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Abstract. We introduce a new construction, the isotropy groupoid, to organize the
orbit data for split Γ-spaces. We show that equivariant principal G-bundles over split
Γ-CW complexes X can be effectively classified by means of representations of their
isotropy groupoids. For instance, if the quotient complex A = Γ\X is a graph, with all
edge stabilizers toral subgroups of Γ, we obtain a purely combinatorial classification of
bundles with structural group G a compact connected Lie group. If G is abelian, our
approach gives combinatorial and geometric descriptions of some results of Lashof-May-
Segal [18] and Goresky-Kottwitz-MacPherson [10].

Introduction

In this paper we continue our study of equivariant principal bundles via isotropy rep-
resentations (see [13]). If Γ and G are topological groups, then a Γ-equivariant principal
G-bundle is a locally trivial, principal G-bundle p : E → X such that E and X are left
Γ-spaces. The projection map p is Γ-equivariant and γ(e · g) = (γe) · g, where γ ∈ Γ and
g ∈ G acts on e ∈ E by the principal action. Equivariant principal bundles, and their
natural generalizations, were studied by T. E. Stewart [25], T. tom Dieck [26], [27, I (8.7)],
R. Lashof [15], [16] together with P. May [17] and G. Segal [18].

The isotropy representation at a point x ∈ X is the homomorphism αx : Γx → G defined
by the formula

γ · x̃ = x̃ · αx(γ)

where x̃ ∈ p−1(x). The homomorphism αx is independent of the choice of x̃ up to conju-
gation in G. Here Γx denotes the isotropy subgroup or stabilizer of x ∈ X.

The use of isotropy representations is particularly effective when the projection π : X →
Γ\X ≈−→ A has a section ϕ : A → X. We call the triple (X, π, ϕ) a split Γ-space over A.
A natural source of examples is symplectic toric manifolds (see (4.8)), where A is the
moment polytope. Under reasonable assumptions, a split Γ-space over A is uniquely
determined by its isotropy groupoid

I := {(γ, a) ∈ Γ × A | γ ∈ Γϕ(a)}
(see Proposition 2.1). A Γ-equivariant principal G-bundle η := (E

p−→ X) is called split if
the pull-back ϕ∗(η) is a trivial bundle. The isotropy representations of η then produce a
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continuous groupoid representation of I in G which is well defined up to conjugation by
Map(A,G). We denote by

RepG(I) = Hom (I, G)
/
Map(A,G)

the space of conjugacy classes of such groupoid representations. The first part of this
paper is devoted to proving the following general classification theorem.

Theorem A. Suppose that Γ and G are compact Lie groups. Let X be split Γ-space
over A with isotropy groupoid I. Assume that A is locally compact, and that I is locally
maximal. Then the equivalence classes of split Γ-equivariant G-bundles over X are in
bijection with RepG(I).

The relevant definitions are given in Section 3: see §3A for equivariant bundles, §3B
for the notion of a locally maximal isotropy groupoid, and the proof of Theorem A is
given in §3C. In our applications we will assume that X is a Γ-CW-complex, equipped
with a splitting ϕ : A → X such that Γϕ(a) is constant on each open cell of its quotient
CW-complex A. This property doesn’t always hold (see Remark 4.2), but it seems a
natural assumption. We call the resulting isotropy groupoids cellular (see §4A). A cellular
groupoid is a combinatorial object and, when Γ is discrete, it is a particular case of a
developable simple complex of groups as considered by M. Bridson and A. Haefliger [4].
Cellular groupoids whose stalks Ia are compact Lie groups are called proper groupoids.
They arise from proper actions of a Lie group Γ, as studied for example in [20] for Γ
discrete. In Theorem 4.5 we extend Theorem A to the classification of split Γ-equivariant
bundles over a proper groupoid.

In a second part of this paper, we describe some approaches to computing RepG(I)
assuming I is cellular. There is a corresponding notion of cellular representations, meaning
those which are constant on the open cells of A, whose classes modulo conjugation by a
fixed element of G form a set denoted by RepG

cell(I) (see §5A). The cellular representations
are also purely combinatorial, and for A a regular CW -complex, RepG

cell(I) is determined
by restriction to the 0-skeleton of A (see Proposition 5.1). We consider Theorem A
to be an effective method of classifying equivariant bundles whenever RepG(I) can be
reduced to RepG

cell(I). We therefore study the natural map RepG
cell(I) → RepG(I), which

turns out to be injective (Proposition 5.18), but not surjective in general (see (5.21)). It
is however bijective when G is compact abelian (Proposition 5.3), or when A is a tree
(Proposition 5.20).

We next consider the case where A is a graph. Here it is useful to define a related

object Rep
G

cell(I), by allowing conjugation of cellular homomorphisms over each cell of

A independently. It turns out that there exists a natural map ı : RepG(I) → Rep
G

cell(I).
In Theorem 5.11, we study this map for G a compact connected Lie group. A sample
application of Theorem 5.11 is given by the following:

Theorem B. Let Γ and G be a compact Lie groups, with G connected, and suppose that
A is a graph. If I is a cellular groupoid with all edge stabilizers torus subgroups of Γ, then

the map ı : RepG(I) → Rep
G

cell(I) is a bijection.
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Recall that there exists a classifying space B(Γ, G) for Γ-equivariant principal G-bundle
[26], so the classification of equivariant bundles in particular cases can also be approached
by studying the Γ-equivariant homotopy type of B(Γ, G). If the structural group G of
the bundle is abelian, then the main result of Lashof, May and Segal [18] states that
equivariant bundles over a Γ-space X are classified by the ordinary homotopy classes of
maps [X×ΓEΓ, BG]. For non-abelian structural groups, it appears that the natural map
θ : [X,B(Γ, G)]Γ → [X ×Γ EΓ, BG] misses a lot of information, and our results could be
interpreted as studying θ−1(•).

Our isotropy groupoid I has a classifying space BI constructed by Haefliger [12, p. 140].
We observe that BI ≃ X ×Γ EΓ when I is cellular. In our language, the result of [18]
implies that the natural map B : RepG(I) → [BI, BG] is injective for G compact abelian.
More generally, we show in Corollary 6.4:

Theorem C. Let G and Γ be compact Lie groups, with G abelian. Let X be a split Γ-space
over A with cellular isotropy groupoid I. Suppose that H1(A; π0(G)) = H2(A; Z) = 0.
Then the map B : RepG(I) → [BI, BG] is a bijection.

In 6.5 we point out the connection between our classification results and equivariant K-
theory. Finally, in 6.7, we compare our results with some classical theorems in equivariant
cohomology, due to Chang-Skjelbred [5] and Goresky-Kottwitz-MacPherson [10].
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1. Preliminaries

Most of this section contains folklore facts about compact Lie groups. Let K and G be
topological groups. We denote by Hom (K,G) the space of continuous homomorphisms
from K to G, endowed with the compact-open topology. Two homomorphisms α1, α2 ∈
Hom (K,G) are called conjugate if there exists g ∈ G such that α2(γ) = g−1α1(γ)g for
all γ ∈ K. We denote by Hom (K,G) the space of conjugacy classes, endowed with the
quotient topology.

Lemma 1.1. Let K and G be compact Lie groups. Then the space Hom (K,G) is totally
disconnected.
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Proof. A bi-invariant Riemannian metric on G gives rise to a bi-invariant distance d on
G. The uniform convergence distance on Hom(K,G):

d(α, β) = max
k∈K

d(α(k), β(k)) .

induces the compact-open topology. Let us denote by ᾱ, β̄ ∈ Hom(K,G) the conjugacy
classes of α and β. One checks that the formula

d̄(ᾱ, β̄) = min
g∈G

d(gαg−1, β) = min
g,h∈G

d(gαg−1, hβh−1)

defines a distance on Hom (K,G). Since d̄(ᾱ, β̄) ≤ d(α, β) the projection p : (Hom (K,G), d) →
(Hom (K,G), d̄) is continuous, so the quotient topology on Hom (K,G) is finer than the
metric topology (one can check that they are equal but we shall not use that).

The space Hom (K,G) has at most countably many points [2, Prop. 10.14]. Therefore,
the set D = {d(a, b) | a, b ∈ Hom (K,G)} is at most countable. Let a, b ∈ Hom (K,G)
with a 6= b. There exists λ ∈ R with 0 < λ < d̄(a, b) and λ /∈ D. The space Hom (K,G) is
then the disjoint union of {x | d̄(a, x) < λ} and {x | d̄(a, x) > λ}. These are non-empty
open sets for the topology induced by d̄ and then for the quotient topology. This proves
that any subspace of Hom (K,G) containing more than one point is not connected. �

Lemma 1.2. Let K and G be compact Lie groups. Let B be a space homeomorphic to
a compact disk and let b ∈ B. Let x 7→ βx be a continuous map from B to Hom (K,G).
Then, there is a continuous x 7→ gx from B to G with gb = 1, such that βx(γ) =
g−1

x βb(γ) gx for all γ ∈ K and all x ∈ B.

Proof. If B is of dimension n, then, by a pointed homeomorphism, one can replace the
pair (B, b) by ([0, 1]n, 0) if b lies in the boundary of B, or by ([−1, 1]n, 0) otherwise. By
Lemma 1.1, βx stays for all x in the same conjugacy class O of Hom (K,G). As seen in
the proof of Lemma 1.1, the space Hom (K,G) is metric, therefore Hausdorff. Therefore,
O is compact. As G is compact, the map p : G → O given by g 7→ g β0 g

−1 can then
be identified with a principal bundle whose structure group is the centraliser Z(β0(K)),
which is a closed subgroup of G. Lemma 1.2 then follows from the a recursive use of the
homotopy lifting property. �

Lemma 1.3. Let K be a compact abelian Lie group. Denote by K1 the connected compo-

nent of the unit element 1 ∈ K. Then, there is a bicontinuous isomorphism K1×π0(K)
≈−→

K.

Proof. As K is abelian, it suffices to construct a homomorphic section of the projection
K → π0(K). As π0(K) is finite, one can reduce to the case where π0(K) = C is a cyclic
group of order m. Let c ∈ C be a generator and choose c̃ ∈ K representing c. Then, c̃m

is in K1 and there exists γ ∈ K1 such that γm = c̃m. The map σ : C → G defined by
σ(ck) = c̃kγ−k is a homomorphic section of the projection K → C. �

1.4. Spaces over A. Let f : X → A be a continuous map between topological spaces. This
enables us to consider X as a “space over A”. For a ∈ A, the stalk over a is Xa = f−1(a).
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Any subspace Y of B × A is seen as a space over A via the projection onto A restricted
to Y .

2. Split Γ-spaces

Let A be a topological space and Γ be a topological group. A Γ-space is a topological
space equipped with a continuous left action of Γ. If X is a Γ-space and x ∈ X, we denote
by Γx the stabiliser of x.

A split Γ-space over A is a triple (X, π, ϕ) where

(i) X is a Γ-space.
(ii) π : X → A is a continuous surjective map and, for each a ∈ A, the preimage

π−1(a) is a single orbit.
(iii) ϕ : A→ X is a continuous section of π

The maps π and ϕ may ommitted from the notation and we might speak of a split Γ-
space X over A. By (ii), the map π descends to π̄ : Γ\X → A which is a homeomorphism
(its continuous inverse is provided by the section ϕ). The map π may thus be identified
with the projection of X onto the orbit space Γ\X.

A (Γ, A)-groupoid is a subspace I ⊂ Γ × A such that, for each a ∈ A, the space

Ia = I ∩ (Γ × {a}) is of the form Ĩa × {a}, where Ĩa is a closed subgroup of Γ. We
consider Ia as a topological group, naturally isomorphic to the closed subgroup Ĩa of Γ.
We will often identify these two groups, and write, for instance, Ia = Ib when we mean
Ĩa = Ĩb. The space I is regarded as a topological groupoid whose space of objects is A:
if a, b ∈ A, the space of morphisms from a to b is empty when a 6= b and is equal to Ia

otherwise.
Let I be a (Γ, A)-groupoid. A (left) action of I on a topological space W is a continuous

map β : I ×W →W such that, for each a ∈ A, the restriction of β to Ia ×W is an action
of Ia on W . The notation ζ · w is used for β(ζ, w). A right action is defined accordingly,
as a continuous map from W × I to W . When I acts on the right on a space V and on
the left on a space W , we define the quotient space

V ×I W = (V ×W )/ ∼ ,

where “∼” is the smallest equivalence relation such that (v · ζ, w) ∼ (v, ζ ·w) for all ζ ∈ I.
If W is a space over A, then V ×I W is a space over A as well. The stalk over a is then
V ×Ia

Wa.
Let (X, π, ϕ) be a split Γ-space over A. Its isotropy groupoid is the (Γ, A)-groupoid

defined by

I(X) = I(X, π, ϕ) : = {(γ, a) ∈ Γ × A | γ ∈ Γϕ(a)} .
A (Γ, A)-groupoid I is called weakly locally maximal if each point a ∈ A admits a

neighbourhood U such that Iu is a subgroup of Ia for all u ∈ U . A space X is called
locally compact if it is Hausdorff and if every point of X admits a compact neighbourhood.
The main result of this section is the following proposition.
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Proposition 2.1 (Reconstruction). Let Γ be a compact topological group and A be a
locally compact space. Let I be a weakly locally maximal (Γ, A)-groupoid. Then, the
following properties hold.

