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Abstract

We use methods from the cohomology of groups to describe the finite groups which can act freely
and homologically trivially on closed 3-manifolds which are rational homology spheres.
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1. Introduction

Cooper and Long [10] have shown that every finite group can act freely and
smoothly on some closed, oriented 3-manifold M with the rational homology
of the 3-sphere (for brevity, we shall call such an object a rational homology
3-sphere). However, under the natural condition that the action must induce the
identity on the integral homology of M , new group theoretic restrictions arise.
In this article, we apply group cohomology to establish necessary conditions for
such homologically trivial actions and use this information to construct some new
examples.

If a finite group G acts freely on an integral homology 3-sphere, then G must
have periodic cohomology of period two or four. Those which act freely on the
standard 3-sphere are the finite fundamental groups of closed 3-manifolds. A
basic example of a free action on a rational homology sphere is given by the
free action of Z/2Z× Z/2Z on the real projective space RP3, which arises from
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A. Adem and I. Hambleton 2

the free action of the quaternion group Q(8) on the 3-sphere. This can be seen by
considering the central extension

1→ Z/2Z→ Q(8)→ Z/2Z× Z/2Z→ 1.

We will show that all finite groups acting freely and homologically trivially on
rational homology spheres can be described in this way.

If π denotes a finite set of prime numbers and A is a finite abelian group, we
let A(π) =:

⊕
p∈π Ap, where Ap is the p-primary subgroup of A. Our main result

is the following.

THEOREM A. Let G denote a finite group acting freely and homologically
trivially on a rational homology 3-sphere M. Let π denote the set of precisely
those primes which divide both |G| and |H1(M;Z)|. Then there exists an
extension

1→ H1(M;Z)(π)→ Qπ → G → 1,

where H1(M;Z)(π) is a central, cyclic subgroup and Qπ is a finite group with
periodic cohomology of period two or four.

To investigate the corresponding existence problem, we raise the following
question.

Question. Let G be a finite group with periodic cohomology of period four. Does
G act freely and homologically trivially on some rational homology 3-sphere?

A complete list of such groups is given in Milnor [26, Section 3], and
those which can act freely and orthogonally on S3 were listed by Hopf [18].
Perelman [20] showed that the remaining groups in Milnor’s list do not arise as
the fundamental group of any closed, oriented 3-manifold (some families were
earlier eliminated by Lee [19]). For those with quaternion 2-Sylow subgroups
Q(2k), k > 4, we have a nonexistence result in our setting.

THEOREM B. Let G be a finite group of period four which acts freely and
homologically trivially on a rational homology 3-sphere. Then either (i) G is a
quotient of a finite 3-manifold group by a central cyclic subgroup or (ii) the 2-
Sylow subgroup of G is quaternion of order 8.

Remark. In Proposition 6, we show that the quotient examples in part (i) include
periodic groups with noncentral elements of order two (which is impossible for
groups acting freely on any sphere [26, Corollary 1]). Proposition 8 establishes
part (ii) by ruling out the groups with larger quaternion 2-Sylow subgroups in
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Free finite group actions on rational homology 3-spheres 3

Milnor’s list. Moreover, our result rules out all quotients of these groups by central
cyclic subgroups.

Among the groups in Milnor’s list, the groups Q(8n, k, l) with 2-Sylow
subgroup Q(8) (that is, those with n odd) have been much studied, and it is
known that some (but not all) can act freely on integral homology 3-spheres
(see Madsen [22]). This work gives some new examples of existence in the
setting of Theorem A via quotients by the action of central cyclic subgroups
(see Proposition 9). The results of Pardon [28] provided free actions of period
four groups on rational homology 3-spheres with some control on the torsion but
did not address the homological triviality requirement (see Proposition 5). More
information about the actions of the groups Q(8n, k, l) is given in Theorem 3.

This article is organized as follows: in Section 2, we apply methods from group
cohomology to actions on rational homology spheres; in Section 3, we consider
the restrictions arising in the homologically trivial case; in Section 4, we discuss
the existence of homologically trivial actions, and finally Section 5 deals with
applications of our approach to finite quotients of more general fundamental
groups of closed 3-manifolds.

2. Application of cohomological methods

Let G denote a finite group acting freely and smoothly and preserving
orientation on a closed 3-manifold M that is a rational homology sphere. In
dimension three, free actions of finite groups by homeomorphisms are equivalent
to smooth actions, and the quotient manifolds are homotopy equivalent to finite
CW complexes (see [7]).

We denote by Ωr (Z) the ZG module uniquely defined in the stable category
(where ZG-modules are identified up to stabilization by projectives) as the r -fold
dimension shift of the trivial module Z. Note the isomorphism of ZG-modules
H1(M;Z) ∼= H 2(M;Z); we may use either version depending on the context. We
refer to [2, 6] for background on group cohomology and to [8, Ch. 2, Sections 5–
6] for a quick introduction to the stable category.

PROPOSITION 1. If a finite group G acts freely on a rational homology 3-sphere
M, then there is a short exact sequence of ZG-modules in the stable category of
ZG-modules of the form

0→ Ω−2(Z)→ Ω2(Z)→ H1(M;Z)→ 0.

Proof. We will assume that M is a G-CW complex with cellular chains C∗(M).
Then we have exact sequences of ZG-modules
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A. Adem and I. Hambleton 4

0→ Z→ C3(M)→ C2(M)→ B1 → 0
0→ Z1 → C1(M)→ C0(M)→ Z→ 0

0→ B1 → Z1 → H1(M;Z)→ 0,

where B1 denotes the module of boundaries and Z1 the module of cycles. The
result follows from (stably) identifying Z1 with Ω2(Z) and B1 with Ω−2(Z).

Note that the stable map Ω−2(Z)→ Ω2(Z) defines an element

σ ∈ HomZG(Ω
−2(Z),Ω2(Z)) ∼= HomZG(Z,Ω

4(Z)) ∼= Ĥ−4(G,Z).

This class appears when applying Tate cohomology to the sequence in
Proposition 1.

COROLLARY 1. The short exact sequence in Proposition 1 yields a long exact
sequence in Tate cohomology

· · · → Ĥ i+2(G,Z) ∪ σ−→ Ĥ i−2(G,Z)→ Ĥ i(G, H1(M;Z))→ Ĥ i+3(G,Z)→ · · ·

determined by the class σ ∈ Ĥ−4(G,Z) which is the image of 1 ∈ Ĥ 0(G,Z) ∼=
Z/|G|Z.

