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NIMA ANVARI AND IAN HAMBLETON

Abstract. Given a 4-manifold with a homologically trivial and locally-linear cyclic
group action, we obtain necessary and sufficient conditions for the existence of equivariant
bundles. The conditions are derived from the twisted signature formula and are in the
form of congruence relations between the fixed point data and the isotropy representations.

1. Introduction

Finite group actions on 4-manifolds can be studied in various settings. We are mainly
interested in comparing smooth actions with those which are topological and locally
linear, but important examples arise for symplectic 4-manifolds and complex surfaces.
Here is a sampling of survey articles and recent work on aspects of this general theme:
[1, 2, 3, 7, 8, 9, 12, 19, 27, 25, 26, 28, 32, 38, 45]. We will focus on the existence and
classification of equivariant bundles, and their applications in Yang-Mills gauge theory to
the study of finite group actions.

We begin by recalling some standard definitions. Let (X, π) denotean oriented, simply-
connected, closed 4-manifold X together with a locally linear and homologically trivial
action of a cyclic group π = Z/p of prime order. The fixed point set Xπ has Euler
characteristic χ(Xπ) = b2(X) + 2, by the Lefschetz fixed point formula. In general Xπ

will consist of isolated fixed points and a disjoint union of fixed 2-spheres (see [11, §2]).

Definition 1.1. At each isolated fixed point x ∈ Xπ, the tangent space admits an
equivariant decomposition (TxiX, π) = C(ai)⊕C(bi) of complex representation spaces. Let

t · (z1, z2) = (ζaiz1, ζ
biz2)

denote the action for t a fixed generator in the cyclic group π, ζ = e2πi/p, and with integers
(ai, bi), both non-zero modulo p.

(i) The integers (ai, bi) are the local tangential rotation data, and are well-defined up
to order and simultaneous change in sign.

(ii) Similarly, for each point x on a π-fixed 2-sphere Fj, there is a representation
C⊕ C(cj) corresponding to the equivariant splitting

TX | Fj
= TFj ⊕N(Fj)

where N(Fj) is the normal bundle with rotation ζcj , and cj 6≡ 0 (mod p).
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(iii) The total fixed point rotation data is the collection

F = {(ai, bi), (cj, αj) | i ∈ I, j ∈ J}.
where I and J index the isolated fixed points and 2-spheres respectively and
αj = [Fj ] · [Fj ] is the self-intersection number of the fixed spheres [Fj ] ∈ H2(X;Z).

(iv) By an equivariant line bundle (L, π)→ (X, π) we mean a principal U(1)-bundle
L over X together with a lift of the π-action to the total space. Given such a
lift, there exists a set of isotropy representations of the π-action on each fiber
over the fixed point set which we denote by L | xi = tλi over isolated fixed points
and L | Fj

= tλj over a fixed 2-sphere. Denote the collection of these isotropy
representations by I = {λi, λj | i ∈ I, j ∈ J}.

With this notation we have our main result.

Theorem A. Let (X, π) denote an oriented, simply-connected, closed 4-manifold with a
locally linear, homologically trivial action of a cyclic group π = Z/p of odd prime order p,
with fixed-point rotation data F = {(ai, bi), (cj, αj) | i ∈ I, j ∈ J}.

A collection I of integers {λi, λj | i ∈ I, j ∈ J} can be realized (modulo p) as the isotropy
representations of an equivariant line bundle (L, π) → (X, π) if and only if there is a
collection of integers {mj | j ∈ J} such that

(1.1)
∑
i∈I

λi
aibi

+
∑
j∈J

cjmj − λjαj
c2j

≡ 0 (mod p).

When such a line bundle exists, the integers mj = c1(i
∗L)[Fj] satisfy equation (1.1).

Remark 1.2. A special case of this result can be found in [27, Proposition 1.4], for a
cyclic group π of odd order acting locally linearly and semi-freely on the complex projective
plane CP 2 which has three isolated fixed points. The necessary condition (1.1) in Theorem
A is established by extending the methods of [27, §2] to more general actions.

Remark 1.3. The definitions above generalize directly to actions (X, π) where π is any
finite group, and the structural group G of the principal bundle is any compact Lie group.
The details will be left to the reader (see also [23, 24]).

For applications in gauge theory, G = SU(2) is an important example. In Theorem
7.1 we obtain the analogous necessary conditions for the existence of equivariant SU(2)-

bundles, and discuss the standard examples on X = S4 and X = CP 2
. In Section

8 we apply our methods to compute the formal dimensions of fixed strata equivariant
SU(2)-moduli spaces (see [25]), and work out one special case.

2. Some motivating questions

Here are some questions related to the general theme (all actions will be assumed to
preserve orientation). More information about some of these directions can be found in
the references.

1. Does there exist a smooth Z/p-action on a (homotopy) K3 surface, which induces the
identity on integral homology ?
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This is a well-known question of Allan Edmonds. Note that results of Edmonds and
Ewing [14] imply that topological locally linear examples exist for odd primes.

2. Does there exist a smooth Z/p-action on a homotopy K3 surface, which contains an
invariant embedded Brieskorn homology 3-sphere Σ(2, 3, 7) ?

Fintushel and Stern [16] showed that many homotopy K3 surfaces admit embeddings of
Σ(2, 3, 7). The question concerns the possible existence of an equivariant splitting of the
K3 surface along the Brieskorn sphere.

3. A Brieskorn homology 3-sphere Σ(a, b, c) admits a free Z/p-action if p - abc. Does there
exist a smooth, homologically trivial extension of this action with isolated fixed points to
any smooth simply connected negative definite 4-manifold X with boundary Σ(a, b, c) ?

Anvari [1] proved that the free Z/7 on Σ(2, 3, 5) does not extend in this way over
the minimal negative definite 4-manifold obtained by resolving the link singularity. The
method of proof involves studying equivariant Yang-Mills gauge theory on the non-compact
manifold with cylindrical end obtained from X by attaching the end Σ(2, 3, 5)× [0,∞).
Information about the Floer homology of Brieskorn spheres is an essential ingredient in
tackling this problem (see Saveliev [39, 40, 41]).

The corresponding extension problem from Z/p actions on Brieskorn spheres to smooth
contractible 4-manifolds was studied in [2], [3] where the orientation in the instanton
moduli space played a key role (see also [32]).

4. What sets of rotation numbers can be realized by a smooth, pseudo-free Z/n-action on
X = S2 × S2 ?

A pseudo-free action is one with isolated singular points. If the action is semi-free, there
are “standard models” with rotation data {(a, b), (c, d), (a,−b), (c,−d)} at the four fixed
points. This question for X = CP 2 was answered in [13, 25], where it was shown that the
rotation data is always the same as for the linear actions arising from PGL3(C).

5. Let (X, π) denote a smooth action of a finite group π on a closed, simply connected
smooth 4-manifold. Under what conditions does there exist a π-equivariant principal
G-bundle over X with prescribed Chern classes, for G = U(1) or G = SU(2) ?