(i) There is a split Γ-space (YI , Π, φ) over A with isotropy groupoid I; the space YI
is locally compact.

(ii) Let (X, π, ϕ) and (X ′, π′, ϕ′) be two split Γ-spaces over A with isotropy groupoid I.
Suppose that X and X ′ are locally compact. Then there is a unique Γ-equivariant
homeomorphism F : X → X ′ such that ϕ′ = F ◦ϕ.

Proposition 2.1 permits us to speak about the split Γ-space over A with isotropy
groupoid I (as we speak about the real number field instead of a real number field).
The triple (YI , Π, φ) constructed for the proof of (i) is an explicit model for this space,
but other models also occur naturally, as will be seen in examples.

Proof of of Proposition 2.1. The groupoid I acts by multiplication on the right on Γ. We
let it act trivially on the left on A and form the space

YI = Γ ×I A.

The projection Γ × A → A descends to a continuous surjective map Π : YI → A. The
section φ : A → YI is defined by φ(a) = [1, a], where 1 is the unit element in Γ. The
Γ-action β · (γ, x) = (βγ, x) on Γ × A descends to a Γ-action on YI . The stalk Π

−1(a)
is the orbit through φ(a) and Γφ(a) = Ia. Thus, (YI , Π, φ) is a split Γ-space over A with
isotropy groupoid I.

To prove that YI is Hausdorff, let x and y be two distinct points in YI . Let us show that
they admit disjoint neighbourhoods. If π(x) 6= π(y), this is obvious since A is Hausdorff.
In the case π(x) = π(y) = a, let U be a neighbourhood of a for which Ib is a subgroup of
Ia for all b ∈ U . Then, Π

−1(U) is a neighbourhood of {x, y} and there is a continuous map
f : Π

−1(U) → (Γφ(a)\Γ) × U such that f(x) 6= f(y). As Γφ(a) = Ia is a closed subgroup of
Γ, the space (Γφ(a)\Γ)×U is Hausdorff and then x and y admit disjoint neighbourhoods.
Observe that the proof that YI is Hausdorff uses only that Γ and A are Hausdorff and
that I is weakly locally maximal.

Let x ∈ YI . As A is locally compact, Π(x) admits a compact neighbourhood V in A.
Then, Π

−1(V ) is a neighbourhood of x and is the continuous image of Γ × V under the
natural projection Γ × A → YI . As Γ × V is compact and YI is Hausdorff, Π

−1(V ) is
compact. This shows that YI is locally compact and finishes the proof of (i).

Let us prove (ii), starting with uniqueness. Let F1, F2 : X → X ′ be two Γ-equivariant
isomorphisms satisfying F1◦ϕ = F2◦ϕ. Then F1 = F2 by equivariance, since ϕ(A) is a
fundamental domain for the Γ-action. Now, let (X, π, ϕ) be a split Γ-space with isotropy
groupoid I. The map F̃ : Γ × A → X defined by F̃ (γ, a) = γ · ϕ(a) is continuous, Γ-
equivariant and surjective. It descends to a Γ-equivariant continuous bijection F : YI →
X. Observe that F̃ is proper, that is F̃−1(K) is compact for all compact subsets K in X.

Indeed, F̃−1(K) is a closed subset of Γ × π(K) which is compact. Since YI is Hausdorff,
the map F is proper as well. A proper continuous bijection between locally compact
spaces is a homeomorphism, which proves (b). �
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Remark 2.2. If, in Proposition 2.1, we only assume that Γ is locally compact, the space
YI constructed for the proof of (i) might not be locally compact. As an example, take
A = [0, 1], Ia trivial for a < 1 and I1 = Γ. Then YI is the cone on Γ, which is not
locally compact if Γ is not compact. Moreover, the uniqueness also fails in this case.
Let Γ = Z. Then the cone V on the real integers in the complex plane, with vertex i
say, and the induced metric, is a split Γ-space with isotropy groupoid I. The proof of
Proposition 2.1 provides a Γ-equivariant continuous bijection from the YI onto V but it is
not a homeomorphism (a set containing one point in the interior of each segment would
be closed in YI , even if it contains a subsequence converging to the vertex i). A version
of Proposition 2.1 with Γ non-compact is given in Proposition 4.3.

A stronger local maximality condition will play a role in Section 3. A (Γ, A)-groupoid
I is called locally maximal if, for each point a ∈ A and each neighbourhood B of a, there
exists an open set U of A, with a ∈ U ⊂ B, and a homotopy ρt : U → U (t ∈ [0, 1])
satisfying ρ0(u) = u, ρ1(u) = a and Iu ⊂ Iρt(u) for all u ∈ U and t ∈ [0, 1]. The
neighbourhood U is then contractible. Locally maximal implies weakly locally maximal.

Lemma 2.3. Let Γ be a compact topological group and A be a locally compact space. Let I
be a locally maximal (Γ, A)-groupoid. Let (X, π, ϕ) be a split Γ-space over A with isotropy

groupoid I and let x ∈ X. Then, there is a Γ-equivariant open neighbourhood Û of the
orbit Γx and a Γ-equivariant ρ̂t : Û → Û such that ρ̂0 = id and ρ̂1(Û) = Γ · x. Moreover,
ρ̂t satisfies π◦ ρ̂t = ρt◦π and ϕ◦ρt = ρ̂t◦ϕ.

Proof. By Proposition 2.1, one may suppose that (X, π, ϕ) = (YI , Π, φ). Let a = Π(x) and
let ρt : U → U be a homotopy from an open neighbourhood U of A to itself, such that
ρ0(u) = u, ρ1(u) = a and Iu ⊂ Iρt(u) for all u ∈ U . Let Û = Π

−1(U). We check that the
required homotopy ρ̂t can be defined by ρ̂t([γ, u]) : = [γ, ρt(u)]. �

Let I be a (Γ, A)-groupoid and let I ′ be a (Γ′, A′)-groupoid. A morphism of groupoids
from I to I ′ is a commutative diagram

I

��

f
// I ′

��

A
f̄

// A′

where f and f̄ are continuous maps, such that, for each a ∈ A, the restriction of f to Ia

is a homomorphism fa : Ia → I ′
f̄(a)

. The map f̄ is not mentioned when it is obvious, like

an inclusion or a constant map.

3. Split equivariant principal bundles

§3A. Definitions. Let G be a topological group and X be a topological space. By a
G-principal bundle η over X, we mean, as usual, a continuous surjection p : E → X from
a space E = E(η) and a free right action E × G → E so that p(z · g) = p(z), with the

standard local triviality condition. Two G-principal bundles η : E
p−→ X and η′ : E ′ p′−→ X
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over X are isomorphic if there exists a G-homeomorphism f : E → E ′ such that p′ ◦f = p.
Isomorphism classes of G-principal bundles over X are denoted by BunG(X).

Let X be a Γ-space for a topological group Γ. A G-principal bundle η : E
p−→ X is

called a Γ-equivariant principal G-bundle if it is given a left action Γ×E → E commuting
with the free right action of G and such that the projection p is Γ-equivariant. Two
Γ-equivariant principal G-bundles η and η′ are called Γ-isomorphic (or just isomorphic)
if there exists a G-homeomorphism from E(η) to E(η′) over the identity of X which is
Γ-equivariant. The set of Γ-isomorphism classes of Γ-equivariant G-principal bundles over
X is denoted by BunG

Γ (X). There is a forgetful map BunG
Γ (X) → BunG(X).

Let (X, π, ϕ) is a split Γ-space over A with isotropy groupoid I. Let ξ be a Γ-equivariant
principal G-bundle over X. We say that ξ is split if the induced bundle ϕ∗ξ is triv-
ial. For instance, any Γ-equivariant principal G-bundle is split when A is contractible
and paracompact, which is the case in many examples of Subsection §4B. Two split
Γ-equivariant principal G-bundles over (X, π, ϕ) are isomorphic if they are isomorphic
just as Γ-equivariant principal G-bundles over X. The set of isomorphism classes of
Γ-equivariant split G-principal bundles over (X, π, ϕ) is denoted by SBunG

Γ (X, π, ϕ) or
simply by SBunG

Γ (X). It is a subset of BunG
Γ (X).

§3B. The isotropy representation. Let I be a (Γ, A)-groupoid and G be a topological
group. A continuous representation of I to G is a continuous map α : I → G such that,
for all a ∈ A, the restriction αa of α to Ia is a homomorphism (it is thus a morphism of
groupoids between I and the (pt, G)-groupoid G→ pt). Two continuous representations
α1 and α2 are called conjugate if there exists a continuous map ψ : A → G such that
α2(ζ) = ψ(π2(ζ))

−1α1(ζ)ψ(π2(ζ)) for all ζ ∈ I, where π2 : I → A is the second factor
projection.

A continuous representation of α : I → G is called locally maximal if each point a ∈ A
admits a neighbourhood U such that Iu is a subgroup of Ia for all u ∈ U , together
with a continuous map g : U → G such that αu(γ) = g(u)αa(γ)g(u)

−1 for all u ∈ U
and all γ ∈ Iu. This implies that I is weakly locally maximal. It is easy to see that,
if α, β : I → G are two conjugate representations of I, then β is locally maximal if and
only if α is locally maximal. We denote by RepG(I) the set of conjugacy classes of locally
maximal continuous representations of I.

Let (X, π, ϕ) be a split Γ-space over A with isotropy groupoid I. Let η : E
p−→ X be a

split Γ-equivariant G-principal bundle over X. As ϕ∗η is trivial, there exists a continuous
lifting ϕ̃ : A→ E of ϕ. The equation

(1) γ · ϕ̃(a) = ϕ̃(a) α̃a(γ) ,

valid for a ∈ A and γ ∈ Ia, determines a continuous representation αη,ϕ̃ : I → G.

Lemma 3.1. Suppose that Γ and G are compact Lie groups and that A is locally compact.
If I is locally maximal, then the continuous representation αη,ϕ̃ is locally maximal.

Proof. Let a ∈ A and let B be a compact neighbourhood of a. Since I is locally maximal,
there exists an open set U , with a ∈ U ⊂ B and a homotopy ρt : U → U such that
ρ0(u) = u, ρ1(u) = a and Iu ⊂ Iρt(u) for all u ∈ U . If Z ⊂ A, we denote Ẑ = π−1(Z); if
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Y is a Γ-invariant subspace of X, we denote EY = p−1(Y ). The latter is the total space
of a split Γ-equivariant G-principal bundle ηY over Y .

By Proposition 2.1 and its proof, the space B̂ is compact. Then, EB̂ is compact and
therefore totally regular. By [27, Proposition 8.10], the bundle ηB̂ is then a locally trivial
numerable Γ-equivariant G-principal bundle in the sense of [27, p. 58]. The same then
holds for its restriction ηÛ .

By Lemma 2.3 and its proof, the homotopy ρt : U → U is covered by a Γ-equivariant
homotopy ρ̂r : Û → Û such that ρ̂0 = id and ρ̂1(Û) = π−1(a). By [27, Theorem 8.15], the
induced bundle ρ̂∗1ηπ−1(a) is then isomorphic to ηÛ . More precisely, let

E1 : = {(x, z) ∈ Û × Eπ−1(a) | ρ̂1(x) = p(z)}
be the total space of ρ̂∗1ηπ−1(a). Then, there is a (Γ × G)-equivariant homeomorphism

µ : E1 → EÛ which commutes with the projections onto Û . By Lemma 2.3 one has
ϕ◦ρt = ρ̂t◦ϕ; therefore, (ϕ(u), ϕ(a)) ∈ E1 for all u ∈ U . This enables to define ϕ̃′ : U → E
by ϕ̃′(u) = µ(ϕ(u), ϕ̃(a)). For γ ∈ Iu ⊂ Ia, we have

(2) γ · ϕ̃′(u) = µ(ϕ(u), γϕ̃(a)) = µ(ϕ(u), ϕ̃(a)αa(γ)) = µ(ϕ(u), ϕ̃(a)) · αa(γ) .