Next, we identify the class σ geometrically.

PROPOSITION 2. If [M/G] ∈ H3(M/G,Z) denotes the fundamental class of
the quotient manifold, then σ is the image of c∗[M/G] ∈ H3(BG,Z), under the
natural isomorphism H3(BG,Z) ∼= Ĥ−4(G,Z), where c : M/G → BG is the
classifying map of the covering.

Proof. The description due to MacLane [21, Ch. V.8] of TorZG
3 (Z,Z) ∼= H3(G;Z)

via chain complexes shows that the image of the fundamental class c∗[M/G] ∈
H3(G;Z) is represented by the chain complex C∗(M) of finitely generated free
ZG-modules. We can apply dimension-shifting in the ‘complete’ Ext-theory to
the formula

TorZG
3 (Z,Z) = Ĥ−4(G;Z) = Ext−4

ZG(Z;Z) = HomZG(Z,Ω
4Z)

to identify c∗[M/G]with the extension class of the sequence in Proposition 1 (see
Wall [32, Section 2] for more background).

Similarly, the map Ω2(Z)→ H1(M,Z) defines an extension class

EM ∈ H 2(G, H1(M;Z)),
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Free finite group actions on rational homology 3-spheres 5

which appears in the long exact sequence from Corollary 1 as the image of
the generator under the map Ĥ 0(G,Z) → Ĥ 2(G, H1(M;Z)). This algebraic
map arises geometrically as follows. Let X ⊂ M/G denote a connected one-
dimensional G − CW subcomplex such that π1(X) → π1(M/G) is onto. If we
denote F = π1(X), then we have a diagram of extensions

1 // R //

����

F //

����

G // 1

1 // π1(M) // π1(M/G) // G // 1

Abelianizing kernels gives rise to the diagram

1 // Rab
//

����

Φ //

����

G // 1

1 // H1(M;Z) // Q // G // 1

where Φ is the associated free abelianized extension. This extension realizes
the universal class of highest exponent in Ĥ 2(G,Ω2(Z)); note that Rab is a
free abelian group which, as a ZG-module, is stably equivalent to Ω2(Z). By
construction, the bottom extension represents the class EM ∈ H 2(G, H1(M,Z))
(see [17, page 207]).

It is known (see [4]) that free group actions can be fruitfully analyzed using
exponents. For actions on rational homology 3-spheres, the analysis can be done
quite explicitly. We recall the following.

DEFINITION 1. If A is a finite abelian group, the exponent of A, exp(A) is defined
as the smallest integer N > 0 such that Na = 0 for all a ∈ A. For an element
a ∈ A, its exponent exp(a) is defined as the exponent of the subgroup generated
by a.

COROLLARY 2. Let G denote a finite group acting freely on a rational homology
3-sphere M, then |G| = exp(σ ) · exp(EM). The element σ ∈ Ĥ−4(G,Z)
is invertible in the graded ring Ĥ ∗(G,Z) (and the group G has periodic
cohomology) if and only if the extension Q representing EM is split.

Proof. Consider the exact sequence in Corollary 1 at i = 2:

· · · → Ĥ 4(G;Z) ∪ σ−→ Ĥ 0(G;Z)→ Ĥ 2(G; H1(M;Z))→ · · · .

Recall that by Tate duality (see Brown [6, Ch. VI.7]), there is an element
σ ∗ ∈ Ĥ 4(G,Z) such that σ ∪ σ ∗ = |G|/ exp(σ ) ∈ Z/|G|Z. This implies that the
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A. Adem and I. Hambleton 6

exponent of the subgroup of Ĥ 0(G;Z) generated by the image of ∪σ is precisely
exp(σ ). Furthermore, from the definition of EM , we see that exp(coker ∪ σ) =
exp(EM). Using the fact that for cyclic groups the exponent and the order are
equal, we obtain the formula |G| = exp(σ ) · exp(EM).

A finite group has periodic cohomology if and only if Ĥ ∗(G,Z) has an element
of nonzero degree with exponent equal to |G| (see [6, Ch. VI, Theorem 9.1]). This
element is invertible in Tate cohomology, and the cup product by this element is
an isomorphism in all degrees. From our formula, we see that the class σ has this
highest exponent if and only if EM = 0, which is equivalent to the splitting of the
extension Q.

REMARK 1. If σ is invertible, in fact, it can be shown that Ĥ i(H, H1(M,Z)) = 0
for every subgroup H ⊂ G and all i ∈ Z. In other words, the module H1(M,Z)
is cohomologically trivial. This holds, for example, if |G| is relatively prime to
|H1(M;Z)|.

REMARK 2. On the other extreme, if σ is trivial, then the extension class EM has
highest exponent equal to |G|. Using the stable isomorphism

HomZG(Ω
2(Z), H1(M,Z)) ∼= HomZG(Z,Ω

−2(H1(M,Z))),

we can represent EM by a rank-one trivial submodule in Ω−2(H1(M,Z)) (note
that any finitely generated ZG-module is stably equivalent to a Z-torsion-free
module via dimension-shifting). By [1, Theorem 1.1] and its proof, the short exact
sequence

0→ Z→ Ω−2(H1(M,Z))→ Ω−5Z→ 0

in the stable category is split exact. After shifting back, we obtain a stable
decomposition H1(M,Z) ∼= Ω2(Z) ⊕ Ω−3(Z). This will occur for rational
homology spheres with a free G-action where H 4(G,Z) = 0. An example of
this phenomenon is given by the Mathieu group M23 (see [25]).

REMARK 3. For G = (Z/pZ)r we have that p · Ĥ k(G,Z) = 0 for k 6= 0, by the
Künneth Theorem, so we see that the exponent of EM must be at least pr−1. In
particular, the module H1(M;Z) must have pr−1-torsion.

REMARK 4. Given a free action of a finite group G on a rational homology
sphere M , we can consider the Serre spectral sequence for the fibration M →
M/G → BG. For i > 1, the maps Ĥ i(G,Z)→ Ĥ i+2(G, H1(M,Z)) in the long
exact sequence of Corollary 1 can be identified with the differentials d2 : E i,3

2 →

E i+2,2
2 . Similarly, the maps Ĥ i(G, H1(M,Z)) → H i+3(G,Z) can be identified
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Free finite group actions on rational homology 3-spheres 7

with the differentials d3 : E i,2
3 → E i+3,0

3 . In particular, exactness at the term
Ĥ r (G, H 2(M,Z)) reflects the fact that E r,2

∞
= 0 for r > 2 given that M/G is

a 3-manifold.

