorem 7.1.

In order to check that π2(M) is strongly torsionless, it is enough to show that the
induced map Γ(L)⊗Λ Z→ Γ(F )⊗Λ Z is injective, since this is a stable condition. From
the additivity formula, we have a commutative diagram of Λ-modules:

Γ(L)
∼= //

��

Γ(I(π))⊕ Γ(F0)⊕ I(π)⊗Z F0

��
Γ(F )

∼= // Γ(Λ)⊕ Γ(F0)⊕ Λ⊗Z F0

Since the additive decompositions are natural, we can consider the vertical maps sepa-
rately. By [15, Lemma 2.3], there is a Λ-isomorphism Γ(I(π)) ⊕ Λ ∼= Γ(Λ), so the first
vertical map is split injective. The middle vertical maps is the identity, and the third
vertical map is again a split injection over Λ since the sequence

0→ I(π)⊗Z F0 → Λ⊗Z F0 → Z⊗Z F0 → 0

is an exact sequence of free Λ-modules. Hence the induced map Γ(L)⊗Λ Z→ Γ(F )⊗Λ Z
is injective, and L is strongly torsionless. �

Example 7.2. The assumptions of Theorem 7.1 apply to stabilizations of aspherical
4-manifolds, such as M = T 4 # r(S2 × S2), but not to stabilizations of M = T 2 × S2.

8. The main results of [13] corrected

To correct the statements and proofs of Theorem A and Theorem 11.2 in [13], we use
the new stable range conditions. For the main result below: we need to assume that π
has type F3 in addition to cd(π) ≤ 3. This amounts to assuming g-dim(π) ≤ 3.

Theorem A. Let π be a right-angled Artin group defined by a graph Γ with no 4-cliques.
Suppose that M and N are closed, spin+, topological 4-manifolds with fundamental group
π. Then any isometry between the quadratic 2-types of M and N is stably realized by an
s-cobordism between M # r(S2 × S2) and N # r(S2 × S2), whenever r ≥ max{b3(π), 6}.

This is a consequence of the main result [13, Theorem 11.2], with a corrected stability
bound from applying Corollary 4.8 in the last step of the proof. If cd(π) ≤ 2, then no
stabilization is needed for this result and the next (see [19, Theorem C]).
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Theorem 11.2. Let π be a discrete group with g-dim(π) ≤ 3 satisfying the properties (W-
AA). If M and N are closed, oriented, spin+, topological 4-manifolds with fundamental
group π, then any isometry between the quadratic 2-types of M and N is stably realized by
an s-cobordism between M # r(S2 × S2) and N # r(S2 × S2), for r ≥ max{b3(π), sr(π)}.

Remark 8.1. Note that we obtain s-cobordisms after connected sum with a uniformly
bounded number of copies of S2× S2, where the bound depends only on the fundamental
group. In contrast, “stable classification” results might require an unbounded number of
stabilizations as the manifolds M and N vary.

The stable classification result, [13, Theorem B], is not affected: two closed, oriented
spin+, topological 4-manifolds with cd(π) ≤ 3 are stably homeomorphic if and only
if their equivariant intersection form are stably isometric. For the restricted class of
spin+manifolds, this extends the stable classification obtained in [22] for fundamental
groups of closed, oriente, aspherical 3-manifolds to more general fundamental groups.

Remark 8.2. The proof of [19, Lemma 5.15] implicitly assumes that HomΛ(H2(π; Λ),Λ) =
0. This can be justified since a group π with cd(π) ≤ 2 has tame oohomology by [13,
Proposition 4.1 and Lemma 4.4]. At present we do not know whether every discrete
group π (or even every right-angled Artin group) with cd(π) = 3 has tame cohomology
(see [13, Remark 3.2] for an example with cd(π) = 4).

9. Appendix: Locally finite and end homology

Let X be a closed, oriented, topological n-manifold with π1(X) = G infinite. The

universal covering X̃ is a non-compact n-manifold, and we have two versions of Poincaré
duality expressed in the following diagram:

Hq
c (X̃;Z) //

D∼=
��

Hq(X̃;Z)

D∼=
��

Hn−q(X̃;Z) // HLF
n−q(X̃;Z)

where the duality map is induced by cap product with the transfer

tr[X] ∈ HLF

n (X̃;Z)

of the fundamental class of X into the locally finite homology of its universal covering.
The first version is a special case of the general Poincaré duality theorem

∩ [X] : Hq(X;L)→ Hn−q(X;L)

valid for any Λ := ZG-module L. If we take L = Λ, then

Hq(X; Λ) ∼= Hq
c (X̃;Z) and Hn−q(X; Λ) ∼= Hn−q(X̃;Z).