On the other hand, ϕ̃ and ϕ̃′ are two liftings of ϕ over U . Hence, there exists a continuous
map g : U → G such that ϕ̃′(u) = ϕ̃(u) · g(u) for all u ∈ U . Therefore

(3) γ · ϕ̃′(u) = γϕ̃(u) g(u) = ϕ̃(u)αu(γ)g(u) = ϕ̃′(u) ·
(
g(u)−1αu(γ)g(u)

)
.

Comparing Equations (2) with (3), we get that αu(γ) = g(u)αa(γ)g(u)
−1 which proves

Lemma 3.1. �

By Lemma 3.1, αη,ϕ̃ determines a class αη ∈ RepG(I). We check that αη does not
depend on the choice of ϕ̃ and depends only on the Γ-equivariant isomorphism class of η;
details are as in the proof of [13, Lemma 3.2] . This defines a map

Φ : SBunG
Γ (X) → RepG(I)

called the isotropy representation.

§3C. The classification theorem. The following theorem corresponds to Theorem A
of the introduction.

Theorem 3.2 (Classification). Let (X, π, ϕ) be a split Γ-space over A with isotropy
groupoid I. Suppose that A is locally compact, that I is locally maximal and that Γ
is a compact Lie group. Then, for any compact Lie group G, the isotropy representation
Φ : SBunG

Γ (X) → RepG(I) is a bijection.

Proof. We first prove the surjectivity of Φ. By Proposition 2.1, we may assume that
(X, π, ϕ) = (YI , Π, φ). Recall that YI = Γ ×I A.

Let β : I → G be a continuous representation. Then I acts on the left on A × G
by ζ · (a, g) = (a, β(ζ) g). Form the space Eβ = Γ ×I (A × G). The continuous map
p : Eβ → YI given p([γ, (a, g)]) = [γ, a] coincides with the projection Eβ → Eβ/G of Eβ

to its orbit space for the obvious free right G-action on Eβ. A lifting φ̃ : A → Eβ of φ is



10 IAN HAMBLETON AND JEAN-CLAUDE HAUSMANN

given by φ̃(a) = [1, (a, 1)], where 1 denotes the unit elements. For a ∈ A and γ ∈ Ia, one
has

γ · φ̃(a) = γ · [1, (a, 1)] = [γ, (a, 1)] = [1, (a, βa(γ)] = φ̃(a) · βa(γ) .

We now prove that p admits local trivializations when β is locally maximal. Let a ∈ A.
Choose an open neighbourhood Ua of a such that Iu is a subgroup of Ia for all u ∈ Ua,
together with a continuous map ga : Ua → G such that βu(γ) = ga(u)βa(γ)ga(u)

−1 for
all u ∈ Ua and all γ ∈ Iu. This gives an open cover U = {Ua | a ∈ A} of A. Setting

Ûa = Π
−1(Ua) gives rise to an open cover Û = {Ûa | a ∈ A} of X, indexed by A. Define

f̃a : Γ × Ua ×G→ Γ × {a} ×G by fa(γ, u, g) : = (γ, a, ga(u)g). If δ ∈ Iu, we have

f̃a(γδ, u, g) = (γδ, a, ga(u)g) = (γ, a, βa(δ)ga(u)g)

and
f̃a(γ, u, βu(δ)g) = (γ, a, ga(u)βu(δ)g) .

Since βa(δ)ga(u) = ga(u)βu(δ), this shows that f̃a descends to a continuous G-equivariant

map fa : p−1(Ûa) → p−1(π−1(a)). Passing to the quotient by G gives rise to a commutative
diagram

p−1(Ûa)
fa //

p

��

p−1(π−1(a))

p

��

Γ ×Ia
G

≈
oo

��

Ûa

f̄a // π−1(a) Γ/Ia≈
oo

Since Γ is a Lie group and Ia a closed subgroup, the projection qa : Γ → Γ/Ia admits local
sections σV : V → Γ for each V in some open covering Va of Γ/Ia (see, e.g. [24, § 7.5]).
We check that the formula

ζV (γ, g) = βa(σ(q(γ))−1γ) g

defines a G-equivariant continuous map ζV : p−1(V ) → G, which gives rise to a trivializa-
tion over V of p : Γ×Ia

G→ Γ/Ia. Therefore, ζV ◦fa : p−1(f̄−1
a (V )) → G is a G-equivariant

continuous map giving rise to a trivialization over f̄−1
a (V ) of p : p−1(Ûa) → Ûa. This

gives rise to a trivializing open cover W = {f̄−1
a (V ) | (a, V ) ∈ A} of X, indexed by

A = {(b, V ) | b ∈ A and V ∈ Vb}. We have proved thus the surjectivity of Φ.

We now prove the injectivity of Φ. Let η : (E
p̄−→ X) be a split Γ-equivariant bundle

with Φ(η) = [β]. A lifting ϕ̄ : A → E of ϕ then produces a continuous representation
β̄ = αη,ϕ̄ with [β̄] = [β]. There exists then a continuous map ψ : A → G such that
β(ζ) = ψ(q(ζ))−1β̄(ζ)ψ(q(ζ)). The map ϕ̃ : A → E given by ϕ̃(a) = ϕ̄(a) · ψ(a) is then
another lifting of ϕ such that αη,ϕ̃ = β. One checks that the correspondence [γ, (a, g)] 7→
γ · ϕ(a) · g defines a (Γ × G)-equivariant continuous bijection F̃ : Eβ → E, covering
the unique Γ-equivariant homeomorphism F : YI → X such that F ◦ϕ = φ, obtained in
Proposition 2.1. Since F is a homeomorphism, so is F̃ . Indeed, choose an open set Z in
YI such that ξβ is trivial over Z and ξ is trivial over F (Z). Using trivializations, we can

write F̃ (z, g) = (F (z), µ(z) g), where µ : Z → G is a continuous map. Then F̃−1 has, over
F (Z), the form F̃−1(y, h) = (F−1(y), µ(F−1(y))−1 h) which is continuous. We have thus
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proven that two split Γ-equivariant principal G-bundles η and η′ with Φ(η) = Φ(η′) are
Γ-equivariantly isomorphic. �

Remark 3.3. Recall that an open cover of a space is numerable if it admits a refinement
by a locally finite partition of unity. In the proof of Theorem 3.2, the covers Va are
numerable, since Γ/Ia are manifolds. Hence we can check that the trivializing cover W
of X is numerable if U is numerable. This observation will be used in Theorem 4.5.

3.4. Non-split bundles and abelian structure group. Let (X, π, ϕ) be a split Γ-space over A.
One has the map ϕ∗ : BunG

Γ (X) → BunG(A), sending ξ to ϕ∗ξ. This map is surjective: if
η ∈ BunG(A), then π∗η admits a natural Γ-action, since π is Γ-invariant, so π∗ is a section
of ϕ∗. Theorem 3.2 computes the pre-image of the trivial bundle, which is SBunG

Γ (X).
Let us now assume that G is abelian. Recall that there is then a composition law

“⊗” on BunG
Γ (X) which makes the latter an abelian group. If ξi : Ei

pi−→ X (i = 1, 2)

are Γ-equivariant principal G-bundles, one defines ξ1 ⊗ ξ2 : E
pi−→ X by first forming the

pull-back

E1×̂E2

��

// E1

p1

��

E2
p2 // X

where the map E1×̂E2 → X is a principal G × G-bundle. Set E = E1×̂GE2 (as G is
abelian, it acts on the left or on the right on Ei) and check that ξ1 ⊗ ξ2 is a principal
G-bundle over X. The diagonal Γ-action on E1×̂E2 descends to a Γ-action on E, making
ξ1 ⊗ ξ2 a Γ-equivariant principal G-bundle. When G = S1, we can think of ξi as Γ-
equivariant complex line bundles over X, thus “⊗” becomes the standard tensor product.
The map ϕ∗ : BunG

Γ (X) → BunG(A) is a group-homomorphism.
Another special feature of the case G abelian is that the isotropy representation is

defined on BunG
Γ (X): in Equation (1), one can just use a local section ϕ̃ around a ∈ A,

whose choice is irrelevant if G is abelian. The set RepG(I) is an abelian group, by
multiplication of the images, and Φ : BunG

Γ (X) → RepG(I) is a group homomorphism.
Using Theorem 3.2, we get

Proposition 3.5. Let (X, π, ϕ) be a split Γ-space over A with isotropy groupoid I. Sup-
pose that A is locally compact, that I is locally maximal and that Γ is a compact Lie group.
Then, for any compact abelian Lie group G, one has an isomorphism of abelian groups

(Φ, ϕ∗) : BunG
Γ (X)

≈−→ RepG(I) × BunG(A) .

3.6. Functorial properties. Theorem 3.2 enjoys functorial properties which are contravari-
ant in (Γ, A) and covariant in G. For the contravariant ones, let f : A′ → A be a continu-
ous map between locally compact spaces and h : Γ′ → Γ be a continuous homomorphism
between compact Lie groups. Let I be a (Γ, A)-groupoid. Then

I ′ := (h, f)∗I := {(γ′, a′) ∈ Γ′ × A′ | h(γ′) ∈ If(a′)}
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is a (Γ′, A′)-groupoid, with I ′
a′ = h−1(Ĩf(a′)) × {a′}. One has the continuous map

(4) Γ′ ×I′ A′ (h,f)−−−→ Γ ×I A

Therefore, if I and I ′ are locally maximal, Proposition 2.1 together with Equation (4) im-
plies the following: if (X, π, ϕ) and (X ′, π′, ϕ′) are the split spaces with isotropy groupoids
I and I ′, there is a unique map F = Fh,f : X ′ → X such that F (γ′x′) = h(γ′)F (x′),
π◦F = f ◦π′ and ϕ◦f = F ◦ϕ′. Let η be a split Γ-equivariant principal G-bundle over X.
Using Theorem 3.2, one checks that η′ := F ∗η is a split Γ′-equivariant principal G-bundle
over X ′ and that the isotropy representations α′ ∈ RepG(I ′) and α ∈ RepG(I) satisfy
α′ = h∗α, where h∗α = α◦h. Therefore, one gets a commutative diagram

(5)

SBunG
Γ (X)

≈Φ

��

F ∗

// SBunG
Γ′(X ′)

≈Φ

��

RepG(I)
h∗

// RepG(I ′)

.

As for the covariant functoriality in G, let µ : G→ G′ be a continuous homomorphism
between compact Lie groups. If η : (E → X) is a split Γ-equivariant principal G-bundle
over X, one checks that µ∗η : (E ×µ G

′ → X) is a split Γ-equivariant principal G-bundle
with isotropy representation µ∗α = µ◦α. One gets a commutative diagram

(6)

SBunG
Γ (X)

≈Φ

��

µ∗ // SBunG′

Γ (X)

≈Φ

��

RepG(I)
µ∗ // RepG′

(I)

.

In particular, let G = G′ × G′′ and let p′ and p′′ be the two projections. Diagram (6)
becomes

(7)

SBunG
Γ (X)

≈Φ

��

(µ′
∗,µ′′

∗ )
// SBunG′

Γ (X) × SBunG′′

Γ (X)

≈Φ×Φ

��

RepG(I)
(µ′

∗,µ′′
∗ )

≈
// RepG′

(I) × RepG′

(I)

.

Diagram (7) then shows that the map

(8) (µ′
∗, µ

′′
∗) : SBunG′×G′′

Γ (X)
≈−→ SBunG′

Γ (X) × SBunG′′

Γ (X)

is a bijection.

4. Cellular groupoids - Examples

§4A. Cellular groupoids. Let A be a CW-complex, filtered by its skeleta A(n). We
denote by Λ = Λ(A) the set of cells of A. The dimension of a cell e ∈ Λ is denoted by
d(e) and we set Λn = {e ∈ Λ | d(e) = n}. For each e ∈ Λ, there exists a characteristic
map σe : (Dd(e), Sd(e)−1) → (A(d(e)), A(d(e)−1)), and σe restricted to the interior of Dd(e) is
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an embedding whose image is denoted by |e|. For a ∈ A, we denote by e(a) ∈ Λ the cell
e of smallest dimension such that a ∈ σ(e). The set Λ is partially ordered: f ′ ≤ f if f ′ is
a face of f , which means that there exists x ∈ Sd(f)−1 such that e(σf ′(x)) = f .

Let Γ be a topological group and A be a CW-complex. A (Γ, A)-groupoid I is called

cellular if it is locally maximal and if Ĩa = Ĩb when e(a) = e(b). We write I(n) for the
restriction of I over A(n). Recall that Ia = Ĩa×{a} where Ĩa ∈ Gr(Γ), the poset of closed

subgroups of Γ. One can then define a map Ĩ : Λ(A) → Gr(Γ) by Ĩ(e) = Ĩa for a with
e(a) = e. The local maximality of I implies that Ĩ(e) ⊂ Ĩ(f) when f ≤ e. Thus, Ĩ is a
contravariant functor from the poset Λ(A) to the poset Gr(Γ). A cellular groupoid is a
combinatorial construction.