3. Restrictions in the homologically trivial case

In this section, we focus on the special case when the G-action on M is trivial
in homology. This imposes some drastic restrictions.

PROPOSITION 3. If G acts freely and homologically trivially on a rational
homology 3-sphere M, then every elementary abelian subgroup of G has rank
at most two.

Proof. We may assume that G = (Z/pZ)r for some prime p. Note that
Ĥ k(G, H1(M;Z)) has exponent p when H1(M;Z) has trivial action and k 6= 0,
by the Künneth Theorem. From Corollary 2, we see that if (Z/pZ)r acts freely
and homologically trivially on M , then pr divides p2 and the result follows.

Let us write the trivial ZG-module H1(M;Z) as a direct sum of finitely
generated, finite abelian p-groups Ap = H1(M;Z)(p). Then we have the
following.

LEMMA 1. If p is a prime number dividing the order of G, then H1(M;Z)(p) is
either trivial or cyclic.

Proof. Consider a cyclic C ∼= Z/pZ in G. Since H 7(C;Z) = 0, from the
sequence in Corollary 1 for C at i = 4, we see that H 4(C, H1(M;Z)) is a
homomorphic image of H 2(C,Z) = Z/pZ. It follows that H 4(C, H1(M;Z)) ∼=
H 4(C, Ap) ∼= Ap/p Ap is either trivial or Z/p, which proves the result.

Next, we will show that all groups acting freely and homologically trivially on
rational homology spheres can be described as quotients of periodic groups.

THEOREM 1. Let G denote a finite group acting freely and homologically
trivially on a rational homology 3-sphere M. Let π = p1 . . . pr denote the product
of precisely those primes which divide both |G| and |H1(M;Z)|. Then there exists
an extension

1→ H1(M;Z)(π)→ Qπ → G → 1,

where H1(M;Z)(π) is a central, cyclic subgroup and Qπ is a group with periodic
cohomology.
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A. Adem and I. Hambleton 8

Proof. Suppose that G acts freely on a rational homology 3-sphere M and
consider the group extension

1→ π1(M)→ π1(M/G)→ G → 1.

Let L denote the kernel of the map π1(M)→ H1(M;Z)(π); then it is normal in
both π1(M) and π1(M/G), and we can consider the associated central quotient
extension:

0→ H1(M;Z)(π)→ Qπ → G → 1.

Note that H 2(G, H1(M;Z)) ∼= H 2(G, H1(M;Z)(π)) since H 2(G; Ap) = 0 for
p - |G|, where Ap denotes the p-primary part of H1(M;Z) as before. Our
construction of the extension for Qπ is the obvious quotient of the extension for
Q representing the class EM appearing in Corollary 2.

Suppose p is a prime that divides |G| but which is relatively prime to
|H1(M;Z)|. Then H 2(Sylp(G), H1(M;Z)) = 0 and so Sylp(G) = Sylp(Qπ ) is
periodic by Corollary 2. Now suppose that p is a prime which divides π , and let
C ⊂ G denote a cyclic subgroup of order p. By naturality, we have a commutative
diagram, where the rows are exact sequences:

Ĥ 0(G,Z) //

��

Ĥ 2(G, H1(M;Z)) //

��

Ĥ 5(G,Z)

��
Ĥ 0(C,Z) ≈ // Ĥ 2(C, H1(M;Z)) // 0

The isomorphism in the lower row of this diagram comes from the rest of the
sequence

0→ Ĥ 1(C; H1(M;Z))→ Ĥ 4(C;Z)→ Ĥ 0(C;Z)→ Ĥ 2(C, H1(M;Z))→ 0

since Ĥ 1(C; H1(M;Z)) ∼= Z/pZ ∼= Ĥ 4(C;Z).
By Lemma 1, the p-component of H1(M;Z) is a finite cyclic p-group with a

trivial C-action. Hence, Ĥ i(C, H1(M;Z)) 6= 0 for all i . The map Ĥ 0(G,Z) →
Ĥ 0(C,Z) sends a generator to a generator, so the extension class EM ∈ H 2(G,
H1(M;Z)) restricts nontrivially on all such subgroups C , and, hence, the
corresponding restricted extensions of the form 0 → H1(M;Z)(π) → Qπ |C →

C → 1 are all nonsplit.
If we take H = H1(M;Z)(π), which we know to be cyclic by Lemma 1, then

the extension expresses G as the quotient Qπ/H where H is a central, cyclic
subgroup and every restricted group of the form Qπ |C is nonsplit, where C ∼=
Z/pZ and p divides π . Let u ∈ Qπ denote an element of order p; if the subgroup
generated by H and u is not cyclic, then it must be split abelian, a contradiction.
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Free finite group actions on rational homology 3-spheres 9

Therefore, all elements of order p in Qπ lie in H , a cyclic subgroup, and so Qπ

has no rank-two p-elementary abelian subgroups. We have already established
this for the primes which do not divide π , whence we infer that Qπ has periodic
cohomology.

PROPOSITION 4. The period of Qπ is two or four.

Proof. Consider the central group extension 1 → H → Q → G → 1 where
H := H1(M,Z)(π) and Q := Qπ . By Swan [30], the period of Q is the least
common multiple of the p-periods of Q taken over all primes p dividing |Q|. The
p-periods are determined by group cohomology with p-local coefficients. By [30,
Theorem 1], the 2-period of Q is 2 or 4. Moreover, by [30, Theorem 2], the p-
period of Q for p odd is twice the order ofΦp(Q)∼= NQ(Sylp(Q))/CQ(Sylp(Q)),
the group of automorphisms of Sylp(Q) induced by inner automorphisms of Q.
Note that as Sylp(Q) is cyclic, its automorphism group is also cyclic and hence
Φp(Q) is cyclic of order prime to p.

As explained in [30, Lemma 3], the action on Ĥ 2i(Sylp(Q),Z(p)) is given by
multiplication by r i , where r is an integer prime to p that is a multiplicative
generator ofΦp(Q). Hence, this action has invariants only when i is a multiple of
|Φp(Q)|, and Ĥ ∗(Q,Z(p)) 6= 0 only in degrees which are multiples of 2|Φp(Q)|.

