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Abstract
We consider closed topological 4-manifolds𝑀 with uni-
versal cover 𝑆2 × 𝑆2 and Euler characteristic 𝜒(𝑀) = 1.
All such manifolds with 𝜋 = 𝜋1(𝑀) ≅ ℤ∕4 are homo-
topy equivalent. In this case, we show that there are
four homeomorphism types, and propose a candidate
for a smooth example that is not homeomorphic to the
geometric quotient. If 𝜋 ≅ ℤ∕2 × ℤ∕2, we show that
there are three homotopy types (and between 6 and 24
homeomorphism types).
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2 HAMBLETON and HILLMAN

1 INTRODUCTION

The goal of this paper is to characterize 4-manifoldswith universal cover 𝑆2 × 𝑆2 up to homeomor-
phism in terms of standard invariants, continuing the program of [9, Chapter 12]. Our approach
combines the analysis of Postnikov sections with recent results in surgery. The main new ingredi-
ent is the use of bordism calculations to study the difference between homotopy self-equivalences
and homeomorphisms of these 4-manifolds.
A 4-manifold 𝑀 has universal covering space 𝑀̃ ≅ 𝑆2 × 𝑆2 if and only if 𝜋 = 𝜋1(𝑀) is finite,

𝜒(𝑀)|𝜋| = 4 and its Wu class 𝑣2(𝑀) is in the image of 𝐻2(𝜋; 𝔽2). There are eight such man-
ifolds that are geometric quotients, in which 𝜋 acts through a subgroup of Isom(𝕊2 × 𝕊2) =

(𝑂(3) × 𝑂(3))⋊ ℤ∕2 (see [9, Chapter 12, §2]).
Our classification results for the cases where |𝜋| = 4 are based on a detailed study of the

intermediate coverings where |𝜋| ⩽ 2 (see Sections 4–6).
We first recall that closed topological manifolds with 𝜋1(𝑀) = 1 or 𝜋1(𝑀) = ℤ∕2 have already

been classified (without assumption on the universal covering):

(i) If𝜋 = ℤ∕𝑛, and𝑀 is orientable, then𝑀 is classified up to homeomorphism by its intersection
form on𝐻2(𝑀;ℤ)∕𝑇𝑜𝑟𝑠,𝑤2(𝑀) and the Kirby–Siebenmann (KS) invariant (see Freedman [3]
for 𝜋 = 1, and [7, Theorem C] for 𝜋 = ℤ∕𝑛).

(ii) If 𝜋 = ℤ∕2, and 𝑀 is nonorientable, then 𝑀 is classified up to homeomorphism by explicit
invariants (see [8, Theorem 2]), and a complete list of such manifolds is given in [8, Theorem
3].

If we further impose the condition that 𝑀̃ = 𝑆2 × 𝑆2, then it is convenient to separate the ori-
entable and nonorientable cases. There are two orientable geometric ℤ∕2-quotients, namely, the
2-sphere bundles 𝑆(𝜂 ⊕ 2𝜖) and 𝑆(3𝜂) over 𝑅𝑃2, where 𝜂 is the canonical line bundle over 𝑅𝑃2.
The secondmanifold is nonspin and has a nonsmoothable homotopy equivalent “twin” ∗ 𝑀 with
KS ≠ 0.
In the nonorientable case, there are two geometric ℤ∕2-quotients: 𝑆2 × 𝑅𝑃2 and 𝑆2×̃𝑅𝑃2 =

𝑆(2𝜂 ⊕ 𝜖), and one further smoothmanifold𝑅𝑃4♯𝑆1𝑅𝑃4 obtained by removing a tubular neighbor-
hood of 𝑅𝑃1 ⊂ 𝑅𝑃4, and gluing two copies of the complement together along the boundary. Each
of these has a homotopy equivalent twin ∗ 𝑀 with KS ≠ 0, so there are six such nonorientable
manifolds (for these results, see [9, Chapter 12] and [22]).

Remark 1.1. More generally, if𝜋 has order 2 or 4, then𝑊ℎ(𝜋) = 0 and the natural homomorphism
from 𝐿4(1) to 𝐿4(𝜋, −) is trivial (see Wall [24, §3.4]). Thus, if𝑀 is nonorientable, we may surger
the normal map𝑀#𝐸8 → 𝑀#𝑆4 = 𝑀 to obtain a twin: that is a homotopy equivalent 4-manifold
∗ 𝑀 with the opposite Kirby–Siebenmann invariant. Here, 𝐸8 denotes a closed, 1-connected,
topological 4-manifold constructed by Freedman [3], whose intersection form is definite of rank 8.

We now assume that |𝜋| = 4, which implies that 𝜒(𝑀) = 1 for any quotient 𝑀 of 𝑆2 × 𝑆2 by
a free 𝜋-action. Any such 𝑀 must be nonorientable, since orientable closed 4-manifolds with
finite fundamental group have Euler characteristic ⩾ 2 (by Poincaré duality with ℚ-coefficients).
If 𝜋 = ℤ∕4, there is just one geometric quotient 𝕄 obtained from the free action generated by
(𝑢, 𝑣) ↦ (−𝑣, 𝑢), for (𝑢, 𝑣) ∈ 𝑆2 × 𝑆2.

Theorem A. Let𝑁 be a closed topological 4-manifold with 𝑁̃ = 𝑆2 × 𝑆2 and 𝜋1(𝑁) = ℤ∕4.
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QUOTIENTS OF 𝑆2 × 𝑆2 3

(i) Each𝑁 is homotopy equivalent to the unique geometric quotient𝕄.
(ii) Every self-homotopy equivalence of𝕄 is homotopic to a self-homeomorphism.
(iii) There are four such manifolds up to homeomorphism, of which exactly two have nontrivial

Kirby–Siebenmann invariant.

Remark 1.2. An analysis of one construction of the geometric example𝕄 leads to the construction
of another smooth 4-manifold in this homotopy type, which may not be homeomorphic to the
geometric manifold (see Section 11).

Remark 1.3. When |𝜋| = 4, the mod 2 Hurewicz homomorphism ℎ∶ 𝜋2(𝑀) → 𝐻2(𝑀;ℤ∕2) is
trivial. Hence, pinch maps have trivial normal invariants, so do not provide “fake” self-homotopy
equivalences, meaning a self-equivalence not homotopic to a homeomorphism (see [1, p. 420]).
We rule out other fake self-equivalences for 𝜋 = ℤ∕4 in Section 10.

In the remaining cases, where 𝜋 = ℤ∕2 × ℤ∕2, we classify the homotopy types of Poincaré 4-
complexes, and determine the homotopy types of closedmanifolds. We will use the notation 𝑃𝐷4-
complex for a finite Poincaré duality complex of formal dimension 4 (see [23, §1]).

Theorem B. There are two quadratic 2-types of 𝑃𝐷4-complexes 𝑋 with 𝜒(𝑋) = 1 and 𝜋1(𝑋) =

ℤ∕2 × ℤ∕2, and seven homotopy types in all.

(i) All such complexes have universal cover homotopy equivalent to 𝑆2 × 𝑆2.
(ii) The two quadratic 2-types are represented by the total spaces of the two 𝑅𝑃2-bundles over 𝑅𝑃2.
(iii) A third homotopy type includes a smooth manifold𝑁 with 𝑅𝑃4#𝑆1𝑅𝑃

4 as a double cover.
(iv) The remaining homotopy types do not include closed manifolds.

The primary homotopy invariants of a finite 𝑃𝐷4-complex 𝑋 are its fundamental group 𝜋 ∶=

𝜋1(𝑋, 𝑥0), and its second homotopy group 𝜋2(𝑋) as a module over the integral group ring Λ ∶=

ℤ[𝜋]. The quadratic 2-type (introduced in [6]) is represented by the quadruple:

[𝜋1(𝑋), 𝜋2(𝑋), 𝑘𝑋, 𝑠𝑋]

where 𝑠𝑋 denotes the equivariant intersection form 𝑠𝑋 ∶ 𝜋2(𝑋) × 𝜋2(𝑋) → Λ, and

𝑘𝑋 ∈ 𝐻3(𝜋; 𝜋2(𝑋))

is the first 𝑘-invariant of the algebraic 2-type [𝜋1(𝑋), 𝜋2(𝑋), 𝑘𝑋] as introduced by MacLane and
Whitehead [17]. This data determine a space 𝑃 ∶= 𝑃2(𝑋), which is a fibration over 𝐾(𝜋, 1), clas-
sified by 𝑘𝑋 , with fiber 𝐾(𝜋2(𝑋), 2) and there is a 3-connected reference map 𝑐∶ 𝑋 → 𝑃 lifting
the classifying map 𝑐∶ 𝑋 → 𝐾(𝜋, 1) for the universal covering 𝑋 → 𝑋. Equivalently, 𝑃2(𝑋) is the
second stage of a Postnikov tower for 𝑋.
An isometry of two such quadruples is an isomorphism on 𝜋1, 𝜋2 inducing an isometry of the

equivariant intersection forms, and respecting the 𝑘-invariants.
The first statement in Theorem B about the quadratic 2-types was proved in [9, Chapter 12,

§6], but the homotopy classification is new. We use the invariants of [4] and [12] to determine
which homotopy types contain closed manifolds. The homeomorphism classification appears
difficult: all we can say at this stage is that in each case, the TOP structure set has eight mem-
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4 HAMBLETON and HILLMAN

bers, so that there are between 6 and 24 homeomorphism types of such manifolds, of which
half are not stably smoothable. To resolve this ambiguity, more information is needed about
self-homotopy equivalences.
Here is an outline of the paper. After some preliminary material in Sections 2–3, we show that

there are either two or four homeomorphism types with 𝜋 = ℤ∕4. Part (i) of Theorem A is proved
in Lemma 3.3. We then review the constructions of the nonorientable smoothable quotients of
𝑆2 × 𝑆2 with 𝜋 = ℤ∕2 (see Sections 4–6).
In Section 7, we construct a new smooth 4-manifold 𝑁 in the quadratic 2-type of the bundle

space 𝑅𝑃2×̃𝑅𝑃2, but distinguished from it by its nonorientable double covers (see Definition 7.1).
In particular, N is not a geometric quotient. In Sections 8–9, we show that there are no other
homotopy types of 4-manifolds with 𝜋 = ℤ∕2 × ℤ∕2 and 𝜒 = 1. This completes the proof of
Theorem B.
In Section 10, we complete the proof of Theorem A via a stable homeomorphism classification

result. In Section 11, we construct a smooth manifold with 𝜋 = ℤ∕4, which may not be diffeomor-
phic or even homeomorphic to the geometric quotient (see Definition 11.2). The same strategy
does not seem to provide a candidate for a smooth fake 𝑅𝑃2 × 𝑅𝑃2.

2 THE STRUCTURE SET

Classical surgery theory studies the structure set 𝑆𝑇𝑂𝑃(𝑀), which consists of pairs (𝑁, 𝑓) of
closed 4-manifolds 𝑁 and a homotopy equivalence 𝑓∶ 𝑁 → 𝑀, modulo those homotopic to
homeomorphisms. Here and throughout the paper, we will always work with pointed spaces and
base-point-preserving maps.
If𝑀 is nonorientable, let 𝑤∶ 𝜋1(𝑀) → ℤ∕2 denote the orientation character given by the first

Stiefel–Whitney class 𝑤1(𝑀) ∈ 𝐻1(𝑀;ℤ∕2). We fix a local coefficient system {ℤ𝑤} induced by
the classifying map of the orientation double cover, and use it to define the homology of𝑀 with
“twisted” coefficients. A choice of generator [𝑀] ∈ 𝐻4(𝑀;ℤ𝑤) ≅ ℤ gives a fundamental class for
Poincaré duality (see Wall [23, Chapter 1] and Taylor [20, §5]).
The surgery exact sequence

⋯ → 𝐿5(𝜋,𝑤) → 𝑆𝑇𝑂𝑃(𝑀) → [𝑀,𝐺∕𝑇𝑂𝑃] → 𝐿4(𝜋,𝑤)

leads to a computation of 𝑆𝑇𝑂𝑃(𝑀) in favorable circumstances. The general theory due to Browder,
Kervaire, Milnor, Novikov, Sullivan, and Wall for high-dimensional smooth or PL manifolds (see
[25]) was extended to topological manifolds by Kirby and Siebenmann [15], and to 4-manifolds
with good fundamental groups by Freedman [3]. In particular, surgery theory “works” for topo-
logical 4-manifolds with finite fundamental group. We refer the reader to Kirby and Taylor [15]
for an overview of surgery theory in low dimensions.
In our situation, it is not difficult to compute the size of the structure set 𝑆𝑇𝑂𝑃(𝑀). The remain-

ing obstacle to obtaining a homeomorphism classification is to understand the action of homotopy
self-equivalences on the structure set.
Note that 𝐺∕𝑇𝑂𝑃 inherits an 𝐻-space structure as the degree zero space of the connective

𝕃0-theory spectrum. This 𝐻-space structure induces an alternate abelian group structure on
[𝑋, 𝐺∕𝑇𝑂𝑃], for any closed topological 4-manifold, distinct from the usual Whitney sum struc-
ture from bundle theory. With this structure, Poincaré duality with 𝕃0-theory coefficients gives an
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QUOTIENTS OF 𝑆2 × 𝑆2 5

isomorphism

[𝑋, 𝐺∕𝑇𝑂𝑃] = 𝐻0(𝑋; 𝕃0) ≅ 𝐻4(𝑋; 𝕃
𝑤
0 )

of abelian groups.
Since 𝜋𝑖(𝐺∕𝑇𝑂𝑃) = 0 in all odd dimensions and the first significant 𝑘-invariant of 𝐺∕𝑇𝑂𝑃 is

0, there is a 6-connected map 𝐺∕𝑇𝑂𝑃 → 𝐾(ℤ∕2, 1) × 𝐾(ℤ, 4) (see [15, §2]). Hence, in these low
dimensions,

[𝑋, 𝐺∕𝑇𝑂𝑃] ≅ 𝐻2(𝑋; ℤ∕2) ⊕ 𝐻4(𝑋; ℤ).