Lemma 4.1. The correspondence I → Ĩ is a bijection between the set of cellular groupoids
whose object-space is A and the set of contravariant functors from Λ(A) to Gr(Γ).

Proof. The correspondence is clearly injective. For the surjectivity, let F : e 7→ Fe be a
contravariant functor from Λ(A) to Gr(Γ). By induction on n, we shall construct I(n),

giving rise to a (Γ, A)-groupoid I, with Ĩ = F and then check that I is locally maximal.
Define I(0) =

∐
v∈Λ0(A) Fv ×{v}. Suppose that I(n−1) is constructed. The n-skeleton A(n)

of A is obtained as the quotient space

A(n) =
( ∐

e∈Λn(A)

De

) ∐
A(n−1)

/
{x ∼ σe(x) | x ∈ Se}

where (De, Se) is a copy of (Dn, Sn−1) and σe : De → A is a characteristic map for the cell
e. We then define

I(n) =
( ∐

e∈Λn(A)

(Fe × De)
) ∐ I(n−1)

/
{(γ, x) ∼ (γ, σe(x)) | x ∈ Se} .

The equivalence relation ∼ makes sense since, for x ∈ Se, one has Fe ⊂ Ĩ(n−1)
µe(x) . Clearly,

Ĩ = F . Now, each a ∈ A admits a fundamental system of open neighbourhoods U of a
such that e(a) ≤ e(u) for all u ∈ U . One can also require that U admits a homotopy
ρt : U → U such that ρ0 = id, ρ1(U) = {a} and e(ρt(u)) = e(u) for t < 1 (see [21,
Theorem 6.1 and its proof], or proof of Lemma 4.4 below). Therefore, I is locally maximal.

�

The notation Ĩ was introduced in order to state and prove Lemma 4.1 properly. In
future occurrences, we shall write I(e) instead of Ĩ(e).

Remark 4.2. Let (X, π, ϕ) be a split Γ-space over a CW-complex A, with a cellular
isotropy groupoid I. Then, X is provided with a Γ-equivariant CW-complex structure
(see, e.g. [27, Chapter 2]) with Γ-cells indexed by Λ(A). If σe : Dd(e) → A is a characteristic
map for e ∈ Λ(A), then σ̃e : Γ/I(e) × D

d(e) → X, defined by σ̃(γ, a) = γ ϕ(a), is a
characteristic map for the Γ-cell of X corresponding to e.

On the other hand, let X be a Γ-CW-complex and A = Γ/X be its orbit space with the
induced CW-structure. Suppose that there exists a section ϕ : A → X of the projection
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π : X → A, so that the isotropy groupoid I is weakly locally maximal. Then I is cellular,
since Ia is constant on the interior of each cell. We call X a split Γ-CW-complex over A.

However, one has the following example of a split Γ-space over a CW-complex admitting
no splitting for which the isotropy groupoid is cellular. Let X = ([0, 1] × S2)/{(1, x) ∼
(0,−x)}, the mapping cylinder of the antipodal map of S2, endowed with the natural
action of Γ = SO(3). Then A = [0, 1]/{0 ∼ 1} ≈ S1. Any splitting is of the form
ϕ(t) = (t, f(t)) with limt→0 f(t) = − limt→1 f(t). Thus, f(t) is not constant and I is
not weakly locally maximal. Observe that X is a smooth closed 3-manifold and that the
SO(3)-action is smooth with cohomogeneity one.

For cellular groupoids we have a stronger version of Proposition 2.1 which applies to
any topological group Γ.

Proposition 4.3 (Reconstruction II). Let Γ be a topological group, and A be a CW-
complex. Given a cellular (Γ, A)-groupoid I, there is a unique split Γ-CW-complex over
A with isotropy groupoid I.

Proof. The space YI is a split Γ-CW-complex over A. Suppose that (X, π, ϕ) is another
split Γ-CW-complex with isotropy groupoid I. As in the proof of Proposition 2.1, the map
F̃ : Γ×A→ X defined by F̃ (γ, a) = γ · ϕ(a) descends to give a continuous Γ-equivariant
bijection F : YI → X. For each cell e ∈ Λn(Y ) with characteristic map σe : D

n → A, there
is a commutative diagram

Γ ×I(e) D
n

σ
YI
e

��

id // Γ ×I(e) D
n

σY
e

��

X
F // Y .

Therefore F is an open map and hence a homeomorphism. �

Let Γ be a topological group and A be a CW-complex. A cellular (Γ, A)-groupoid I
such that Ia is a compact Lie group for all a ∈ A is called proper. When Γ is itself
a Lie group, this is equivalent to saying that the Γ-action on the corresponding split
Γ-CW-complex with isotropy groupoid I is proper, see [19, Theorem 1.23]. We have
a classification theorem for equivariant bundles over split Γ-spaces with proper isotropy
groupoids in Theorem 4.5. First, we give a version of Lemma 3.1.

Lemma 4.4. Let Γ be a topological group, and A be a CW-complex. Let I be a proper
(Γ, A)-groupoid. Then, any continuous representation of I to a compact Lie group G is
locally maximal.

Proof. Let α : I → G be a continuous representation. Let a ∈ A. We shall construct a
pair (U, g), where U is an open set of A, such that Iu is a subgroup of Ia for each u ∈ U ,
and g : U → G is a continuous map satisfying αu(γ) = g(u)αa(γ)g(u)

−1 for all u ∈ U and
all γ ∈ Iu. Call the pair (U, g) an a-straightening of α in A. The final open set U will be
a neighbourhood of a, but the definition of an a-straightening does not use that a ∈ U ,
just that the element g(a) ∈ G is defined. An a-straightening is equivalent to the data of
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a sequence (U (d), gd) of a-straightenings of α in A(d), such that U (d+1) ∩ A(d) = U (d) and
gd+1|U (d) = gd.

We construct (U (d), gd) by induction on d, setting Ud = ∅ if d < d(e(a)). If d(e(a)) = 0,
we set U (0) = {a} and g0(a) = 1. If d(e(a)) > 0, there exists a neighbourhood Ud(e(a)) of

a in e(a) with a pointed homeomorphism (U (d(e(a))), a)
≈−→ ([−1, 1]d(e(a)), 0). The existence

of gd(e(a)) is guaranteed by Lemma 1.2. Suppose that an a-straightening (U (d), gd) of α in

A(d) is constructed, with d ≥ d(e(a)) and a ∈ Ud. For e ∈ Λd+1(A), let σe : (Dd+1
e , Sd

e) →
(A(d+1), A(d)) be a characteristic map for the cell e. Let Ve be the open set of Sd

e defined
by Ve = σ−1

e (U (d)). Let We be the open set of Dd+1
e defined by We = {tx | x ∈ Ve and t ∈

(0, 1]}. The correspondence u 7→ ασe(u) ∈ Hom(I(e), G) is a continuous representation
αe of the (Γ,Dn+1

e )-groupoid I(e) × D
n+1
e . The pair (Ve, gd◦σe) is a a-straightening of

αe in Sn
e . As We is homeomorphic to Ve × [0, 1], this a-straightening extends to a a-

straightening (We, ge) of αe in Dn+1
e . The family ge defines a map gd+1 : U (n+1) → G,

where U (n+1) =
⋃

e∈Λn+1(A)We, giving rise to the a-straightening of α in A(n+1). �

By Lemma 4.4, the isotropy representation Φ : SBunG
Γ (X) → RepG(I) is defined, as in

Section §3B. The classification theorem for split bundles over a split Γ-CW-complex with
proper isotropy groupoid takes the following form.

Theorem 4.5 (Classification II). Let Γ be a Lie group, and A be a CW-complex. Let
I be a proper (Γ, A)-groupoid. Let (X, π, ϕ) be a split Γ-CW-complex over A with isotropy
groupoid I. Then, for any compact Lie group G, the isotropy representation Φ : SBunG

Γ (X) →
RepG(I) is a bijection. Moreover, any split bundle over X is numerable.

Proof. The proof of Theorem 4.5 is the same as that of Theorem 3.2, using Lemma 4.4
instead of Lemma 3.1 and Proposition 4.3 instead of Proposition 2.1. Being a CW-
complex, A is paracompact, so each open cover is numerable. The last assertion of
Theorem 4.5 comes from Remark 3.3. �

Remark 4.6. The assumption that Γ is a Lie group is only used to ensure that the
quotient projection qa : Γ → Γ/Ia is a (numerable) principal bundle. If we do not care
about numerability, the existence of local cross-sections of qa holds more generally (see
[22] and [23]).

As in Proposition 3.5, Theorem 4.5 extends to a classification of all Γ-equivariant G-
bundles if G is abelian. More precisely:

Proposition 4.7. Let I be a proper (Γ, A)-groupoid for a Lie group Γ. Let (X, π, ϕ) be a
split Γ-CW-complex over A with isotropy groupoid I. Then, for any compact abelian Lie
group G, one has an isomorphism of abelian groups

(Φ, ϕ∗) : BunG
Γ (X)

≈−→ RepG(I) × BunG(A) .

Moreover, any principal Γ-equivariant G-bundle over X is numerable.

Proof. The proof Proposition 4.7 is the same as that of Proposition 3.5, using Theorem 4.5
instead of Theorem 3.2. For the numerability, observe that the inverse of the bijection
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(Φ, ϕ∗) is given by (Φ, ϕ∗)−1(ξ, η) = ξ ⊗ π∗η. By Theorem 3.2, ξ is numerable. Since
A is a CW-complex, η is numerable and thus (Φ, ϕ∗)−1(ξ, η) is numerable. Hence, any
Γ-equivariant principal G-bundle over X is numerable. �

§4B. Examples.

4.8. Generalised toric manifolds of real dimension 2m, in the sense of [6], are split T-
spaces where T is an m-dimensional torus. The orbit space A is a simple polytope and
the section ϕ is given in [6, Lemma 1.4]. This includes symplectic toric manifolds, see,
e.g. [11], where π : X → A is the moment map and A ⊂ Lie(T)∗ the moment polytope.
Our reconstruction proposition 2.1 is the topological content of Delzant’s theorem [11,
Theorem 1.8], or [6, Proposition 1.7].

4.9. When Γ is discrete, the “strata preserving actions with strict fundamental domain”
of [4, Chapter II.12] are generalizations of split Γ-spaces with a cellular isotropy groupoid.
Several examples are given in [4, Chapter II.12.9].

Several of the examples below involve cellular (Γ, A)-groupoids where A = ∆m is the
standard m-simplex in Rm+1:

∆m = {(t0, . . . , tm) ∈ R
m+1 | ti ≥ 0 and

m∑

i=0

ti = 1} .

We use the standard simplicial structure on ∆m, with Λk(∆
m) being the set of all subsets of

{0, . . . , m} containing k+1 elements. When m = 1, 2, we use special notations illustrated
by the following pictures.

0 1
01

0

2

1

02 12

01

012

4.10. Let T = (S1)m+1. We define a cellular (T, A)-groupoid I with A = ∆m by

I(e) = {(γ0, . . . , γm) | γi = 1 if i ∈ e} ..
A model (X,π, ϕ) for the split T-space with isotropy groupoid I is given by X = S2m+1 ⊂ C

m+1

with the T-action (γ0, . . . , γm) · (z0, . . . , zm) = (γ0 z0, . . . , γm zm). The map π and ϕ may be
chosen as

(9)
π(z0, . . . , zm) = (|z0|2, . . . , |zm|2)
ϕ(t0, . . . , tm) = (

√
t0, . . . ,

√
tm) .

More generally, let T be any torus and let χ0, . . . χm ∈ Hom (T, S1). Define a cellular (T, A)-
groupoid I with A = ∆m by I(e) =

⋂
j∈e kerχj. A model for the split T-space with isotropy

groupoid I is again given by (S2m−+, π, ϕ), where π and ϕ are defined by Equations (9) and
where the T-action on S2m+1 is

γ · (z0, . . . , zm) = (χ0(γ)z1, . . . , χm(γ)zm) .
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4.11. Let I be a cellular (Γ, A)-groupoid and let Γ0 be a closed subgroup of Γ. A cellular
(Γ, A)-groupoid I0 is then defined on A by I0(e) be the subgroup generated by I(e) ∪ Γ0. If
(X,π, ϕ) is the split Γ-space over A with isotropy groupoid I, then that with isotropy groupoid
I(Γ0) is (Γ0\X,π0, ϕ0), where π0 is induced by π and ϕ0 is ϕ composed with the projection
X → Γ0\X. For instance, if we take Γ0 to be the diagonal S1 in Example 4.10, we get a split
(S1)m+1-structures on the complex projective space CPm.