If p divides |G|, then the projection Q → G induces an isomorphism
Φp(Q) ∼= Φp(G), and hence the p-periods of Q and G are equal. Consider
now the following portion of the p-local version of the long exact cohomology
sequence from Corollary 2.3: Ĥ 4(G;Z(p))→ Ĥ 0(G;Z(p))→ Ĥ 2(G; Hp), where
Hp = Sylp(H) = H1(M;Z(p)). As |G| is divisible by p, the middle term is
nonzero. Now if Ĥ 2(G; Hp) = 0, then Ĥ 4(G;Z(p)) 6= 0 and we conclude that
G has p-period dividing four (a p-local version of Corollary 2). However, by
the universal coefficient theorem applied to the trivial G-module Hp, we see that
Ĥ 2(G, Hp) = 0 if the p-period of G is four or higher. Hence, we conclude that
the p-periods of G and Q must both be either two or four.

Theorem A follows from Theorem 1 and Proposition 4. The structure of G is
more explicit for p-groups.

COROLLARY 3. A finite p-group G acts freely and homologically trivially on
some rational homology 3-sphere M with nontrivial p-torsion in H1(M;Z) if
and only if (i) G is cyclic or (ii) p = 2, H1(M;Z)(2) ∼= Z/2Z and G is a dihedral
group.

Proof. The finite groups of the form Q/H where Q is a periodic p-group and
H is a nontrivial central cyclic subgroup are precisely the cyclic groups and
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A. Adem and I. Hambleton 10

Q(2n)/Z(Q(2n)), where Q(2n) is a generalized quaternion group of order 2n ,
n > 3, with center isomorphic to Z/2Z and quotient a dihedral group of order
2n−1. Conversely, all the groups Q appearing above act freely on S3, and hence all
the quotients G = Q/H act freely on a rational homology sphere; note that these
actions are homologically trivial as H1(S3/H,Z) ∼= H , a central subgroup.

COROLLARY 4. Let G act freely and homologically trivially on a rational
homology 3-sphere M.

(i) If both |G| and |H1(M;Z)| are even, then Syl2(G) is either cyclic or
dihedral.

(ii) If p is an odd prime dividing |G|, then Sylp(G) is cyclic.

(iii) If (|H1(M;Z)|, p) = 1, then Sylp(G) is either cyclic or generalized
quaternion.

REMARK 5. It is also an interesting problem to determine which groups can act
homologically trivially on higher dimensional rational homology spheres. Using
exponents, it can be shown that if G acts freely and homologically trivially on a
simply connected rational homology n-sphere, then the rank of G can be at most
n − 2. We expect that further group theoretic restrictions will play a role.

4. Existence of homologically trivial actions

As mentioned in Section 1, any finite group can act freely on some rational
homology 3-sphere if there is no homological triviality assumption. This was first
proved by Pardon [28] using local surgery theory, extending a result of Browder
and Hsiang [5, page 267]. The direct three-dimensional argument of Cooper and
Long [10] avoids the surgery formalism but does not give any control on the
torsion in H1(M;Z).

PROPOSITION 5. Let G be a finite group and p a prime such that (p, |G|) = 1.
Then G acts freely on some p-local homology 3-sphere.

Proof. This statement is a special case of Pardon [28, Theorem B], together with
the standard remark that high-dimensional surgery existence results in dimensions
4k + 3 > 7 imply existence results in dimension three up to homology.

It appears to be much more difficult to solve the existence problem for a given
rational homology 3-sphere M . For example, what if we consider only the space
form groups but do not require homologically trivial actions?
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Free finite group actions on rational homology 3-spheres 11

Question. If G acts freely on S3, can it act freely on a given rational homology
3-sphere M with (|G|, |H1(M;Z)|) = 1?

We will now use the information in Theorem A to make some remarks about
the existence of homologically trivial actions on rational homology 3-spheres.

The finite groups which can act freely on S3 are now known (by the work of
Perelman [20]): they are precisely the periodic groups in Hopf’s list [18]. For
any of these groups, we can obtain examples of homologically trivial actions on
quotients S3/H , where H is a central cyclic subgroup.

EXAMPLE 1. Let H denote the quotient of the binary dihedral group Q(4n) by
its unique central subgroup of order two. Then H is dihedral of order 2n and has
rank two if n is even.

Of the remaining period four groups (those which do not act freely on
S3), we first consider those which do not satisfy Milnor’s 2p-condition, which
requires that every subgroup of order 2p, for p prime, must be cyclic (see [26,
Corollary 1]).

PROPOSITION 6. Let G be a finite group with periodic cohomology of period
four containing a noncyclic subgroup of order 2p, for some odd prime p. Then
G is the product of a dihedral group by a cyclic group of relatively prime order.
Any quotient of G by a central cyclic subgroup can act freely and homologically
trivially on some rational homology 3-sphere.

Proof. This follows by checking the list of periodic groups, taking into account
our period four assumption. A convenient reference is Wall [33, Theorem 4.5],
which states that G is an extension of a normal subgroup G0 of odd order by a
group G1 isomorphic to one of the form C(2k), Q(2k), T ∗v , O∗v , SL2(p) or TL2(p).
The periods of these groups are listed in [33, Corollary 5.6]. In our case, G0 must
be cyclic (the only odd order group with period 6 4), and G1 = C(2k) since there
is a unique element of order two in the other cases. The action of G1 on G0 must
be faithful to violate the 2p condition, and G of period four implies the claimed
structure for G.

Since any quotient of G by a central subgroup is again of the same form, the
required actions arise by quotients of a free action on S3 by products of a binary
dihedral group Q(4n), for n odd, with a cyclic group of coprime order.

Milnor [26, Section 3] listed the period four groups which do satisfy the 2p
conditions and identified two families of such a group which (by Perelman [20])
cannot act freely on S3. They are the following:
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A. Adem and I. Hambleton 12

(i) Q(8n, k, l), with n > k > l > 1 and 8n, k, l pairwise relatively prime;

(ii) O(48, k, l), with l odd, 3 - l and 48, k, l pairwise relatively prime.

One can also take the product of any one of these groups with a cyclic group
C(r) of relatively prime order. We will refer to those listed in (i) as type A if n
is odd or type B if n > 2 is even and those in (ii) as type C for O(48, k, l). The
groups of type B or C have orders divisible by 16. The direct product of one of
these groups with a cyclic group of coprime order will be called a generalized
type A, B or C periodic group. From the presentations given in [26, Section 3],
one can check that the groups of type A, B or C all have quaternion 2-Sylow
subgroup and contain no nontrivial central subgroups of odd order.

