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Abstract. This is a short survey of some connections between the intersection form
and the fundamental group for smooth and topological 4-manifolds.

1. Introduction

A classical construction of Kervaire [36] shows that any finitely-presented group can be
realized as the fundamental group of a closed, oriented smooth 4-manifold M . However,
much less is known about other homotopy invariants of 4-manifolds, such as the second
homotopy group π2(M), which inherits a Z[π1(M,x0)]-module structure via the action of

the deck transformations on the universal covering M̃ .
Another basic invariant is the equivariant intersection form of a 4-manifold M , defined

as the triple (π1(M,x0), π2(M), sM), where x0 ∈M is a base-point, and

sM : π2(M)⊗Z π2(M)→ Z[π1(M,x0)]

is the form defined by counting intersections of immersed 2-spheres (see [59, Chap. 5]).
This pairing is Λ-hermitian, in the sense that for all λ ∈ Λ := Z[π1(M,x0)] we have

sM(λ · x, y) = λ · sM(x, y) and sM(y, x) = sM(x, y)

where λ 7→ λ̄ is the involution on Λ given by ḡ = g−1 for g ∈ π1(M,x0).

The main topics of interest for the present survey are:

(1) To what extent does the fundamental group π1(M,x0) and the equivariant inter-
section form sM determine the topology of a closed, oriented 4-manifold M ?

(2) What special properties hold for the equivariant interesection form if M is a smooth
4-manifold ?

The material will be divided into sections according to the complexity of the fundamen-
tal group. From now on, all manifolds considered will be closed, connected and oriented.
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2. Simply-connected 4-manifolds

Wall [58], [57] showed in the 1960’s that homotopy equivalent, simply-connected smooth
4-manifolds M1, M2 are smoothly h-cobordant, and hence are stably diffeomorphic

M1 # r(S2 × S2) ∼= M2 # r(S2 × S2)

for some integer r ≥ 0. It is still not known whether the existence of such a stable
diffeomorphism actually requires more than one copy of S2 × S2 (see [46], [37] for other
aspects of smooth h-cobordisms).

Spectacular results concerning 4-manifolds were proved in the 1980’s by S. Donaldson
and M. Freedman, building on work of Atiyah, Casson, Hitchin, Taubes and Uhlenbeck.
If M is simply-connected, then π2(M) ∼= Zr is a free abelian group and the ordinary
intersection form

qM : H2(M ; Z)×H2(M ; Z)→ Z

is a symmetric, unimodular bilinear form. The signature of this form, denoted sign(M),
is the difference between the number of positive and negative eigenvalues of a matrix
representing qM .

Freedman [16], [17] proved that any such form is realized by one or two topological
4-manifolds. Moreover, M is classified up to homeomorphism by qM and the Kirby-
Siebenmann invariant KS(M) ∈ Z/2 (see [38] for the definition). Donaldson [6], [7], [8]
showed using gauge theory that if qM is a positive definite form then

qM ∼= 〈1〉 ⊥ 〈1〉 ⊥ · · · ⊥ 〈1〉

is standard, and that the h-cobordant, smooth, simply-connected 4-manifolds are not
necessarily diffeomorphic.

These results show a striking difference between smooth and topological 4-manifolds.
By combining them, it follows that a smooth, non-spin, simply-connected 4-manifold M is
homeomorphic to a connected sum of copies of ±CP2. If M is smooth, simply-connected
and spin, then M is homeomorphic to a connected sum of copies of S2 × S2 and ±K3
surfaces, provided that

b2(M) ≥ 11

8
| sign(M)|,

where b2(M) = rank(H2(M ; Z)). The well-known 11
8

-conjecture, still unresolved, states
that this inequality always holds for smooth, spin 4-manifolds: the best partial result
to date is b2(M) ≥ 5

4
| sign(M)| + 2, if qM is indefinite, proved by Furuta [20]. The

exciting subsequent developments in the study of smooth, simply-connected 4-manifolds
are outside the scope of this survey (there is a large and growing literature: for example,
the work of Fintushel-Stern [13], [14], Gompf [21], Friedman-Morgan [19], Kronheimer-
Mrowka [41], Ozsváth-Szabó [48], [47], Jongil Park [50], Taubes [53], and Seiberg-Witten
[61]).
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3. Infinite cyclic fundamental groups

If π1(M) = Z and Λ = Z[Z], then π2(M) is a finitely-generated, free Λ-module of
rank b2(M) and sM is a non-singular hermitian form. The classification theorem for these
manifolds uses the full equivariant intersection form.