4.12. Let Γ = SO(n+ 1). We see SO(n) as the subgroup of Γ leaving the last coordinate fixed.
Consider the cellular (Γ, A)-groupoid with A = [−1, 1], defined by I±1 = Γ and I(−1,1) = SO(n).
The split Γ-space with isotropy groupoid I is (Sn, π, ϕ) with π(x1, . . . , xn+1) = xn+1 (ϕ may be
defined using a meridian). The classification of split Γ-equivariant G-bundles over Sn has been
studied in [13].

4.13. Let X be a Γ-CW-complex X so that the orbit space, with its induced CW -structure, is
a segment (say ∆1). This is one type of cohomogeneity one action. There are then subgroups
Γ0,Γ1,Γ01 of Γ so that X is Γ-equivariantly homeomorphic to Γ/Γ01 × [0, 1] glued to Γ/Γ0 ×{0}
and Γ/Γ1 ×{1} by equivariant maps. Sending t to ([e], t) ∈ Γ/Γ01 × [0, 1] produces a splitting ϕ
with a cellular isotropy groupoid I, satisfying I01 = Γ01, I0 = Γ0 and I1 = Γ1. The space X is
then a split Γ-space with isotropy groupoid I. If Γ is a compact Lie group, one checks that X
has a natural smooth manifold structure for which the action is smooth. For more details and
references on cohomogeneity one action, see [13, § 8], where Γ-equivariant G-bundles over such
Γ-spaces are classified (they are all split).

4.14. Let T be any torus and let χ be a non-trivial element in Hom (T, S1). Define a cellular
(T, A)-groupoid I with A = ∆1 by I0 = I1 = T and I01 = kerχ. The split T-space with
isotropy groupoid I is (CP 1, π, ϕ), where π([z0: z1]) = (|z0|2, |z1|2), ϕ(t0, t1) = [

√
t0 :

√
t1] and

the T-action is given by γ [x0: x1] = [χ(γ)x0:x1]. We denote this split T-space by CP 1(χ).

5. Cellular representations - Computations of RepG(I)

§5A. Cellular representations. Let I be a cellular (Γ, A)-groupoid. A representation β : I →
G is called cellular if βa = βb when e(a) = e(b). For each e ∈ Λ(A), this thus defines βe ∈
Hom (I(e), G), with the face compatibility conditions βe = βf |I(e) whenever f ≤ e. Two cellular
representations α and β are called conjugate if there exists g ∈ G such that β(γ) = g−1α(γ)g
for all γ ∈ Ia and all a ∈ A. Denote by RepG

cell(I) the set of conjugacy classes of cellular
representations of I into G.

To a cellular representation α : I → G and a cell e of A, one can associate its conjugacy class
[αe] ∈ Hom (I(e), G). This gives rise to a map

κ : RepG
cell(I) →

∏

e∈Λ(A)

Hom (I(e), G) .

If an element (be) of this product is in the image of κ, it must satisfy the face compatibility
conditions, that is the equation be = bf |I(e) holds in Hom (I(e), G) whenever f ≤ e. We then
define

Rep
G
cell(I) =

{
(be) ∈

∏

e∈Λ(A)

Hom (I(e), G) | be = bf |I(e) if f ≤ e
}
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and see κ as a map κ : RepG
cell(I) → Rep

G
cell(I). When I is a proper (Γ, A)-groupoid, the map κ

sits in a commutative diagram

(10)

RepG
cell(I)

κ &&MMMMMMMMM


// RepG(I)

ıxxrrr
rr

rrr
r

Rep
G
cell(I)

.

The map  is obvious, since a cellular representation is a representation, which is clearly locally
maximal. To define ı(β)e for e ∈ Λ(A), we choose a ∈ A with e(a) = e and set ı(β)e = [βa].
Since cells are connected, ı is well defined by Lemma 1.1. Although none of these maps is
either surjective or injective in general, Diagram (10) is the source of all our information about
RepG(I) so far.

One useful method for computing RepG
cell(I) and Rep

G
cell(I) is to restrict representations of I to

skeleta of A. This yields restriction maps resk : RepG
cell(I) → RepG

cell(I(k)) and resk : Rep
G
cell(I) →

Rep
G
cell(I(k)). Recall that a CW-complex A is regular if each cell e admits a characteristic map

σe : D
d(e) → A that is an embedding, sending S

d(e)−1 onto a subcomplex of A(d(e)−1). We set
‖e‖ = σe(D

d(e)), the closure of |e|. To simplify the notations, we write ∂e instead of ∂‖e‖ for
the boundary of ‖e‖.
Proposition 5.1. Let I be a cellular (Γ, A)-groupoid for Γ a topological group. Assume that A
is a regular CW-complex. Then, for any topological group G, one has

(a) res0 : RepG
cell(I) → RepG

cell(I(0)) and res0 : Rep
G
cell(I) → Rep

G
cell(I(0))

are injective.

(b) res1 : RepG
cell(I) → RepG

cell(I(1)) and res1 : Rep
G
cell(I) → Rep

G
cell(I(0))

are bijective.

Proof. Let α ∈ RepG
cell(I) (the proof for Rep

G
cell(I) is the same). As A is regular, each cell of A

has a face which is a vertex. Therefore, res0(α) determines α which proves (a) and the injectivity
part of (b).

For the surjectivity in (b), it is enough to prove that the restriction map RepG
cell(I(n)) →

RepG
cell(I(n−1)) is onto when n ≥ 2. Let β : I(n−1) → G be a cellular representation. We must

extend β to β̂ = β ∪ {βe} ∈ RepG(I), which may be done for each n-cell independently. For
each e ∈ Λn(A), choose f ∈ Λn−1(A) with f ≤ e and define βe = βf | I(e). We must check
that βe does not depend on the choice of f . Let f ′ be another choice. As n ≥ 2, there exists a
continuous path c(t) in the frontier of |e| joining a ∈ |f | to a ∈ |f ′|. By the face compatibility
condition, βa|Ic(t) is constant, thus βf | I(e) = βf ′ | I(e). �

Corollary 5.2. Suppose that the hypotheses of Proposition 5.1 hold true. Let b ∈ Rep
G
cell(I). If

res1(b) ∈ κ(RepG
cell(I(1))), then b ∈ κ(RepG

cell(I)).

Proof. This is a consequence of the commutative diagram

(11)

RepG
cell(I)

κ
��

res1

≈
// RepG

cell(I(1))

κ
��

Rep
G
cell(I)

res1

≈
// Rep

G
cell(I(1))

,
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the bijectivity of the horizontal arrows coming from Proposition 5.1. �

§5B. Case where G is abelian.

Proposition 5.3. Let I be a proper (Γ, A)-groupoid for a topological group Γ. Let G be a

compact abelian Lie group. Then the three maps ı, , κ of Diagram (10) are bijective.

Proof. The map κ is bijective since conjugation has no effect if G is abelian. It is then enough
to prove that  is surjective. Let β ∈ RepG(I). As in the construction of ı, one shows that
β(ζ) = β(ζ ′) if e(π2(ζ)) = e(π2(ζ

′)), which is equivalent to β being in the image of . �

If Γ is a Lie group, Proposition 5.3 together with the classification Theorem 4.5 gives a bijec-
tion SBunG

Γ (X) ≈ RepG
cell(I). Using Proposition 5.1 and the functorial property in Diagram (5)

(which holds true in the framework of Theorem 4.5), this also shows that, for G abelian, the

restriction maps SBunG
Γ (X) → SBunG

Γ (X(0)) and SBunG
Γ (X) → SBunG

Γ (X(1)) are respectively
injective and bijective, when A is a regular CW-complex.

By Lemma 1.3, one has G
≈−→ G0 × π0(G), where G0 is the identity component of the unit

element. Therefore, RepG
cell(I) ≈ Rep

π0(G)
cell (I) × RepG0

cell(I) (the same decomposition holds for

SBunG
Γ (X) by Equation (8), again true in the context of Theorem 4.5). The group G0 is

isomorphic to a product of circles, so RepG0

cell(I) is a product of copies of RepS1

cell(I). We shall
now study the latter.

§5C. RepS1

cell(I) for I a toric groupoid. Let T be a torus. A cellular (T, A)-groupoid I is
called 0-toric if Iv = T for all v ∈ Λ0 = Λ0(A). It is called 1-toric if it is 0-toric and if, for each
e ∈ Λ1 = Λ1(A), I(e) is a codimension 1 subtorus of T. There is then χe ∈ Hom (T, S1) with
kerχe = I(e). The part of X above the closure ‖e‖ of |e| is a T-space isomorphic to CP 1(χe) of

Example 4.14. The split T-space with isotropy groupoid I(1) is then a graph of CP 1(χ)’s. Such
a space T-space X is also called a GKM-space, as this property was first studied by M. Goresky,
R. Kottwitz and R. MacPherson in [10].

Let t be the Lie algebra of T and let l = ker(exp : t → T). Let l
∗ = {w ∈ t

∗ | w(l) ⊂ Z}
(the dual lattice). Consider S1 as R/Z. The correspondence which assigns to α ∈ Hom (T, S1)
its differential at the unit element of T (the weight of α) produces an isomorphism between
Hom (T, S1) and the additive group l

∗. We shall thus identify Hom (T, S1) with l
∗.

Let I be a 1-toric cellular (T, A)-groupoid with A a regular complex. By Proposition 5.1,

RepS1

cell(I) injects into RepS1

cell(I(0)) which is the direct product of character groups

(12) RepS1

cell(I) ⊂
∏

v∈Λ0

Hom (T, S1) =
∏

v∈Λ0

l
∗ .

Let us orient each edge e; this determines an ordering ∂−e, ∂+e of the two vertices of e. The
character χe will also be seen in l

∗. A family (av)v∈Λ0
is said to satisfy the GKM-conditions if,

for each e ∈ Λ1, the difference a∂+e − a∂−e is a multiple of χe. These conditions, considered in
[10], are also discussed in Proposition 6.9 and Remark 6.10.

Proposition 5.4. Let I be a 1-toric cellular (T, A)-groupoid. The image of RepS1

cell(I) in∏
v∈Λ0

l
∗ is the set of families (av)v∈Λ0

satisfying the GKM-condition.

Proof. By Proposition 5.1, it is enough to show that this condition characterises the image of
RepG(I(1)) in RepG(I(0)). Denote by αv ∈ Hom (T, S1) the element with weight av ∈ l

∗. The
three following conditions, for e ∈ Λ1 are equivalent:
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(a) the difference a∂+e − a∂−e is a multiple of χe.

(b) I(e) ⊂ kerα∂+eα
−1
∂−e.

(c) α∂+e | I(e) = α∂−e | I(e).

The equivalence between (a) and (b) comes from I(e) being of codimension 1 in T. This proves
Proposition 5.4. �

Example 5.5. Let X be a symplectic toric manifold of dimension 2n. It is a split T
n-space, with

π : X → A ⊂ t
∗ being the moment map, and the isotropy groupoid I is 1-toric. The moment

polytope A is a n dimensional convex polytope of t
∗. It is known that each edge e of A is parallel

to χe (see, e.g. [3, § 4.2.4]). By Proposition 5.4, RepS1

cell(I) may be visualised as the set of affine
maps α : A→ t

∗ such that α(λ0(A)) ⊂ l
∗ and α(|e|) parallel to χe for each e ∈ λ1(A).

The left figure below shows a 2-dimensional moment polytope for a toric manifold, a Hirze-
bruch surface diffeomorphic to CP 2♯CP 2. The torus T is S1 × S1, I12 = I34 = {1} × S1,
I14 = S1 ×{1}, I23 is the diagonal subgroup and the isotropy group for the 2-cell is trivial. The
right figure visualises two elements of RepG(I).

1 2

34

A

0

a(v1) a(v2)

a(v3) a(v4)

Let α ∈ RepS1

cell(I). Let X be the split T-space with isotropy groupoid I. Let η be a split
T-equivariant S1-principal bundle over X, with isotropy representation α. Let e ∈ Λ1. In
Proposition 5.4, the integer ke ∈ Z such that a∂+e − a∂−e = keχe is related to the Euler number

of η restricted to Xe, the part of X above the closure ‖e‖ of |e|, which is homeomorphic to CP 1.
Choose a generator [Xe] of H2(Xe; Z). Let ε ∈ H2(Xe; Z) be the Euler class of η restricted to
Xe.

Proposition 5.6. ε([Xe]) = ±ke.

Proof. It is enough to consider the case where X = Xe = CP 1(χ) for χ ∈ Hom (T, S1). The
quotient space A is then a segment, with two 0-cells 0 and 1 and a 1-cell e and we identify A
with [0, 1]. One has I0 = I1 = T and I(e) = kerχ. The elements α0, α1 ∈ Hom (T;S1) have

weights a0, a1 ∈ l
∗. The bundle η may then be identified with the bundle Eα

π−→ YI of the proof
of Theorem 3.2.