The following is a useful observation.

LEMMA 2. Let G be a period four group with quaternion 2-Sylow subgroup. If G
acts freely and homologically trivially on a rational homology 3-sphere M, then
H1(M;Z) has odd order.

Proof. From the extension diagram in Section 2, we have a short exact sequence

1→ H1(M;Z)→ Q → G → 1.

Note that S = Syl2(G) is a quaternion group. Now the restricted sequence from
Corollary 1 with i = 2 gives an injection

0→ H 1(S; H1(M;Z))→ Ĥ 4(S;Z)→ Ĥ 0(S;Z).

Since S has period four, Ĥ 4(S;Z) = Z/|S|Z, whereas the group
H 1(S; H1(M;Z)) contains Z/2Z× Z/2Z unless H1(M;Z) is of odd order.

We have a sharper result for the groups in Milnor’s list.

PROPOSITION 7. Suppose that G is a period four group of type A, B or C. If G
acts freely and homologically trivially on a rational homology 3-sphere M, then
we have (|H1(M;Z)|, |G|) = 1.

Proof. We start again from the short exact sequence:

1→ H1(M;Z)→ Q → G → 1.

Consider the pushout sequence from Theorem 1

1→ H1(M;Z)(π)→ Qπ → G → 1

and note that Qπ is a period four group by Proposition 4.
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Free finite group actions on rational homology 3-spheres 13

Since 2 /∈ π , it follows that Qπ is an extension of G by a central cyclic subgroup
of odd order. Since G has type A, B or C, the group G contains no nontrivial
central subgroups of odd order. It follows that H1(M;Z)(π) = 0, and hence Qπ =

G. In particular, this implies that H1(M;Z) has order relatively prime to |G|.

We need one more observation about the structure of the groups in Milnor’s
list.

LEMMA 3. Let G be a nonperiodic quotient of a generalized type B or C period
four group by a central cyclic subgroup. Then G = C(k) × G1, where G1 is the
quotient of a type B or C period four group by a central cyclic subgroup and k is
coprime to the order of G1.

Proof. Suppose that G is a nonperiodic quotient of a generalized type B or C
group by a central cyclic subgroup C(s). We have an exact sequence of the form

1→ C(s)→ C(r)× Q1 → G → 1,

where Q1 has type B or C and r has (odd) order coprime to |Q1|. Since Q1 has a
unique (central) element of order two and G is nonperiodic, s = 2s1, where s1 is
odd. Since Q1 has no nontrivial central subgroups of odd order, we have r = ks1

and G = C(k)× G1, where G1 is a nonperiodic quotient of Q1.

These results allow us to rule out the groups of (generalized) types B and C.
Note that by Lemma 2, if such a group acts freely and homologically trivially
on a rational homology 3-sphere M , then M must be a Z(2)-homology sphere.
Theorem B follows from the following result.

PROPOSITION 8. Let G be the quotient of a (generalized) type B or C period four
group by a central cyclic subgroup. Then G cannot act freely and homologically
trivially on a rational homology 3-sphere.

Proof. The period four groups of (generalized) type B or C themselves cannot
act freely on any Z(2)-homology 3-sphere (see Ronnie Lee [19, Corollary 4.15,
Corollary 4.17]), so they are ruled out by Lemma 2.

By Lemma 3 and restricting the action if necessary, we may assume that G is
the quotient of a type B or C group by a central cyclic subgroup.

Now suppose that G acts freely and homologically trivially on a rational
homology 3-sphere M . We then have a covering space M → M/G → BG and
an induced extension 1→ H1(M;Z)→ Q→ G→ 1. As above, we consider the
pushout 1→ H1(M;Z)(π) → Qπ → G → 1, where Qπ is a period four group
and H1(M;Z)(π) is a central cyclic subgroup of Qπ .

Core terms of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/fms.2019.24
Downloaded from https://www.cambridge.org/core. McMaster University Library, on 03 Oct 2019 at 12:51:41, subject to the Cambridge

https://www.cambridge.org/core/terms
https://doi.org/10.1017/fms.2019.24
https://www.cambridge.org/core


A. Adem and I. Hambleton 14

Since G is nonperiodic, 2 ∈ π and H1(M;Z) has order 2d, where d is odd. It
follows from the explicit presentations in [26, Section 3] that Qπ must again be of
type B or C and H1(M;Z)(π) must contain the unique central subgroup T = C(2)
of order two in Qπ .

The group Qπ is constructed by a pushout from π1(M), and we can form a
further pushout over the projection H1(M;Z)→ T = C(2) to obtain the group
extension

1→ T → Q ′→ G → 1

in which Q ′ is again a period four group of type B or C. The 2-fold covering
M ′ → M given by the quotient π1(M)→ T , followed by the G-covering M →
M/G, is just the Q ′-covering M ′→ M/G.

To obtain a contradiction, we will now show that M ′ is a Z(2)-homology sphere.
From the structure of M ′→ M as a 2-fold covering, we have an exact sequence

0→ H0(C(2); H1(M ′;Z))→ H1(M;Z)→ Z/2Z→ 0

and |H1(M;Z)| = 2d , with d odd. Hence, the coinvariants H0(C(2); H1(M ′;Z))
are of odd order, and H1(M ′;Z) has no 2-torsion. We have an exact sequence of
C(2)-modules involving the torsion subgroup and the torsion-free quotient

0→ H1(M ′;Z)tors → H1(M ′;Z)→ Zr
→ 0

and by applying group homology H∗(C(2);−) to the sequence, we see that
H0(C(2);Zr ) is a direct sum of r cyclic groups (each one either Z or Z/2Z,
depending on whether the module action of C(2) on each summand of Zr is
trivial or nontrivial) and conclude that r = 0. Hence, H1(M ′;Z) is all odd torsion.
In other words, M ′ is a Z(2)-homology 3-sphere and the free Q ′-action cannot
exist.

The remaining existence question concerns central quotients of the period four
groups of type A. It is enough to consider the period four groups themselves.

PROPOSITION 9. Let G be the quotient of a type A period four group Q by a
central cyclic subgroup T 6 Q. If Q acts freely and homologically trivially on a
rational homology 3-sphere M, then G acts freely and homologically trivially on
M/T , which is again a rational homology 3-sphere.