Some information about this question was provided in [27, 25] for X = CP 2 and π
finite cyclic, or more generally for X negative definite (see also [24] for the connection
between Chern classes and the isotropy representations). For X = S4, the existence
and classification of such bundles was applied by Austin [6] and Furuta [19, 21, 20] to
study group actions via instanton gauge theory. The compactification of an equivariant
version of Donaldson’s Yang-Mills moduli space [10], [25] involves “bubbling” convergence
to equivariant instantons over the 4-sphere. Further applications of equivariant bundles
arise in studying the equivariant compactification of moduli spaces over cylindrical end
4-manifolds.
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3. The G-Signature Formula

In this section we review the derivation of the G-signature formula as the index of the
signature operator, see [42, §18], [5, pp. 585-586]. The G-signature of a closed, smooth
4-manifold X with an orientation preserving action of a finite group G acting as isometries
on X is defined as the virtual representation ]eqncount

(3.1) Sign(X,G) = [H2
+(X;C)]− [H2

−(X;C)]

where H2
±(X;C) are the maximal positive/negative definite G-invariant subspaces of

H2(X;C). Taking characters gives the g-signatures

(3.1) Sign(g,X) = trgH
2
+(X)− trgH

2
−(X)

which by the G-signature formula can be computed in terms of certain Lefschetz numbers
from the fixed point set.

Let D : C∞(Λ+)→ C∞(Λ−) denote the signature operator. The Lefschetz numbers are
computed as follows. Let Xg denote the fixed set of g, n = dimXg and N g denotes the
normal bundle of Xg in X. Then the Lefschetz number is given by

(3.2) L(g,D) = (−1)n(n+1)/2 chg(Λ
+ − Λ−)(TX |Xg ⊗ C)Td(TXg ⊗ C)

e(TXg) chg(Λ−1N g ⊗ C)
[Xg]

where

Td(TXg ⊗ C) =
−x2

(1− e−x)(1− ex)
ch(Λ+ − Λ−)(T g ⊗ C) = e−x − ex

chg(Λ
+ − Λ−)(N g ⊗ C) = e−y−iθ − ey+iθ

chg(Λ−1(N
g ⊗ C)) = (1− ey+iθ)(1− e−y−iθ).

Here x = e(TXg) denotes the Euler class of the tangent bundle to the 2-dimentional
fixed point set, chg is the equivariant Chern character, and θ is the rotation on the normal
bundle N g with Euler class y. Note that TX |Xg = TXg ⊕N g and

(3.3) chg(Λ
+ − Λ−)(TX |Xg ⊗ C) = chg(Λ

+ − Λ−)(TXg ⊗ C) chg(Λ
+ − Λ−)(N g ⊗ C).

Substituting these expressions into the Lefschetz number and letting F denote a 2-
dimensional fixed set component, then the contribution to the g-signature is given by

L(g,D) | F = (−1)
(e−x − ex)(e−y−iθ − ey+iθ)
x(1− ey+iθ)(1− e−y−iθ)

x(−x)

(1− e−x)(1− ex)
[F ]

= coth

(
y + iθ

2

)
x coth

(x
2

)
[F ]

where the following trigonometric identity is used

(3.4) coth
(x

2

)
=

e−x − ex

(1− e−x)(1− ex)
.

To evaluate on [F ], we use the Taylor expansions
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x coth (x/2) = 2 +
x2

6
+ · · ·

coth

(
y + iθ

2

)
= coth (iθ/2)− 1

2
csch2

(
iθ

2

)
y

Thus the contribution to the Lefschetz number is given by

L(g,D) | F = {2 coth(iθ/2)− csch2(iθ/2)y}[F ]

= − csch2(iθ/2)[F ]2 = csc2(θ/2)[F ]2

=
−4tcF

(tcF − 1)2
[F ]2

where θ = 2πcF
p

and cF is the rotation number on the normal fiber of F and t = e2πi/p is a

primitive pth root of unity. Similarly we can compute the contribution from isolated fixed
points:

L(g,D) | pt =
(e−iθ1 − eiθ1)(e−iθ2 − eiθ2)

(1− eiθ1)(1− e−iθ1)(1− eiθ2)(1− e−iθ2)
= coth(iθ1/2) coth(iθ2/2)

= − cot(θ1/2) cot(θ2/2)

=
(ta + 1)(tb + 1)

(ta − 1)(tb − 1)

where θ1 = 2πa
p

and θ2 = 2πb
p

are the rotation numbers at the fixed point. By summing

over the fixed point set components, the G-signature formula is given by

(3.5) Sign(g,X) =
∑
i

(tai + 1)

(tai − 1)

(tbi + 1)

(tbi − 1)
+
∑
j

−4αjt
cj

(tcj − 1)2

where αj denotes the self-intersection [Fj] · [Fj] of the fixed 2-spheres {Fj}. Note the
equivariant signature on the left-hand side of this formula is equal to the usual signature
in this case because the action is homologically trivial. We also remark here that this
formula can be viewed as an equation in the cyclotomic field Q[ζ] = Q[t]/Φp(t) where
Φp(t) is the cyclotomic polynomial 1 + t+ t2 + · · ·+ tp−1.

Remark 3.6. The G-signature formula (and its generalizations to the twisted G-signature
formlas used in Section 5 and Section 7 also hold in the topological locally linear category.
The argument uses bordism theory (see Wall [43, Chapter 14B], [22]) and the foundational
work of Freedman [18, 17] (see also [31, Theorem 1.1]). For the twisted G-signature formula
[4, Theorem 6.7], the analytic index and the topological index coincide as homomorphisms
KG(TX) → R(G). If G is a finite group of odd order, Madsen [36, Theorem 3.3 and
Proposition 3.6] relates equivariant KG-theory to equivariant bordism after localizing away
from 2.
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4. Congruence Relations for the G-Signature Formula

In this section we derive congruence relations satisfied by the rotation data F using the
G-signature formula. We first note that since (ta− 1)/(t− 1) is a unit in ring of cyclotomic
integers Z[ζ] when (a, p) = 1, multiplying both sides of the G-signature formula by (t− 1)2

induces an equation in the ring R = Z[ζ]. The I-adic expansion of the resulting right-hand
side leads to congruence relations relating the rotation data, where I denote the ideal
generated by (t− 1) in R.

Following the method of [27] we lift the equation to Z[t], compute the Taylor expansions
about t = 1 and reduce the coefficients modulo p. Since the indeterminacy of the coefficients
are determined from the expansion of the cyclotomic polynomial Φp(t) (for which p divides
the coefficients of its Taylor expansion about t = 1 up to order p − 1) we obtain valid
congruence relations by equating coefficients modulo p up to order p− 1.

The expansion arising from contributions from isolated fixed points are given by

(ta + 1)

(ta − 1)

(tb + 1)

(tb − 1)
(t− 1)2 =

4

ab
+

4

ab
(t− 1) +

1

3

(
a2 + b2 + 1

ab

)
(t− 1)2

− 1

180

(
a4 + b4 − 5a2b2 + 3

ab

)
(t− 1)4 + · · ·

Similarly the expansion of the second term is given by expressions of the form

−4αtc

(tc − 1)2
(t− 1)2 =

−4α

c2
+
−4α

c2
(t− 1) +

1

3

α(c2 − 1)

c2
(t− 1)2

− 1

60

α(c− 1)(1 + c+ c2 + c3)

c2
(t− 1)4 + · · · .