Theorem 3.1 (Freedman-Quinn [17]). A closed, oriented topological 4-manifold M with
π1(M) = Z is classified up to homeomorphism by sM and KS(M). Any non-singular her-
mitian form on a finitely-generated free Λ-module can be realized by one or two manifolds.

More precisely, such forms are even and realized by a unique spin manifold, or odd
and realized by two non-spin manifolds with different Kirby-Siebenmann invariants. The
equivariant intersection form of a connected sum M = (S1×S3) #N , with a 1-connected
manifold N , is said to be extended from the integers. In other words, sM = qN ⊗Z Λ.
Conversely, by the classification theorem, any manifold whose equivariant intersection
form is extended from the integers must be homeomorphic to a connected sum with
S1 × S3.

Fintushel and Stern [12] constructed a smooth 4-manifold M , which was homeomorphic
but not diffeomorphic to a connected sum with S1×S3. The existence of indecomposable
topological 4-manifolds with π1 = Z and χ(M) > 0 was settled later.

Theorem 3.2 ([23]). There exists a closed, oriented topological 4-manifold M with π1(M) =
Z and χ(M) = 4, and M is not homotopy equivalent to a connected sum (S1 × S3) #N
for any 1-connected N .

The main step in the proof was the construction of a non-extended hermitian form
L on a free Λ-module (using a certain odd, definite, rank 4 form over Z[t] found by
Quebbemann [51, §6]). We also showed that any 4-manifold M with π1(M) = Z and
b2(M)− | sign(M)| ≥ 6 splits off S1×S3 and is determined up to homeomorphism by the
explicit invariants b2, sign, w2 and KS.

Question. If M is a smooth, closed, oriented 4-manifold with π1(M) = Z, then is sM

extended from the integers ?

This is a natural question after comparing the example M = ML in Theorem 3.2 with
the Fintushel-Stern example.

Theorem 3.3 ([18]). The manifold ML is not smoothable.

The idea of the proof is to consider the n-fold cyclic coverings Mn → ML. Since qML

is standard of rank 4, and both Euler characteristic and signature multiply by the index
of a finite covering, the forms qMn of rank = 4n are all definite, odd, unimodular forms
over Z. This seems to be an interesting series of definite forms: we showed that for n ≥ 3
they were all non-standard, and for n = 3, 4 they were the unique indecomposable odd
lattices in dimension 12 and 16 respectively. In any case, by Donaldson’s theorem Mn is
non-smoothable for n ≥ 3 and hence ML is non-smoothable. In [18] we found many more
examples of non-extended forms, and manifolds realizing these forms with a wide variety
of other infinite fundamental groups.
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4. The quadratic 2-type and surgery

In the non simply-connected case, the obvious homotopy invariants are the equivariant
intersection form sM and the first k-invariant

kM ∈ H3(π; π2(M)),

which together with π := π1(M,x0) and π2 specifies the algebraic 2-type B = B(M)
as introduced by MacLane and Whitehead [44]. The space B is a fibration over K(π, 1),
classified by kM , with fibre K(π2(M), 2) and there is a 3-connected reference map c̃ : M →
B(M) lifting the classifying map c : M → K(π, 1) for the universal covering M̃ →M . In
[22] we introduced the quadratic 2-type of M as the quadruple

[π1(M,x0), π2(M), kM , sM ] .

An isometry of two such quadruples is an isomorphism on π1, π2 inducing an isometry of
the equivariant intersection forms, and respecting the k-invariants.