Let U0 = A−{1} and U1 = A−{0} and call W0 and W1 the open sets of X above U0 and U1.
One has local sections σi : Wi → Eα of π defined by σi([γ, u]) = [γ, u, αi(γ)]. Let s ∈ Hom (S1,T)
such that χ◦s : S1 → T/Ie is surjective. Define ŝ : S1 → YI by ŝ(δ) = [s(δ), 1/2]. One has

σ1(ŝ(δ)) = σ0(ŝ(δ))α0(s(δ))
−1α1(s(δ)) = σ0(ŝ(δ)) · χ(s(δ))±ke .

By the classification of S1-principal bundles over a 2-sphere, this proves Proposition 5.6. �
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§5D. Smooth circle bundles. Let I be a cellular (T, A)-groupoid with A a regular complex.
Let (X,π, ϕ) be a split T-space with isotropy groupoid I. Suppose that X is (closed) smooth
manifold and that the T-action is smooth. In this subsection, we relate the isotropy representa-
tion Φ : SBunG

Γ (X) → RepG(I) ≈ ∏
v∈Λ0

l
∗ with some “moment map” Φ: X → t

∗. The material
of this section is inspired by [14].

Let η = (E
p−→ X) be a smooth T-equivariant split principal S1-bundle over X. Choose

θ ∈ Ω1(E) be an T-invariant connection of the bundle η (we see S1 = R/Z, so Lie(S1) = R).
This gives rise to a “moment map” Φ: X → t

∗ determined as follows. For ξ ∈ t, denote by ξE
the vector field on E induced by the action of T. The map Φ is defined by the equation

〈Φ(x), ξ〉 = θ(ξE(y)) ,

for any x ∈ X and z ∈ p−1(x). As θ is T-invariant, the map Φ descends to a continuous map
Φ̄ : A→ t

∗.
Let α ∈ RepS1

(I) be the isotropy representation of η. For each v ∈ Λ0(A), the homomorphism
αv ∈ Hom (T, S1) is determined by its weight av ∈ l

∗.

Proposition 5.7. Suppose that I is 0-toric. Then, for each v ∈ Λ0(A), one has Φ̄(v) = av.

Proof. Let ξ ∈ t. Let v ∈ Λ0(A) and z ∈ E with p(z) = ϕ(v). As ϕ(v) is a fixed point, the
vector ξE(z) is tangent to the S1-orbit z · S1. If we identify the latter with S1, then θ(ξE(z)) is
the derivative of αv, that is av. �

Remark 5.8. The figure of Example 5.5 suggests a possible relationship with the “twisted
polytopes” of [14] which remains to be investigated.

§5E. Case where A is a graph. In this section, we shall determine RepG(I) for a cellular
(Γ, A)-groupoid I when A is a graph, generalising the case treated in [13] where A is a segment.
One may suppose that the graph A is regular. Indeed, the subdivision of an edge e, by adding a

vertex ê ∈ |e| and setting Iê = I(e), changes neither RepG(I) nor Rep
G
cell(I). Observe also that

if G is connected, any G-principal bundle over A is trivial, so for a split Γ-space X over A one
has SBunG

Γ (X) = BunG
Γ (X). We start with some preliminary material.

Lemma 5.9. Let Γ and G be topological groups. Let I be a cellular (Γ, A)-groupoid, where A is

a tree. Then κ : RepG
cell(I) → Rep

G
cell(I) is surjective.

Proof. The lemma is true for A = ∅ since then, both RepG
cell(I) and Rep

G
cell(I) are empty.

Otherwise, let b ∈ Rep
G
cell(I) and let v be a vertex of A. Chose βv ∈ Hom (Iv, G) representing bv.

For an edge e between v and v′, define βe ∈ Hom (I(e), G) by βe = βv |I(e). Since b ∈ Rep
G
cell(I),

one can choose βv′ ∈ Hom (Iv′ , G) which represents bv′ such that βv′ |I(e) = βe. This constructs
a cellular representation β1 over the tree A(v, 1) of points of distance ≤ 1 from v (for the distance
where each edge has length 1). The same methods will propagate β1 to β2, over A(v, 2) and
then to A(v, n) for all n. This defines β ∈ RepG

cell(I) with κ(β) = b. �

Lemma 5.10. Let I be a cellular (Γ, A)-groupoid, where Γ is a topological group and A is a

graph. Let G be a path-connected topological group. Then ı : RepG(I) → Rep
G
cell(I) is surjective.

Proof. We may suppose that A is connected: otherwise, both RepG(I) and Rep
G
cell(I) simply

decompose into disjoint unions over components of A. Let A0 be a maximal tree of A and let

I0 be the restriction of I over A0. Let b ∈ Rep
G
cell(I). By Lemma 5.9, there exists a cellular
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representation β : I0 → G such that κ(β) = b|I0
. We want to extend β to β̂ : I → G. This can

be done by defining β̂ over ‖e‖ for each edge e of A \ A0. Let v, v′ ∈ Λ0(A0) be the vertices

of e. As b ∈ Rep
G
cell(I), there is g ∈ G with g−1βv(γ)g = βv′(γ) for all γ ∈ I(e). Since G is

path-connected, there exists a continuous map a 7→ ga, from ‖e‖ to G with gv = 1 and gv′ = g.

For a ∈ ‖e‖, we then define β̂a : I(e) → G by β̂a(γ) = g(a)−1βv(γ)g(a). �

We now introduce some material in order to describe the preimage ı−1(α) of α ∈ Rep
G
cell(I).

Let K be a topological group and let α̃ ∈ Hom (K,G). Define C(α̃) to be the centraliser of
α̃(K) in G. Let α̃′ ∈ Hom (K,G) be such that [α̃] = [α̃′] in Hom (K,G). Choose b ∈ G
such that α̃′(γ) = bα̃(γ)b−1. Sending z ∈ C(α̃) to bzb−1 produces a continuous isomorphism
rα̃′,α̃ : C(α̃) → C(α̃′) which does not depend on the choice of b. Moreover, one has rα̃′′,α̃◦rα̃′′,α̃′ =

rα̃′′,α̃. Therefore, a topological group C(α) is defined for α ∈ Hom (K,G): take the disjoint
union of C(α̃) for all representatives α̃ of α and identify z ∈ C(α̃) with rα̃′,α̃(z) ∈ C(α̃′). If K ′ is
a subgroup of K, one checks that C(α) is a subgroup of C(α|K ′)

Let I be a cellular (Γ, A)-groupoid and α ∈ Rep
G
cell(I). Let Ȧ be the first barycentric subdi-

vision of A. We assume that A is regular, so Λ1(Ȧ) is the set of pairs (v, e) ∈ Λ0(A) × Λ1(A)
with v < e; the edge corresponding to (v, e) joins v to the barycentre ê of e. Form the group
X(α) =

∏
(v,e)∈Λ1(Ȧ) π0(C(αe)). Let J0 :

∏
v∈Λ0(A) π0(C(αv)) → X(α) be the homomorphism

sending (xv) to (z(w,e)) with z(w,e) = jw,e(xw), where jw,e : π0(C(αw)) → π0(C(αe)) is the homo-
morphism induced by the inclusion. Consider also the homomorphism
J1 :

∏
e∈Λ1(A) π0(C(αe)) → X(α) sending (ye) to (z(w,f)), where z(w,f) = yf . Set Y 0(α) and

Y 1(α) to be the images of J0 and J1 and consider the double coset family Z(α) = Y 0(α)\X(α)/Y 1(α).

Theorem 5.11. Let I be a proper (Γ, A)-groupoid, with Γ a topological group and A a graph.

Let G be a compact connected Lie group. Then, ı : RepG(I) → Rep
G
cell(I) is surjective and the

preimage ı−1(α) of α ∈ Rep
G
cell(I) is in bijection with Z(α).

Before proving Theorem 5.11, we state some of its corollaries, in which we assume the hy-
potheses of Theorem 5.11 and mention only the additional hypotheses.

Corollary 5.12. Suppose that A is a finite graph. Then, the preimages of ı : RepG(I) →
Rep

G
cell(I) are finite.

Proof. As C(αe) is a closed subgroup in G, π0(C(αe)) is finite for each edge e of A. Therefore
Z(α) is finite. �

The next corollary corresponds to [13, Theorem B and 8.12].

Corollary 5.13. Let I be a proper (Γ,∆1)-groupoid. Then, the preimage ı−1(α) of α ∈
Rep

G
cell(I) is in bijection with the set of double cosets π0(C(α0))\π0(C(α01))/π0(C(α1)).

Proof. The group X(α) is isomorphic to π0(C(α01)) × π0(C(α01)) with Y 1(α) ≈ π0(C(α01))
being the diagonal subgroup. The group Y 0(α) is π0(C(α0)) × π0(C(α1)). Therefore, the
map X(α) → π0(C(α01)) given by (z0, z1) 7→ z0z

−1
1 descends to a bijection from Z(α) to

π0(C(α0))\π0(C(α01))/π0(C(α1)) (see [13, Section 8]). �

Corollary 5.14. Suppose that I(e) is a torus for all edges e of A. Then ı : RepG(I) → Rep
G
cell(I)

is a bijection.
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Proof. Let α ∈ Rep
G
cell(I) and let α̃ : I → G be a continuous representation with ı(α̃) = α Our

hypotheses imply that α̃a(Ie) is a torus for all e ∈ Λ1(A) and all a ∈ |e|. As G is connected,
the group C(αe) is then connected (see, e.g. [8, Theorem 3.3.1]). Therefore, Z(α) reduces to a
single element. �

Proof of Theorem 5.11. The surjectivity of ı is established in Lemma 5.10. Let α ∈ Rep
G
cell(I).

The strategy is to construct a transitive action of X(α) on ı−1(α) and study the stabilisers.

Let α̃0 : I(0) → G be a representative of α(0). Let R̃epG(I, α̃0) be the set of continuous
representations from I to G which restrict to α̃0 on α(0). As G is connected, any map from A(0)

to G extends to A, which implies that each class in ı−1(α) has a representative in R̃epG(I, α̃0).

Also, if α̃ ∈ R̃epG(I, α̃0), then ı(α̃) = α by Proposition 5.1. Thus, the map α̃ 7→ [α̃] ∈ RepG(I)

produces a surjection R̃epG(I, α̃0) →→ ı−1(α).

Form the group X̃(α̃0) =
∏

(v,e)∈Λ1(Ȧ) C(α̃0(I(e)). Let z = (z(v,e)) ∈ X̃(α̃0) and α̃ ∈
R̃epG(I, α̃0). For each edge e of A with ∂e = {v, v′}, choose, using that G is connected, a
continuous map ge : ‖e‖ → G such that ge(v) = z(v,e) and ge(v

′) = z(v′,e). We call {ge} a

connecting family for z. Define z ·{ge} α̃ ∈ R̃epG(I, α̃0) by

(13) z ·{ge} α̃(γ) =

{
ge(a)α̃(γ)ge(a)

−1 if a ∈ |e| and γ ∈ Ia

α̃a(γ) otherwise .

For two connecting families {ge} and {ḡe} for z, we check that

z ·{ge} α̃(γ) = h(a)
(
z ·{ḡe} α̃(γ)

)
h(a)−1 ,

where h : A → G is the (continuous) map defined by h(a) = ge(a)ḡe(a)
−1 if a ∈ ‖e‖. This thus

defines z · α̃ in ı−1(α) which does not depend on the choice of the connecting family {ge}.
Now, suppose that α̃, α̃′ ∈ R̃epG(I, α̃0) represent the same element in RepG(I). This means

that there is a map h : A → G such that α̃′
a(γ) = h(a)α̃a(γ)h(a)

−1. Observe then that h(v) ∈
C(α̃0(Iv)) for all v ∈ Λ0(A) and hence

h(a)
(
z ·{ge} α̃

)
h(a)−1 = z ·{h(a)geh(a)−1} α̃

′ .

We have thus defined an action of X̃(α̃0) on ı−1(α). We now prove that this action is transitive.

Let α̃, α̃′ ∈ R̃epG(I, α̃0). Orient each edge e of A, getting then ∂e = {∂−e, ∂+e}. By Lemma 1.2,
there exist s, s′ : ‖e‖ → G such that α̃(γ) = s(a)−1α̃0

∂−e(γ)s(a) and α̃′(γ) = s′(a)−1α̃0
∂−e(γ)s

′(a)

for all γ ∈ I(e) and all a ∈ ‖e‖. This implies s(∂e) and s′(∂−e) are contained in C(α̃(I(e))).
Hence, one has α̃′ = z{ge} · α̃, where z(∂−e,e) = s′(∂−e)

−1s(∂−e), z(∂+e,e) = s′(∂+e)
−1s(∂+e) and

ge(a) = s′(a)−1s(a). Hence, the action of X̃(α̃0) on ı−1(α) is transitive.