Equating both sides of the expansion (mod p) from the resulting equation in R we thus
obtain the following congruence relations:

Theorem 4.1. [27, p. 625] Let (X, π) denote a simply connected, closed 4-manifold with
a homologically trivial, locally-linear group action of a finite cyclic group π = Z/p of odd
order. Then the following congruence relations hold

(i)
∑

i
1
aibi
−
∑

j
αj

c2j
≡ 0 (mod p)

(ii)
∑

i
a2i+b

2
i

aibi
+
∑

j αj ≡ 3 Sign(X) (mod p)

(iii)
∑

i
a4i+b

4
i−5a2i b2i
aibi

+ 3
∑

j αjc
2
j ≡ 0 (mod p)

(iv)
∑

i
2a6i−7a4i b2i−7a2i b4i+2b6i

aibi
+ 10

∑
j αjc

4
j ≡ 0 (mod p).

Higher-order relations are valid up to and including terms of order p− 1.

Example 4.2 (Linear models on CP 2). Let G = Z/p with odd prime p act linearly
on X = CP 2 by t · [z1 : z2 : z3] = [ζaz1 : z2 : z3] for 0 < a < p. The fixed point
set consists of one isolated fixed point [1 : 0 : 0] with tangential rotation number (a, a)
and a fixed projective line F = {[z1 : z2 : z3] | z1 = 0} with self-intersection +1 and a
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rotation of cF ≡ a (mod p) on the normal bundle. Then it is easy to check that the
congruence relations are satisfied. Similarly, in the case when the action is given by
t · [z1 : z2 : z3] = [ζaz1 : ζbz2 : z3] for 0 < a < b < p the action consists of three isolated
fixed points [0 : 0 : 1], [1 : 0 : 0], [0 : 1 : 0] with rotation numbers (a, b), (b−a,−a), (a−b,−b)
and with some algebra it can be checked that the congruence relations hold. Additional
examples can be obtained for #nCP 2 by equivariant connected sums along fixed point
sets using the linear models.

5. Equivariant Line Bundles

Let (X, π) denote a simply connected, closed 4-manifold with a homologically trivial
action of a finite cyclic group π = Z/p of odd prime p and L → X an equivariant line
bundle. The index of the signature operator twisted by an equivariant line bundle is the
same as in the previous section, except that one has to consider the contribution of the
equivariant Chern character of the line bundle restricted to the fixed point set. Let F
denote a fixed surface as before, then the contribution to the Lefschetz number is given by:

L(g,D) | F = {2 coth(iθ/2)− csch2(iθ/2)y}{chg(i
∗L)}[F ]

= {2 coth(iθ/2)− csch2(iθ/2)y}{ez+iφ}[F ]

= {2 coth(iθ/2)− csch2(iθ/2)y}{eiφ + eiφz}[F ]

= {2 coth(iθ/2)eiφz − csch2(iθ/2)yeiφ

= 2c1(i
∗L)[F ]

(tcF + 1)

(tcF − 1)
tλ +

−4[F ]2tcF

(tcF − 1)2
tλ

where φ = 2πλ
p

is the rotation on the fiber in L over a fixed point on F and z = c1(i
∗L)

denotes the restriction of the first Chern class to the fixed set component. Similarly for the
contribution to the isolated fixed points. To summarize, given an equivariant line bundle
(L, π)→ (X, π), the index of the twisted G-signature operator gives a virtual character
given by

χ(t) =
∑
i

(tai + 1)

(tai − 1)

(tbi + 1)

(tbi − 1)
tλi +

∑
j

−4αjt
cj

(tcj − 1)2
tλj +

∑
j

2c1(i
∗L)[Fj]

(tcj + 1)

(tcj − 1)
tλj

where {Fj} are fixed 2-spheres of the action on X with αj denoting the self-intersection
[Fj] · [Fj]. Note that

χ(1) = ch(L)L(X)[X] =

(
1 + c1(L) +

1

2
c1(L)2

)(
4 +

p1
3

)
[X](5.1)

=
(p1

3
+ 2c1(L)2

)
[X] = Sign(X) + 2c1(L)2[X].(5.2)
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Since χ(t) is a virtual character for G = Z/p we may write χ(t) =
∑p−1

i=0 ait
i for some

ai ∈ Z and

χ(t)(t− 1)2 = χ(1)(t− 1)2 + higher order terms (mod p)

We can then take the Taylor expansion of the right-hand side of the twisted G-signature
formula after multiplying by (t − 1)2 and equate the first and second order terms to
obtain two additional congruence relations. The first order term vanishes while the second
order term is congruent to χ(1) (mod p). Taking Taylor expansions for these terms in the
G-signature formula give:

(ta + 1)

(ta − 1)

(tb + 1)

(tb − 1)
(t− 1)2tλ =

4

ab
+

4(λ+ 1)

ab
(t− 1)+

1

3

(a2 + b2 + 1 + 6λ2 + 6λ)

ab
(t− 1)2 + · · · .

Similarly for the second term:

−4αtc

(tc − 1)2
(t− 1)2tλ =

−4α

c2
+
−4α(1 + λ)

c2
(t− 1)+

1

3

α(c2 − 1− 6λ− 6λ2)

c2
(t− 1)2 + · · · .

and for the third term:

2m
(tc + 1)

(tc − 1)
(t− 1)2tλ =

4m

c
(t− 1) +

2m(2λ+ 1)

c
(t− 1)2 + · · ·

where m = c1(i
∗L)[F ]. Combining these expressions we obtain the following theorem:

Theorem 5.1. Let (L, π) → (X, π) denote an equivariant line bundle over a simply
connected, closed 4-manifold with a homologically trivial group action of a finite cyclic
group π = Z/p of odd order. Then the following congruence relation holds

(i)
∑
i

λi
aibi
−
∑
j

λjαj
c2j

+
∑
j

c1(i
∗L)[Fj]

cj
≡ 0 (mod p)

(ii)
∑
i

λ2i
aibi
−
∑
j

λ2jαj

c2j
+ 2

∑
j

λjc1(i
∗L)[Fj]

cj
≡ c1(L)2[X] (mod p).

Example 5.2 (Linear models on CP 2). Let p denote an odd prime and consider X = CP 2

and a linear action t · [z1 : z2 : z3] = [ζaz1 : ζbz2 : z3] for 0 < a < b < p. We give an explicit
construction of equivariant line bundles over X. Consider a finite dimensional complex
representation space V = C(λ1)⊕ C(λ2)⊕ C(λ3) with action given by ρ ∈ GL3(C):

(5.3) ρ =

tλ1 tλ2

tλ3

 : C3 \ {0} −→ C3 \ {0}
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with the λi positive integer weights. Let S(V ) denote the unit sphere in V then ρ commutes
with the free S1-action on S(V ) and

CP 2 = S(V )/S1 = S5/S1.