It follows that this isomorphism is compatible with 𝕃0-theory Poincaré duality on [𝑋, 𝐺∕𝑇𝑂𝑃],
andwith ordinary Poincaré duality on the right-hand side, induced by cap productwith a (twisted)
fundamental class

[𝑋] ∈ 𝐻4(𝑋; ℤ
𝑤) ≅ ℤ,

where 𝑤 = 𝑤1(𝑋).
We can now determine the size of 𝑆𝑇𝑂𝑃(𝑀) for manifolds with 𝑀̃ = 𝑆2 × 𝑆2 and fundamental

groups of order 4.

Theorem 2.1. Let 𝑀 be a closed topological 4-manifold with 𝜋1(𝑀) = ℤ∕4 and 𝜒(𝑀) = 1. The
structure set 𝑆𝑇𝑂𝑃(𝑀) has four members, and there are either two or four homomeomorphism types
of manifolds homotopy equivalent to𝑀.

Proof. The normal invariant map in the surgery exact sequence

𝑆𝑇𝑂𝑃(𝑀) → [𝑀,𝐺∕𝑇𝑂𝑃] ≅ 𝐻2(𝑀;ℤ∕2) ⊕ 𝐻4(𝑀;ℤ)

is a bijection, since the groups 𝐿5(ℤ∕4, −) and 𝐿4(ℤ∕4, −) are both zero (see Wall [24, Theo-
rem 3.4.5]). Recall that 𝜒(𝑀) = 1 implies that 𝑀 is nonorientable, so the surgery obstruction
groups denoted as 𝐿∗(ℤ∕4, −) appear with nontrivial orientation character. The cohomology
groups 𝐻2(𝑀;ℤ∕2) = ℤ∕2 and 𝐻4(𝑀;ℤ) = ℤ∕2 were computed in [9, Chapter 12, §4]. Hence,
|𝑆𝑇𝑂𝑃(𝑀)| = 4. As observed in the Introduction, every such manifold𝑁 has a fake twin ∗ 𝑁. □

Remark 2.2. In particular, if ℎ∶ 𝑀′ → 𝑀 is a homotopy equivalence with nontrivial normal
invariant 𝜂(ℎ) ∈ 𝐻2(𝑀;ℤ∕2), then every closed 4-manifold with 𝜋 = ℤ∕4 and 𝜒 = 1 is homeo-
morphic to one of 𝑀, 𝑀′, ∗ 𝑀, or ∗ 𝑀′. The normal invariant of 𝑀 ♯𝐸8 → 𝑀 is nontrivial in
𝐻4(𝑀;ℤ) = ℤ∕2. After surgery, this produces the twin manifold ∗ 𝑀.
Similarly, we have the manifold ∗ 𝑀′ whose normal invariant is nontrivial in both summands

of [𝑀,𝐺∕𝑇𝑂𝑃], and 𝐾𝑆(∗ 𝑀′) = 0 by the formula on [15, p. 398]. In contrast, both 𝑀′ and ∗ 𝑀

have nontrivial Kirby–Siebenmann invariant. We do not know whether ∗ 𝑀′ admits a smooth
structure (see Section 11 for a candidate).
In general, the normal invariant is an invariant of amap.However, in this case, wewill complete

the proof of TheoremA by showing that the homotopy type and the Kirby–Siebenmann invariant
distinguish homeomorphism types completely (see Section 10).

The cases where 𝜋1(𝑀) = ℤ∕2 × ℤ∕2 are similar.
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6 HAMBLETON and HILLMAN

Theorem 2.3. Let 𝑀 be a closed topological 4-manifold with 𝜋1(𝑀) = ℤ∕2 × ℤ∕2 and 𝜒(𝑀) =

1. The structure set 𝑆𝑇𝑂𝑃(𝑀) has eight members, consisting of up to four distinct twin pairs of
homomeomorphism types (𝑁, ∗ 𝑁) of manifolds homotopy equivalent to𝑀.

Proof. We have the cohomology groups 𝐻2(𝑀;ℤ∕2) = (ℤ∕2)3 and 𝐻4(𝑀;ℤ) = ℤ∕2. Moreover,
(i) the map 𝑆𝑇𝑂𝑃(𝑀) → [𝑀,𝐺∕𝑇𝑂𝑃] is injective, since 𝐿5((ℤ∕2)

2, −) = 0, and (ii) the surgery
obstruction map from [𝑀,𝐺∕𝑇𝑂𝑃] to 𝐿4((ℤ∕2)

2, −) = ℤ∕2 is onto. Hence, 𝑆𝑇𝑂𝑃(𝑀) has eight
elements (𝑁, 𝑓) for each homotopy type of such manifolds 𝑀, with domains consisting of four
twinned pairs (𝑁, ∗ 𝑁) (see [9, Chapter 12, §7]). □

Remark 2.4. Half of the elements of 𝑆𝑇𝑂𝑃(𝑀) have domains with nontrivial Kirby–Siebenmann
invariant, and so, the image of Homeo(𝑀) in the group of (free homotopy classes of) self-
homotopy equivalences of 𝑀 has index at most 4. However, whether every self-homotopy
equivalence of 𝑀 is homotopic to a homeomorphism remains open. To make further progress,
we need explicit representatives for the self-homotopy equivalences.

3 HOMOTOPY-TYPE INVARIANTS FOR FINITE 𝑷𝑫𝟒-COMPLEXES

Let 𝐵 = 𝑃2(𝑋) denote the Postnikov 2-section of a finite Poincaré 4-complex 𝑋 with orientation
character𝑤∶ 𝜋1(𝑋) → ℤ∕2. A 𝐵-polarized 𝑃𝐷4-complex consists of a pair (𝑋, 𝑓), where 𝑓∶ 𝑋 →

𝐵 is a 3-equivalence. Two such pairs (𝑋, 𝑓) and (𝑌, g) are equivalent if there exists a homotopy
equivalence ℎ∶ 𝑋 → 𝑌 such that 𝑓 ≃ g◦ℎ. Following [6, §1], we let 𝑆𝑃𝐷

4
(𝐵, 𝑤) denote the set of

homotopy types of 𝐵-polarized 𝑃𝐷4-complexes.
For 𝑃𝐷4-complexes with finite fundamental group, the set 𝑆𝑃𝐷

4
(𝐵, 𝑤) is determined by

the quadratic 2-type and a secondary invariant depending on 𝜋2(𝑋) as a 𝜋1(𝑋)-module. Let
𝑆𝑃𝐷
4

(𝐵, 𝑤, 𝜆) denote the subset of 𝑆𝑃𝐷
4

(𝐵, 𝑤) of 𝐵-polarized Poincaré complexes (𝑋, 𝑓), such that
𝜆∶ 𝜋2(𝐵) × 𝜋2(𝐵) → Λ is a hermitian form that is mapped to the intersection form 𝑠𝑋 via 𝑓∗ (see
[11, p. 357]). Note that if 𝜋2(𝐵) ≠ 0, then 𝑤 is determined by 𝜆 [21, Chapter 1.4]. The elements of
𝑆𝑃𝐷
4

(𝐵, 𝑤, 𝜆) are called 𝑃𝐷4-polarizations of the quadratic 2-type.
In the rest of the paper, we will always assume that a 𝑃𝐷4-complex 𝑋 has one top cell (see Wall

[23, Corollary 2.3.1]). In the following statement, Γ𝑊(𝜋2(𝐵)) denotes Whitehead’s quadratic func-
tor. An action of the torsion subgroup of ℤ𝑤 ⊗ℤ[𝜋] Γ𝑊(𝜋2(𝐵)) on an element (𝑋, 𝑓) ∈ 𝑆𝑃𝐷

4
(𝐵, 𝑤)

is defined by writing 𝑋 = 𝐾 ∪g 𝐷
4 with 𝐾 a 3-complex, and reattaching the top cell by a suitable

element 𝛼 ∈ 𝜋3(𝐾) (see [6, §1] or [11, p. 364] for the details of this construction).

Theorem 3.1. Each homotopy type within the quadratic 2-type of a 𝑃𝐷4-complex 𝑋 with 𝜋 finite
may be obtained by varying the attaching map of the top cell to the 3-skeleton 𝑋(3). The torsion
subgroup of ℤ𝑤 ⊗ℤ[𝜋] Γ𝑊(𝜋2(𝐵)) acts freely and transitively on the set of 𝑃𝐷4-polarizations of the
quadratic 2-type.

Proof. This result is due to Hambleton and Kreck [6, Theorem 1.1], Teichner [21, Chap. 2], and
Kasprowski and Teichner [11, Theorem 1.5]. □

Remark 3.2. In particular, the cardinality of this torsion subgroup is an upper bound for the num-
ber of homotopy types within the quadratic 2-type. The homotopy types correspond bijectively to
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QUOTIENTS OF 𝑆2 × 𝑆2 7

the orbits of the group Aut(𝐵,𝑤, 𝜆) of homotopy classes of self-homotopy equivalences of 𝐵 that
preserve the orientation character 𝑤 and the hermitian form 𝜆 on 𝑆𝑃𝐷

4
(𝐵, 𝑤, 𝜆).

The quadratic 2-types of interest to us are those of the nonorientable quotients of 𝑆2 × 𝑆2.
For the ℤ∕2-quotients, the number of distinct homotopy types is determined by explicit con-
structions based on Theorem 3.1 (see Proposition 4.1), and distinguished by explicit invariants
in Theorem 6.1.
However, for the quotients with 𝜋 = ℤ∕2 × ℤ∕2, we need the additional information provided

by the action of Aut(𝐵,𝑤, 𝜆) to completely analyze the number of distinct homotopy types (see
Propositions 8.1 and 9.1).
We note that the results from [9, Chapter 12] which we cite are formulated there in terms of

closed 4-manifolds, but apply equally well to 𝑃𝐷4-complexes.

We first specialize to the cases where 𝜋1(𝑋) = ℤ∕4.

Lemma 3.3. Every 𝑃𝐷4-complex 𝑋 with 𝜋1(𝑋) = ℤ∕4 and 𝜒(𝑋) = 1 is homotopy equivalent to the
geometric quotient𝕄. Moreover, the image 𝑐∗[𝑋] ∈ 𝐻4(𝜋; ℤ

𝑤) of its fundamental class is nonzero.

Proof. The universal cover𝑋 is homotopy equivalent to 𝑆2 × 𝑆2 [9, Lemma 12.3]. It is shown in [9,
Chapter 12, §6]) that the quadratic 2-type is uniquely determined by the assumptions on 𝑋, and
the torsion subgroup of ℤ𝑤 ⊗ℤ[𝜋] Γ𝑊(𝜋2(𝑋)) is zero. For the last statement, note that the group
𝜋 = ℤ∕4 acts on Π ∶= 𝜋2(𝑋) = ℤ2 via ( 0 1

−1 0 ), and so, Π ≅ Λ∕(𝑡2 + 1) = ℤ[𝑖]. The general result
of [10, Theorem 1.10] is a stable exact sequence

 ∶ 0 → 𝐻2(𝐾;Λ
𝑤) → 𝜋2(𝑋) ⊕ Λ𝑟 → 𝐻2(𝐾;Λ𝑤) → 0,

where 𝐾 is any finite 2-complex with 𝜋1(𝐾) = 𝜋, and the extension class

[] ∈ Ext1Λ(𝐻
2(𝐾;Λ),𝐻2(𝐾;Λ))

can be naturally identified with the image 𝑐∗[𝑋] ∈ 𝐻4(𝜋; ℤ
𝑤) of the fundamental class of𝑋. Since

𝐻1(𝜋; ℤ[𝑖]) = 0 and𝐻1(𝜋;𝐻2(𝐾;Λ
𝑤)) ≅ 𝐻4(𝜋; ℤ

𝑤) = ℤ∕2, the extension  must be nonsplit. □

Finally, we recall two additional invariants that can be used to show that not every finite 𝑃𝐷4-
complex is homotopy equivalent to a closed manifold.

Example 3.4. Kim, Kojima, and Raymond [13] defined aℤ∕4-valued quadratic function 𝑞𝐾𝐾𝑅(𝑀)

on 𝜋2(𝑀) ⊗ ℤ∕2, for𝑀 a closed nonorientable 4-manifold, by the rule

𝑞𝐾𝐾𝑅(𝑀)(𝑥) = 𝑒(𝜈(𝑆𝑥)) + 2| Self (𝑆𝑥)|,

where 𝑆𝑥 ∶ 𝑆2 → 𝑀 is a self-transverse immersion representing 𝑥, 𝑒(𝜈(𝑆𝑥)) is the Euler number of
the normal bundle, and Self (𝑆𝑥) is the set of double points of the image of 𝑆𝑥. This is a quadratic
enhancement of the mod 2 equivariant intersection pairing on 𝑀̃, and is a homotopy invariant for
𝑀.

The second invariant is an obstruction to the reducibility of the Spivak normal fiber space to a
vector bundle.
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8 HAMBLETON and HILLMAN

Example 3.5. Let𝑋′ → 𝑋 be a double cover of finite𝑃𝐷2𝑛-complexes, classified by amap𝑓∶ 𝑋 →

𝑅𝑃𝑘+1, for some 𝑘 >> 𝑛. Following Hambleton and Milgram [4], we say that the double covering
is Poincaré splittable if the homotopy class of the map 𝑓 contains a representative that is Poincaré
transverse to 𝑅𝑃𝑘 ⊂ 𝑅𝑃𝑘+1. This always holds if 𝑋′ → 𝑋 is a double cover of closed manifolds, or
more generally, if the Spivak normal fiber space has a vector bundle reduction. There is a quadratic
map

𝑞∶ 𝐻𝑛(𝑋′; ℤ∕2) → ℤ∕2

refining the nonsingular bilinear form

𝓁(𝑎, 𝑏) = ⟨𝑎 ∪ 𝑇∗𝑏, [𝑋′]⟩,
where 𝑎, 𝑏 ∈ 𝐻𝑛(𝑋′; ℤ∕2) and 𝑇∶ 𝑋′ → 𝑋′ is the free involution induced by the double cover. Let
𝐴(𝑋, 𝑓) ∈ ℤ∕2 denote the Arf invariant of this quadratic form. Then𝐴(𝑋, 𝑓) defines a homomor-
phismN2𝑛(𝑅𝑃

∞) → ℤ∕2, which vanishes for double covers ofmanifolds (see [4, Proposition 2.1]).
If 𝑋 is orientable, then 𝐴(𝑋, 𝑓) = 0 for any double cover (see [5]), but there exist nonorientable
double covers in each even dimension ⩾ 4 for which 𝐴(𝑋, 𝑓) ≠ 0 (see [4, Theorem 3.1]).