In general, not much is known about these homotopy invariants, but they are related
by an exact sequence

(1) 0→ H2(π; Λ)→ H2(M ; Λ)→ HomΛ(H2(M ; Λ),Λ)→ H3(π; Λ)→ 0

arising from the universal coefficient spectral sequence. In this sequence, H2(M ; Λ) ∼=
H2(M ; Λ) ∼= π2(M) by Poincaré duality, and the middle map

H2(M ; Λ)→ HomΛ(H2(M ; Λ),Λ)

is the adjoint of sM . The radical R(sM) of the intersection form sM is isomorphic to the
π-module R(π) := H2(π; Λ), and π2(M) is a finitely-generated Λ-module.

If π := π1(M,x0) is a non-trivial finite group, then π2(M) is a finitely-generated free
abelian group with a Λ := Zπ-module structure, as studied in integral representation
theory. In general, there are infinitely many non-isomorphic indecomposable integral
representations (e.g. for π = Z/p × Z/p), and there is no known classification. If π1(M)
is infinite, the precise structure of π2(M) is unknown except in very special cases, such as
π1(M) = Z mentioned in Section 3.

The study of these modules can be simplified somewhat by considering stable equiva-
lence classes: two modules L1, L2 are stably isomorphic, denoted L1 's L2, if there exists
a free module Λr such that L1 ⊕ Λr ∼= L2 ⊕ Λr. For example, the kernel

0→ Ωn+1Z→ Fn → Fn−1 → · · · → F1 → F0 → Z→ 0

after n-steps in a free resolution {F∗} of the trivial module Z is stably unique by Schanuel’s
Lemma. For n = 3, such modules arise as π2(K) = H2(K; Λ), where K is a finite
2-complex with π1(K, x0) = π, and the resolution is obtained from the chain complex

C∗(K̃) of the universal covering. Finite 2-complexes K provide examples of smooth 4-
manifolds by taking the boundary of a thickening (i.e. a regular neigbourhood) of K in
R5.

The stabilization operation in algebra has analogues in topology. For 2-complexes,
K 7→ K ∨ S2 gives the stabilization π2(K) 7→ π2(K) ⊕ Λ. Whitehead [60, Theorem
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19] showed that any two finite 2-complexes K, K ′ with isomorphic fundamental groups
are stably simple-homotopy equivalent, but the problem of finding the minimal Euler
characteristic realized by a 2-complex with given π1 is still unsolved. This is a cancellation
problem. Note that Whitehead’s Theorem implies that the stable isomorphism type of
the Λ-modules H2(K; Λ) and H2(K; Λ) depend only on the fundamental group, and not
on the choice of finite 2-complex K.

It turns out that the stable structure of π2(M) for a 4-manifold is very special.

Theorem 4.2. Let M be a closed, oriented 4-manifold with fundamental group π. Then
π2(M) is stably isomorphic as a Λ-module to a certain extension

EM : 0→ H2(K; Λ)→ E → H2(K; Λ)→ 0

where K is any finite 2-complex with π1(K, x0) = π.

Remark 4.3. The boundaries of thickenings of 2-complexes yield trivial extensions. The
finite fundamental group case was done in [22, 2.4], and in that case the extension class of
EM corresponds to the image of the fundamental class c∗[M ] ∈ H4(π; Z) under a natural
isomorphism θ : H4(π; Z) ∼= Ext1

Λ(H2(K; Λ), H2(K; Λ)).

Proof. We will use a chain complex argument. By stabilizing K 7→ K ∨ rS2 and M 7→
M # t(S2 × S2) if necessary, we may assume that K is the sub-complex of 2-cells of M .