The ρ-action on S(V ) is a lift of the linear action on X if the following system of linear
congruences

λ1 − λ3 ≡ a, λ2 − λ3 ≡ b

λ2 − λ1 ≡ b− a, λ3 − λ1 ≡ −a
λ1 − λ2 ≡ a− b, λ3 − λ2 ≡ −b.

has a solution. This system has one degree of freedom; let λ3 = λ be a fixed parameter,
then the isotropy representations over the three isolated fixed points are given by:

fixed point p1 = [0 : 0 : 1], rotation number (a, b),with isotropyλ3 ≡ λ

fixed point p2 = [1 : 0 : 0], rotation number (b− a,−a),with isotropyλ1 ≡ λ+ a

fixed point p3 = [0 : 1 : 0], rotation number (−b, a− b)with isotropyλ2 ≡ λ+ b.

The equivariant line bundle

L = S(V )×S1 C

is the canonical bundle over CP 2 and the congruence relations of the theorem are satisfied:∑
i

λi
aibi
≡ 0

∑
i

λ2i
aibi
≡ 1.

In the case when b = 0 the action is given by t · [z1 : z2 : z3] = [ζaz1 : z2 : z3] and has
a fixed projective line F = {z1 = 0} with normal rotation number cF ≡ a (mod p) and
self-intersection +1, while the isolated fixed point [1 : 0 : 0] has rotation number (a, a).
The compatibility for a lift of the linear action is the congruence relation:

λ− λF ≡ a (mod p).

It is easily seen that the congruence relation of the theorem are satisfied:

λ

a2
− λF
a2

+
c1(i

∗L)[F ]

a
≡ 0.

where we used c1(i
∗L)[F ] = −1, since the first Chern class of the canonical line bundle

over CP 2 is negative of the preferred generator [F ] ∈ H2(CP 2;Z) [37, Theorem 14.10,
p. 169]. Similarly, the second relation is

λ2

a2
− λ2F
a2

+
2λF c1(i

∗L)[F ]

a
≡ (a+ λF )2 − λ2F

a2
+

2λF c1(i
∗L)[F ]

a
≡ 1 ≡ c1(L)2[X].
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Example 5.4. Let π = Z/p act on X = CP 2 preserving an almost complex structure.
Then the complexified second exterior power of the cotangent bundle KX = Λ2

CT
∗X is

an equivariant line bundle see [27, Proposition 1.8]). We check the congruence relations
in the case when the action has a fixed projective line and leave the remaining case of
isolated fixed points to the reader.

The action from the linear model is given by t · [z1 : z2 : z3] = [ζaz1 : z2 : z3] for some
0 < a < p and the fixed point set consists of an isolated fixed point with tangential rotation
number (−a,−a) and a fixed projective line

F = {[z1 : z2 : z3] | z1 = 0}

with self-intersection +1 and a rotation of cF ≡ a (mod p) on the normal bundle. The
isotropy representations over the fixed point set are KX | pt = t2a and KX | F = t−a. With
these values substituted it is easy to verify the congruence relations in Theorem 5.1 for
L = KX , noting that KX is the canonical class of X with dual −3 times the standard
generator in H2(CP 2;Z).

Definition 5.5. Let (X, π) be a homologically trivial of π = Z/p in the setting of Theorem
A, with rotation data F = {(ai, bi), (cj, αj) | i ∈ I, j ∈ J}. We say that (X, π) satisfies the
condition of Theorem A if there exists a set of isotropy data I = {λi, λj | i ∈ I, j ∈ J}, and
a set of integers {mj | j ∈ J} so that the equation given in Theorem A holds.

In the next statement, we apply the equivariant connected sum operation to line bundles.

Lemma 5.6. Suppose that (X, π) satisfies the condition of Theorem A. There there is an
equivariant connected sum (X]CP 2, π) with a linear π-action on CP 2 which also satisfies
the condition of Theorem A.

Proof. We first suppose that (X, π) contains a fixed 2-sphere Fj with data {αj, cj}. Let
(CP 2, π) be the linear action given by t · [z1 : z2 : z3] = [ζ−cjz1 : z2 : z3] as in Example 4.2.
We do the equivariant connected sum (preserving the orientations) along a point in Fj
and a point in the fixed 2-sphere of CP 2. The new data is obtained by (i) adding the
data {(−cj,−cj);λj} for the newly created isolated fixed point (on CP 2), and (ii) the data
{(cj, αj + 1);λj} for the new fixed 2-sphere. With these choices, it follows that the action
(X]CP 2, π) satisfies the condition of Theorem A. The proof in case the action (X, π) has
only isolated fixed points is easier, and will be left to the reader. �

Remark 5.7. Suppose that (X, π) has data satisfying the condition of Theorem A, and
contains a fixed 2-sphere F . Let X0 ⊂ X denote the complement of a linear π-invariant
4-ball neighbourhood of a point x ∈ F . If L is an equivariant line bundle over (X]CP 2, π),
then the restriction of L to X0 extends to an equivariant line bundle over (X, π) realizing
the given data.

6. The proof of Theorem A

The first relation in Theorem 5.1 proves the necessary conditions of Theorem A. To
prove sufficiency we will need the following lemmas.
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Note that in a standard lens space Y = L(n; a, b), a generator µ ∈ H1(Y ;Z) is represented
by a circle fibre in the fibration S1 → L(n; a, b)→ S2 given by the quotient of a free Z/n
action on S3.

Lemma 6.1. The linking paring lk : H1(Y )×H1(Y )→ Q/Z in the lens space Y = L(n; a, b)

is given by lk(µ, µ) =
ab

n
where µ is a generator of H1(Y ;Z) = Z/n.

Proof. In the usual representation of lens spaces L(n; q) as the quotient of the free Z/n
action t · (z1, z2) = (ζz1, ζ

qz2) on S3, the linking pairing is given by lk(µ, µ) =
q

n
. The

diffeomorphism L(n; a∗b)→ L(n; a, b) where a∗ is the multiplicative inverse mod n arising
from changing the generator in Z/n induces a map on first homology given by multiplication
by a. It follows that the linking pairing on Y is given by

lk(aµ, aµ) = a2 ·
(
a∗b

n

)
=
ab

n
∈ Q/Z.

�

Lemma 6.2 ([27, Proposition 1.4, p. 621], [30, Lemma 2.11, p. 95]). Let φ : π1(Y ) −→ U(1)
be the holonomy representation of a flat U(1)-bundle over the lens space Y = L(n; a, b)
that sends a generator µ to exp(2πiλ/n). Then the Poincaré dual of the first Chern class

PD(c1(L)) is given by
λ

ab
[µ] in H1(Y ;Z).

Proof. The adjoint to the linking form Φ: H1(Y ;Z)→ Hom(H1(Y ;Z),Q/Z) sends m[µ]
to lk(mµ,−) which can be identified with the holonomy representation of the flat bundle
via :

e2πi·lk(mµ,−) : H1(Y ;Z)→ U(1)

and this maps the generator to exp(2πim · (ab/n)). It follows that m ≡ λ

ab
(mod n). �

If Y is a lens space, we let µ̂ ∈ H2(Y ;Z) denote a standard cohomology generator: the
Poincaré dual to the circle fibre class µ ∈ H1(Y ;Z).