4 NONORIENTABLE QUOTIENTS OF 𝑺𝟐 × 𝑺𝟐 WITH 𝝅 = ℤ∕𝟐

We introduce some notation for later use. Let𝐴 be the antipodal involution of 𝑆2, and let 𝜂∶ 𝑆3 →

𝑆2 denote the Hopf fibration. Let 𝜂∶ 𝑆3 → 𝑅𝑃2 be the composite of 𝜂 with the projection 𝑆2 →

𝑅𝑃2 = 𝑆2∕{𝑥 ∼ 𝐴(𝑥)}. In this section, we describe the homotopy types of nonorientable quotients
of 𝑆2 × 𝑆2 by a free involution.

Proposition 4.1. Let 𝑋 be a finite nonorientable 𝑃𝐷4-complex with 𝜋1(𝑋) = ℤ∕2. If 𝑋 ≃ 𝑆2 × 𝑆2,
then

(i) 𝑋 has the quadratic 2-type of 𝑆2 × 𝑅𝑃2.
(ii) There are four distinct homotopy types of 𝑃𝐷4-complexes in this quadratic 2-type.
(iii) Exactly, three of these homotopy types are represented by closed manifolds.

The manifolds in this quadratic 2-type are 𝑆2 × 𝑅𝑃2, 𝑆2×̃𝑅𝑃2, and 𝑅𝑃4#𝑆1𝑅𝑃
4.

Proof. Since 𝜒(𝑋) = 4 and 𝜋1(𝑋) = ℤ∕2, we have 𝜒(𝑋) = 2. There are two quadratic 2-types of
nonorientable𝑃𝐷4-complexes𝑋with𝜋 = ℤ∕2 and𝜒(𝑋) = 2. Moreover, all such quotients of 𝑆2 ×
𝑆2 have the quadratic 2-type of 𝑆2 × 𝑅𝑃2 (see [9, Chapter 12, §6]). We now apply Theorem 3.1 to
analyze the homotopy types.
Let 𝐾 = 𝑆2 × 𝑅𝑃2 ⧵ 𝐷4 be the 3-skeleton of 𝑆2 × 𝑅𝑃2, let 𝐼1, 𝐼2 ∶ 𝑆2 → 𝐾 = 𝑆2 × 𝑆2 ⧵ 2𝐷4 be the

inclusions of the factors, and let [𝐽] be the homotopy class of a fixed lift 𝐽 ∶ 𝑆3 → 𝐾 of the natural
inclusion 𝐽 ∶ 𝑆3 = 𝜕𝐷4 → 𝐾.
Since𝜋2(𝑆2 × 𝑅𝑃2) = ℤ2 is generated by 𝐼1 and 𝐼2, the groupΓ𝑊(𝜋2(𝑆

2 × 𝑅𝑃2))has basis [𝐼1, 𝐼2],
𝜂1 = 𝐼1◦𝜂, and 𝜂2 = 𝐼2◦𝜂. Since the nontrivial element of 𝜋 fixes 𝐼1 and changes the sign of
𝐼2, it fixes 𝜂1 and 𝜂2 and changes the sign of [𝐼1, 𝐼2]. Hence, Γ𝑊(𝜋2(𝑆

2 × 𝑅𝑃2)) ≅ ℤ𝑤 ⊕ ℤ2, and
so, ℤ𝑤 ⊗ℤ[𝜋] Γ𝑊(𝜋2(𝑆

2 × 𝑅𝑃2)) ≅ ℤ ⊕ (ℤ∕2)2. In particular, the torsion subgroup of ℤ𝑤 ⊗ℤ[𝜋]

Γ𝑊(𝜋2(𝑆
2 × 𝑅𝑃2)) is isomorphic to (ℤ∕2)2, and is generated by the images of 𝜂𝑖 , for 𝑖 = 1, 2.
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QUOTIENTS OF 𝑆2 × 𝑆2 9

Thus, there are atmost four homotopy types, represented by the𝑃𝐷4-complexes𝑊𝛼 = 𝐾 ∪[𝐽]+𝛼
𝑒4 corresponding to 𝛼 = 0, 𝜂1, 𝜂2, and 𝜂1 + 𝜂2. Clearly,𝑊0 = 𝐾 ∪[𝐽] 𝐷

4 ≃ 𝑆2 × 𝑅𝑃2. According to
[13, p. 80],𝑊𝜂1

≃ 𝑆2×̃𝑅𝑃2 and𝑊𝜂1+𝜂2
≃ 𝑅𝑃4#𝑆1𝑅𝑃

4. We shall describe these manifolds explicitly
in the next section, and show that they have distinct homotopy types in Theorem 6.1. In [4], it is
shown that the 𝑃𝐷4-complex 𝑃𝐻𝑀 = 𝑊𝜂2

is not homotopy equivalent to a closed 4-manifold (note
that [4] writes the factors in the opposite order). Thus, these four homotopy types are distinct and
part (iii) follows. □

Remark 4.2. The only other quadratic 2-type with 𝜋 = ℤ∕2,𝑤1 ≠ 1 and 𝜒 = 2 is that of 𝑅𝑃4#𝐶𝑃2
(the nontrivial 𝑅𝑃2-bundle over 𝑆2), which contains two homotopy types. One of these is not
homotopy equivalent to a closed 4-manifold, by [21, §3.3.1]. These 𝑃𝐷4-complexes have universal
cover 𝑋 ≃ 𝑆2×̃𝑆2, and do not cover 𝑃𝐷4-complexes with 𝜒 = 1 (see [9, Lemma 12.3]).

5 EXPLICIT CONSTRUCTIONS FOR 𝑺𝟐×̃𝑹𝑷𝟐 AND 𝑹𝑷𝟒#𝑺𝟏𝑹𝑷
𝟒

The goal of this section is to express these two smooth model manifolds in terms of explicit build-
ing blocks. The “coordinate” formulas will be used in later sections to compute homotopy type
invariants, and to construct smooth model manifolds with 𝜒(𝑀) = 1.
Let 𝐸 be a regular neighborhood of 𝑅𝑃2 = {[𝑥∶𝑦∶𝑧∶0∶0] ∣ 𝑥2 + 𝑦2 + 𝑧2 = 1} in 𝑅𝑃4, and note

the following properties:

(i) 𝜈 = 𝑅𝑃4 ⧵ 𝐸 is a regular neighborhood of 𝑅𝑃1 = {[0∶0∶0∶𝑢∶𝑣] ∣ 𝑢2 + 𝑣2 = 1}.
(ii) 𝜕𝐸 = 𝜕𝜈 is both the total space of a nontrivial 𝑆1-bundle over 𝑅𝑃2 and the mapping torus

𝑆2×̃𝑆1 = 𝑆2 × [0, 1]∕(𝑠, 0) ∼ (𝐴(𝑠), 1).
(iii) In particular, 𝜋1(𝜕𝐸) ≅ ℤ, and so, 𝐸 is not the product 𝑅𝑃2 × 𝐷2.
(iv) On passing to the universal cover, we see that 𝑆4 = 𝐸 ∪ 𝜈.
(v) We may assume that 𝐸 = {(𝑥, 𝑦, 𝑧, 𝑢, 𝑣) ∈ 𝑆4 ∣ 𝑢2 + 𝑣2 ⩽ 1

4
}.

Now let ℎ∶ 𝐸 → 𝑆2 × 𝐷2 be the homeomorphism given byℎ(𝑒) = (𝑥∕𝑟, 𝑦∕𝑟, 𝑧∕𝑟, 2𝑢, 2𝑣), where
𝑟 =

√
𝑥2 + 𝑦2 + 𝑧2, for all 𝑒 = (𝑥, 𝑦, 𝑧, 𝑢, 𝑣) ∈ 𝐸. It follows thatwemaywrite𝐸 = 𝑆2 × 𝐷2∕(𝑠, 𝑑) ∼

(𝐴(𝑠), −𝑑), and the projection 𝑝∶ 𝐸 → 𝑅𝑃2 is then given by 𝑝([𝑠, 𝑑]) = [𝑠] ∈ 𝑅𝑃2. The space 𝐸
is also an orbifold bundle with general fiber 𝑆2 over the marked disc 𝐷(2), via the projection
𝑝′([𝑠, 𝑑]) = 𝑑2. Here, we view 𝐷2 as the unit disc in the complex plane.
We shall view 𝑆2 henceforth as the purely imaginary quaternions of length 1. The antipodal

map 𝐴 is multiplication by −1, while conjugation by 𝐤 induces rotation 𝑅𝜋 through a half-turn
about the 𝐤-axis. The sphere is the union of two hemispheres 𝑆2 = 𝐷− ∪ 𝐷+ with boundary 𝑆1 =
𝐷− ∩ 𝐷+ in the (𝐢, 𝐣)-plane.
The orthogonal projection 𝜆 of the purely imaginary quaternions onto the (𝐢, 𝐣)-plane restricts

to homeomorphisms from each of 𝐷− and 𝐷+ onto the unit disc in this plane, and 𝜆((𝑅𝜋(𝑠)) =

𝐴(𝜆(𝑠)) = −𝜆(𝑠), for all 𝑠 ∈ 𝑆2.

Definition 5.1 (Construction of 𝑆2×̃𝑅𝑃2). Doubling 𝐸 along its boundary gives the total space of
an 𝑆2-bundle over 𝑅𝑃2. This space 𝐷𝐸 is nonorientable and 𝑣2(𝐷𝐸) ≠ 0, since the core 𝑅𝑃2 in 𝐸

has self-intersection 1 (mod 2). Thus, 𝐷𝐸 is the nontrivial, nonorientable 𝑆2-bundle space

𝑆2×̃𝑅𝑃2 = 𝑆2 × 𝑆2∕(𝑠, 𝑡) ∼ (𝐴(𝑠), 𝑅𝜋𝑡).
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10 HAMBLETON and HILLMAN

Composition of the double covering of 𝑅𝑃2 with the projection of 𝑆2 × 𝑆2 onto its first factor
induces the 𝑆2-bundle projection 𝐷𝐸 → 𝑅𝑃2.

The space𝐷𝐸 is also the total space of an orbifold bundle with general fiber 𝑆2 over the orbifold
𝑆(2, 2) (the double of 𝐷(2)).
We may construct a different 4-manifold by identifying two copies of 𝐸 via a diffeomorphism

of their boundaries which does not extend across 𝐸. The action of conjugation by 𝑒𝜋𝐢𝑡 on 𝑆2 inside
the unit quaternions is rotation through 2𝜋𝑡 radians about the 𝐢-axis.

Definition 5.2 (Construction of 𝑅𝑃4#𝑆1𝑅𝑃
4). Let 𝐸1 and 𝐸2 be two copies of 𝐸, and let 𝜉 ∶ 𝜕𝐸1 →

𝜕𝐸2 be the map given by

𝜉([𝑠, 𝑦2𝐢]1) = [𝑦𝐢𝑠(𝑦𝐢)−1, 𝑦2𝐢]2, ∀ 𝑠 ∈ 𝑆2, ∀ 𝑦 = 𝑒𝜋𝐤𝑡, 0 ⩽ 𝑡 ⩽ 1.

We define 𝑅𝑃4#𝑆1𝑅𝑃
4 = 𝐸1 ∪𝜉 𝐸2 (see [8, p. 651] for another description).

Note that 𝑒𝜋𝐤𝑡 is a square root for 𝑒2𝜋𝐤𝑡. This “twist map” 𝜉 does not extend to a
homeomorphism from 𝐸1 to 𝐸2 (see [12, Corollary 2.2]).

Remark 5.3. The complication in the formula for 𝜉 in Definition 5.2 flows from the fact that this
copy of 𝑆1 is not closed under quaternionic multiplication, whereas its translate 𝑆1𝐢 is the unit
circle in ℝ⊕ℝ𝐤 ≅ ℂ.

Remark 5.4. The manifold 𝑅𝑃4#𝑆1𝑅𝑃
4 is the total space of an orbifold bundle with regular fiber

𝑆2 over 𝑆(2, 2). The exceptional fibers are the cores 𝑅𝑃2 of the copies of 𝐸, and each has self-
intersection 1. Hence, 𝑣2(𝑅𝑃4#𝑆1𝑅𝑃

4) ≠ 0. We shall show in the next section that 𝑅𝑃4#𝑆1𝑅𝑃
4 is

not homotopy equivalent to a bundle space [13], and hence, it is not geometric.