Consider the cellular chain complex C∗ = C∗(M̃) of finitely-generated free Λ-modules.
We have the exact sequences

0→ Z2 → C2 → C1 → C0 → Z→ 0

and

0→ B∗3 → C∗3 → C∗4 → Z→ 0

showing that B∗3 = HomΛ(B3,Λ) is stably isomorphic to the 2-boundaries B2. The details
here depend on whether π is finite or infinite: in the latter case note that Ext1

Λ(B3,Λ) ∼=
H4(M ; Λ) = Z. We now form the pull-back diagram

(4)

0 0

0 // H2(M ; Λ) // H2(K; Λ)

OO

// B2
//

OO

0

0 // H2(M ; Λ) // E

OO

// C2
//

OO

0

H2(K; Λ)

OO

Z2

OO

0

OO

0

OO
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where Z2 = H2(K; Λ) since K is the 2-skeleton of M . The middle horizontal sequence
splits since C2 is a free Λ-module. The middle vertical sequence is EM , and E ∼= π2(M)⊕C2

is a stabilization of π2(M). �

Surgery theory as developed by Browder, Novikov, Sullivan and Wall [59] provides a
powerful framework for classifying manifolds of dimension ≥ 5 within a fixed homotopy
type. However, in dimension 4 there are serious obstacles arising from the failure of
the Whitney trick. One approach, developed by Cappell and Shaneson [3], is based on
Wall’s idea of studying smooth 4-manifolds after stabilization with copies of S2×S2. The
drawback is that information about the original (unstabilized) homotopy type is lost in
the process.

Freedman’s work [16] fully established 4-dimensional surgery theory for topological
manifolds whose fundamental groups do not “grow” too quickly. This class includes the
poly-cyclic by finite groups, but it is not known at present if 4-dimensional topological
surgery theory works for (non-cyclic) free fundamental groups. Note that Donaldson’s
results show that smooth surgery theory definitely does not work in dimension 4, and
there are s-cobordant smooth 4-manifolds which are not diffeomorphic.

The modified surgery theory of M. Kreck [39] requires less initial information about
the homotopy type: for example, one can try to classify smooth 4-manifolds which have
the same algebraic 2-type (up to smooth s-cobordism). In this theory, the key step is
to compute certain bordism groups Ω4(B, ξ), where ξ is a bundle over B whose pullback
c∗(ξ) ∼= νM is the stable normal bundle of M . For such computations there are a variety
of methods available, including the Atiyah-Hirzebruch and Adams spectral sequences. If
two manifolds [M1.c̃1], [M2, c̃2] are bordant over the type (B, ξ), then the triviality of an
algebraically defined invariant implies that M1 and M2 are smoothly s-cobordant (see [39,
Theorem B]).

One possible way of analysing the final step is to note that the relation [M1, c̃1] =
[M2, c̃2] ∈ Ω4(B, ξ) implies that

M1 # r1(S2 × S2) ∼= M2 # r2(S2 × S2)

are stably diffeomorphic [39, Cor. 3], with control on the reference maps to B (see [40], [5]
for further applications of stabilization). The cancellation problem is to find techniques
for removing S2 × S2 factors from both sides. In algebra, cancellation theorems for
modules and quadratic forms over noetherian rings were proved by Bak [1], Bass [2],
Stafford [52] and Vaserstein [56]. In [23], we realized that these algebraic results could
be combined with the constructions by [3, 1.5] of self-diffeomorphisms of 4-manifolds to
prove cancellation theorems for certain 4-manifolds. For example, the integral group rings
Z[π] of poly-cyclic by finite groups are noetherian rings, but the group ring of a free group
on 2 generators is not noetherian. This theme has recently been taken up again in [4].

5. Finite fundamental group

In early joint work with M. Kreck [23] we studied the topology of 4-manifolds with
finite fundamental groups, and obtained a good description of the homotopy types within
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a prescribed algebraic 2-type. We also showed that there are only finitely many home-
omorphism types of closed, oriented 4-manifolds with given finite π1, and given Euler
characteristic (see [22, p. 87]). To obtain precise classification results up to homeomor-
phism we needed to restrict to special fundamental groups. We say that M has w2-type (I)

if w2(M̃) 6= 0, w2-type (II) if w2(M) = 0, and w2-type (III) if w2(M) 6= 0 but w2(M̃) = 0.