Lemma 6.3. Let u : Y ′ → Y be a d-fold regular covering of lens space, where H1(Y ;Z) ∼=
Z/dn and H1(Y

′;Z) ∼= Z/n, with gcd(d, n) = 1. Then u∗(µ̂) = µ̂′ ∈ H2(Y ′;Z).

Proof. For a d-fold regular covering u : Y ′ → Y of lens spaces, we have u∗[µ
′] = d[µ] ∈

H1(Y,Z) and u∗[Y
′] = d[Y ] ∈ H3(Y ;Z). The cohomology generator µ̂ = [Y ]∩µ ∈ H2(Y ;Z)

is the Poincaré dual of µ, and similarly for µ̂′ ∈ H2(Y ′;Z). We have the formula

u∗([Y
′] ∩ u∗(µ̂)) = u∗(µ

′) = dµ.

If H1(Y ;Z) = Z/dn and H1(Y
′;Z) = Z/n, where gcd(d, n) = 1, then u∗(µ̂) = kµ̂′ implies

that k ≡ 1 (mod n). Hence u∗(µ̂) = µ̂′ ∈ H2(Y ′;Z). �

Suppose that (X, π) satisfies the assumptions of Theorem 5.1. Let Σ ⊂ X denote the
singular set of the action, and let X0 := X − Σ. Write αj = pajαj, where αj is prime to p
(for each fixed 2-sphere Fj).
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Lemma 6.4. If the singular set Σ ⊂ X contains an isolated point, then H1(X0;Z) is a
quotient of

⊕
Z/αj and has order prime to p.

Proof. Let F ⊂ X denote the disjoint union of the fixed 2-spheres, so F =
⋃
j Fj. First

note that H1(X0) ∼= H3(X,F ) and we have an exact sequence

· · · → H2(X)→ H2(F )→ H3(X,F )→ H3(X)→ . . .

Since H3(X) = 0, and the homology classes of the fixed 2-spheres are linearly independent
mod p (by [11, Corollary 2.6]), it follows that H3(X,F ) ∼= H1(X0) is a torsion group of
order prime to p.

Moreover, the exact Mayer-Vietoris sequence

0→ H2(X0)⊕H2(F )→ H2(X)→ H1(∂X0)→ H1(X0)→ 0

and the equality H1(∂X0) = H1(∂ν(F )) ∼=
⊕

Z/αj completes the proof. �

The proof of Theorem A. By Theorem 5.1(i), the indicated formulas hold if (X, π) admits
an equivariant line bundle. It remains to prove that a solution {λi, λj,mj | i ∈ I, j ∈ J} to
the congruence relation

(6.5)
∑
i

λi
aibi
−
∑
j

λjαj
c2j

+
∑
j

mj

cj
≡ 0 (mod p)

is sufficient for the existence of an equivariant line bundle with {λi, λj} isotropy represen-
tations over the isolated fixed points and 2-spheres respectively, and mj = c1(i

∗L | Fj
).

For simplicity, we will assume that the action (X, π) contains at least one isolated fixed
point. This may always be arranged by taking the equivariant connected sum of (X, π)
along a fixed 2-sphere with a suitable linear π-action on CP 2 (see Lemma 5.6).

Let X0 = X − N , where N = ν(Σ) is a π-invariant tubular neighbourhood of the
singular set Σ ⊂ X. More explicitly, X0 is the compact 4-manifold with boundary obtained
by removing π-invariant 4-balls around each isolated fixed point and π-invariant tubular
neighbourhoods D2 → ν(Fj)→ Fj around each π-fixed 2-sphere Fj with rotation tcj on
D2-fibers. Then ν(Fj) is a 2-disk bundle over S2 with Euler class αj[F ] ∈ H2(F ;Z) ∼= Z,
and the lens space ∂ν(Fj) = L(αj, 1) inherits a free Z/p action with rotation number cj
on the circle fibre.

If W0 := X0/π denotes the quotient manifold with (regular) covering map q : X0 → W0

classified by u : W0 → Bπ, then the boundary ∂W0 consists of lens spaces Yi = L(p; ai, bi)
and Yj = L(pαj; cj, cj). Note that

H1(W0;Z) ∼= Z/p⊕H1(X0,Z)

by the spectral sequence of the covering. By Lemma 6.4, H1(X0;Z) is a quotient of⊕
Z/αj and has order prime to p.

Recall that π-equivariant line bundles L over (X, π) are classified by an element

θ(L) ∈ H2
π(X;Z) = H2(X ×π Eπ;Z)

in the Borel equivariant cohomology of X (see [33]). Since the π-action on X0 is free, for
the restriction L0 ↘ X0 we have θ(L0) ∈ H2

π(X0;Z) ∼= H2(W0;Z), and θ(L0) = c1(L̄0),
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where L̄0 is the line bundle over W0 obtained by dividing out the free π-action on the total
space of L0. Moreover, in the short exact sequence

0→ H2(Z/p;Z)
c∗−→ H2(W0;Z)

q∗−→ H2(X0;Z)→ 0

the pullback q∗(θ(L0)) = c1(q
∗(L̄0)) = c1(L0) ∈ H2(X0;Z).

The strategy will be to find a suitable element θ(L) ∈ H2
π(X;Z) by studying the

Mayer-Vietoris sequence

· · · → H2
π(X)→ H2

π(X0)⊕H2
π(N)→ H2

π(∂X0)
δ−→ H3

π(X)→ H3
π(X0)⊕H3

π(N)→ . . .

in Borel cohomology associated to the π-equivariant decomposition X = X0 ∪N .

Obervations:

(i) The Mayer-Vietoris coboundary map H2
π(∂X0)

δ−→ H3
π(X) factors as

H2
π(∂X0)

δ−→ H3
π(X0, ∂X0) ∼= H3

π(X,N)→ H3
π(X).

(ii) The cokernel of the map H2
π(N)→ H2

π(∂X0) has exponent p. This follows from
the commutative diagram of restriction maps

H2
π(N) //

��

H2
π(∂X0)

��

//
⊕

Z/pαj
��

H2(N) // H2(∂X0)
∼= //
⊕

Z/αj

since the map H2
π(N)→ H2(N) is surjective (by the Borel spectral sequence) and

the map H2(N, ∂N)→ H2(N) is adjoint to the (diagonal) intersection form on
N , with cokernel H2(∂N) = H2(∂X0), hence determined by the self-intersection
numbers {αj}.

(iii) We have H3
π(X0, ∂X0) ∼= H3(W0, ∂W0) ∼= H1(W0) ∼= Z/p⊕H1(X0), where H1(X0)

is a quotient of
⊕

Z/αj and has order prime to p (by Lemma 6.4).

(iv) The Mayer-Vietoris coboundary map H2
π(∂X0)

δ−→ H3
π(X) also factors as

H2
π(∂X0)

δ−→ H3
π(N, ∂X0) ∼= H3

π(X,X0)→ H3
π(X).

From the first three points above, it follows that Im(δ) = Z/p ⊆ H3
π(X) may

be identified with the first summand of the identification H3
π(X0, ∂X0) ∼= Z/p⊕

H1(X0).