We conclude this section with an explicit identification of 𝑋 ≃ 𝑆2 × 𝑆2 for the model manifold
𝑋 = 𝑅𝑃4#𝑆1𝑅𝑃

4.
The universal cover of 𝑅𝑃4#𝑆1𝑅𝑃

4 is the union 𝐸1 ∪𝜉̃ 𝐸2, where 𝜉̃ is the lift of 𝜉 given by
𝜉̃((𝑠, 𝑥)1) = (𝑥𝑠𝑥−1, 𝑥)2, for all (𝑠, 𝑥) ∈ 𝑆2 × 𝑆1 = 𝜕𝐸1. Let 𝜇𝑡(𝑥) = cos(𝜋

2
𝑡)𝟏 + sin(𝜋

2
𝑡)𝑥, for 𝑥 ∈

𝑆1 and 0 ⩽ 𝑡 ⩽ 1. Then 𝜇0(𝑥) = 𝟏 and 𝜇1(𝑥) = 𝑥, for all 𝑥 ∈ 𝑆1, and

𝜉̃𝑡((𝑠, 𝑥)1) = (𝜇𝑡(𝑥)𝑠𝜇𝑡(𝑥)
−1, 𝑥)2

defines an isotopy from the identity to 𝜉. Hence, 𝐸1 ∪𝜉̃ 𝐸2 ≅ 𝑆2 × 𝑆2.
We may make this explicit as follows. Let 𝑃(𝑟, 𝑥) = sin(𝜋

2
𝑟)𝑥 + cos(𝜋

2
𝑟)𝐤, for 0 ⩽ 𝑟 ⩽ 1 and 𝑥 ∈

𝑆1 = 𝐷− ∩ 𝐷+. Then 𝑃(0, 𝑥) = 𝐤 and 𝑃(1, 𝑥) = 𝑥, for all 𝑥 ∈ 𝑆1. Let 𝑉∶ 𝐷+ → 𝑆3 be the function
defined by 𝑉(𝑑) = 𝑃(𝑟, 𝑥) if 𝜆(𝑑) = 𝑟𝑥, with 0 ⩽ 𝑟 ⩽ 1 and 𝑥 ∈ 𝑆1. Then the function 𝐻∶ 𝑆2 ×

𝑆2 → 𝐸1 ∪ 𝐸2, defined by

𝐻(𝑠, 𝑑) = (𝑠, 𝑑)1 ∈ 𝐸1, ∀ (𝑠, 𝑑) ∈ 𝑆2 × 𝐷− (5.5)

and

𝐻(𝑠, 𝑑) = (𝑉(𝑑)𝑠𝑉(𝑑)−1, 𝑑)2 ∈ 𝐸2, ∀ (𝑠, 𝑑) ∈ 𝑆2 × 𝐷+, (5.6)
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QUOTIENTS OF 𝑆2 × 𝑆2 11

is a homeomorphism. Hence, 𝑅𝑃4#𝑆1𝑅𝑃
4 ≅ 𝑆2 × 𝑆2∕⟨𝜓⟩, where 𝜓 is the free involution given by

𝜓(𝑠, 𝑑) = (𝐴(𝑠), 𝑅𝜋(𝑑)), ∀ (𝑠, 𝑑) ∈ 𝑆2 × 𝐷−,

and

𝜓(𝑠, 𝑑) = (𝑉(𝑅𝜋(𝑑))
−1𝑉(𝑑)𝐴(𝑠)𝑉(𝑑)−1𝑉(𝑅𝜋(𝑑)), 𝑅𝜋(𝑑)), ∀ (𝑠, 𝑑) ∈ 𝑆2 × 𝐷+.

It is clear from the formula that 𝜓 is an involution, since 𝑅2𝜋 = 𝐼𝑥.
If we set 𝑥 = cos(2𝜋𝑡)𝐢 + sin(2𝜋𝑡)𝐣 for some 0 ⩽ 𝑡 ⩽ 1, then we may write the factor

𝑉(𝑅𝜋(𝑑))
−1𝑉(𝑑)more explicitly as

𝑉(𝑅𝜋(𝑑))
−1𝑉(𝑑) = cos(𝜋𝑟)𝟏 + sin(𝜋𝑟) sin(2𝜋𝑡)𝐢 − sin(𝜋𝑟) cos(2𝜋𝑡)𝐣.

Thus, 𝑉(𝑅𝜋(𝑑))−1𝑉(𝑑) = 𝟏 when 𝑟 = 0 and 𝑉(𝑅𝜋(𝑑))−1𝑉(𝑑) = −𝟏 when 𝑟 = 1. (This expression
was found by solving the linear system

𝑉(𝑅𝜋(𝑑))(𝑢𝐢 + 𝑣𝐣 + 𝑤𝐤 + 𝑧𝟏) = 𝑉(𝑑),

for the unknowns 𝑢, 𝑣, 𝑤, 𝑧 ∈ ℝ.)

6 DISTINGUISHING THE HOMOTOPY TYPES

We shall follow [13] in using the mod 2 intersection pairing (in the guise of 𝑣2) and the invariant
𝑞𝐾𝐾𝑅 to show that𝑅𝑃4#𝑆1𝑅𝑃

4 is not homotopy equivalent to either of the 𝑆2-bundle spaces. As our
construction of 𝑅𝑃4#𝑆1𝑅𝑃

4 differs slightly from that of [13], we shall give details of the geometric
computation of 𝑞𝐾𝐾𝑅 for these manifolds.

Theorem 6.1. Themodel manifolds 𝑆2 × 𝑅𝑃2, 𝑆2×̃𝑅𝑃2, or 𝑅𝑃4#𝑆1𝑅𝑃
4 represent distinct homotopy

types, distinguished by the Wu class 𝑣2 and the invariant 𝑞𝐾𝐾𝑅 .

Proof. Let𝑀 = 𝑆2 × 𝑅𝑃2, 𝑆2×̃𝑅𝑃2 or 𝑅𝑃4#𝑆1𝑅𝑃
4, and let 𝑥, 𝑦 ∈ 𝜋2(𝑀) be the classes correspond-

ing to the first and second factors of 𝑆2 × 𝑆2. Then 𝑥 + 𝑦 corresponds to the diagonal. In each
case, 𝑥 is represented by the (general) fibers of the (orbifold) bundle projections to 𝑅𝑃2, 𝑆(2, 2),
and 𝑆(2, 2), respectively, which are embeddedwith trivial normal bundle, and so 𝑞𝐾𝐾𝑅(𝑀)(𝑥) = 0,
while the normal Euler number of the diagonal is ±2.
Let𝑓∶ 𝑆2 → 𝑆2 be themap given by𝑓(𝑥, 𝑦, 𝑧) = (𝑥, 𝑦, |𝑧|) for all (𝑥, 𝑦, 𝑧) ∈ 𝑆2, and let g ∶ 𝑆2 →

𝑅𝑃2 be the twofold cover. The 2-sphere {(𝑓(𝑠), 𝑠)|𝑠 ∈ 𝑆2} ⊆ 𝑆2 × 𝑆2 represents 𝑦, and has trivial
normal bundle, since 𝑓 is null homotopic. Its image in 𝑆2 × 𝑅𝑃2 has a single double point, and so
𝑞𝐾𝐾𝑅(𝑆

2 × 𝑅𝑃2)(𝑦) ≡ 2 (mod 4). The graph Γg ⊂ 𝑆2 × 𝑅𝑃2 is an embedded 2-sphere which lifts to
the diagonal embedding in 𝑆2 × 𝑆2. Since there are no self-intersections, 𝑞𝐾𝐾𝑅(𝑆2 × 𝑅𝑃2)(𝑥 + 𝑦) ≡

2 (mod 4) also. Hence, 𝑞𝐾𝐾𝑅(𝑆2 × 𝑅𝑃2) is nontrivial for 𝑆2 × 𝑅𝑃2.
In 𝑆2×̃𝑅𝑃2, the fiber of the bundle projection to 𝑅𝑃2 represents 𝑦. Hence,

𝑞𝐾𝐾𝑅(𝑆
2×̃𝑅𝑃2)(𝑥) = 𝑞𝐾𝐾𝑅(𝑆

2×̃𝑅𝑃2)(𝑦) = 0.

The image of the diagonal has a circle of self-intersections. However, 𝑖𝑑𝑆2 is isotopic to a self-
homeomorphism of 𝑆2 which is the identity on one hemisphere andmoves the equator off itself in
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12 HAMBLETON and HILLMAN

the other hemisphere. Hence, the diagonal embedding is isotopic to an embedding whose image
has just one self-intersection. Hence, 𝑞𝐾𝐾𝑅(𝑆2×̃𝑅𝑃2)(𝑥 + 𝑦) = 0 also, and so, 𝑞𝐾𝐾𝑅(𝑆2×̃𝑅𝑃2) is
identically 0 for 𝑆2×̃𝑅𝑃2.
In 𝑅𝑃4#𝑆1𝑅𝑃

4, the class 𝑦 is represented by the image of {𝐣} × 𝑆2. Double points in the image
correspond to pairs {𝑠, 𝑠′} ⊂ 𝑆2 such that 𝜓(𝐣, 𝑠) = (𝐣, 𝑠′). If {𝑠, 𝑠′} is such a pair, then 𝑠, 𝑠′ ∈ 𝐷+,
𝑠′ = 𝑅𝜋(𝑠) and

𝐣𝑉(𝑅𝜋(𝑠))
−1𝑉(𝑠) = −𝑉(𝑅𝜋(𝑠))

−1𝑉(𝑠)𝐣.

On using the explicit formula for 𝑉(𝑅𝜋(𝑑))−1𝑉(𝑑) given at the end of Section 5, we see that we
must have cos(𝜋𝑟) = 0 and cos(2𝜋𝑡) = 0. Thus, there are just two possibilities for 𝑠, differing by the
rotation 𝑅𝜋. We may check that the double point is transverse. Hence, | Self (𝑆𝑦)| = 1. Since {𝐣} ×
𝑆2 has trivial normal bundle in 𝑆2 × 𝑆2, 𝑞𝐾𝐾𝑅(𝑅𝑃4#𝑆1𝑅𝑃

4)(𝑦) ≡ 2 (mod 4), and so 𝑅𝑃4#𝑆1𝑅𝑃
4

is not homotopy equivalent to 𝑆2×̃𝑅𝑃2. It is not homotopy equivalent to 𝑆2 × 𝑅𝑃2 either, since
𝑣2(𝑅𝑃

4#𝑆1𝑅𝑃
4) ≠ 0. Thus, these three manifolds may be distinguished by the invariants 𝑣2 and

𝑞𝐾𝐾𝑅. □

We shall use the following simple observation in several places below.

Lemma 6.2. Let 𝑋 = 𝐾 ∪ 𝐷4 be a 𝑃𝐷4-complex with 3-skeleton 𝐾 and one top cell. Then
𝐻∗(𝑋; 𝔽2) → 𝐻∗(𝐾; 𝔽2) is a ring homomorphism which is an isomorphism in degrees ⩽ 3.

Proof. This follows immediately from the fact that𝐻𝑘(𝑋,𝐾; 𝔽2) = 0 for 𝑘 ⩽ 3. □

For completeness, we show that 𝑣2(𝑃𝐻𝑀) = 0. Let 𝐾 = 𝑆2 × 𝑅𝑃2 ⧵ 𝐷4 be the 3-skeleton of
𝑆2 × 𝑅𝑃2. Since the homomorphisms𝐻∗(𝑊𝛼; 𝔽2) → 𝐻∗(𝐾; 𝔽2) are isomorphisms in degrees ⩽ 3,
𝐻1(𝑊𝛼; 𝔽2) = ⟨𝑥⟩, where 𝑥3 = 0 in all cases. Let 𝑝∶ 𝐾 → 𝑆2 denote the restriction of the projec-
tion map to the first factor of 𝑆2 × 𝑅𝑃2. The group 𝐻2(𝐾; 𝔽2) is generated by 𝑥2 and the class 𝑢
pulled back by 𝑝∶ 𝐾 → 𝑆2. Since 𝑝◦𝜂2 is a constant map, it follows that 𝑝◦(𝐽 + 𝜂2) = 𝑝◦𝐽, which
extends across 𝐷4. Therefore, the map 𝑝 extends to a map from 𝑃𝐻𝑀 to 𝑆2, and so, 𝑢2 = 0 in
𝐻4(𝑃𝐻𝑀; 𝔽2). Also since 𝑥4 = 0, it follows that 𝑣2(𝑃𝐻𝑀) = 0. On the other hand, this projection
does not extend in this way when 𝛼 = 𝜂1 or 𝜂1 + 𝜂2, and in these cases, 𝑣2 ≠ 0, as we have seen.

7 𝑷𝑫𝟒-COMPLEXESWITH 𝝅 = (ℤ∕𝟐)𝟐 AND 𝝌 = 𝟏

We now consider the cases where 𝜋 = ℤ∕2 × ℤ∕2. As mentioned in the Introduction, there are
two geometric quotients, namely, 𝑅𝑃2 × 𝑅𝑃2 and the nontrivial bundle 𝑅𝑃2×̃𝑅𝑃2. In this section,
we will construct a third smoothmanifold𝑁 with universal cover 𝑆2 × 𝑆2 and fundamental group
𝜋, which is not a geometric quotient.
Recall from Definition 5.2 that the manifold 𝑅𝑃4#𝑆1𝑅𝑃

4 = 𝐸1 ∪𝜉 𝐸2 was expressed in terms of
the gluing map 𝜉 ∶ 𝜕𝐸1 → 𝜕𝐸2. We can define a smooth-free involution 𝜃 of 𝜕𝐸𝑖 = 𝑆2×̃𝑆1, with
quotient 𝑅𝑃2 × 𝑆1, by the map 𝜃([𝑠, 𝑥]) = [−𝑠, 𝑥]. Note that the maps 𝜃 and 𝜉 commute.

Definition 7.1. Let 𝑁 denote the quotient space of 𝑅𝑃4#𝑆1𝑅𝑃
4 by the smooth-free involution 𝐹

given by the formula 𝐹([𝑠, 𝑑]𝑖) = [−𝑠, 𝑑]3−𝑖 for all [𝑠, 𝑑]𝑖 ∈ 𝐸𝑖 and 𝑖 = 1, 2.
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QUOTIENTS OF 𝑆2 × 𝑆2 13

By construction, the manifold 𝑁 has 𝜋1(𝑁) = ℤ∕2 × ℤ∕2 and 𝜒(𝑁) = 1. We summarize some
of its properties.

Proposition 7.2. The smooth closed 4-manifold𝑁 has the following properties:

(i) 𝑁 is the quotient of 𝑅𝑃4#𝑆1𝑅𝑃
4 by a smooth-free involution;

(ii) the universal covering 𝑁̃ = 𝑆2 × 𝑆2;
(iii) 𝑁 is in the quadratic 2-type of 𝑅𝑃2×̃𝑅𝑃2;
(iv) 𝑁 is not a geometric quotient.

Proof. Part (i) is immediate from Definition 7.1, and part (ii) follows from the construction of
𝑅𝑃4#𝑆1𝑅𝑃

4 given in Definition 5.2.
Part (iv) follows from Theorem 6.1: the manifold 𝑁 is not homotopy equivalent to a geometric

quotient (i.e., a bundle space over 𝑅𝑃2), since it is covered by 𝑅𝑃4♯𝑆1𝑅𝑃4, which is not homotopy
equivalent to a bundle space.
In order to prove part (iii), we first collect some information about the quadratic 2-types in this

setting. In [9, Chapter 12, §5], it is shown that if 𝜋 = ℤ∕2 × ℤ∕2 and 𝜒 = 1, then the action of 𝜋
on 𝜋2 ≅ ℤ2 is essentially unique, and in [9, Chapter 12, §6], it is shown that just three of the ele-
ments of 𝐻3(𝜋; 𝜋2) = (ℤ∕2)4 are 𝑘-invariants of such 𝑃𝐷4-complexes . Two of these 𝑘-invariants
are interchanged by the involution which swaps the orientation-reversing elements of 𝜋 and the
summands of 𝜋2 fixed by each such element. Hence, there are exactly two equivalence classes of
quadratic 2-types realized by 𝑃𝐷4-complexes 𝑋 with universal cover 𝑋 ≃ 𝑆2 × 𝑆2 and

𝜋1(𝑋) ≅ 𝜋 = ⟨𝑡, 𝑢 ∣ 𝑡2 = 𝑢2 = (𝑡𝑢)2 = 1⟩.

