On the classification of topological 4-manifolds with finite fundamental group: corrigendum

Ian Hambleton ${ }^{1}$ (D) Matthias Kreck ${ }^{2}$

Received: 30 December 2017 / Revised: 9 February 2018 / Published online: 21 February 2018
© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Abstract

We correct a mistake in Lemma 2.3 of our paper On the classification of topological 4-manifolds with finite fundamental group. Math. Ann. 280:85-104 (1988). The main results of the paper are not affected.

1 Introduction

A key step in the proof of Theorem A in our 1988 paper [1] was the following result about Whitehead's Γ-functor.

Theorem 2.1 (Hambleton and Kreck [1, p. 91]) Let π be a finite group. If L is either a finitely generated projective Λ-module, I or I^{*}, then $\Gamma(L) \otimes_{\Lambda} \mathbb{Z}$ is torsion free as an abelian group.

In this statement $\Lambda=\mathbb{Z}[\pi]$ is the integral group ring, and I denotes the augmentation ideal, defined as the kernel $I=\operatorname{ker}(\Lambda \rightarrow \mathbb{Z})$ of the augmentation map.

The authors are grateful to Daniel Kasprowski and Peter Teichner, who recently pointed out a mistake in one part of the proof of this result (and outlined a correction).

[^0]We incorrectly asserted in [1, Lemma 2.3] that

$$
\Gamma(\Lambda) \cong \Gamma\left(I^{*}\right) \oplus \Lambda
$$

and used this claim as input into the proof of [1, Theorem 2.1]. The mistake arose from our claim that the kernel $\operatorname{ker}\left(\Gamma\left(\Lambda^{*}\right) \rightarrow \Gamma\left(I^{*}\right)\right)$ of the induced surjective map of duals was Λ-free. However, we do still have the following property:

Lemma 1.1 Let I be the augmentation ideal of the integral group ring for a finite group. Then $\Gamma\left(I^{*}\right) \otimes_{\Lambda} \mathbb{Z}$ is torsion free as an abelian group.

This is the result actually needed for the proof of [1, Theorem A].

2 The correction

Let π be a finite group and I^{*} be the dual of the augmentation ideal. We have an exact sequence

$$
\begin{equation*}
0 \rightarrow L \rightarrow \Gamma(\Lambda) \rightarrow \Gamma\left(I^{*}\right) \rightarrow 0 \tag{2.1}
\end{equation*}
$$

and the kernel L has free \mathbb{Z}-basis given in [1, p. 91] by

$$
N \otimes N \quad \text { and } \quad N \otimes g+g \otimes N, \quad \text { for all } g \in \pi, g \neq 1
$$

where $N \in \mathbb{Z}[\pi]$ is the sum of the group elements. There is an exact sequence in Tate cohomology

$$
0 \rightarrow \widehat{H}^{-1}\left(\pi ; \Gamma\left(I^{*}\right)\right) \rightarrow H_{0}\left(\pi ; \Gamma\left(I^{*}\right)\right) \rightarrow H^{0}\left(\pi ; \Gamma\left(I^{*}\right)\right) \rightarrow \widehat{H}^{0}\left(\pi ; \Gamma\left(I^{*}\right)\right) \rightarrow 0
$$

and $H_{0}\left(\pi ; \Gamma\left(I^{*}\right)\right)$ is \mathbb{Z}-torsion free if and only if $\widehat{H}^{-1}\left(\pi ; \Gamma\left(I^{*}\right)\right)=0$. We compute this term via the Tate cohomology sequence

$$
\widehat{H}^{-1}(\pi ; \Gamma(\Lambda)) \rightarrow \widehat{H}^{-1}\left(\pi ; \Gamma\left(I^{*}\right)\right) \rightarrow \widehat{H}^{0}(\pi ; L) \rightarrow \widehat{H}^{0}(\pi ; \Gamma(\Lambda)),
$$

and note first that [1, Lemma 2.2] gives the structure of $\Gamma(\Lambda)$ as a Λ-module, namely the direct sum of a free Λ-module and summands of the form $\Lambda / \Lambda(1-g)$, where $1 \neq g \in \pi, g^{2}=1$. We have $\widehat{H}^{-1}(\pi ; \Lambda)=0$, and

$$
\widehat{H}^{-1}(\pi ; \Lambda / \Lambda(1-g))=\widehat{H}^{-1}(\pi ; \mathbb{Z}[\pi / H])=\widehat{H}^{-1}(H ; \mathbb{Z})=0
$$

by Shapiro's Lemma, since $\Lambda / \Lambda(1-g)=\mathbb{Z}[\pi / H]$, where $H=\langle g\rangle \cong \mathbb{Z} / 2$. Therefore $\widehat{H}^{-1}(\pi ; \Gamma(\Lambda))=0$.