Proof. Let G be the quotient of a type A period four group Q by a central cyclic
subgroup T 6 Q. If Q acts freely and homologically trivially on a rational
homology 3-sphere M , then G acts freely on the rational homology 3-sphere
M/T .
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Free finite group actions on rational homology 3-spheres 15

It remains to show that the G-action on M/T is homologically trivial. Since
T is central, the covering space M → M/T is preserved by Q, and we have an
exact sequence

0→ H1(M;Z)→ H1(M/T ;Z)→ H1(T ;Z)→ 0

since H2(T ;Z) = 0 and T acts homologically trivially on M . Looking at the
associated long exact sequence in group cohomology and noting that Q acts
trivially on both H1(M;Z) and H1(T ;Z), we obtain

0→ H1(M;Z)→ H1(M/T ;Z)Q
→ H1(T ;Z)→ H 1(Q; H1(M;Z)).

By Proposition 7, we have (|H1(M;Z)|, |Q|) = 1, and hence H 1(Q; H1(M;Z))
= 0. Therefore, H1(M/T ;Z)Q

= H1(M/T ;Z), and the G-action on M/T is
homologically trivial.

The period four groups G = Q(8n, k, l) of type A cannot act freely on S3 (by
Perelman), but some members of this family do act freely on integral homology
3-spheres. For the existence of such actions, there are two obstacles: a finiteness
obstruction and a surgery obstruction. Swan [31] showed that for every period four
group, there exists a finitely dominated Poincaré 3-complex X with π1(X) = G
and universal covering X̃ ' S3. Such a complex is called a Swan complex of type
(G, 3).

We recall that the homotopy types of (G, 3)-complexes are in bijection (via the
first k-invariant) with the invertible elements in Ĥ 4(G;Z) ∼= Z/|G|Z.

LEMMA 4. Let G be a period four group which acts freely and homologically
trivially on a rational homology 3-sphere M. Then there exists a (G, 3)-complex
X, unique up to homotopy, and a degree 1 map f : M/G → X compatible with
the classifying maps of the G-fold coverings.

Proof. The classifying map c : M/G → BG of the covering M → M/G gives a
class c∗[M] ∈ H3(G,Z). By Proposition 2, this class corresponds to a generator

σ ∗ ∈ Ĥ 4(G;Z) ∼= Ĥ−4(G;Z) ∼= H3(G;Z).

Let X be the (G, 3)-complex defined (up to homotopy) by this k-invariant. Since
the classifying map c : M/G → BG is surjective on fundamental groups, it
follows that c lifts to a map f : M/G → X . Since the images of the fundamental
classes of M/G and X agree in H3(G;Z), it follows that f has degree 1.

REMARK 6. Any degree 1 map f : N → X from a closed oriented 3-manifold to
a (G, 3)-complex provides a degree 1 normal map by pulling back a framing of
the trivial bundle over X .
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A. Adem and I. Hambleton 16

The Wall finiteness obstruction σ(X) ∈ K̃0(ZG) vanishes if and only if
there exists a finite Swan complex of type (G, 3). This is the first obstruction
to existence. By varying the homotopy type of X , Swan defined an invariant
σ(G) ∈ K̃0(ZG)/S(G), depending only on G, where S(G) ⊆ K̃0(ZG) is the
Swan subgroup generated by projective ideals of the form 〈r,Σ〉 ⊂ ZG, where
(r, |G|) = 1 and Σ denotes the norm element. Then σ(G) = 0 if and only if
σ(X) ∈ S(G) for every Swan complex X of type (G, 3).

PROPOSITION 10. Let G = Q(8n, k, l), with n odd, be a period four group of
type A. If G acts freely and homologically trivially on a rational homology 3-
sphere, then σ(G) = 0.

Proof. Under the given assumptions, G acts freely and homologically trivially on
a rational homology 3-sphere M such that (|H1(M;Z)|, |G|) = 1. By Lemma 4,
the classifying map M/G → BG of the covering M → M/G lifts to a degree
1 map f : M/G → X , to a uniquely defined (G, 3)-complex X . Since the
map f induces a surjection on fundamental groups, the argument of Mislin [27,
Theorem 3.3] shows that σ(M/G) = σ(X) + 〈d,Σ〉 ∈ K̃0(ZG), where d =
|H1(M;Z)|, and hence σ(X) ∈ S(G). Since varying the homotopy type of
X changes σ(X) only by an element of the Swan subgroup (see Swan [31,
Lemma 7.3]), we conclude that σ(G) = 0.

The secondary obstruction comes from surgery theory (and is defined only if the
finiteness obstruction is zero). It can be computed in some cases to show existence
(see Madsen [22]). For the type A groups, a (G, 3)-complex X has almost linear
k-invariant e0 ∈ H 4(G;Z) if the restriction of e0 to each Sylow subgroup of G is
the k-invariant of a standard free orthogonal action on S3 (see [22, page 195]).

DEFINITION 2. We will say that a free homologically trivial action of a type A
group G on a rational homology 3-sphere M has almost linear k-invariant if there
exists a degree 1 map f : M/G→ X to a finite (G, 3)-complex with almost linear
k-invariant e0 ∈ H 4(G;Z).

REMARK 7. If G acts freely and smoothly on an integral homology 3-sphere Σ ,
then the quotient manifoldΣ/G = X is a finite (G, 3)-complex with almost linear
k-invariant (see [15, Corollary C] and the discussion of [22, Conjecture D]). By
Proposition 9, any quotient of such a group G by a central cyclic subgroup would
act freely and homologically trivially on a rational homology 3-sphere.

Conversely, we expect that the following existence statement holds.
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Free finite group actions on rational homology 3-spheres 17

CONJECTURE 1. Let G = Q(8n, k, l), with n odd, be a period four group of
type A. Then G acts freely and homologically trivially on a rational homology
3-sphere with almost linear k-invariant if and only if G acts freely on an integral
homology 3-sphere.

In the remainder of this section, we prove this conjecture under some
additional assumptions. If f : N → X denotes a degree 1 normal map to a finite
(G, 3)-complex, with π1(X) = G, then there is weakly simple surgery obstruction
λ′( f ) ∈ L ′3(ZG). This is defined since every finite Poincaré 3-complex with finite
fundamental group is weakly simple (meaning that its Poincaré torsion lies in
SK1(ZG)). We let λh( f ) ∈ Lh

3(ZG), the image of λ′( f ) under the natural map,
denote the obstruction to surgery on f up to homotopy equivalence.