Let {𝑡∗, 𝑢∗} be the dual basis for 𝐻1(𝜋; 𝔽2). If 𝑋 is a 𝑃𝐷4-complex with 𝜋1(𝑋) = 𝜋 and 𝜒(𝑋) = 1,
then wemay assume that 𝑣1(𝑋) = 𝑡∗ + 𝑢∗ and 𝑣2(𝑋) is either 𝑡∗𝑢∗ or 𝑡∗𝑢∗ + (𝑢∗)2. This is an easy
consequence of Poincaré duality with coefficients 𝔽2 and the Wu formulas.
Let 𝑋+ denote the orientation double cover of 𝑋. If 𝑣2(𝑋) = 𝑡∗𝑢∗, then 𝑣2(𝑋

+) = 𝑡∗2 ≠ 0 and
both nonorientable double covers have 𝑣2 = 0, while if 𝑣2(𝑋) = 𝑡∗𝑢∗ + (𝑢∗)2, then 𝑣2(𝑋+) = 0 and
just one of the nonorientable double covers has 𝑣2 = 0.
The two possibilities for 𝑣2 are realized, respectively, by 𝑅𝑃2 × 𝑅𝑃2 (with orientation double

cover 𝑆(3𝜂)) and the nontrivial bundle space 𝑅𝑃2×̃𝑅𝑃2 = 𝑆2 × 𝑆2∕𝜋, where 𝜋 acts by 𝑡(𝑠, 𝑠′) =
(−𝑠, 𝑠′) and 𝑢(𝑠, 𝑠′) = (𝑅𝜋(𝑠), −𝑠

′), for all 𝑠, 𝑠′ ∈ 𝑆2.
It now follows that 𝑁 is in the quadratic 2-type of 𝑅𝑃2×̃𝑅𝑃2, since its orientation double

covering 𝑁+ has 𝑣2(𝑁+) = 0 (see Remark 5.4). In particular, 𝑁+ = 𝑆(𝜂 ⊕ 2𝜖). □

Remark 7.3. In Section 9, we will show that there are exactly four distinct homotopy types in the
quadratic 2-type of 𝑅𝑃2×̃𝑅𝑃2, of which two are represented by manifolds.

8 THE QUADRATIC 2-TYPE OF 𝑹𝑷𝟐 × 𝑹𝑷𝟐

In this section, we study the quadratic 2-type for the geometric quotient 𝑅𝑃2 × 𝑅𝑃2, and show that
it contains only one homotopy type represented by a closed manifold.
Let 𝑋0 = 𝑅𝑃2 × 𝑅𝑃2, and let 𝑡 and 𝑢 be the generators of 𝜋 = 𝜋1(𝑋0) corresponding to

the factors. Let Λ = ℤ[𝜋]. The inclusions of the factors 𝑆2 into 𝑋0 determine canonical
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14 HAMBLETON and HILLMAN

generators 𝐼1 and 𝐼2 forΠ = 𝜋2(𝑋0), and theℤ[𝜋]-moduleΠ is canonically split asℤ𝑡 ⊕ ℤ𝑢, where
ℤ𝑡 = Λ∕(𝑡 + 1, 𝑢 − 1) and ℤ𝑢 = Λ∕(𝑡 − 1, 𝑢 + 1). Note that HomΛ(ℤ𝑡, ℤ𝑢) = HomΛ(ℤ𝑢, ℤ𝑡) = 0.
Let 𝐵 be the Postnikov 2-stage of 𝑋0, and let 𝑤, 𝜆 be as defined in §3. If 𝑓 ∈ Aut(𝐵,𝑤, 𝜆), let 𝑓1

and 𝑓2 be the induced automorphisms of 𝜋 and Π. Then

𝑓2(g ⋅ 𝜉) = 𝑓1(g) ⋅ 𝑓2(𝜉)

for all g ∈ 𝜋 and 𝜉 ∈ 𝜋2. The isomorphism 𝑓1 must preserve the set of orientation-reversing ele-
ments of 𝜋, since 𝑤𝑓1 = 𝑤. Thus, either 𝑓1 = 𝑖𝑑𝜋 or 𝑓1(𝑡) = 𝑢 and 𝑓1(𝑢) = 𝑡. If 𝑓1 = 𝑖𝑑𝜋, then
𝑓2 is Λ-linear, and so, must respect the direct sum splitting of 𝜋2(𝑋0), since HomΛ(ℤ𝑡, ℤ𝑢) =

HomΛ(ℤ𝑢, ℤ𝑡) = 0. Since 𝑓2 must also be an isometry of the pairing 𝜆, we see that 𝑓2 = ±𝑖𝑑Π.
If 𝑓1 ≠ 𝑖𝑑𝜋, then 𝑓2 must transpose the generators ofΠ, and again is determined up to sign. Thus,
the image of Aut(𝐵,𝑤, 𝜆) in Aut(𝜋) × Aut(Π) has order at most 4, and so is abelian.

Proposition 8.1. There are three homotopy types of 𝑃𝐷4-complexes 𝑋𝛼 in the quadratic 2-type of
𝑅𝑃2 × 𝑅𝑃2.

Proof. Let 𝐾 = 𝑅𝑃2 × 𝑅𝑃2 ⧵ 𝐷4, and let [𝐽] be the homotopy class of a fixed lift 𝐽 ∶ 𝑆3 → 𝐾 of the
natural inclusion 𝐽 ∶ 𝑆3 = 𝜕𝐷4 → 𝐾. The Hurewicz homomorphism ℎ∶ 𝜋3(𝐾) → 𝐻3(𝐾; ℤ) ≅ ℤ3

is surjective, with kernel the image of Γ𝑊(Π), generated by Whitehead products and composites
with 𝜂. Then ℎ([𝐽]) generates𝐻3(𝐾; ℤ) as a Λ-module, and𝐻3(𝐾; ℤ) ≅ Λ∕(1 − 𝑡)(1 − 𝑢)Λ.
The elements 𝜂1 = 𝐼1◦𝜂, 𝜂2 = 𝐼2◦𝜂, and 𝜁 = [𝐼1, 𝐼2] are a basis for Γ𝑊(Π) ≅ ℤ3. Since Γ𝑊(Π) is

torsion free and 2𝜂𝑖 = [𝐼𝑖, 𝐼𝑖], we see that 𝑡𝜂𝑖 = 𝑢𝜂𝑖 = 𝜂𝑖 for 𝑖 = 1, 2, while 𝑡𝜁 = 𝑢𝜁 = −𝜁. Hence,
ℤ𝑤 ⊗Λ Γ𝑊(Π) ≅ ℤ⊕ (ℤ∕2)2, and the torsion subgroup is generated by the images of 𝜂1 and 𝜂2. In
this case, 𝐵 = 𝑃2(𝑋0) is the product of two copies of the Postnikov 2-stage for 𝑅𝑃2, and so, the 𝑘-
invariant is symmetric under the involution that interchanges the factors. Hence, it follows from
Theorem 3.1 that there are at most three homotopy types of 𝑃𝐷4-complexes 𝑋𝛼 = 𝐾 ∪[𝐽]+𝛼 𝑒

4 in
this quadratic 2-type, represented by 𝛼 = 0, 𝜂1 and 𝜂1 + 𝜂2.
The transposition of the factors gives an element of Aut(𝐵,𝑤, 𝜆) that leaves the polariza-

tions corresponding to 0 and 𝜂1 + 𝜂2 invariant, while swapping the others. Since the image of
Aut(𝐵,𝑤, 𝜆) in Aut(Π) is abelian, this transposition is not conjugate in Aut(𝐵,𝑤, 𝜆) to an auto-
morphism which fixes 𝜂1 or 𝜂2, we see that 𝑋𝜂1+𝜂2

≄ 𝑋𝜂1
or 𝑋𝜂2

. It will follow from Theorem 8.3
that 𝑋𝜂1+𝜂2

is not homotopy equivalent to 𝑋0, and so, the three homotopy types are distinct. □

Remark 8.2. Let {𝑡∗, 𝑢∗} be the basis of 𝐻1(𝜋; 𝔽2) dual to {𝑡, 𝑢}. Let 𝑋𝑡
𝛼 and 𝑋𝑢

𝛼 be the covering
spaces associated to the subgroups ⟨𝑡⟩ = Ker(𝑢∗) and ⟨𝑢⟩ = Ker(𝑡∗) of 𝜋, respectively. It follows
from Lemma 6.2 that since (𝑡∗)3 = (𝑢∗)3 = 0 in 𝐻3(𝑅𝑃2 × 𝑅𝑃2; 𝔽2), we have (𝑡∗)3 = (𝑢∗)3 = 0 in
𝐻3(𝑋𝛼; 𝔽2), for all 𝛼. It follows easily from the nonsingularity of Poincaré duality that the rings
𝐻∗(𝑋𝛼; 𝔽2) are all isomorphic. In particular, 𝑤1(𝑋𝛼) = 𝑡∗ + 𝑢∗, 𝑣2(𝑋𝛼) = 𝑡∗𝑢∗ and 𝑥4 = 0, for all
𝑥 ∈ 𝐻1(𝑋𝛼; 𝔽2), in each case. Hence, 𝑋+

𝛼 ≃ 𝑆2 × 𝑆2∕⟨𝜎2⟩, while the nonorientable double covers
𝑋𝑡
𝛼 and 𝑋

𝑢
𝛼 each have 𝑣2 = 0.

We shall now adapt the argument of [4, §3] to show that if 𝛼 ≠ 0, then 𝑋𝛼 is not homotopy
equivalent to a closed 4-manifold.

Theorem 8.3. Let 𝑀 be a closed 4-manifold with 𝜋 = 𝜋1(𝑀) = (ℤ∕2)2 and 𝜒(𝑀) = 1, and such
that 𝑥4 = 0 for all 𝑥 ∈ 𝐻1(𝑀; 𝔽2). Then𝑀 is homotopy equivalent to 𝑅𝑃2 × 𝑅𝑃2.
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QUOTIENTS OF 𝑆2 × 𝑆2 15

Proof. Our hypotheses imply that 𝑀 is in the quadratic 2-type of 𝑅𝑃2 × 𝑅𝑃2, and so, 𝑀 ≃

𝑋𝛼 = 𝐾 ∪[𝐽]+𝛼 𝑒
4, for some 𝛼 = 0, 𝜂1 or 𝜂1 + 𝜂2. For if𝑀 were in the quadratic 2-type of 𝑅𝑃2×̃𝑅𝑃2,

then there would be a class 𝑥 ∈ 𝐻1(𝑀; 𝔽2) such that 𝑥3 ≠ 0. Poincaré duality considerations then
imply that 𝑥4 ≠ 0 (see [9, Chapter 12, §§4-6]).
Suppose that 𝛼 = 𝜂1 or 𝜂1 + 𝜂2. Then the image of 𝛼 in 𝜋3(𝑅𝑃

2) under composition with the
projection 𝑝𝑟1 to the first factor is 𝜂. Hence, the composite of the inclusion 𝐾 ⊂ 𝑅𝑃2 × 𝑅𝑃2 with
𝑝𝑟1 extends to a map 𝑝∶ 𝑋𝛼 → 𝐿 = 𝑅𝑃2 ∪𝜂 𝑒

4 (note thatKer(𝜋1(𝑝) = ⟨𝑢⟩). Let 𝑝̃ ∶ 𝑋𝑢
𝛼 → 𝐿̃ be the

inducedmap of double covers, and let 𝑓∶ 𝑋𝛼 → 𝑅𝑃𝑘+1 (for 𝑘 large) be the classifying map for the
double cover 𝑋𝑢

𝛼 → 𝑋𝛼.
Let 𝑎 = 𝑝̃∗(𝑐) be the image of the generator of 𝐻2(𝐿̃; 𝔽2) = 𝔽2, let 𝑏̄ = (𝑢∗)2 ∈ 𝐻2(𝑋𝛼; 𝔽2), and

let 𝑏 be the image of 𝑏̄ in 𝐻2(𝑋𝑢
𝛼; 𝔽2). The 3-skeleton of 𝑋

𝑢
𝛼 is 𝐾

𝑢, and so, the covering transfor-
mation 𝑡 acts on 𝐻2(𝑋𝑢

𝛼; 𝔽2) via the identity. Hence, the quadratic form 𝑞 defined in [4, §2], and
used in computing the Arf invariant𝐴(𝑋𝛼, 𝑓) of the covering 𝑋𝑢

𝛼 → 𝑋𝛼, is an enhancement of the
ordinary cup product.
The pair {𝑎, 𝑏} is a symplectic basis with respect to the cup product, and 𝑞(𝑎) = 1 since 𝛼 ≠ 0,

by the argument of [4, p. 1325]. Since (𝑢∗)3 = (𝑢∗)4 = 0 in𝐻∗(𝑋𝛼; 𝔽2), 𝑆𝑞𝑖𝑏̄ = 𝑆𝑞2−𝑖𝑏̄ = 0 for 𝑖 = 0

or 1. Hence, we also have 𝑞(𝑏) = 1, by [4, Proposition 1.5], and so, 𝐴(𝑋𝛼, 𝑓) is nonzero. But this
contradicts the assumption that 𝑋𝛼 is homotopy equivalent to a closed manifold, by [4, Proposi-
tion 2.2], since any double covering of manifolds is Poincaré splittable. Hence, 𝛼 = 0 and so𝑀 is
homotopy equivalent to 𝑅𝑃2 × 𝑅𝑃2. □

Corollary 8.4. There is exactly one homotopy type for a closed manifold in the quadratic 2-type of
𝑅𝑃2 × 𝑅𝑃2.