If z = (z(v,e)) is in the unit component of X̃(α̃0), then z ·{ge} α̃ = α̃, if the maps ge are chosen

so that g(ê) = 1 and ge(‖(v, e)‖) ⊂ C(α̃0
v(I(e))). This implies that the action of X̃(α̃0) on ı−1(α)

descends to an action of the group
∏

(v,e)∈Λ1(Ȧ) π0(C(α̃0
v(I(e))) which is isomorphic to X(α).

Let f be an edge of A, with ∂f = {v, v′}. The representation α̃0 : I(0) → G can be chosen such
that the restrictions to Ie of α̃0

v and α̃0
v′ coincide. For each ζ ∈ C(α̃0

v(I(f)) = C(α̃0
v′(I(f)) we can

then consider the element z(ζ) of X̃(α̃0) satisfying z(v,f)(ζ) = z(v′,f)(ζ) = ζ and z(w,e)(ζ) = 1 of
e 6= f . Then z(ζ) ·{ge} α̃ = α̃ if the ge are constant maps. This may be done for each edge f of

A, showing that the group Y 1(α) acts trivially on β for all β ∈ ı−1(α).
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Let y ∈ ∏
v∈Λ0(A)(C(α̃0

v(Iv))) and z ∈ X̃(α̃0). Consider the element yz ∈ X̃(α̃0) defined by

(yz)(v,e) = yvz(v,e). Choose a connecting family ge : ‖e‖ → G for z. For each (v, e) ∈ Λ1(·A),
choose h(v,e) : ‖(v, e)‖ → G such that h(v,e)(v) = yv and h(v,e)(ê) = 1. This defines a continuous
map h : A→ G, by h(a) = h(v,e)(a) if a ∈ ‖(v, e)‖, which conjugates (yz) ·{hge} α̃ with z ·{ge} α̃.

This shows that ux · β = x · β in ı−1(α), for all u ∈ Y 0(α), x ∈ X(α) and β ∈ ı−1(α).

Fix β ∈ ı−1(α), represented by β̃ ∈ R̃epG(I, α̃0). Consider the map Ψ̃: X̃(α̃0) → ı−1(α) given

by Ψ̃(z) = [z · β̃]. By the above, we have shown that ψ̃ descends to a surjection Ψ: Z(α) →
→ ı−1(α). It remains to show that Ψ is injective. Let z′ ∈ X̃(α̃0) with Ψ(z′) = Ψ(z). Choose
connecting families {ge} and {g′e} for z and z′. If Ψ(z′) = Ψ(z), there exists a map h : A → G

with (z′ ·{g′e} β̃)(γ) = h(a)(z ·{ge} β̃)(γ)h(a)−1. Observe that h(v) ∈ C(α̃0(Iv)) and therefore

h(0) : I(o) → G defines an element y ∈ ∏
v∈Λ0(A)(C(α̃0

v(Iv))) satisfying ((yz) ·{hge} β̃)(γ) =

h(a)(z ·{ge} β̃)(γ)h(a)−1. Let z̄ = yz and ḡe = hge. One has [z̄] = u[z] in X(α) with u ∈ Y 0(α).

Thus, z̄ and z represent the same class in Y 0(α)\X(α) and the equality z′ ·{g′e} β̃ = z̄ ·{ḡe} β̃

holds in R̃epG(I, α̃0). Therefore, ḡe(a)
−1g′e(a) ∈ C(βa(I(e)) for all a ∈ ‖e‖. This implies that z′

and z̄ represent the same class in X(α)/Y 1(α). Finally, we have shown that z and z′ represent
the same class in Z(α), proving the injectivity of Ψ. �

We now give some examples of the use of Theorem 5.11.

5.15. Let A be the 1-simplex ∆1. Let Γ = SO(n), with n = 2k + 1 ≥ 3 and consider the
cellular (Γ, A)-groupoid I with I0 = I1 = Γ and I01 = SO(n − 1) (the split Γ-space X with
isotropy groupoid I is Sn with the SO(n)-action fixing the north and the south pole). For

G = SO(n), Rep
G
cell(I) contains two elements, the trivial representation and the representation

α with α0 = α1 = id. The preimage by ı of the trivial representation contains one element but
ı−1(α) contains two elements. For details and developments, see [13, Example 7.5].

5.16. If π1(G) = {1}, Theorem 5.11 extends to a cellular (Γ, A)-groupoid I where A is of
dimension 2, provided I(e) = {1} when e ∈ Λ2(A). Examples are given by toric manifolds of
(real) dimension 4.

5.17. Let I be the S1-structure on the 1-simplex ∆1 with I0 = I1 = S1 and I01 = {1}. The
split S1-space with isotropy groupoid I is S2 with S1 acting by rotation around an axis. By
Theorem 5.11, SBunG

S1(S2) ≈ Hom (I0, G) × Hom (I1, G). Choosing a maximal torus T in G,

this yields SBunG
S1(S2) ≈ Hom (I0,T )/W × Hom (I1,T )/W where W is the Weyl group for T .

If G is of rank k, then Hom (I0,T ) and Hom (I1,T ) are both in bijection with Z
k.

Let us specialise to G = SO(m) for m ≥ 3. A maximal torus T of SO(m) is formed by
matrices containing 2-blocks concentrated around the diagonal, so isomorphic to SO(2)k, and
where k = [m/2]. The action of W on Hom (S1,T ) ≈ Z

k can be deduced from [1, p. 114]. When
m = 2k + 1, the action of W on Z

k is generated by the permutation of coordinates and sign
changes in any of them. A fundamental domain D ⊂ Z

k is then

D = {(r1, . . . , rk) ∈ Z
k | 0 ≤ r1 ≤ · · · ≤ rk}

and SBun
SO(2k+1)
S1 (S2) ≈ D × D. When m = 2k, the sign changes must be even in number. A

fundamental domain E ⊂ Z
k is then

E = {(r1, . . . , rk) ∈ Z
k | 0 ≤ r1 ≤ · · · ≤ rk−1 ≤ |rk|}

and SBunSO(2k)(S2)S1 ≈ E × E .
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This example was treated in our paper [13, Example 7.3] but the determination of SBun
SO(m)
S1 (S2)

is wrong there because, in the action of the Weyl group, the sign changes were forgotten. How-
ever, the computation in [13, Example 7.3] of the second Stiefel-Whitney number w2(ξ) for

ξ ∈ SBunSO(m)(S2)S1, being mod2, is correct.

Here is an interesting consequence of the proof of Theorem 5.11.

Proposition 5.18. Let I be a proper (Γ, A)-groupoid, with A a regular CW-complex and Γ a

topological group. Let G be a compact connected Lie group. Then  : RepG
cell(I) → RepG(I) is

injective.

Proof. As in the proof of Lemma 5.10, one may assume that A is connected. Let A0 be a maximal
tree of A and let I0 be the restriction of I over A0. As A is connected, A0 contains all the vertices
of A and then the restriction map RepG

cell(I) → RepG
cell(I0) is injective by Proposition 5.1.

Therefore, it is enough to prove Proposition 5.18 when A is a tree.
Let β, β′ : I → G be cellular representations with (β) = (β′). Let v be a vertex of the tree

A. By conjugation of β with a constant element of G, one may assume that βv = β′v. Let e be
an edge between v and v′; one has βe = β′e. Suppose that βv′ 6= β′v′ . Then β′v(γ) = zβ(γ)z−1

with z ∈ C(βe(I(e)) and z /∈ C(βv′(Iv′)). Choose a continuous map ge : ‖e‖ → G with ge(v) = 1
and ge(v

′) = z. Let I‖e‖ be the restriction of I over ‖e‖ and let β′′ : I‖e‖ → G be the (non-

cellular) representation defined by β′′(γ) = ge(a)
−1β′(γ)ge(a). Using the notations of the proof

of Theorem 5.11, this means that β, β′′ ∈ R̃epG(I‖e‖, β(0)) and β′′ = y ·ge
β, where y ∈ X̃(β(0))

is defined by y(v,e) = 1 and y(v′,e) = z. The element y is non-trivial in Z(α‖e‖) which, by

Theorem 5.11, would contradict the assumption (β) = (β′). Therefore, βv′ = β′v′ . This
argument may be done independently for all edges adjacent to v and then propagated to the
whole tree A. �

When A is a tree, the map  : RepG
cell(I) → RepG(I) is actually bijective. More precisely:

Lemma 5.19. Let I be a proper (Γ, A)-groupoid, where A is a graph and Γ a topological group.

Let A0 be a subtree of A. Let G be a compact Lie group. Then, any α ∈ RepG(I) has a

representative which is cellular over A0.

Proof. Let v be a vertex of A0. For an edge e of A0, between v and v′, there exists, by Lemma 1.2,
a map ψe : ‖e‖ → G such that ψe(a)αa(γ)ψe(a)

−1 = αv(γ) for each a ∈ ‖e‖ and γ ∈ Ie. This
defines a map ψ1 : A0(v, 1) → G (notations as in the proof of Lemma 5.9). As A0(v, 1) is
contractible, the homotopy extension property permits us to extend ψ1 to a continuous map
ψ1 : A → G. The maps ψ1 conjugates α to α1 which is cellular over A0(v, 1). The process
propagates over A0(v, n) for all n, giving rise to a map ψ : A → G which conjugates α to a
representation which is cellular over A0. �

Proposition 5.18 together with Lemma 5.19 imply the following

Corollary 5.20. Let I be a proper (Γ, A)-groupoid with Γ a topological group and A a tree. Let

G be a compact connected Lie group. Then  : RepG
cell(I) → RepG(I) is bijective.

5.21. In contrast with Theorem 5.11, the map  : RepG
cell(I) → RepG(I) is not surjective

when the graph A is not a tree. Using Lemma 5.9, it is enough to find an example where

κ : RepG
cell(I) → Rep

G
cell(I) is not surjective. Let A be the 1-skeleton of the 2-simplex ∆2 with

I0 = I1 = I2 = Γ = S1 ×S1, I01 = 1×S1, I02 = S1 × 1 and I12 is the diagonal S1. The split Γ-
space with this isotropy groupoid is CP 2 with the action (c1, c2) · [z0 : z1 : z2)] = [c0z0 : c1z1 : z2)].
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Take G = SU(2); the diagonal torus H has dimension 1 and its Weyl group W acts by passing
to the inverse. Then

Hom (Γ, SU(2)) ≈ Hom (Γ,H)/W ≈ Γ̂/{χ ∼ −χ} ≈ (Z × Z)/{(p, q) ∼ −(p, q)}.
We identify Hom (Γ, SU(2)) with the fundamental domain D in Z × Z:

D : = {(p, q) ∈ Z × Z) | q ≥ 0 and (p ≥ 0 if q = 0)}.
If β ∈ RepG

cell(I) is not trivial, it must be not trivial on at least one edge-isotropy groups (say
I01). Then β is conjugate to β′ such that β′01(I01) ⊂ H. As H is maximal abelian, β′ is then

an algebraic representation of I in H. By Proposition 5.4, one has an identification of RepH(I)
with the set of triples (

(p0, q0), (p1, q1), (p2, q2)
)
∈ (Z × Z)3

such that

(14) p0 = p2 , q0 = q1 and p1 + q1 = p2 + q2 .

A class in Rep
G
cell(I) is a triple

([p0, q0], [p1, q1], [p2, q2]) ∈ D ×D ×D

such that |p0| = |p2|, q0 = q1 and |p1 + q1| = |p2 + q2|. The class α ∈ Rep
G
cell(I) corresponding

to ([−1, 2], [3, 2], [1, 4]) is not in the image of κ. Indeed, none of the 8 triples in (Z × Z)3 above
α satisfies Equations (14).

6. Comparison with the homotopy-theoretic approach

§6A. Haefliger classifying spaces. Let (X,π, ϕ) be a split Γ-space over a space A with
isotropy groupoid I. Let BI be the Haefliger classifying space for I [12, p. 140]. For a groupoid
like BI where morphisms go from one object to itself, we check that the construction of [12,
p. 140] takes the following form: set

EI = {(v, a) ∈ EΓ ×A | v ∈ EIa} ,
with the induced topology, and define BI as the quotient space EI/I. The projection π̄ : BI →
A makes BI is a space over A whose stalk over a is the Milnor classifying space BIa. There is
a section j : A → BI of π̄, sending a ∈ A to the class of (v0, a) where v0 = (1e, 0, . . . ) ∈ EΓ,
expressed as the infinite join, with e the unit element of Γ. The inclusion I ⊂ Γ×A is a morphism
of topological groupoids and therefore induces a continuous map EI → EΓ×A which descends
to a continuous map BI → BΓ ×A.