To complete the proof of Theorem A, it is now enough to produce a class

θ0 ∈ H2
π(X0) ∼= H2(W0),

which added together with the classes already found in H2
π(N) will have image zero in

H2
π(∂X0). By the observations above, this amounts to finding a U(1)-bundle L̄0 on ∂W0

whose first Chern class θ0 = c1(L̄0) has image of order prime to p under the coboundary
map

H2(∂W0)→ H3(W0, ∂W0).
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In other words, we need to find suitable U(1)-bundles over each of boundary components
of ∂W0, so that the sum of their first Chern classes is zero (mod p). This required relation
is exactly the condition (1.1) given in the statement of Theorem A.

Let Y denote one of the lens spaces in ∂W0, For convenience, we will identify Z/n ∼=
H2(Y ;Z) by a 7→ a · µ̂, for a ∈ Z/n, where µ̂ ∈ H2(Y ;Z) denotes a standard generator,
Poincaré dual to the circle fibre class µ ∈ H1(Y ;Z) (introduced in Lemma 6.1).

If Yi = L(p; ai, bi) ⊂ ∂W0 arises from one of the isolated fixed points in X, then choose
the holonomy representation that sends a generator in π1(Y ) to exp(2πiλi/p). The first
Chern class of the associated flat U(1)-bundle is

λi
aibi

[µ̂i] ∈ H2(Yi;Z) ∼= Z/p.

In the case when the π-action on X has only isolated fixed points, the condition for an
extension is that these elements lie in the kernel of δ in H2(∂W0;Z) =

⊕
iH

2(Yi;Z) which

is equivalent to the condition
∑

i

λi
aibi
≡ 0 (mod p).

In the general case when components of the fixed set contain 2-spheres, we need to
consider contributions from the lens spaces Yj = L(pαj; cj, cj). These lens spaces arise

from the free tcj -action on Ỹj := ∂ν(Fj) ≈ L(αj; 1). Consider the induced covering spaces
of Yj by the lens spaces L(paj+1, 1) and L(αj, 1), where αj = pajαj, and note that the
covering maps induce an isomorphism:

(6.6)

H2(Yj;Z)
∼= //

∼=��

H2(L(paj+1, 1))⊕H2(L(αj, 1))
∼=��

Z/pαj
∼= // Z/paj+1 ⊕ Z/αj

Under the two covering maps, the standard cohomology generator µ̂j ∈ H2(Yj;Z) is sent
to the standard generators in H2(L(paj+1, 1)) and H2(L(αj, 1)), respectively, by Lemma
6.3. The maps in the lower sequence are the reductions mod paj+1 and αj, after using the
identifications provided by the cohomology generators.

The required Chern class c1(L̄j) =
`j
c2j

[µ̂j] ∈ H2(Yj;Z) for each component Yj can now

be determined uniquely by solving the congruences:

(6.7)
`j ≡ −λjαj (mod paj+1),

`j ≡ cjmj (mod αj).

and hence we have a U(1)-bundle L̄j ↘ Yj . The minus sign is chosen in the first congruence
because the induced orientation on Yj from ∂W0 is opposite to its orientation as the disk
bundle over S2 with Euler class αj.

By diagram (6.6) and Lemma 6.3, the first Chern class has image

c1(L̄j) =
`j
c2j

[µ̂j] =
−λjαj + cjmj

c2j
[µ̂j] ∈ H2(Yj;Z)
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with respect to the decomposition H2(Yj;Z) ∼= Z/paj+1 ⊕ Z/αj. After substituting these
expressions into the congruence relation (6.5), we see that the sum vanishes mod p (from
Observation 4 above). Hence we have

δ(
∑
i

λi
aibi

[µ̂i] +
∑
j

`j
c2j

[µ̂j]) = 0

under the coboundary map δ : H2
π(∂X0)→ H3

π(X), and the required line bundle L̄0 over
W0 exists. �

7. Equivariant SU(2) Bundles

In this section we compute a (necessary) congruence relation similar to the previous
section, but for equivariant SU(2)-bundles. As above, we work over a closed, simply
connected, oriented 4-manifold with a finite homologically trivial cyclic group action. We
again use the twisted G-signature formula (with the previously established notation). In
particular, let D denote the signature operator twisted by an equivariant SU(2)-bundle
E −→ X, then the contribution to the Lefschetz numbers from isolated fixed points is
given by

L(g,D) | pt =
(ta + 1)

(ta − 1)

(tb + 1)

(tb − 1)
(tλ + t−λ).

We need to compute the contribution from isolated fixed 2-spheres F . Since E | F = L⊕L−1,
we have chg(L⊕ L−1 | F ) = {eλ+z + e−λ−z}[F ] and

L(g,D) | F = {2 cot(iθ/2)− csch2(iθ/2)y} chg(L⊕ L−1 | F )[F ]

= {2(tc + 1)

(tc − 1)
− 4tcy

(tc − 1)2
}{eλ(1 + z) + e−λ(1− z)}[F ]

= {2(tc + 1)

(tc − 1)
− 4tcy

(tc − 1)2
}{tλ + t−λ + z(tλ − t−λ)}[F ]

= − 4tc[F ]2

(tc − 1)2
(tλ + t−λ) + 2c1(L)[F ]

(tc + 1)

(tc − 1)
(tλ − t−λ).

Also note

χ(1) = ch(E)L(X)[X] = (2− c2(E))(4 +
1

3
p1)

= 2 Sign(X)− 4c2(E).

We now again multiply both sides of the G-signature formula by (t − 1), take Taylor
expansions about t = 1 and reduce coefficients modulo p:

(ta + 1)

(ta − 1)

(tb + 1)

(tb − 1)
(t− 1)2(tλ + t−λ) =

8

ab
+

8

ab
(t− 1)+

2

3

(a2 + b2 + 1 + 6λ2)

ab
(t− 1)2 + · · · .
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and for the second term, where we let m denote c1(L)[F ]:

(t− 1)2{ −4αtc

(tc − 1)2
(tλ + t−λ) + 2m

(tc + 1)

(tc − 1)
(tλ + t−λ)}

=
−8α

c2
+
−8α

c2
(t− 1) +

2

3

(αc2 − α− 6αλ2 + 12mcλ)

c2
(t− 1)2 + · · ·

Summing over all the fixed sets and simplifying the coefficient of second order term (t−1)2,
we obtain:

2 Sign(X) +
∑
i

4λ2i
aibi
−
∑
j

4αjλ
2
j

c2j
+
∑
j

8mjλj
cj

.

Equating this with χ(1) = 2 Sign(X)− 4c2(E) and reducing coefficients modulo p gives
the following congruence relation:

Theorem 7.1. Let (E, π) → (X, π) denote an equivariant SU(2)-bundle over a simply
connected, closed 4-manifold with a homologically trivial group action of a finite cyclic
group π = Z/p of odd prime order. Then the following congruence relation holds∑

i

λ2i
aibi
−
∑
j

αjλ
2
j

c2j
+
∑
j

2λj
cj
c1(i

∗Lj)[Fj] ≡ −c2(E)[X] (mod p),

where Lj is a local reduction E | Fj
= Lj ⊕ L−1j .