Remark 8.5. The inclusion 𝑅𝑃2 → 𝐿 = 𝑅𝑃2 ∪𝜂 𝑒
4 induces isomorphisms on 𝜋𝑖 for 𝑖 ⩽ 2. Since 𝐿 is

covered by 𝑆2 ∪𝜂 𝑒4 ∪𝐴𝜂 𝑒4 ≃ 𝑆2 ∪𝜂 𝑒
4 ∨ 𝑆4 = 𝐶𝑃2 ∨ 𝑆4, 𝜋3(𝐿) = 0. Hence, we may view 𝐿 as the

4-skeleton of 𝑃2(𝑅𝑃2). (See [18].)

9 THE QUADRATIC 2-TYPE OF 𝑹𝑷𝟐×̃𝑹𝑷𝟐

In this section, we study the quadratic 2-type for the geometric quotient𝑌0 = 𝑅𝑃2×̃𝑅𝑃2, and show
that it contains exactly two homotopy types of closed 4-manifolds, represented by 𝑅𝑃2×̃𝑅𝑃2 and
𝑁 (see Definition 7.1). We shall need to examine the action of Aut(𝐵,𝑤, 𝜆) on 𝑆𝑃𝐷

4
(𝐵, 𝑤, 𝜆) more

closely than in the case of 𝑅𝑃2 × 𝑅𝑃2.
The manifold 𝑌0 is the total space of the nontrivial 𝑅𝑃2-bundle 𝑝 ∶ 𝑌0 → 𝑅𝑃2

𝑏
(where we

add the subscript to distinguish the base, as the symbol 𝐵 is used elsewhere). We may assume
that 𝜋 = 𝜋1(𝑌0) is generated by 𝑡 and 𝑢, where 𝑡 is in the image of the fiber 𝐹 ≅ 𝑅𝑃2 and
𝑢 is the other orientation-reversing element. Let {𝑡∗, 𝑢∗} be the Kronecker dual basis for
𝐻1(𝜋; 𝔽2). Then𝑤1(𝑌0) = 𝑡∗ + 𝑢∗, and 𝑢∗3 = 0, since 𝑢∗ generates the image of𝐻1(𝑅𝑃2

𝑏
; 𝔽2). The

cohomology ring 𝐻∗(𝑌0; 𝔽2) is generated by 𝐻1(𝑌0; 𝔽2), and 𝑡4 ≠ 0. The latter two assertions
follow from an elementary application of Poincaré duality and the fact that 𝑣2(𝑌0) ≠ 0 (see [9,
Chapter 12, §4]).
Let Λ = ℤ[𝜋]. The Λ-module 𝜋2(𝑌0) is canonically split as ℤ𝑡 ⊕ ℤ𝑢, where ℤ𝑡 = Λ∕(𝑡 +

1, 𝑢 − 1) is the image of 𝜋2(𝐹) and ℤ𝑢 = Λ∕(𝑡 − 1, 𝑢 + 1) projects onto 𝜋2(𝑅𝑃
2
𝑏
). Note that

HomΛ(ℤ𝑡, ℤ𝑢) = HomΛ(ℤ𝑢, ℤ𝑡) = 0.
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16 HAMBLETON and HILLMAN

Let 𝐵 be the Postnikov 2-stage of 𝑌0, and let 𝑤, 𝜆 be as defined in §3. If 𝑓 ∈ Aut(𝐵,𝑤, 𝜆), let 𝑓1
and 𝑓2 be the induced automorphisms of𝜋 andΠ. Then 𝑓2(g ⋅ 𝜉) = 𝑓1(g) ⋅ 𝑓2(𝜉) for all g ∈ 𝜋 and
𝜉 ∈ 𝜋2. The isomorphism 𝑓1 must preserve the set of orientation-reversing elements of 𝜋, since
𝑤𝑓1 = 𝑤. Thus, either 𝑓1 = 𝑖𝑑𝜋 or 𝑓1(𝑡) = 𝑢 and 𝑓1(𝑢) = 𝑡.
Since we may construct 𝐵 by adding cells of dimension ⩾ 4 to 𝑌0, there is a homomor-

phism of truncated rings 𝐻𝑖(𝐵; 𝔽2) → 𝐻𝑖(𝑌0; 𝔽2), which is an isomorphism in degrees 𝑖 ⩽ 2 and
a monomorphism in degree 3 (in fact an isomorphism in degree 3 also, since𝐻∗(𝑌0; 𝔽2) is gener-
ated by𝐻1(𝜋; 𝔽2)). Since 𝑢∗3 = 0 and 𝑡∗3 ≠ 0, it follows that 𝑓1 cannot swap the generators 𝑡 and
𝑢. Hence, 𝑓1 = 𝑖𝑑𝜋, and so 𝑓2 is Λ-linear. Therefore, 𝑓2 must preserve each factor 𝑍𝑡, 𝑍𝑢 of the
direct sum splitting of 𝜋2(𝑌0), but possibly act as -1 on either summand, since HomΛ(ℤ𝑡, ℤ𝑢) =

HomΛ(ℤ𝑢, ℤ𝑡) = 0.

Proposition 9.1. There are four homotopy types of 𝑃𝐷4-complexes 𝑌𝛼 in the quadratic 2-type of
𝑅𝑃2×̃𝑅𝑃2.

Proof. Let 𝐾′ = 𝑅𝑃2×̃𝑅𝑃2 ⧵ 𝐷4. Let 𝐽′ ∶ 𝑆3 = 𝜕𝐷4 → 𝐾′ be the natural inclusion. As outlined
above, Π′ = 𝜋2(𝐾

′) splits canonically as Π′ = ℤ𝑡 ⊕ ℤ𝑢. Let 𝐼′1 and 𝐼
′
2
be generators of ℤ𝑡 and ℤ𝑢,

respectively, and let 𝜂′
1
= 𝐼′

1
◦𝜂 and 𝜂′

2
= 𝐼′

2
◦𝜂 be the associated “Hopf” maps. Then {[𝐼′

1
, 𝐼′
2
], 𝜂′

1
, 𝜂′

2
}

is a basis for Γ𝑊(Π′) ≅ ℤ3. As in Propositions 4.1 and 8.1, we find that

ℤ𝑤 ⊗Λ Γ𝑊(Π′) ≅ ℤ ⊕ (ℤ∕2)2,

and the torsion subgroup is generated by the images of 𝜂′
1
and 𝜂′

2
. Thus, there are at most four

homotopy types of 𝑃𝐷4-complexes𝑌𝛼 = 𝐾′ ∪[𝐽′]+𝛼 𝑒
4 in this quadratic 2-type, represented by 𝛼 =

0, 𝜂′
1
, 𝜂′

2
, and 𝜂′

1
+ 𝜂′

2
, by Theorem 3.1.

We now recall Whitehead’s exact sequence (see [11, Theorem 2.3]):

⋯ → 𝐻4(𝑌𝛼) → Γ𝑊(𝜋2(𝑌𝛼)) → 𝜋3(𝑌𝛼) → 0

and the isomorphism 𝐻4(𝐵; ℤ) ≅ Γ𝑊(𝜋2(𝐵)). The kernel of the “Whitehead” homorphism from
Γ𝑊(Π′) to 𝜋3(𝑌𝛼) is infinite cyclic, generated by the image of 𝐽 + 𝛼. Since any map from 𝑌𝛼 to
𝑌𝛽 covering an automorphism of 𝐵 must preserve the canonical basis for Π′ (up to signs), there
can be no such map if 𝛼 and 𝛽 are distinct elements of the set {0, 𝜂′

1
, 𝜂′

2
, 𝜂′

1
+ 𝜂′

2
}. Thus, all four

homotopy types are distinct. □

Remark 9.2. Let {𝑡∗, 𝑢∗} be the basis of 𝐻1(𝜋; 𝔽2) dual to {𝑡, 𝑢}, and let 𝑌𝑡
𝛼 and 𝑌𝑢

𝛼 be the
covering spaces associated to the subgroups ⟨𝑡⟩ = Ker(𝑢∗) and ⟨𝑢⟩ = Ker(𝑡∗) of 𝜋, respectively.
We may assume that 𝑢∗ is induced from the base 𝑅𝑃2, so (𝑢∗)3 = 0, and then, (𝑡∗)3 ≠ 0, since
𝑣2(𝑅𝑃

2×̃𝑅𝑃2) ≠ 0. It again follows from Lemma 6.2 and Poincaré duality that the 𝔽2-cohomology
rings of the 𝑌𝛼 are all isomorphic. In particular, 𝑣2(𝑌𝛼) = 𝑡∗𝑢∗ + (𝑢∗)2 in each case. Hence, in
each case, 𝑌+

𝛼 is homotopy equivalent to the 𝑆2-bundle space over 𝑅𝑃2, which is a spin mani-
fold. The covering space 𝑌𝑡

𝛼 is homotopy equivalent to 𝑆2 × 𝑅𝑃2, since 𝑣2(𝑌𝑡
𝛼) = 0, while 𝑌𝑢

𝛼 is
homotopy equivalent to one of either 𝑅𝑃4#𝑆1𝑅𝑃

4 or 𝑆2×̃𝑅𝑃2, since 𝑣2(𝑌𝑢
𝛼) ≠ 0.

Theorem 9.3. Let𝑀 be a closed 4-manifold with 𝜋 = 𝜋1(𝑀) = (ℤ∕2)2 and 𝜒(𝑀) = 1, and such
that 𝑥4 ≠ 0 for some 𝑥 ∈ 𝐻1(𝑀; 𝔽2). Then𝑀 is homotopy equivalent to 𝑅𝑃2×̃𝑅𝑃2 or𝑁.
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QUOTIENTS OF 𝑆2 × 𝑆2 17

Proof. Weshall adapt the proof of Theorem8.3, again based on the arguments of [4]. In this case,𝑀
must be in the quadratic 2-type of 𝑅𝑃2×̃𝑅𝑃2, and so,𝑀 ≃ 𝑌𝛼 = 𝐾′ ∪[𝐽′]+𝛼 𝑒

4 for some 𝛼 = 0, 𝜂′
1
, 𝜂′

2
or 𝜂′

1
+ 𝜂′

2
. The double covering space𝑀𝑡 is homotopy equivalent to 𝑅𝑃2 × 𝑆2. As in Theorem 8.3,

the covering automorphism induces the identity on𝐻2(𝑀𝑢; 𝔽2).
Suppose that 𝛼 = 𝜂′

2
or 𝜂′

1
+ 𝜂′

2
. The composite of the inclusion𝐾′ ⊂ 𝑅𝑃2×̃𝑅𝑃2 with the bundle

projection extends to a map 𝑝∶ 𝑌𝛼 → 𝐿. Let 𝑝̃ ∶ 𝑌𝑢
𝛼 → 𝐿̃ be the induced map of double covers,

and let 𝑎 = 𝑝̃∗(𝑐) be the image of the generator of 𝐻2(𝐿̃; 𝔽2). Let 𝑏̄ = (𝑡∗)2 ∈ 𝐻2(𝑌𝛼; 𝔽2), and let
𝑏 be the image of 𝑏̄ in 𝐻2(𝑌𝑡

𝛼; 𝔽2). Then {𝑎, 𝑏} is a symplectic basis for the cup product pair-
ing. We again find that 𝑞(𝑎) = 𝑞(𝑏) = 1, so the Arf invariant associated to the twofold covering
𝑌𝑢
𝛼 → 𝑌𝛼 is nonzero, contradicting the hypothesis that𝑀 is a closed manifold. Therefore, either

𝛼 = 0 or 𝛼 = 𝜂′
1
. Since 𝑌0 = 𝑅𝑃2×̃𝑅𝑃2 and 𝑁 are manifolds in this quadratic 2-type (see Proposi-

tion 7.2), and are not homotopy equivalent, wemust have𝑌𝜂′
1
≃ 𝑁 and𝑀must be one of these two

manifolds. □

The manifolds 𝑅𝑃2×̃𝑅𝑃2 and 𝑁 may be distinguished by their (nonorientable) double covers.
However, we do not know whether 𝑌𝜂′

2
≅ 𝑌𝜂′

1
+𝜂′

2
. Nor do we Proposition 4.1 are double covers of

the 𝑃𝐷4-complexes 𝑋𝛽 or 𝑌𝛾 of §8 or §9.

10 STABLE CLASSIFICATION FOR 𝝅 = ℤ∕𝟒

Let 𝜉 ∶ 𝐵(𝑤1, 𝑤2) → 𝐵𝑇𝑂𝑃 denote the normal 1-type of the geometric quotient𝑀 of 𝑆2 × 𝑆2 with
fundamental group 𝜋 = ℤ∕4. We may assume that

𝐵 ∶= 𝐵(𝑤1, 𝑤2) = 𝐵𝑇𝑂𝑃𝑆𝑃𝐼𝑁 × 𝐾(𝜋, 1),

since 𝑤2(𝑀̃) = 0 (see [21, Theorem 5.2.1 and §8.1]). Let 𝑐∶ 𝑀 → 𝐵 denote the classifying map of
the 𝜉-structure on𝑀, and let 𝛾∶ 𝐵 → 𝐾(𝜋, 1) be the projection onto the second factor.
We use a polarization 𝛾◦𝑐∶ 𝑀 → 𝐾(𝜋, 1) of 𝜋1(𝑀) and fix a fundamental class [𝑀] ∈