To express the second version (which involves locally finite homology) in these terms, we
define

Λ̂ = {
∑

ng · g | for g ∈ G, and ng ∈ Z}
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as the formal (possibly infinite) integer linear sums of group elements. Then Λ ⊂ Λ̂ and

Λ̂ is a Λ-module by formal multiplication(∑
g

ngg
)(∑

h

mhh
)

=
∑
x

(∑
g

ngmg−1x

)
x

which is defined since the coefficients {ng} in Λ are only non-zero for finitely many group

elements. Note that Λ̂ = HomZ(Λ,Z) is a co-induced module (see [7, p. 67]).
From the general Poincaré duality theorem we have

∩ [X] : Hq(X; Λ̂)
∼=−−→ Hn−q(X; Λ̂)

and we claim that this recovers the second version of non-compact duality for X̃ given
above.

Proposition 9.1. For any right Λ-module L, there is an isomorphism HomZ(L,Z) ∼=
HomΛ(L, Λ̂) of Λ-modules, which is natural with respect to Λ-maps L→ L′.

Proof. We define a map u : HomZ(L,Z)→ HomΛ(L, Λ̂) by the formula f 7→ f̂ , where

f̂(x) =
∑
g

f(xg−1)g ∈ Λ̂

for any f ∈ HomZ(L,Z). Then f̂(xh) = f̂(x)h, for all h ∈ G. We define a map

v : HomΛ(L, Λ̂) → HomZ(L,Z) by the formula ϕ 7→ ε1ϕ, where ε : Λ̂ → Z is given by
ε1(
∑
ngg) = n1. It is not difficult to check that u and v and inverse Λ-maps, and provide

the claimed natural isomorphism.
We check that the maps f 7→ f̂ and ϕ 7→ ε1ϕ are left Λ-module maps. Define a

left Λ-action on HomZ(L,Z) by the formula (h · f)(x) = f(xh), for all h ∈ G, and on

HomΛ(L, Λ̂) by (h · ϕ)(x) = hϕ(x). Then (̂h · f) = h · f̂ and ε1(h · ϕ) = h · (ε1ϕ). Then
(h1 · (h2 · f))(x) = (h2 · f))(xh1) = f(xh1h2) = ((h1h2) · f)(x), and similarly for ϕ. �

Corollary 9.2. There is a natural isomorphism of Λ-module chain complexes C∗(X̃;Z) ∼=
C∗(X; Λ̂).

Proof. We have a natural isomorphism HomZ(Cq(X̃),Z) ∼= HomΛ(Cq(X̃), Λ̂), for q ≥ 0,

and the differentials are induced by the boundary maps ∂q : Cq(X̃)→ Cq−1(X̃). �

Corollary 9.3. There is a Λ-module isomorphism HLF
q (X̃;Z) ∼= Hq(X; Λ̂), for q ≥ 0.

Proof. Since Hq(X̃;Z) ∼= Hq(X; Λ̂) as Λ-modules, the result follows from Poincaré duality.
�

Remark 9.4. The same expression holds for any finite-dimensional CW -complex K and

its universal covering K̃, by considering the boundary of a high-dimensional thickening
of K is a Euclidean space for dimension 2 dimK + 2.

As shown in Laitinen [31, §3], the Poincaré duality theorems can be extended to include

end homology, which we can now express as He
q−1(X̃;Z) ∼= Hq(X; Λ̂/Λ), for q ≥ 0.
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Proposition 9.5. There is a commutative diagram relating two long exact sequences by
Poincaré duality:

(9.6)

. . . // Hq
c (X̃;Z) //

D∼=
��

Hq(X̃;Z) //

D∼=
��

Hq
e (X̃;Z)

D∼=
��

// . . .

. . . // Hn−q(X̃;Z) // HLF
n−q(X̃;Z) // He

n−q−1(X̃;Z) // . . .