Instanton gauge theory on c2(E) = 1 bundles in the equivariant setting provide many
examples of equivariant SU(2)-bundles on smooth definite 4-manifolds. We next check
these relations for some examples of smooth cyclic group actions in the well-known linear
models (see [6, 8, 19, 21, 20, 26, 29]).

Example 7.2 (Linear Models on S4). Let X = S4 with a linear Z/p-action which
gives rotation numbers (a, b) and (a,−b). Let E denote the instanton one equivariant
SU(2)-bundle, i.e. with c2(E) = 1. Then the congruence relation is given by

−c2(E) =
λ21
ab
− λ22
ab

(mod p)

It is elementary to check that this congruence relation is satisfied with the following
isotropy representations

λ1 =
b− a

2

λ2 =
a+ b

2
.

over the fibres of the fixed points.

Example 7.3 (Linear Models on CP 2
). Let X = CP 2

with a linear Z/p-action with
one isolated fixed point with rotation number (a,−a) for some a (mod p) and a fixed
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projective line F with rotation number a (mod p) on the normal bundle. Let E again
denote the instanton one equivariant SU(2)-bundle. The congruence relation gives

−1 ≡ −λ
2

a2
+
λ2F
a2

+
2mλF
a

where m = c1(i
∗L)[F ]. There exists two distinct lifts giving rise to equivariant bundles

which admit G-invariant ASD connections. In the case when the equivariant lift comes
from ”bubbling” on the isolated fixed point then m = 0 and

λ ≡ a (mod p)

λF ≡ 0 (mod p).

Thus the congruence is satisfied. On the other hand, if we choose the equivariant lift
associated to the fixed 2-sphere (from 3-dimensional fixed connected component in the
moduli space of equivariant ASD connections with c2(E) = 1) then m = −1 and

λ ≡ a/2 (mod p)

λF ≡ a/2 (mod p),

again the congruence relation is satisfied.

Remark 7.4. At present we do not have general sufficient conditions for the existence of
equivariant principal SU(2)-bundles. However, in the special cases where X is negative
definite and c2(E) = 1, for any choice of reduction E = L⊕ L−1 from a cohomology class
c1(L) = α ∈ H2(X;Z) with 〈α2, [X]〉 = −1, we have sufficient conditions by applying
Theorem A.

8. Equivariant Index Computation

In this section we compute the dimension of the moduli space of invariant anti-self dual
connections for a given equivariant SU(2)-bundle over smooth 4-manifolds with a given
homologically trivial cyclic group action.

Let X be a simply connected, closed, smooth negative definite 4-manifold, with a
homologically trivial action of a finite group G. If E ↘ X is an SU(2)-bundle with
c2(E) = k, the moduli space M∗1(X) of irreducible ASD connections (on an SU(2)-bundle
E with c2(E) = 1) inherits a G-action, and the connected components of the fixed point
set MG

1 (X) correspond to G-invariant ASD connections for certain equivariant lifts of the
G-action on X to E (see [19], [8], [25, Theorem A], [29, §2]).

We want to compute the dimension of the moduli space MG
k (X) of irreducible G-invariant

ASD connections. This is motivated by Example 8.4, for which the formal dimension
dimM∗1(X) = 5. In this case, we expect a dimension formula that gives 1 and 3-dimensional
strata depending on contributions from isolated fixed points or isolated fixed 2-spheres
in X and on the isotropy representations from the equivariant lift (see [8] and [26] for
details). There are similar index calculations in the literature in various gauge-theoretic
settings (for example, see [15, §3], [6]), [34, 35], [44], [1]).

We first very briefly review the dimension calculation in the non-equivariant setting
to set some notation. Let D+

A = d∗A + d+A : Ω1(adE)→ Ω0(adE)⊕ Ω2
+(adE) denote the
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anti-self duality operator, and let Mk denote the ASD moduli space with c2(E) = k. Note
that the formal dimension is given by dimMk = − Ind(D+

A) and this is given by

(8.1) Ind(D+
A) = Â(X) ch(S+) ch(adCE)[X]

where S = S+⊕S− and Â(X) =
∏ xi/2

sinh(xi/2)
with ch(S) =

∏
(exi/2 + e−xi/2) and ch(S+)−

ch(S−) =
∏

(exi/2 − e−xi/2). Using this we compute

2Â(X) ch(S+) ch(adCE)[X] = (4 +
1

3
p1 + χ)(3− 4c2(E))[X]

= −16c2(E) + 3(
p1
3

+ χ).

Thus the index Ind(D+
A) = −8c2(E) + 3

2
(Sign +χ)(X) and we get the usual expression

dimMk = 8k − 3/2(χ+ Sign)(X) for the dimension of the moduli space. Also note the
following alternative expression for the index:

Ind(D+
A) =

ch(S+ − S−) ch(S+) ch(adCE)Td(TX ⊗ C)

e(X)
[X]

= Â(X) ch(S+ ⊗ adCE)[X].

For the equivariant setting E is an equivariant SU(2)-bundle and let D = D+
A denote the

anti-self duality operator d∗A + d+A : Ω1(adE)G → Ω0(adE)G ⊕ Ω2
+(adE)G. We compute

the equivariant index by averaging the Lefschetz numbers as in [15]:

Ind(D) =
1

p

∑
g∈G

L(g,D)

Ind(D) =
1

p
{L(1, D) +

∑
g 6=1

L(g,D)}

=
1

p
{−8c2(E) +

3

2
(χ+ Sign)(X) +

∑
g 6=1

L(g,D)}

=
1

p
{−8c2(E) +

3p

2
(χ+ Sign)(X/G)− 3

2
(dχ + dσ)(XG) +

∑
g 6=1

L(g,D)}

where pχ(X/G) = χ(X) + dχ with dχ =
∑

g 6=1 χ(Xg) is the Euler characteristic defect
terms and similarly for the signature defect term:

− 3

2
(dχ + dσ)[pt] = −3

2
(1− cot(θ1/2) cot(θ2/2))

− 3

2
(dχ + dσ)[F ] = −3

2
(2 + [F ]2 csc2(θ/2)),

where (θ1, θ2) are the rotation numbers at an isolated fixed point and θ = cF is the rotation
number on the normal bundle to F . Decomposing the contributions from isolated fixed
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points and 2-spheres:∑
g 6=1

L(g,D)(XG) =
∑
g 6=1

{
∑
i

L(g,D) | (ai,bi) +
∑
j

L(g,D) | Fj
}.

Now chg(adCE)(pt) = 3− 4 sin2(πk`
p

), with ` the isotropy representation on the fiber of E

over the fixed point. The Lefshetz numbers from the fixed sets can be computed directly
from the index formula and are given by:

(8.2) L(g,D) | pt =
−1

2
[cot(θ1/2) cot(θ2/2)− 1] chg(adCE)[pt]

(8.3) L(g,D) | F = [−i cot(θ/2) +
1

2
(χ+ csc2(θ/2)y)] chg(adCE)[F ],

with χ the Euler class of the tangent bundle to F and y is the Euler class of the normal
bundle to F . We first compute the contribution from isolated fixed points.