Let H = Q(4ab) denote the index two subgroup of G, containing the subgroup
C(4) 6 Q(8) which acts by inversion on the normal subgroup of order ab.

THEOREM 2 (Madsen [22]). Suppose that G = Q(8n, k, l), with n odd, is a
period four group of type A such that σ(G) = 0. Let f : N → X be a degree
1 normal map to a finite (G, 3)-complex with almost linear k-invariant. Then
λ′( f ) = 0 if and only if ResH (λ

′( f )) = 0 for each subgroup H 6 G of the
form H = Q(4ab). Furthermore, λh( f ) = 0 if and only if ResK (λ

h( f )) = 0 for
each subgroup K 6 G of the form K = Q(8a, b).

Proof. This is a summary statement of the calculations in [22, Sections 4–5]. See
in particular [22, Theorems 4.19, 4.21 and Corollary 5.12].

For the groups G = Q(8a, b) = Q(8a, b, 1), the top component S(ab) ⊆
S(G) ⊂ K̃0(ZG) of the Swan subgroup is defined as the kernel of the restrictions
to all odd index subgroups. For example, Bentzen and Madsen [3, Proposition
4.6] computed S(Q(8p, q)), for p, q odd primes, almost completely and showed
that S(pq) = 0 in many cases (for example, (p, q) ≡ (±3,±3) mod 8; or
(p, q) ≡ (1,±3) mod 8, and 2 has odd order mod p).

THEOREM 3. Let G = Q(8p, q), for odd primes p > q, and assume that
S(pq)= 0. Then G acts freely and homologically trivially on a rational homology
3-sphere with almost linear k-invariant if and only if G acts freely on an integral
homology 3-sphere.

Proof. Remark 7 explains the sufficiency part. For the converse, suppose that
G = Q(8p, q) with S(pq) = 0 acts freely and homologically trivially on a
rational homology 3-sphere M with almost linear k-invariant. Then there exists a
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A. Adem and I. Hambleton 18

finite (G, 3)-complex X with almost linear k-invariant and a degree 1 normal map
f : M/G→ X = X (G). By [14, Theorem 3.1], we may assume that the covering
space X (H) is homotopy equivalent to an orthogonal spherical space form, for
H = Q(4pq) 6 G, and that the normal invariant restricts to the normal invariant
of an orthogonal spherical space form over the 2-Sylow covering X (Q(8)). In
particular, since |H1(M;Z)| = d is odd, we must have that σ(X (Q(8)) =
〈d,Σ〉 = 0 ∈ K̃0(ZQ(8)). Hence, d ≡ ±1 (mod 8) and ResQ(8)(λ( f )) = 0
by [11, Theorem 5.1(ii)]). This information about the normal map f : M/G→ X
was extracted from the work of Madsen, Thomas and Wall (see [23, 24]).

Now, we consider the restriction of the surgery obstruction

ResH (λ
h( f )) ∈ Lh

3(ZH).

Since X (H) is homotopy equivalent to an orthogonal space form, ResH (λ
h( f ))

is the surgery obstruction of a normal map between closed manifolds. Therefore,
ResH (λ

h( f )) is detected by further restriction to the 2-Sylow subgroup C(4), and
hence ResH (λ

h( f )) = 0. It follows that H1(M;Z) stably supports a hyperbolic
linking form, and hence

d = |H1(M;Z)| ≡ r 2 mod (8ab)

is a square. Since S(pq) = 0, it follows that 〈r,Σ〉 = 0 ∈ K̃0(ZG). Now, by [11,
Theorem 5.1(ii)] applied to λh( f ) ∈ Lh

3(ZG), we see that λh( f ) = 0. Therefore,
G acts freely on an integral homology 3-sphere.

REMARK 8. By taking full advantage of Madsen’s results as summarized in
Theorem 2, we could give a statement for the groups Q(8a, b) under the
assumption that S(a′, b′) = 0 for all divisors 1 6= a′ | a, and 1 6= b′ | b.

REMARK 9. We would like to remove the almost linear k-invariant assumption.
However, the group G = Q(8) acts freely and homologically trivially on M with
H1(M;Z) = Z/3Z since Q(8)×Z/3Z acts freely on S3. This action has nonlinear
k-invariant in our sense. Indeed, by the proof of Proposition 10, there is a degree
1 map f : M/G → X , where X is a Swan complex for Q(8) with nontrivial
finiteness obstruction.

5. Finite quotients of fundamental groups of 3-manifolds

In this section, we consider closed 3-manifolds with regular finite coverings
which are rational homology spheres. The associated finite covering groups act
freely on such rational homology 3-spheres, so they afford examples to which
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Free finite group actions on rational homology 3-spheres 19

our methods will apply. Note that according to [10, Theorem 2.6], every finite
group, in fact, acts freely on some hyperbolic (hence aspherical) closed rational
homology sphere. In such cases, the fundamental group determines the topology,
and we are really just considering finite index normal subgroups of certain
Poincaré duality groups with vanishing first Betti number (for background, see [6,
Ch. VIII.10]).

Recall that for any group Q and integer n > 0, we define the nth term of its
derived series as Q(n+1)

= [Q(n), Q(n)
], where Q(0)

= Q. The derived series for a
finite group stabilizes at a perfect normal subgroup but may not terminate for an
infinite group with nonzero abelianization. In fact, an interesting open question
is whether or not the derived series for the fundamental group Γ of a closed
orientable hyperbolic 3-manifold stabilizes if Γ/Γ (n) is finite and nontrivial for
all n > 0. If it does stabilize, that is, for some i > 0, Γ (i) is perfect, then Γ/Γ (i) is a
solvable group with periodic cohomology (of period dividing four) as it acts freely
on an integral homology 3-sphere, namely the covering space associated with the
normal finite index subgroup Γ (i). Independently of the stability question, one can
ask (as in [9]) about possible restrictions on the finite quotient groups Γ/Γ (n).

Let L denote a closed 3-manifold such that for some n > 0, the quotient
π1(L)/π1(L)(n) is finite. Let Γ = π1(L). From the extensions

1→ Γ (i)/Γ (i+1)
→ Γ/Γ (i+1)

→ Γ/Γ (i)
→ 1

for 0 6 i 6 n − 1, we infer that all the groups Γ/Γ (i) and Γ (i)/Γ (i+1) are finite
in that range. Hence, the covering spaces L i corresponding to the Γ (i) are rational
homology spheres. The finite groups Γ/Γ (i) act freely on them, with quotient L;
note that H1(L i ,Z) ∼= Γ (i)/Γ (i+1). Applying Corollary 1, we obtain the following.