Theorem 5.1 ([22], [24]). Closed, oriented topological 4-manifolds with finite cyclic fun-
damental groups are classified up to homeomorphism by π1(M), qM , the w2-type, and
KS(M).

This is a generalization of Freedman’s Theorem in the simply-connected case (where
the w2-type is determined by the intersection form). One interesting consequence is that
certain automorphisms of the cohomology ring of a smooth 4-manifold are induced by
self-homeomorphisms but not by a self-diffeomorphism (Donaldson’s work is used to rule
out a self-diffeomorphism, see the example [22, p.87]).

However, for more complicated fundamental groups we can not expect a classification
in terms of the ordinary intersection form qM on H2(M ; Z) (see [54], [55]). Here is a
sample result involving the quadratic 2-type.

Theorem 5.2. Closed, oriented, topological 4-manifolds with w2(M) = 0 and odd order
finite fundamental groups are classified up to homeomorphism by the simple isometry class
of the quadratic 2-type [π1(M), π2(M), kM , sM ].

Proof. This is essentially an exercise in the methods of [39] and [25], and the information
needed to use the odd order assumption is provided by [26, Section 4]. The definition of
simple isometry class will be explained below.

Here are some details of the steps in the argument. We first notice that the normal
2-type for such a spin manifold M is B×BTOPSPIN , where B = B(M) is the algebraic
2-type. Since π := π1(M) has odd order,

ΩTOPSPIN
4 (K(π, 1)) = Z⊕H4(π; Z),

and the stable homeomorphism class of M is determined by its signature and the image of
the fundamental class c∗[M ] ∈ H4(π; Z). If M and M ′ have isometric quadratic 2-types,
then there exists an isometry α : sM

∼= sM ′ respecting the k-invariants. We use α to
identify the 2-types B(M) ∼= B(M ′), and conclude that the images of their fundamental
classes agree by [26, p. 168]. Hence M and M ′ are spin bordant over B, and there exists
a stable homeomorphism

h : M # r(S2 × S2) ∼= M ′# r(S2 × S2)

respecting the reference maps toK(π, 1). If α is a simple isometry of the quadratic 2-types,
then we claim that this data will allow us to construct another stable homeomorphism
h′ between these manifolds, with the additional property that the induced isometry h′∗ of
equivariant intersection forms induces the identity on the hyperbolic summands (in fact,
we will obtain h′∗ = (α ⊕ 1)). With that additional property, one can attach handles to
both domain and range to obtain an s-cobordism between M and M ′ (see [39, §4]).
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To modify the homeomorphism h we proceed as follows. Let Mr := M # r(S2 × S2)
denote the r-fold stabilization of M . By composition, we obtain an element

β := (α⊕ 1)−1 ◦ h∗ ∈ Isom[π1(Mr), π2(Mr), kMr , sMr ].

The braid diagram of [26, p. 168], combined with [26, Theorem B], now shows that
β = φ∗ for some φ ∈ Aut•(Mr), such that φ is induced by an inertial h-cobordism
(W ;Mr,−Mr). We have further assumed that α is a simple isometry of the quadratic
2-types. By definition, this means that the Whitehead torsion τ(φ) = 0 ∈ Wh(Zπ),
and hence τ(W,Mr) = u ∈ Wh(Zπ) is self-dual (ū = u). Note that this definition of a
simple isometry is independent of the choice of h-cobordism inducing φ. From the exact
sequences in the proof of [26, 4.1], and the fact that the discriminant map Lh

6(Zπ) →
Ĥ0(Z/2; Wh(Zπ)) is surjective (since π has odd order), we can realize the self-equivalence
φ by an s-cobordism W ′: if necessary, we modify our first choice by the action of Lh

6(Zπ)
on H(M). It follows that the homotopy self-equivalence induced by W ′ is realized by a
self-homeomorphism f : Mr →Mr. We now define h′ := h◦f−1 and notice that h′∗ = α⊕1,
as required. �

Stabilization and cancellation techniques can also be used effectively for manifolds with
arbitrary finite fundamental groups (see [25]). For 4-manifolds, the connected sum oper-
ation gives the stabilization

π2(M #(S2 × S2)) = π2(M)⊕ Λ⊕ Λ

where the equivariant intersection form is stabilized by adding a hyperbolic plane

H(Λ) = (Λ⊕ Λ,

(
0 1
1 0

)
)

The cancellation problem for 4-manifolds with finite fundamental group has the following
optimal solution:

Theorem 5.3 ([25]). Let M , M ′ be closed, oriented topological 4-manifolds with finite
fundamental group. If M = M0 #(S2 × S2), and

M # r(S2 × S2) ∼= M ′# r(S2 × S2)

then M ∼= M ′.

Note that even in the simply-connected case, non-isomorphic forms can become iso-
morphic after adding a hyperbolic plane, so the statement is best possible.

6. Fundamental groups of aspherical 2-complexes

A finitely-presented group π is geometrically 2-dimensional (g-dimπ ≤ 2) if there exists
a finite aspherical 2-complex with fundamental group π. Examples of geometrically 2-
dimensional groups include free groups, 1-relator groups (e.g. surface groups) and small
cancellation groups [43], provided they are torsion-free, as well as many word-hyperbolic
groups, see also [31, 2.3], [34, §10].
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Recall that the radical R(sM) of the equivariant intersection form sM is isomorphic to
the π-module R(π) := H2(π; Λ). A closed oriented 4-manifold M will be called minimal if
the equivariant intersection form on π2(M) vanishes, or equivalently, if π2(M) = R(sM) ∼=
R(π). It turns out that a thickening of an aspherical 2-complex for π gives a minimal,
smooth 4-manifold M0 with fundamental group π, whenever g-dim π ≤ 2 (see [27, Lemma
3.7]). For example, the manifolds #r(S

1 × S3) and S2 ×Σ are minimal, where Σ denotes
an oriented surface of genus ≥ 1.

In a series of papers [31], [33], [32], [34], [35], J. Hillman investigated the homotopy
classification of Poincaré 4-complexes under various fundamental group assumptions. In
the case of g-dim ≤ 2, the problem was reduced to the minimal case, where the homotopy
classification was completed for free or surface fundamental groups (see also [49] where
these cases were studied from a different viewpoint).

In recent joint work with Matthias Kreck and Peter Teichner (described below), we
used the modified surgery approach to obtain classification results for topological 4-
manifolds with geometrically 2-dimensional fundamental groups, up to homeomorphism
(in favourable cases) or s-cobordism.

A particular nice family of examples if provided by the solvable Baumslag-Solitar groups

BS(k) := {a, b | aba−1 = bk}, k ∈ Z.
The groups BS(k) have geometrical dimension ≤ 2 because the 2-complex corresponding
to the above presentation is aspherical. The easiest cases are

BS(0) = Z, BS(1) = Z× Z, and BS(−1) = Z o Z,
and these are the only Poincaré duality groups in this family. Each BS(k) is solvable, so
is a “good” fundamental group for topological 4-manifolds [16]. This implies that Freed-
man’s s-cobordism theorem is available to complete the homeomorphism classification.
This had been done previously only for the three special cases above, see [17] for BS(0),
and [33] for BS(±1), using a more classical surgery approach.

Theorem 6.1 ([27, Theorem A]). For closed oriented 4-manifolds with solvable Baumslag-
Solitar fundamental groups, and given w2-type and Kirby-Siebenmann invariant, any
isometry between equivariant intersection forms can be realized by a homeomorphism.

In particular, we showed that a minimal 4-manifold is unique up to homeomorphism
and established some relations between the invariants in general (based in part on [55]).
For fundamental groups π with H4(π; Z) = 0 we showed that the signature is determined
by sM via the formula sign(M) = sign(sM⊗Λ Z). This formula does not hold for arbitrary
4-manifolds, as one can see from examples of surface bundles over surfaces with nontrivial
signature (but vanishing π2).