L(g,D) | pt =
−1

2
[cot(θ1/2) cot(θ2/2)− 1][3− 4 sin2(

πk`

p
)][pt]

= −3

2
[cot(θ1/2) cot(θ2/2)− 1]− 2 sin2(

πk`

p
)

+ 2 cot(θ1/2) cot(θ2/2) sin2(
πk`

p
).

Summing over all isolated fixed points gives

1

p

∑
g 6=1

∑
i

L(g,D) | (ai,bi) =
3

2p

∑
i

(dχ + dσ)(ai, bi)−
2

p

∑
i

p−1∑
k=1

sin(
πk`i
p

)

+
2

p

∑
i

p−1∑
k=1

cot(
aiπk

p
) cot(

biπk

p
) sin2(

πk`i
p

)

=
3

2p

∑
i

(dχ + dσ)(ai, bi) +m+
∑
i

ρL(p, ai, bi, `i)

where m is the number isolated fixed points with non-trivial representation on the fiber
and ρL(p, a, b, `) is the rho invariant of lens spaces.

We need to compute chg(adCE | F ). Since an SU(2) bundle restricted over a fixed
2-submanifold has a local abelian reduction E | F = L⊕L−1 for some L, we have adE | F =

L2 ⊕ R. We need to compute chg(adCE | F ) = chg(L
2) + chg(L2) + 1 and this contributes

chg(adCE | F ) = (g + gc1(L
2)) + (g−1 + g−1c1(L2)) + 1

= (g + g−1 + 1) + c1(L
2)(g − g−1)

= (3− 4 sin2(
πk`

p
)) + 2ic1(L

2) sin(
2πk`

p
),
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where now ` is the isotropy representation on the fibre over the fixed 2-sphere F . Substi-
tuting these terms, the Lesfchetz number L(g,D) | F evaluated on fixed 2-spheres gives:

L(g,D) | F = [−i cot(θ/2) +
1

2
(χ+ csc2(θ/2)y)][(3− 4 sin2(

πk`

p
)) + 2ic1(L

2) sin(
2πk`

p
)][F ]

=
1

2
[χ+ csc2(θ/2)y][3− 4 sin2(

πk`

p
)] + 2c1(L

2) sin(
2πk`

p
) cot(

θ

2
).

Let us introduce a kind of rho invariant term for fixed surfaces:

ρF (`) =
2

p

p−1∑
k=1

csc2(
πcFk

p
) sin2(

πk`

p
)[F ]2 − 4c1(L)[F ]

p

p−1∑
k=1

sin(
2πk`

p
) cot(

πkcF
p

),

with this notation we have

1

p

∑
g 6=1

∑
j

L(g,D) | Fj
=

3

2p

∑
j

(dχ + dσ)[Fj]−
2

p

∑
j

χ(Fj)

p−1∑
k=1

sin2(
πk`j
p

)

−
∑
j

ρFj
(`j).

Now combining all the terms we obtain:

Ind(DA) =
−8

p
c2(E) +

3

2
(χ+ Sign)(X/G))−m+

∑
i

ρL(p, ai, bi, `i)

−
∑

j with `j 6=0

χ(Fj)−
∑
j

ρFj
(`j).

Since dimMG
k (X) = − Ind(DA), the dimension formula is

dimMG
k (X) =

8

p
c2(E)− 3

2
(χ+ Sign)(X/G) +m−

∑
i

ρL(p, ai, bi, `i)

+
∑

j with `j 6=0

χ(Fj) +
∑
j

ρFj
(`j).

Before giving an example we note a few special cases. When the action on X only
has isolated fixed points, let (ai, bi) denote the rotation numbers and `i the isotropy
representation over the points, the formula reduces to the following:

dimMG
k (X) =

8c2(E)

p
− 3

2
(χ+ Sign)(X/G) +m−

∑
i

ρL(p, ai, bi, `i).

For invariant ASD connections on the four-sphere this formula reduces to that of [6, p.
394]. In the case of SO(3)-bundles in the orbifold setting, see Fintushel and Stern [15].
When the action on X is a smooth involution with fixed 2-sphere and non-trivial action
on fibre cF ≡ ` ≡ 1 mod 2 the formula above reduces to:

dimMG
k (X) = 4c2(E)− 3

2
(χ+ Sign)(X/G) + χ(F ) + [F ]2.

which matches with Wang [44, Theorem 18, p. 130]. We finish this section with an example.
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Example 8.4. Let X = #3CP
2

with a linear Z/p-action with p = 5 that arises from
equivariant connected sums of linear actions in the following way. Take the equivariant

connected sum of two copies of CP 2
along the two dimensional fixed sets which fixes a

projective line and a rotation number of (1,−1) at the isolated fixed points in each copy.

Now at one of the isolated fixed points take the equivariant connected sum with CP 2
that

has a linear action with 3 isolated fixed points with rotation numbers (1, 1), (2,−1), (2,−1).
The result is a smooth, homologically trivial Z/5-action on X that has 3 isolated fixed

points with rotation data {(1,−1), (2,−1), (2,−1)} and a single fixed 2-sphere F with
rotation number cF ≡ 1 (mod p) on the normal bundle and has self intersection −2.

The compactified, equivariant ASD instanton one moduli space M1(X) has dimension 5
with fixed components that are 1 and 3-dimensional which correspond to invariant ASD
connections for a lifted action to the SU(2)-bundle (see [26]).

The boundary of the moduli space is the ”bubbling” of highly concentrated ASD
connections which can be identified with a copy of X. The isolated fixed points propagate
1-fixed dimensional strata into the moduli space. We will compute the dimension of these
strata using the dimension formula from this section and from the fixed point data.

For example, at the isolated fixed point (2,−1) the highly concentrated instantons
correspond to ASD connections on the 4-sphere, with equivariant lifts matching the linear
models which then pull back to X using the degree 1-map in the formation of the Taubes
boundary. This determines the equivariant lift on X and has isotropy representation tλ1

over the fixed point (2,−1) with λ1 ≡ −3 (mod p) and tλ2 over all the other fixed point
sets with λ2 ≡ 1 (mod p). The dimension formula gives:

8

p
− ρL(p, 2,−1,−3)− ρL(p, 2,−1, 1)− ρL(p, 1,−1, 1) + χ(F ) + ρF (1) = 1.

On the other hand, at a point on the fixed 2-sphere F following the same procedure with
the degree one Taubes map, we can pull-back an equivariant bundle from the linear model
on S4 with a fixed embedded 2-sphere. This time we get an equivariant SU(2)-bundle
on X with c1(L)[F ] = −1 in the local reduction E | F = L⊕ L−1 (in this case actually a
global reduction as it corresponds to reducible). The isotropy representation is tλ over all
the fixed point sets with λ ≡ 1 (mod p). We then have:

8

p
− 2ρL(p, 2,−1, 1)− ρL(p, 1,−1, 1) + χ(F ) + ρF (1) = 3.

after substituting the data into the dimension formula.
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