PROPOSITION 11. Let M denote a closed 3-manifold with Γ = π1(L) such that
Γ/Γ (n) is finite for some n > 0. Then for all 0 6 i 6 n − 1, there are long exact
sequences

· · · → Ĥ i+2(Γ/Γ (i),Z) ∪ σi
−→ Ĥ i−2(Γ/Γ (i),Z)→ Ĥ i(Γ/Γ (i), Γ (i)/Γ (i+1))

→ Ĥ i+3(Γ/Γ (i),Z)→ · · ·

These sequences are determined by elements σi ∈ Ĥ−4(Γ/Γ (i),Z), which are
images of the respective generators in Ĥ 0(Γ/Γ (i),Z) ∼= Z/|Γ/Γ (i)

|Z.

COROLLARY 5. If Γ (i) is perfect, then σi ∈ Ĥ−4(Γ/Γ (i),Z) is an invertible
element in the Tate cohomology of Γ/Γ (i).

As would be expected, Proposition 11 can be used to obtain restrictions on
the finite groups Γ/Γ (i). As an application, we take the opportunity to apply our
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A. Adem and I. Hambleton 20

methods to quickly sketch how to obtain some of the results in [9] and [29]. A
closed hyperbolic 3-manifold L is aspherical, and hence H3(L ,Z) = H3(Γ,Z)
if Γ = π1(L). For any finite quotient G of Γ , we let σG ∈ Ĥ−4(G,Z) be the
element determined by the fundamental class of L , as in Proposition 2.

PROPOSITION 12 (Cavendish [9]). Let L be a closed hyperbolic 3-manifold and
q : Γ → G, a surjective homomorphism from Γ = π1(L) onto a finite group
G inducing an isomorphism H1(Γ,Z) ∼= H1(G,Z) and such that ker(q) ⊂ Γ (2).
Then the homomorphism φG : Ĥ 2(G,Z)→ Ĥ−2(G,Z) given by x 7→ σG ∪ x is
bijective and the cup product defines a nondegenerate pairing

Ĥ 2(G,Z)⊗ Ĥ 2(G,Z)→ Ĥ 4(G,Z).

Moreover, this pairing factors through a cyclic subgroup of Ĥ 4(G,Z).

Proof. First, we observe that the condition ker(q) ⊂ Γ (2) implies that G
maps onto Γ/Γ (2); hence, it is also finite and so the commutator S = [Γ, Γ ]
corresponds to a covering L̃ of L which is a rational homology 3-sphere with
a free action of the finite group Q = H1(G,Z). Now, any group G satisfying
the hypotheses necessarily maps onto Q, inducing an isomorphism Ĥ 2(Q,Z) ∼=
Ĥ 2(G,Z), and so by naturality, it will suffice to prove the statements for Q.

Consider the group extension 1→ S→ Γ → Q→ 1. Due to the vanishing of
H 1(S,Z) and H 1(Q,Z) and the fact that H 3(Γ,Z) is torsion-free, the associated
spectral sequence of the extension gives rise to the following exact sequence in
low degrees:

0→ H 2(Q,Z)→ H 2(Γ,Z)→ H 2(S,Z)Q
→ H 3(Q,Z)→ 0.

However, as Q is the (finite) abelianization of Γ , we have H 2(Q,Z) ∼= H 2(Γ,Z),
and so we infer that Ĥ 0(Q, H 2(S,Z)) ∼= H 3(Q,Z) (it factors through Tate
cohomology). On the other hand, from Corollary 1 applied to the Q-action on
L̃ , we have an exact sequence

0→ coker(φQ)→ Ĥ 0(Q, H1(S,Z))→ H 3(Q,Z)→ 0.

Noting the identification of Q-modules H 2(S,Z) ∼= H1(S,Z) and using the
isomorphism above, we infer that φQ is surjective. As the domain and codomain
of φQ have the same number of elements, this implies that it is an isomorphism.
Now, given y ∈ Ĥ 2(Q,Z), we can choose z ∈ Ĥ 2(Q,Z) such that the Tate dual
y∗ = σ ∪ z. Then 0 6= z ∪ y because 0 6= y∗ ∪ y = σ ∪ z ∪ y, showing that the
pairing is nondegenerate.

Now, let J = [G,G], Γ maps onto G, so S maps onto J and H1(S,Z) maps
onto H1(J,Z). The condition ker(q) ⊂ Γ (2)

= S(1) means that the kernel of
q|S : S → J is contained in S(1), and so the abelianized map is an isomorphism
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H1(S,Z) ∼= H1(J,Z) or equivalently H 2(S,Z) ∼= H 2(J,Z). Once again applying
Corollary 1 to the Q-action on L̃ , we obtain the exact sequence

0→ Ĥ 1(Q, H1(S,Z))
d
→ Ĥ 4(Q,Z)→ Ĥ 0(Q,Z).

As has been observed in Remark 4, we can identify d with the differential
d3 : E1,2

3 → E4,0
3 arising from the Serre spectral sequence for the fibration

L̃ → L → B Q, which, in this case, is simply the Lyndon–Hochschild–Serre
spectral sequence for the extension 1 → S → Γ → Q → 1. Using the above
identifications, this agrees with the corresponding differential arising from the
spectral sequence for the group extension 1 → J → G → Q → 1. Therefore,
the image of d goes to zero under the inflation map H 4(Q,Z)→ H 4(G,Z), and
so it factors through coker d ⊂ Ĥ 0(Q,Z) ∼= Z/|Q|Z, a cyclic group. Using the
isomorphism Ĥ 2(Q,Z) ∼= Ĥ 2(G,Z) and naturality of the cup product completes
the proof.

COROLLARY 6 (Reznikov [29]). Let L denote a closed three-manifold such that
G = π1(L)/π1(L)(n) is a finite 2-group, and H1(L ,Z) ∼= Z/2Z× Z/2Z. Then G
is a generalized quaternion group.

Proof. Clearly, G/[G,G] ∼= H1(L ,Z) ∼= Z/2Z × Z/2Z and so G is a 2-
group of maximal class and thus must be (generalized) quaternion, dihedral or
semidihedral (see [13], Section 5.4). The condition that the cup product pairing
be nonsingular eliminates the semidihedral groups (see [12]), and the fact that the
image has rank one eliminates the dihedral groups (see [16]).
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