𝐻4(𝑀;ℤ𝑤). This can be regarded as an “orientation,” since cap product with this class induces
Poincaré duality for𝑀 as a nonorientable manifold.†
The preferred local coefficient system {ℤ𝑤} on𝑀 pulled back from𝐾(𝜋, 1), followed by its pull-

back by 𝛾, gives a preferred local coefficient system on 𝐵. Under the Thom isomorphism induced
by the collapsemap𝜑∶ 𝑆𝑘+4 → 𝑇(𝜈𝑀), for large 𝑘, the cap product𝜑∗[𝑆𝑘+4] ∩ 𝑈(𝜈𝑀)with aThom
class gives a generator of 𝐻4(𝑀;ℤ𝑤). Hence, a choice of fundamental class [𝑀] ∈ 𝐻4(𝑀;ℤ𝑤)

determines a preferred generator 𝑈(𝜈𝑀) ∈ 𝐻𝑘(𝑇(𝜈); ℤ𝑤) ≅ ℤ, and conversely, (see [20, §6]).
Therefore, after fixing a fundamental class for𝑀, this construction provides a preferred Thom

class 𝑈(𝜉), and fixes a fundamental class [𝑁] ∈ 𝐻4(𝑁;ℤ𝑤) for each bordism element [𝑁, g] ∈
Ω4(𝐵, 𝜉), by pullback, since g ∶ 𝑁 → 𝐵 is a lift of the classifying map 𝜈𝑁 ∶ 𝑁 → 𝐵𝑇𝑂𝑃.
In order to compute the bordism group Ω4(𝐵, 𝜉), we use the Atiyah–Hirzebruch spectral

sequence with 𝐸2
𝑝,𝑞 = 𝐻𝑝(𝜋;Ω

𝑇𝑂𝑃𝑆𝑃𝐼𝑁
𝑞 ) where the coefficients

Ω𝑇𝑂𝑃𝑆𝑃𝐼𝑁
𝑞 = ℤ,ℤ∕2, ℤ∕2, 0, ℤ, for 0 ⩽ 1 ⩽ 4,

†Note Larry Taylor’s remark “non-orientable manifolds cannot be oriented” [20, §5].
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18 HAMBLETON and HILLMAN

are twisted by𝑤1 (and denoted asℤ𝑤). We have 𝐸2
𝑝,0

= 𝐻𝑝(𝜋; ℤ
𝑤) = ℤ∕2, for 𝑝 even, and 𝐸2

𝑝,0
= 0

for 𝑝 odd. Similarly, 𝐸2
0,4

= ℤ∕2. The first differential

𝑑2 ∶ 𝐸2
𝑝,𝑞 → 𝐸2

𝑝−2,𝑞+1

is dual to a map on mod 2 cohomology

𝑑∶ 𝐻𝑝−2(𝜋; ℤ∕2) → 𝐻𝑝(𝜋; ℤ∕2)

for the cases (4,2) and (3,1).
Note that the cohomology ring 𝐻∗(𝜋; ℤ∕2) = 𝑃(𝑢) ⊗ 𝐸(𝑥), where |𝑢| = 2 and |𝑥| = 1, with

𝑆𝑞1𝑢 = 0 and 𝑥2 = 0. The classes 𝑤1(𝜈𝑀) = 𝑥 and 𝑤2(𝜈𝑀) = 𝑢.
The 𝑑2 differentials starting at 𝐸2

∗,0
= 𝐻∗(𝜋; ℤ

𝑤) factor through the reductionmod 2. According
to Teichner [22, §2], the dual map 𝑑 is given by the formula

𝑑(𝛼) = 𝑆𝑞2𝛼 + (𝑆𝑞1𝛼) ⋅ 𝑤1 + 𝛼 ⋅ 𝑤2.

We compute using this formula and obtain:

𝑑∶ 𝐻1(𝜋; ℤ∕2) → 𝐻3(𝜋; ℤ∕2), 𝑑(𝑥) = 𝑥𝑢 ≠ 0,

𝑑∶ 𝐻2(𝜋; ℤ∕2) → 𝐻4(𝜋; ℤ∕2), 𝑑(𝑢) = 0,

𝑑∶ 𝐻3(𝜋; ℤ∕2) → 𝐻5(𝜋; ℤ∕2), 𝑑(𝑥𝑢) = 0,

𝑑∶ 𝐻4(𝜋; ℤ∕2) → 𝐻6(𝜋; ℤ∕2), 𝑑(𝑢2) = 𝑢3 ≠ 0.

After dualizing, we get𝐸3
0,4

= ℤ∕2,𝐸3
3,1

= 0,𝐸3
2,2

= 𝐻2(𝜋; ℤ∕2) = ℤ∕2, and𝐸3
4,0

= ℤ∕2. Moreover,
the only nonzero entry on the line 𝑝 + 𝑞 = 5 of the 𝐸3 page is 𝐸3

3,2
= 𝐸2

3,2
= ℤ∕2.

We remark that the nonzero element in 𝐸3
0,4

= ℤ∕2 is represented by the image of the
𝐸8-manifold under the inclusion map

Ω𝑇𝑂𝑃𝑆𝑃𝐼𝑁
4 (∗) → Ω4(𝐵, 𝜉).

However, we have a factorization:

Ω𝑇𝑂𝑃𝑆𝑃𝐼𝑁
4 (∗) → Ω4(𝐵, 𝜉) → Ω𝑇𝑂𝑃𝑆𝑃𝐼𝑁𝑐

4 (∗),

and the 𝐸8-manifold represents a nontrivial element in Ω𝑇𝑂𝑃𝑆𝑃𝐼𝑁𝑐

4
(∗), as noted in [8, p. 654].

Hence, the 𝐸3
0,4
-term survives to 𝐸∞

0,4
. The 𝐸4,0-term is detected by the image of the twisted fun-

damental class. Let [𝑁, g] ∈ Ω4(𝐵, 𝜉) represent an element with 0 ≠ 𝛾∗g∗[𝑁] ∈ 𝐻4(𝜋; ℤ
𝑤). Then,

𝑁 is nonorientable and 2[𝑁, g] = 0 from the null-bordism g◦𝑝1 ∶ 𝑁 × 𝐼 → 𝐵. Hence, there are no
extensions in passing from 𝐸∞

∗,∗ to the bordism group. The conclusion is that

Ω4(𝐵, 𝜉) = ℤ∕2 ⊕𝐻2(𝜋; ℤ∕2) ⊕ ℤ∕2.
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QUOTIENTS OF 𝑆2 × 𝑆2 19

Recall that 𝑐∶ 𝑀 → 𝐵 denote the classifying map of the 𝜉-structure on𝑀. To detect elements in
this bordism group, we can define

Ω4(𝐵, 𝜉)𝑀 = {[𝑀′, 𝑐′]∶ 𝛾∗𝑐
′
∗[𝑀

′] = 𝛾∗𝑐∗[𝑀] ∈ 𝐻4(𝜋; ℤ
𝑤)}.

By Lemma 3.3, the image 𝛾∗𝑐∗[𝑀] ∈ 𝐻4(𝜋; ℤ
𝑤) is nonzero. Therefore, Ω4(𝐵, 𝜉)𝑀 is a coset of

ker(𝛾∗ ∶ Ω4(𝐵, 𝜉) → 𝐻4(𝜋; ℤ
𝑤)) = ℤ∕2 ⊕ 𝐻2(𝜋; ℤ∕2).

Hence Ω4(𝐵, 𝜉)𝑀 consists of four distinct bordism classes.
Next, we introduce a related bordism theory. The pullback diagram

(10.1)

defines a space𝑀(𝑤1,𝑤2) and a fibration 𝜉 ∶ 𝑀(𝑤1, 𝑤2) → 𝐵𝑇𝑂𝑃. Wewill now study the bordism
groups Ω4(𝑀(𝑤1, 𝑤2), 𝜉) and the natural map

𝑐∗ ∶ Ω4(𝑀(𝑤1, 𝑤2), 𝜉) → Ω4(𝐵(𝑤1, 𝑤2), 𝜉).

See Kirby and Siebenmann [14, p. 318] for the low-dimensional homotopy groups of 𝐵𝑇𝑂𝑃 and
related spaces. In particular, 𝜋4(𝐵𝑇𝑂𝑃) = ℤ⊕ ℤ∕2 and the map

𝜋4(𝐵𝑇𝑂𝑃) → 𝜋4(𝐵(𝑇𝑂𝑃∕𝑂)) = 𝜋3(𝑇𝑂𝑃∕𝑂) = ℤ∕2

is a split surjection. Topological bundles over 𝑆4 are classified by the stable triangulation class
𝑘 ∈ 𝐻4(𝐵𝑇𝑂𝑃;ℤ∕2) and the first Pontrjagin class. Let 𝜁0 ∶ 𝑆4 → 𝐵𝑇𝑂𝑃 be the topological bundle
with 𝑝1(𝜁0) = 0, and 𝑘(𝜁0) ≠ 0.

Definition 10.2. We will define two reference maps for this bordism theory.

(i) We can define îd∶ 𝑀 → 𝑀(𝑤1,𝑤2), since the map (id ×𝜈𝑀)∶ 𝑀 → 𝑀 × 𝐵𝑇𝑂𝑃 factors
through the pullback𝑀(𝑤1,𝑤2) ⊂ 𝑀 × 𝐵𝑇𝑂𝑃.

(ii) Let 𝜁𝑀 ∶= 𝑝∗(𝜁0) be the pullback of the bundle 𝜁0 over the collapse map 𝑝∶ 𝑀 → 𝑆4.
(iii) Similarly, we can define îd𝜁𝑀 ∶ 𝑀 → 𝑀(𝑤1,𝑤2) ⊂ 𝑀 × 𝐵𝑇𝑂𝑃 by factoring id ×(𝜈𝑀 ⊕ 𝜁𝑀)

through the pullback (10.1).

Note that𝑤1(𝜁) = 𝑤2(𝜁) = 0, and the bundle 𝜁𝑀 ⊕ 𝜁𝑀 is stably trivial. By construction, 𝜉◦îd =

𝜈𝑀 and 𝜉◦îd𝜁 = 𝜈𝑀 ⊕ 𝜁.
To shorten the notation, we will set 𝐸 ∶= 𝑀(𝑤1, 𝑤2). A similar calculation to the one above

shows that

Ω4(𝐸, 𝜉) = ℤ∕2 ⊕𝐻2(𝑀;ℤ∕2) ⊕ 𝐻3(𝑀;ℤ∕2) ⊕ 𝐻4(𝑀;ℤ𝑤)

with the filtration quotients
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20 HAMBLETON and HILLMAN

(i) F4∕F3 ≅ 𝐸∞
4,0

= 𝐻4(𝑀;ℤ𝑤) ≅ ℤ;
(ii) F3∕F2 ≅ 𝐸∞

3,1
= 𝐻3(𝑀;ℤ∕2) = ℤ∕2;

(iii) F2∕F0 ≅ 𝐸∞
2,2

= 𝐻2(𝑀;ℤ∕2) = ℤ∕2;
(iv) F0 ≅ 𝐸∞

0,4
= 𝐻0(𝑀;ℤ𝑤) = ℤ∕2;

(v) F2 ≅ 𝐻2(𝑀;ℤ∕2) ⊕ ℤ∕2, split by the KS-invariant.

An element [𝑁, ĝ , 𝜈̂] of this bordism group is represented by triple consisting of a closed 4-
manifold 𝑁 together with a reference map ĝ ∶ 𝑁 → 𝐸, and a bundle map 𝜈̂ ∶ 𝜈𝑁 → 𝜉 covering ĝ
(see Stong [19, p. 14], and Taylor [20, §6]). From the pullback diagram (10.1), we have the composite
g ∶= 𝑗◦ĝ ∶ 𝑁 → 𝑀.
As above, the local coefficient system and choice of fundamental class for 𝑁 is determined

by pullback from𝑀. By composition with the classifying map 𝑐∶ 𝑀 → 𝐵, we obtain an element
𝑐∗[𝑁, 𝑓, 𝜈̂] ∈ Ω4(𝐵, 𝜉). To simplify the notation, we will write [𝑁, 𝑓]𝜉 ∶= [𝑁, 𝑓, 𝜈̂]. Since 𝐵 is the
normal 1-type of𝑀, we have the structure [𝑀, îd]𝜉 ∈ Ω4(𝐸, 𝜉) to serve as a base point.

Lemma 10.3. Let𝑀 and 𝑁 be closed nonorientable 4-manifolds with universal covering 𝑆2 × 𝑆2.
If 𝑓∶ 𝑁 → 𝑀 is a homotopy equivalence and 𝐾𝑆(𝑀) = 0, then 𝑓∗(𝜈𝑀) ≅ 𝜈𝑁 if 𝐾𝑆(𝑁) = 0, and
𝑓∗(𝜈𝑀 ⊕ 𝜁𝑀) ≅ 𝜈𝑁 if 𝐾𝑆(𝑁) ≠ 0.

Proof. It follows from the assumptions that 𝑓∗(𝜈𝑀) and 𝜈𝑁 have the same Stiefel–Whitney classes.
In particular, if 𝐾𝑆(𝑁) = 0, then 𝑓∗𝜈𝑀 − 𝜈𝑁 lifts to an orientable vector bundle 𝜆 with 𝑤𝑖(𝜆) = 0

for 𝑖 > 0. By the Dold–Whitney classification [2, Theorem 2(c)], oriented vector bundles over a 4-
complex are stably determined by 𝑝1 and 𝑤4. In our setting, the Pontrjagin class 𝑝1(𝜆) is divisible
by 2, but 𝐻4(𝑁;ℤ) = ℤ∕2 since 𝑁 is nonorientable. Hence, 𝑝1(𝜆) = 0 and 𝜆 is (stably) trivial.
If 𝐾𝑆(𝑁) ≠ 0, then 𝑓∗(𝜈𝑀 ⊕ 𝜁𝑀) − 𝜈𝑁 lifts to an orientable vector bundle, which is again stably
trivial. □

Define the subset of degree one bordism elements:

Ω4(𝐸, 𝜉)𝑀 = {[𝑁, ĝ]𝜉 ∶ g∗[𝑁] = [𝑀] ∈ 𝐻4(𝑀;ℤ𝑤)}.

A homotopy equivalence 𝑓∶ 𝑁 → 𝑀 represents an element of 𝑆𝑇𝑂𝑃(𝑀). To define its normal
invariant 𝜂(𝑓) ∈ [𝑀,𝐺∕𝑇𝑂𝑃], we can apply Lemma 10.3 to cover 𝑓 by a bundle map to 𝜈𝑀 or
to (𝜈𝑀 ⊕ 𝜁), if 𝐾𝑆(𝑁) ≠ 0. A choice of bundle isomorphism 𝑓∗𝜈𝑀 ≅ 𝜈𝑁 (respectively, 𝑓∗(𝜈𝑀 ⊕

𝜁𝑀) ≅ 𝜈𝑁) fixes a 𝜉-structure and a fundamental class for 𝑁 by pull-back, so that 𝑓∶ 𝑁 → 𝑀

composed with îd (respectively, îd𝜁) represents an element [𝑁, 𝑓]𝜉 ∈ Ω4(𝐸, 𝜉) with 𝑓∶ 𝑁 → 𝐸 =

𝑀(𝑤1, 𝑤2), 𝑓 = 𝑗◦𝑓 and 𝑓∗[𝑁] = [𝑀].
The next result is an application of topological surgery (see [3]).