For π1(M) = BS(k), type (III) can only occur if k is odd. In this case, we gave a
generalization of Rochlin’s formula (see [27, Corollary 6.10]):

KS(M) ≡ sign(M)/8 + Arf(M) (mod 2)

where Arf(M) ∈ Z/2 is a codimension 2 Arf invariant. In contrast, for spin manifolds
KS(M) ≡ sign(M)/8 (mod 2).
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We also proved a realization theorem for hermitian forms in this setting. If M has fun-
damental group BS(k), then the quotient module π2(M)† := π2(M)/R(sM) is a finitely-
generated, stably-free Λ-module, and the equivariant intersection form sM is non-singular
on this quotient. It turns out that any such hermitian form can be realized by one or two
4-manifolds.

A close inspection of the arguments shows that we used a number of special facts about
the Baumslag-Solitar groups. For more general fundamental groups π, we need to assume
the corresponding properties for its algebraic K-theory and L-theory.

Definition 6.2. A group π satisfies properties (W-AA) whenever

(1) The Whitehead group Wh(π) vanishes,
(2) The assembly map A5 : H5(π; L0)→ L5(Zπ) is surjective.
(3) The assembly map A4 : H4(π; L0)→ L4(Zπ) is injective.

Note that these properties (and more) do hold whenever the group π satisfies the Farrell-
Jones isomorphism conjectures [11] (see [42] for a survey of results on these conjectures).

Theorem 6.3 ([27, Theorem C]). Let π be a geometrically 2-dimensional group satisfy-
ing properties (W-AA). For closed oriented 4-manifolds with fundamental group π, and
given Kirby-Siebenmann invariant, any isometry between equivariant intersection forms
inducing an isomorphism of w2-types can be realized by an s-cobordism.

The w2-type mentioned in this statement is actually a refinement of the notion defined
in Section 4, in which we now keep track of the class w ∈ H2(π; Z/2) determining w2(M)
in type (III).

7. Some questions

Here are a few questions and problems concerning smooth and topological 4-manifolds
with non-trivial fundamental group.

(1) For a smooth 4-manifold M with geometrically 2-dimensional fundamental group,
is M homeomorphic to M0 #N , where M0 is minimal and N is simply-connected ?
In other words, is the equivariant intersection form sM always extended from the
integers ?

(2) Construct distinct smooth structures on indecomposable, non-simply connected 4-
manifolds. Is there a minimal 4-manifold with more than one smooth structure ?

(3) For a given group π, there exist 4-manifolds M(α) with π1(M) = π and c∗[M ] a
given element α ∈ H4(π; Z). How does the minimal possible Euler characteristic
and signature of M(α) depend on the class α ?

(4) For a given group π, does there exists a stable range constant c(π), with the
property that a stable homeomorphism or diffeomorphism M1 # r(S2 × S2) ∼=
M2 # r(S2×S2) between manifolds with fundamental group π admits cancellation
of at least one copy of S2 × S2 (up to s-cobordism) whenever r > c(π) ?

(5) Compare the actions of Diff(M) and Homeo(M) on the equivariant intersection
form of a smooth 4-manifold.
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Remark 7.1. There are many interesting problems related to the study the existence and
uniqueness of non-free finite group actions on smooth or topological 4-manifolds. One may
ask, for example, which equivariant intersection forms are realized by smooth actions of
finite cyclic groups on simply-connected 4-manifolds. For topological actions there is
a satisfactory picture, particularly for cyclic groups of prime order (see Edmonds [9],
[10], Edmonds-Ewing [9], and McCooey [45]). For smooth actions, there are restrictions
detected by equivariant gauge theory [28], [29] and the answer is interesting even for the
permutation representations which arise for actions on connected sums of CP2’s (see [30,
1.18]). A striking contrast between smooth and topological actions is shown by the recent
paper of Finstushel, Stern and Sunukjian [15], where infinite families of topologically
equivalent but smoothly distinct cyclic group actions are constructed on 4-manifolds with
non-trivial Seiberg-Witten invariants.
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