Daniel Kasprowski and Peter Teichner pointed out that we actually have a short exact sequence

$$
0 \rightarrow \Lambda \rightarrow L \rightarrow \mathbb{Z} / 2 \rightarrow 0
$$

in which the free submodule is generated by any element $g \otimes N+N \otimes g \in L$, and the cokernel is generated by the image of $N \otimes N$. We apply Tate cohomology to this sequence to obtain

$$
\widehat{H}^{0}(\pi ; L) \cong \widehat{H}^{0}(\pi ; \mathbb{Z} / 2)
$$

which is zero when π has odd order and isomorphic to $\mathbb{Z} / 2$ if π has even order.
If π has odd order we are done, so we assume that π has even order. It follows that the π-invariant element $N \otimes N$ represents the non-zero element of order two in $\widehat{H}^{0}(\pi ; L)=\mathbb{Z} / 2$, since the composite $\mathbb{Z} \rightarrow L \rightarrow \mathbb{Z} / 2$ (with $1 \mapsto N \otimes N$) induces as surjection on \widehat{H}^{0}, and

$$
2(N \otimes N)=\sum_{g \in \pi} N \otimes g+g \otimes N \in \Gamma(\Lambda)
$$

is a norm in L. Moreover, we will show that $N \otimes N \in \Gamma(\Lambda)$ is not a norm by using the direct sum decomposition

$$
\widehat{H}^{0}(\pi ; \Gamma(\Lambda))=\bigoplus_{1 \neq g, g^{2}=1} \widehat{H}^{0}(\pi ; \Lambda / \Lambda(1-g))=\bigoplus\left\{\mathbb{Z} / 2 \mid 1 \neq g \in \pi, g^{2}=1\right\}
$$

The formula

$$
N \otimes N=N(1 \otimes 1)+\sum_{1 \neq g \in \pi} N(1 \otimes g)
$$

and the expression $N(1 \otimes g)=N\left(g^{-1} \otimes 1\right)$ show that (modulo norms) the right-hand side is the sum of terms of the form

$$
\sum_{i=1}^{k} x_{i}(g \otimes 1+1 \otimes g), \quad 1 \neq g \in \pi, \quad g^{2}=1
$$

where $|\pi / H|=k$ and $\left\{x_{1}, \ldots, x_{k}\right\}$ denotes a set of coset representatives for H in π. Each of these terms maps to $\sum \bar{x}_{k} \in \Lambda / \Lambda(1-g)$, and represents the generator of

$$
\widehat{H}^{0}(\pi ; \Lambda / \Lambda(1-g))=\widehat{H}^{0}(\pi ; \mathbb{Z}[\pi / H])=\widehat{H}^{0}(H ; \mathbb{Z} / 2) \cong \mathbb{Z} / 2
$$

Hence the image of $N \otimes N$ is non-zero under the map $\widehat{H}^{0}(\pi ; L) \rightarrow \widehat{H}^{0}(\pi ; \Gamma(\Lambda))$. This completes the proof of Lemma 1.1.

We can also determine the correct Λ-module structure of L.

Lemma 2.2 Let $L=\operatorname{ker}\left(\Gamma\left(\Lambda^{*}\right) \rightarrow \Gamma\left(I^{*}\right)\right)$, where $\Lambda=\mathbb{Z}[\pi]$ is the integral group ring of a finite group, and $I \subset \mathbb{Z}[\pi]$ is the augmentation ideal. Then $L \cong\langle I, 2\rangle^{*}$.

Proof As noted above, we have an exact sequence

$$
0 \rightarrow \Lambda \rightarrow L \rightarrow \mathbb{Z} / 2 \rightarrow 0
$$

and the given \mathbb{Z}-basis for L shows that L is a free abelian group. Therefore the extension describing L is non-split. On the other hand, by dualizing the exact sequence

$$
0 \rightarrow\langle I, 2\rangle \rightarrow \Lambda \rightarrow \mathbb{Z} / 2 \rightarrow 0
$$

we obtain the exact sequence

$$
0 \rightarrow \Lambda \rightarrow\langle I, 2\rangle^{*} \rightarrow \operatorname{Ext}_{\Lambda}^{1}(\mathbb{Z} / 2, \Lambda) \rightarrow 0
$$

However, we can use the sequence $0 \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} \rightarrow \mathbb{Z} / 2 \rightarrow 0$ to determine that

$$
\operatorname{Ext}_{\Lambda}^{1}(\mathbb{Z} / 2, \Lambda) \cong \mathbb{Z} / 2
$$

Therefore, the two exact sequences are congruent, and $L \cong\langle I, 2\rangle^{*}$.
Remark 2.3 The exact sequence (2.1) is split if and only if π has odd order. Indeed, if π has odd order, then the module $\langle I, 2\rangle^{*}$ is cohomologically trivial, and hence projective. Therefore, if π has odd order we have

$$
\Gamma(\Lambda) \cong \Gamma\left(I^{*}\right) \oplus\langle I, 2\rangle^{*}
$$

If π has even order, then one can check that the restriction of the sequence (2.1) to any subgroup of order two is non-split.

Reference

1. Hambleton, I., Kreck, M.: On the classification of topological 4-manifolds with finite fundamental group. Math. Ann. 280, 85-104 (1988)

[^0]: Communicated by Thomas Schick.

 Research partially supported by NSERC Discovery Grant A4000.
 \boxtimes Ian Hambleton
 hambleton@mcmaster.ca
 Matthias Kreck
 kreck@math.uni-bonn.de
 1 Department of Mathematics and Statistics, McMaster University, Hamilton, ON L8S 4K1, Canada
 2 Mathematisches Institut, Universität Bonn, 53115 Bonn, Germany