Lemma 10.4. Every element in Ω4(𝐸, 𝜉)𝑀 has the form [𝑀′, 𝑓′]𝜉 , where 𝑓′ ∶ 𝑀′ → 𝑀 is a homo-
topy equivalence. If [𝑀′, 𝑓′]𝜉 = [𝑀′′, 𝑓′′]𝜉 , where both 𝑓′ and 𝑓′′ are homotopy equivalences, then
there exists a homeomorphism ℎ∶ 𝑀′ → 𝑀′′ such that 𝑓′′◦ℎ ≃ 𝑓′.

Proof. Let [𝑁, ĝ]𝜉 be an element inΩ4(𝐸, 𝜉)𝑀 . Then ĝ ∶ 𝑁 → 𝐸 together with its bundle data gives
a 2-connectedmap such that g ∶= 𝑗◦ĝ ∶ 𝑁 → 𝑀 has degree one. Note that𝐾2(ĝ) = 𝐾2(𝑗◦ĝ) since
𝑗 is 3-connected. Since 𝐿4(ℤ∕4, −) = 0, modified surgery can be performed to obtain a homotopy
equivalence 𝑓′ ∶ 𝑀′ → 𝑀 in the same 𝜉-bordism class. Here, we are doing surgery on the map
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QUOTIENTS OF 𝑆2 × 𝑆2 21

ĝ ∶ 𝑁 → 𝐸 to eliminate the kernel group𝐾(ĝ) = 𝐾2(𝑗◦ĝ) = ker{𝐻2(𝑁;Λ) → 𝐻2(𝑀;Λ)} (compare
[16, §5]).
If [𝑀′, 𝑓′]𝜉 = [𝑀′′, 𝑓′′]𝜉 , where both 𝑓′ and 𝑓′′ are homotopy equivalences, then a 𝜉-bordism

(𝑊, 𝐹) between these elements can be surgered (relative to the boundaries) to an 𝑠-cobordism
since 𝐿5(ℤ∕4, −) = 0. We then apply the topological 𝑠-cobordism theorem. □

Corollary 10.5. The map 𝑐∗ ∶ Ω4(𝐸, 𝜉)𝑀 → Ω4(𝐵, 𝜉)𝑀 is surjective. Every element in Ω4(𝐵, 𝜉)𝑀
has the form 𝑐∗[𝑀

′, 𝑓′]𝜉 , where 𝑓′ ∶ 𝑀′ → 𝑀 is a homotopy equivalence.

Proof. By comparing the spectral sequences, we see that the filtration subgroupF2 ⊂ Ω4(𝐸, 𝜉) is
mapped isomorphically intoΩ4(𝐵, 𝜉). The term𝐸∞

3.1
(𝑀) is mapped to zero and the term𝐸∞

4,0
(𝑀) =

ℤ is mapped surjectively onto 𝐸∞
4,0
(𝐵) = ℤ∕2. □

Remark 10.6. Since Ω4(𝐸, 𝜉)𝑀 has eight elements, and both 𝑆𝑇𝑂𝑃(𝑀) and Ω4(𝐵, 𝜉)𝑀 have four
elements, the uniqueness statement for the representatives of Ω4(𝐸, 𝜉)𝑀 implies that 𝑀 has
some nontrivial self-homeomorphism. Indeed, the standard ℤ∕4-action on 𝑆2 × 𝑆2 generated by
𝜏(𝑠, 𝑡) = (−𝑡, 𝑠) extends to a smooth action of𝐷8 = ⟨𝜏, 𝜎⟩, where𝜎(𝑠, 𝑡) = (𝑠, −𝑡). Hence,𝜎 induces
an involution on𝑀, which is not homotopic to the identity since 𝜎∗ is nontrivial on homology.

The projection of the difference [𝑀′, 𝑐◦𝑓] − [𝑀, 𝑐] into 𝐸∞
2,2
(𝐵) = 𝐻2(𝜋; ℤ∕2) is detected by the

first component of the normal invariant 𝜂(𝑓′) ∈ [𝑀,𝐺∕𝑇𝑂𝑃], with respect to the identification

𝑆𝑇𝑂𝑃(𝑀) = [𝑀,𝐺∕𝑇𝑂𝑃] ≅ 𝐻2(𝑀;ℤ∕2) ⊕ 𝐻4(𝑀;ℤ) ≅ 𝐻2(𝑀;ℤ∕2) ⊕ ℤ∕2, (10.7)

given by Poincaré duality. We will call this the reduced normal invariant of 𝑀, and denote by
𝜂(𝑀′) ∈ 𝐻2(𝜋; ℤ∕2) the equivalence class of 𝜂(𝑓′) modulo the action on normal invariants by
homotopy self-equivalences of𝑀. If this is zero, it follows that the difference [𝑀′, 𝑐◦𝑓′] − [𝑀, 𝑐]

is detected by the KS invariant.

Lemma10.8. Suppose that𝑓∶ 𝑀 → 𝑀 is a self-homotopy equivalence. Then the elements (𝑀, 𝑐◦𝑓)
and (𝑀, 𝑐) are 𝜉-bordant.

Proof. By functoriality, the homotopy equivalence 𝑓∶ 𝑀 → 𝑀 induces a self-homotopy equiv-
alence 𝜙∶ 𝐵 → 𝐵, such that 𝑐◦𝑓 ≃ 𝜙◦𝑐. However, since 𝐵 = 𝐵𝑇𝑂𝑃𝑆𝑃𝐼𝑁 × 𝐾(𝜋, 1) has the
homotopy type of 𝐾(ℤ, 4) × 𝐾(𝜋, 1) through dimensions ⩽ 5, the composition 𝜙◦𝑐 is determined
by the map 𝜙∗ ∶ 𝐻4(𝐵; ℤ) → 𝐻4(𝐵; ℤ). Either 𝜙◦𝑐 ≃ 𝑐 or 𝜙◦𝑐 differs from 𝑐 by a nontrivial map
𝐾(𝜋, 1) → 𝐾(ℤ, 4). In the latter case, the normal invariant of 𝑓 would have nonzero component
in𝐻2(𝜋; ℤ∕2) ⊂ [𝑀,𝐺∕𝑇𝑂𝑃]. But this would imply a change in the Kirby–Siebenmann invariant
from domain to range of 𝑓, by the formula in [15, p. 398], which is impossible for a self-homotopy
equivalence. □

Corollary 10.9. Stably homeomorphic manifolds homotopy equivalent to 𝑀 are homeomorphic.
Such manifolds are distinguished by their reduced normal invariant and the KS invariant.

Proof. According to the general theory of Kreck [16], to pass from bordism to the stable home-
omorphism classification, we must consider the quotient of Ω4(𝐵, 𝜉) by the action of Aut(𝜉). As
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22 HAMBLETON and HILLMAN

pointed out by Kirby and Taylor [15, pp. 394–395], it suffices to divide out the natural action of
Out(𝜋,𝑤1, 𝑤2). The calculations above show that this action is trivial, and hence, that the subset
Ω4(𝐵, 𝜉)𝑀 ⊂ Ω4(𝐵, 𝜉) consists of four distinct stable homeomorphism classes, each represented by
some homotopy equivalence 𝑓∶ 𝑀′ → 𝑀. However, the structure set 𝑆𝑇𝑂𝑃(𝑀) has four elements
(by Theorem 2.1), so there can be no nontrivial self-homotopy equivalences. It follows that the
choice of a homotopy equivalence 𝑓∶ 𝑀′ → 𝑀 is unique up to homotopy and composition with
a homeomorphism. Hence, the reduced normal invariant 𝜂(𝑀′) ∈ 𝐻2(𝜋; ℤ∕2) is a well-defined
invariant of𝑀′. □

The proof of Theorem A. Here is a summary of the proof. Part (i) is proved in Lemma 3.3. By
Theorem 2.1, the structure set 𝑆𝑇𝑂𝑃(𝑀) has four elements, consisting of either two or four home-
omorphism types of manifolds homotopy equivalent to𝑀. If 𝑆𝑇𝑂𝑃(𝑀) contained only two distinct
homeomorphism types (𝑀 and ∗ 𝑀), then 𝑀 would admit a self-homotopy equivalence (𝑀, 𝑓)

with nontrivial reduced normal invariant. However, Lemma 10.8 shows that (𝑀, 𝑐◦𝑓) and (𝑀, 𝑐)

are 𝜉-bordant. This would imply that the image of 𝑆𝑇𝑂𝑃(𝑀) in Ω4(𝐵, 𝜉) would contain at most
two distinct stable homeomorphism types. On the other hand, Corollary 10.5 shows that 𝑆𝑇𝑂𝑃(𝑀)

maps surjectively onto the subset Ω4(𝐵, 𝜉)𝑀 , which consists of four distinct bordism classes.
Hence, no such self-equivalence of𝑀 exists. This proves Parts (ii) and (iii) of Theorem A. □

11 A SMOOTH FAKE VERSION OF𝕄 ?

In this section, we construct another smooth manifold𝑀′′ with 𝜋1(𝑀
′′) = ℤ∕4, which is homo-

topy equivalent to the geometric quotient 𝕄. At present, we are not able to determine whether
𝑀′′ is homeomorphic to𝕄.
Let𝑀+ = 𝑆2 × 𝑆2∕⟨𝜎2⟩ = 𝑆2 × 𝑆2∕(𝑠, 𝑠′) ∼ (𝐴(𝑠), 𝐴(𝑠′)) be the orientable double cover of𝑀 =

𝑆2 × 𝑆2∕⟨𝜎⟩. Let Δ = {(𝑠, 𝑠) ∣ 𝑠 ∈ 𝑆2} be the diagonal in 𝑆2 × 𝑆2. We may isotope Δ to a nearby
sphere that meets Δ transversely in two points, by rotating the first factor, and so, Δ has self-
intersection ±2. The diagonal is invariant under 𝜎2, and so, 𝛿 = Δ∕⟨𝜎2⟩ ≅ 𝑅𝑃2 embeds in 𝑀+

with an orientable regular neighborhood. Since 𝜎(Δ) ∩ Δ = ∅, this also embeds in𝑀. We shall see
that the complementary region also has a simple description.
We shall identify 𝑆3 with the unit quaternionsℍ1, and view 𝑆2 as the unit sphere in the space of

purely imaginary quaternions. The standard inner product on the latter space is given by 𝑣 ∙ 𝑤 =

ℜ𝔢(𝑣𝑤̄), for 𝑣, 𝑤 purely imaginary quaternions. Let

𝐶𝑥 = {(𝑠, 𝑡) ∈ 𝑆2 × 𝑆2 ∣ 𝑠 ∙ 𝑡 = 𝑥}, ∀ 𝑥 ∈ [−1, 1].

Then𝐶1 = Δ and𝐶−1 = 𝜎(Δ), while𝐶𝑥 ≅ 𝐶0 for all |𝑥| < 1. Themap𝑓∶ 𝑆3 → 𝐶0 given by𝑓(𝑞) =
(𝑞𝐢𝑞−1, 𝑞𝐣𝑞−1) for all 𝑞 ∈ 𝑆3 is a twofold covering projection, and so 𝐶0 ≅ 𝑅𝑃3.
It is easily seen that 𝑁 = ∪𝑥⩾𝜀𝐶𝑥 and 𝜎(𝑁) are regular neighborhoods of Δ and 𝜎(Δ), respec-

tively, while 𝐶 = ∪𝑥∈[−𝜀,𝜀]𝐶𝑥 ≅ 𝐶0 × [−𝜀, 𝜀]. In particular,𝑁 and 𝜎(𝑁) are each homeomorphic to
the total space of the unit disc bundle in 𝑇𝑆2 , and 𝜕𝑁 ≅ 𝐶0 ≅ 𝑅𝑃3. The subsets 𝐶𝑥 are invariant
under 𝜎2. Hence,𝑁(𝛿) = 𝑁∕⟨𝜎2⟩ is the total space of the tangent disc bundle of 𝑅𝑃2. In particular,
𝜕𝑁(𝛿) ≅ 𝐿(4, 1) and 𝛿 represents the nonzero element of 𝐻2(𝑀; 𝔽2), since it has self-intersection
1 in 𝔽2.
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QUOTIENTS OF 𝑆2 × 𝑆2 23

Remark 11.1. It is not hard to show that any embedded surface representing the nonzero element
of𝐻2(𝑀; 𝔽2) is nonorientable but lifts to𝑀+, and so has an orientable regular neighborhood.

We also see that 𝐶∕⟨𝜎2⟩ ≅ 𝐿(4, 1) × [−𝜀, 𝜀]. Since 𝑓(𝑞. 1√
2
(𝟏 + 𝐤)) = 𝜎(𝑓(𝑞)), the map 𝜎̃ ∶ 𝑆3 →

𝑆3 defined by right multiplication by 1√
2
(𝟏 + 𝐤) lifts 𝜎. Hence, 𝐶0∕⟨𝜎⟩ = 𝑆3∕⟨𝜎̃⟩ = 𝐿(8, 1), and

so, 𝑀𝐶 = 𝐶∕⟨𝜎⟩ is the mapping cylinder of the double cover 𝐿(4, 1) → 𝐿(8, 1). Since 𝑆2 × 𝑆2 =

𝑁 ∪ 𝐶 ∪ 𝜎(𝑁), it follows that𝑀 = 𝑁(𝛿) ∪ 𝑀𝐶.
This construction suggests a candidate for another smooth 4-manifold in the same (simple)

homotopy type.

Definition 11.2. Let𝑀′′ = 𝑁(𝛿) ∪ 𝑀𝐶′, where𝑀𝐶′ is the mapping cylinder of the double cover
𝐿(4, 1) → 𝐿(8, 5). Then 𝜋1(𝑀

′′) ≅ ℤ∕4 and 𝜒(𝑀′′) = 1, and so, there is a homotopy equivalence
ℎ∶ 𝑀′′ ≃ 𝑀.

Some questions for further investigation:

(i) Is there an easily analyzed explicit choice for ℎ∶ 𝑀′′ → 𝑀, with computable codimension
two Kervaire invariant?

(ii) Are𝑀 and𝑀′′ homeomorphic? diffeomorphic?
(iii) Is there a computable homeomorphism (or diffeomorphism) invariant that can be applied

here?

We remark that most readily computable invariants are invariants of homotopy type.
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