Recall that the Borel construction associates to X the space XΓ = EΓ ×Γ X. The map
π : X → A descends to a continuous and open surjective map π̄ : XΓ → A, with π̄−1(a) =

EΓ ×Γ Ia ≈ BIa. The composed map EI → EΓ × A
id×ϕ−→ EΓ × X descends to a continuous

map δ : BI → XΓ over the identity of A. The restriction of δ to each stalk is a weak homotopy
equivalence. It would then be interesting to figure out, for instance in the spirit of Sections 2
and 3, under which hypotheses δ is a weak homotopy equivalence. We will restrict ourselves to
cellular (Γ, A)-groupoids, where we get the following proposition.

Proposition 6.1. Let I be a proper (Γ, A)-groupoid for a Lie group Γ. Let (X,π, ϕ) be a

split Γ-space over A, with isotropy groupoid I. Then, the map δ : BI → XΓ is a homotopy

equivalence.
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Proof. By Proposition 4.3, we may suppose that (X,π, ϕ) = (YI ,Π, φ). If K is a subspace
of A, we denote by I(K) the subgroupoid of I formed by all the stalks over K, and we set
X(K) = YI(K).

Observe first that Proposition 6.1 is true if Ia is constant for all a ∈ A. Indeed, one then
has X = Γ/Ia ×A, so BI ≈ BIa × A and XΓ ≈ EΓ/Ia × A and δ is a homotopy equivalence.
More generally, Proposition 6.1 remains true if Ia is locally constant, meaning constant on each
connected component of A.

Proposition 6.1 will be proved, by induction on n, for X(A(n)), the split Γ-space over the

n-skeleton A(n) of A. It is true for n = 0 since I(A(0)) is locally constant. The induction step
involves the subcomplexes K ′ = A(n−1) ⊂ K = A(n), so K is obtained from K ′ by adjunction of
E =

∐
e∈Λn

Dn
e , via the attaching map f : ∂E =

∐
e∈Λn

Sn−1
e → K ′ (Λn = Λn(A)). Then, X(K)

is obtained from X(K ′) by attaching the Γ-space Ẽ =
∐

e∈Λn
(Γ/I(e)×Dn

e ) via the Γ-equivariant

map f̃ : ∂Ẽ =
∐

e∈Λn
(Γ/I(e) × Sn−1

e ) → X(K ′). We denote by F : E → K and F̃ : Ẽ → X(K)

the characteristic maps, extending f and f̃ . We see Ẽ and ∂Ẽ as split Γ-spaces over E and ∂E
respectively with locally constant isotropy groupoids: if x ∈ Dn

e , then I(E) = I(∂E) = I(e).
Let us consider the following diagram:

BI(∂E)

Bf

��

// //
&&

≃

δ∂E &&LLLLLLLL

II

BI(E)

BF

��

zz
≃

δEzzttttttttt

I

(∂Ẽ)Γ // //

f̃Γ

��

ẼΓ

F̃Γ

��
III

X(K ′)Γ // //

IV

X(K)Γ

BIK ′
// //

88

δ
K′

≃

88qqqqqqqqq

BIK

δK

eeKKKKKKKK

The maps δ∂E and δE are homotopy equivalences since the isotropy groupoids are locally constant.
The map δK ′ is a homotopy equivalence by induction hypothesis. Restriction to any stalk shows
that Diagrams I–IV are commutative. As Γ is a Lie group, all the spaces under consideration
have the homotopy type of CW-complexes. Therefore, the outer and inner square diagrams are
homotopy push-out diagrams. By push-out properties, the map δK is a homotopy equivalence.

�

§6B. Split bundles and classifying spaces. Let η : (P
p−→ X) be a Γ-equivariant principal

G-bundle. The Borel construction EΓ ×Γ P → EΓ ×Γ X yields a principal G-bundle ηΓ over
XΓ, with the same trivialising cover as η. Thus, if η is numerable, so is ηΓ. Let (X,π, ϕ)
be a split Γ-CW-complex over A. By Theorem 4.5, any split Γ-equivariant principal bundle
over X is numerable. Hence, we get a map Ψ: BunG

Γ (X) → [XΓ, BG]. Also, the isotropy

representation Φ : SBunG
Γ (X)

≈−→ RepG(I) is a bijection. Passing to the classifying spaces gives

a map B : RepG(I) → [BI, BG]. The map δ : BI → XΓ of Section §6A gives rise to a map
δ∗ : [XΓ, BG] → [BI, BG].

Proposition 6.2. Let I be a proper (Γ, A)-groupoid for a Lie group Γ. Let (X,π, ϕ) be a split

Γ-CW-complex over A with isotropy groupoid I. Let G be a compact Lie group. Then, the
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following diagram

SBunG
Γ (X)

Φ≈

��

Ψ // [XΓ, BG]

δ∗

��

RepG(I)
B // [BI, BG]

is commutative.

Proof. By Proposition 4.3, we may assume that (X,π, ϕ) = (YI ,Π, φ). Let ε ∈ SBunG
Γ (YI) and

let ǫ : I → G be a representatative of Φ(ε). By Theorem 4.5 and its proof, ε has a representative
η of the form

Γ ×I (A×G) → Γ ×I A = YI ,

where I acts on A×G by ζ · (a, g) = (a, ǫ(ζ) g). The bundle ηΓ takes the form:

EΓ ×I (A×G) → EΓ ×I A = XΓ .

Let q : L→ BI be the induced bundle δ∗ηΓ. To prove Proposition 6.2, it is enough to construct
a G-equivariant map F : L→ EG making the following diagram commutative:

L
F //

q

��

EG

��
BI Bǫ // BG

.

Restricted to the stalk over a, the bundle δ∗ηΓ is of the form

EIa ×Ia
({a} ×G) −→ EIa ×Ia

{a} .
Therefore, the required map F can be defined by

F (u, a, g) = Eǫ(u) · g . �

Proposition 6.2 allows us to study the map B : RepG(I) → [BI, BG], especially when G is
abelian, in which case B is a homomorphism of abelian groups.

Proposition 6.3. Let I be a proper (Γ, A)-groupoid for a Lie group Γ. Let (X,π, ϕ) be a split

Γ-CW-complex over A with isotropy groupoid I. Let G be a compact abelian Lie group. Then,

one has an isomorphism of split exact sequences of abelian groups:

(15)

0 // SBunG
Γ (X)

Φ≈
��

// BunG
Γ (X)

δ∗ ◦Ψ≈
��

ϕ∗

// BunG(A)

≈
��

π∗

nn
// 0

0 // RepG
cell(I)

B // [BI, BG]
j∗

// [A,BG] //

π̄∗

nn 0

.

Proof. The top split exact sequence of abelian groups comes from Proposition 4.7 and its proof.
For the bottom one, one has at least a sequence

RepG(I)
B−→ [BI, BG]

j∗−→ [A,BG]

with j∗ ◦B = 0. By Proposition 4.7, any principal Γ-equivariant G-bundle over X is numerable.
Therefore, the map δ∗ ◦Ψ is defined and is a homomorphism of abelian groups. One checks that
the left-hand square of the Diagram (15) is commutative, as well as the right-hand square with



EQUIVARIANT BUNDLES AND ISOTROPY REPRESENTATIONS 29

ϕ∗ and j∗. The map δ∗ is bijective by Proposition 6.1. As G is abelian, the map Ψ is a bijection
by [18, Theorem A]. Thus, δ∗ ◦Ψ is an isomorphism. This proves that the bottom sequence of
Diagram (15) is split exact. �

Corollary 6.4. Let I be a proper (Γ, A)-groupoid for a Lie group Γ. Let (X,π, ϕ) be a split

Γ-space over A with isotropy groupoid I. Let G be a compact abelian Lie group. Suppose that

H1(A;π0(G)) = H2(A; Z) = 0. Then the map B : RepG(I) → [BI, BG] is a bijection.

Proof. The abelian group G is a disjoint union of tori, so πj(BG) = πj−1(G) = 0 for j > 2. One
has Hom (π1(A), π1(BG)) = Hom (π1(A), π0(G)) ≈ H1(A;π0(G)) = 0. A map f : A → BG is
then null-homotopic on the 1-skeleton and the obstruction theory to homotop it to a constant
map is with constant coefficients. Our hypotheses implies that H2(A;π2(BG)) = 0, so one gets
[A,BG] = 0. Corollary 6.4 then follows from Proposition 6.3. �

6.5. Equivariant K-theory. For vector bundles it is natural to stabilize, and then to study
bundles via equivariant K-theory. For example, if G = U(n) we consider the stablization maps

SBun
U(n)
Γ (X) → SBun

U(n+1)
Γ (X)

and point out how stabilization is related to our classification results.

Proposition 6.6. Let I be a proper (Γ, A)-groupoid for a Lie group Γ. Let (X,π, ϕ) be a split

Γ-CW-complex over A with isotropy groupoid I. Then, there is a natural isomorphism

Φ : KΓ(X,A) ∼= KRep(I)

of abelian groups induced by the isotropy representations.

The group KRep(I) is the Grothendieck group of the abelian monoid obtained by stabilization

from the system {RepU(n)(I)}.
6.7. Equivariant cohomology. Let Γ be a compact Lie group and X a Γ-CW-complex. By [18,
Theorem A], one has isomorphisms

(16) BunS1

Γ (X)
≈−→ [XΓ, BS

1] ≈ H2
Γ(X) ,

where H∗
Γ(X) = H∗

Γ(X; Z) denotes the equivariant cohomology. If (X,π, ϕ) is a split Γ-space
over a CW-complex A, then the projection π descends to a map π̄ : XΓ → A. We denote by
X(i) the part of X above the i-skeleton of A and by ri : H

∗
Γ(X) → H∗

Γ(X(i)) the restriction

homomorphism, induced by the inclusion X(i) ⊂ X.

Proposition 6.8. Let Γ be topological group and A be a CW-complex. Let I be a proper (Γ, A)-
groupoid and (X,π, ϕ) be a split Γ-space with isotropy groupoid I. Then

(a) The sequence 0 → H2(A)
π̄∗

−→ H2
Γ(X)

r0−→ H2
Γ(X(0)) is exact.

(b) The two restriction homomorphisms r0 : H2
Γ(X) → H2

Γ(X(0)) and

r10 : H2
Γ(X(1)) → H2

Γ(X(0)) have the same image.

Proof. The map π̄ admits a section ϕ̄ : A→ XΓ coming from ϕ. Hence, π̄∗ : H∗(A) → H∗
Γ(X) is

injective.

One hasH2
Γ(X(0)) ≈ SBunS1

X(0) ≈ RepS1

cell(I(0)). The composed homomorphism BunS1

(A) ≈
H2(A)

π∗

−→ H2
Γ(X)

r0−→ H2
Γ(X(0)) ≈ RepS1

cell(I(0)) sends an S1-bundle ξ over A to the isotropy
representation of π∗ξ, which is trivial. Thus, r0 ◦π̄

∗ = 0. Using Proposition 3.5, one has

an isomorphism H2
Γ(X) ≈ RepS1

cell(I) × H2(A). The remainder of (a) and (b) follow from
Proposition 5.1. �
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We now specialise to Γ being a torus T, with Lie algebra l, and use the definitions and
notations of Section §5C. If I is 0-toric, we have from Equation (12), that

H2
T(X(0)) ≈ RepS1

cell(I(0)) ≈
∏

v∈Λ0

l
∗

by using Proposition 6.8 and its proof, together with Proposition 5.4.

Proposition 6.9. Let I be a 1-toric cellular (T, A)-groupoid and let (X,π, ϕ) be a split T-space

with isotropy groupoid I. The image of r : H2
T
(X) → ∏

v∈Λ0
l
∗ is the set of elements (av)v∈Λ0

satisfying the GKM-condition.

Remark 6.10. Let X be as in Proposition 6.9. Suppose that X is equivariantly formal, i.e.
the homomorphism H∗

T
(X) → H∗(X) induced by the inclusion X ⊂ XT is surjective. In

this case, the homomorphim H2
Γ(X)

r0−→ H2
Γ(X(0)) is injective and Part (b) of Proposition 6.8

holds, see [9, Theorem 1]. The injectivity of r0 is considered as a “localisation theorem”, see
e.g. [10, Theorem 6.3], and Part (b) of Proposition 6.8 is referred to as the “Chang-Skjelbred
principle” (it historically occurred in [5, Lemma 2.3] for rational coefficients). But, by Part (a)
of Proposition 6.8, X is equivariantly formal only if H2(A) = 0, so our context is different. For
complex coefficients, Proposition 6.9 was proven in [10, Theorem 7.2]. There X need not to be
split, but again must be equivariantly formal.
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