Proof. Poincaré duality gives Hq(X; Λ̂/Λ) ∼= Hn−q(X; Λ̂/Λ) ∼= He
n−q−1(X̃;Z). The long

exact sequences are induced by the coefficient sequence 0→ Λ→ Λ̂→ Λ̂/Λ→ 0. In our

setting Hq
e (X̃;Z) ∼= Hq(X; Λ̂/Λ) and Hq(X; Λ̂/Λ) ∼= He

q−1(X̃;Z). �

We conclude with some algebraic observations.

Lemma 9.7. Let L be a Λ-module which embeds in a projective Λ-module. Then

(i) the map L⊗Λ Λ→ L⊗Λ Λ̂ is injective;

(ii) TorΛ
k (L, Λ̂)→ TorΛ

k (L, Λ̂/Λ) is an isomorphism, for k ≥ 1.

(iii) HomΛ(Λ̂/Λ, Λ̂) = 0.

(iv) Λ̂⊗Λ Λ̂/Λ = 0.

Proof. We may assume that L ⊂ F for some free Λ-module F . For any 0 6= x0 ∈ L, there
exists a Λ-module map f : L → Λ with f(x0) 6= 0. Recall that the universal property of
tensor products is expressed in terms of balanced products. If R is a ring, M is a right
R-module, N is a left R-module and T is an abelian group, then a balanced product is a
bilinear map b : M ×N → T such that b(m · r, n) = b(m, r ·n), for all m ∈M , n ∈ N and
r ∈ R.

Define b : L× Λ̂→ Λ̂ by b(x, λ̂) = f(x) · λ̂, for all x ∈ L and λ̂ ∈ Λ̂. Since b is balanced
over Λ, and b(x0, 1) = f(x0) · 1 6= 0, it follows that x⊗ 1 6= 0.

For part (ii), we tensor the exact sequence 0 → Λ → Λ̂ → Λ̂/Λ → 0 with L over Λ,
and consider the resulting long exact sequence. Since TorΛ

k (L,Λ) = 0 for k ≥ 1, and

TorΛ
1 (L, Λ̂)→ TorΛ

1 (L, Λ̂/Λ) is surjective by part (i), the result follows.
For part (iii), use the sequence

0→ HomΛ(Λ̂/Λ, Λ̂)→ HomΛ(Λ̂, Λ̂)→ HomΛ(Λ, Λ̂)

where the second map is isomorphic to the injective map HomZ(Λ̂,Z)→ HomZ(Λ,Z). In

fact, since Λ̂ ∼=
∏

Z is a countable direct product (although uncountable as an abelian

group), its Z-dual HomZ(Λ̂,Z) ∼=
⊕

Z is the direct sum.

For part (iv), we use the bimodule structure on Λ̂. In general, if R and S are rings, M
is an (R, S)-bimodule, N is a left S-module, and T is a left R-module, then the universal
property is expressed by S-balanced maps b : M ×N → T , such that b(rm, n) = rb(m,n)
and b(ms, n) = b(m, sn). Note that the right adjoint ad b : N → HomR(M,T ) is a left
S-module map. If R = S we call b an R-bilinear map.

We let R = S = Λ, M = Λ̂, N = Λ̂/Λ, and claim that Λ̂ ⊗Λ Λ̂/Λ = 0 if any such R-

bilinear map b : Λ̂× Λ̂/Λ→ Λ with range T = Λ must be zero (this is an easy reduction).
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To verify this claim, suppose that b is non-zero, then by composition with the inclusion

Λ ⊂ Λ̂, the right adjoint ad b̂ : Λ̂/Λ → HomΛ(Λ̂, Λ̂) is a non-zero Λ-map. However,

HomΛ(Λ̂, Λ̂) ∼= HomZ(Λ̂,Z) ⊆ HomZ(Λ,Z) ∼= Λ̂. Since HomΛ(Λ̂/Λ, Λ̂) = 0 by part (iii),
we have a contradiction and hence b ≡ 0. �

Remark 9.8. The module L = Z does not embed in a free Λ-module (unless G is
finite): a sufficient condtion is that L = B∗ for some finitely generated Λ-module B (see

Bass [3, p. 477]). Note that Z ⊗Λ Λ̂ = 0 (see [41, §2.5, §4.3], or [7, Ex. 4(c), p. 71]) so
some condition on L is needed for part (i).
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