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1 Learning Objectives

e A Review of basic measures of clinical benefit

e A Review of the Bayesian Approach: what, how and when?
e What is NNT? Advantages and problems

e Derivation of the posterior distribution of NNT

e Insight on how to best estimate NNT



2 Introduction

Table 1: Outcomes from a RCT

Failure | Success

(Death) | /(Alive)
Intervention a b
Control C d

Table 2: Outcomes from a Case-Control Study

Diseased | Non-diseased
(Cases) | (Controls)
Exposed a b
Not Exposed C d

2.1 Basic Measures

e Risk = Probability of death/disease

Control | Intervention
Risk D1 D2
Risk Estimate cJ%d a%b

& Risk Difference: RD= p;

& Relative Risk: RR= p;1/po

& Reduced Risk: = 27F2 % 100% = (RR — 1) x 100%

& Odds: Odds= p’p ,
& Odds Ratio: OR =

_ p1/(=p1)

—p1)

p2/(1-p2)

— P2




Primary Objectives

e 'T0 derive the posterior distribution of NNT
& Further our Understanding of the Distribution
& Provide better Estimation of NNT.

e What is NNT?

& First introduced by Laupacis, Sackett & Roberts
(1988)

& NNT = 1

[p1—p2|
& Interpretation:
o If py — po > 0: The expected number of patients
needed to treat to prevent one bad outcome or to get one
benefit .

o If p1 — po < 0: The expected number of patients
needed to treat to cause one bad outcome or to get one
patient harmed.

& Alternative Interpretation: (JL Hutton. JRSS Soc

A (2000); 163(3): 403-419)
o Average number of patients in the population
needed to be treated’” under new treatment to achieve one

additional positive response (prevent one additional bad re-
sponse) over the control.



Numerical Examples:

Example 1: Standard Treatment vs New Treatment

Die Survive | Total
Standard | 11 55 67
New 1 62 63

e Outcome Measure: Proportion of deaths
e p; =11/67 = 0.164 [Standard Treatment]

e p, =1/63 =0.016 [New Treatment]
& Relative Risk= p;/p, = 0.164/0.016 = 10.25
& Risk Reduction= p; — p, = 0.164 — 0.016 = 0.148

. pi/(l—p1) _ 0.164/0.836
& Odds Ratio= gf(lig) = 0.016%'984 = 12.06

& NNT = 1 =1/0.148 = 6.76

p1—p2

Interpretations:

e RR = 10.25: The risk of death (probability of death) for people
on standard treatment is about 10 times that for people on new
treatment

e RD = 14.8%: About 15% excess/additional risk (chances of death)
for people on the standard compared to than those on new treat-
ment

e OR = 12.06: About 12 times greater odds of death those on stan-
dard treatment than for those on new treatment

e NNT = 6.76: We need to treat about 7 patients to prevent one
death



Example 2: Anti-epileptic Trial Data

> 50% Reduction < 50% Reduction | Total

Topiramate 8 15 23
Placebo 2 22 24

e Source: Sharief et al (1996): Epilepsy Res 25: 217-224

e Patients with at least one seizure/week during an 8-week baseline
period.

e Treatments: Topiramate (400 mg/day) vs Placebo for 3 weeks;
8-week stabilization period.

e Measure of effect: At least 50% reduction in seizure rate at the
end of treatment period.

e Outcome Measure: Proportion with at least 50% Reduction
e p1 =8/23 = 0.8/23 = 0.35 [Topiramate Treatment]

e pp =2/24 = 0.083 [Placebo]
& Relative Risk= p;/p, = 0.35/0.083 = 4.17
& Risk Reduction= p; — pp = 0.35 — 0.083 = 0.26

. p/(l—p1) _ 035/0.65
& Odds Ratio= Z;;(lia) = 0'083%'917 = 5.87

& NNT = -1 =1/0.26=3.78

pi—p2
Interpretation: We need to treat about 4 patients to get one
patient with at least 50 % reduction in seizure rate.




2.2 Applications of NNT in Health Research
e Why use NNT?

& Very Attractive measure to use from clinical perspective.

& Easier for Clinicians to interpret.

e Applications

& Adverse outcomes: Death, Stroke, adverse reaction, etc.

& Beneficial Outcomes: Improvement in quality of life or
physical function, remission of symptoms, etc.

e References:

& Screening: Rembold CM. BMJ: 1998

& Population & Disease Context: Heller RF, Dobson AlJ.
BMJ: 2000

& Clinical Medicine: Sauve, Sauve, Sackett, Clinical Re-
search: 1993



Challenges with NNT
& Not defined at p; — p, = 0.

& Confidence Interval interpretation becomes difficult when

(_LaU):
o Example: Suppose 95% CI for p; — p,=(-0.25,0.25).

o Corresponding 95% CI for NNT = (—o0, —4]U[4, 00).

& Overestimation: Jensen’s Inequality: For a rv X and con-
vex function g(z), then

E(9(X)) =z g(E(X))

Application to Estimation of NNT:

N
E(1/p) > 55~ »

& Invariance property of maximum likelihood estimation fails
(Hutton JL (2000)).




Introduction to Bayesian Approach

e Bayes Theorem:

P(D|H) x P(H)

p(H|D) = P(D)

. H = Hypothesis; D = Data

e Posterior

L(6]y)p(6)

p(0ly) = o)

[Posterior Density|

where

L(@|y) = likelihood function

(

p(0) = prior density of @
p(y) = [ L(Bly)p(6)d6.

e Inputs and Outputs of the Bayesian Analysis

INPUI OUTPUT

(1). Experimental Information

(2). Prior Information (1). Posterior Density

(3). Sampling Assumptions (2). Predictive Density

(4). Likelihood Function "I (3. Point& Interval Estimates
(5). Prior Density (4). Point & Interval Predictions
(6). Bayes Theorem

Figure 1: Input and Output of Bayesian Analysis
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2.3 References on Bayesian Inference
e Introductory Level References
— Berry DA (1996). Statistics: A Bayesian Perspective,
Duxbury, London

— Lee PM (1997). Bayesian Statistics: An Introduction
2nd Ed., Anorld, London

— O’Hagan A (1988). Probability: Methods and Mea-
surement, Chapman & Hall, London

— Press SJ (1989). Bayesian Statistics: Principles, Mod-
els and Applications, Wiley, NY

e Intermediate— Advanced
— Bernardo JM and Smith AFM (1994). Bayesian The-
ory, Wiley, NY

— O’Hagan A(1994). Bayesian Inference, Vol. 2B of
“Kendall’s Advanced Theory of Statistics”, Arnold, Lon-
don

e Bayesian Prediction (Introductory)

— Geisser, S. (1993). Predictive Inference: An Intro-
duction, Chapman and Hall, New York.

— Aitchison, J. and Dunsmore, I.LR. (1975). Statistical
Prediction Analysis, Cambridge University Press, Cam-
bridge.
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3 Posterior Distribution of p = p; — py

e [ikelihood function:

Lips.palD) =TI ("l’)pm _pynn (3.1)

=1 1
e Prior Distribution: p; ~ Beta(«;, ;)
e Joint Posterior of (p1, p2)

2T o) D= 4 ) o
) D - iz 71
f(p1,p2|D) Zl;[l [ (n; + a; + 5;) Y

(1_pi)ﬂq‘,—$i+ﬁi—1_
(3.2)

e Mean and Variance of p = p; — po:

1y = E(p|D) = E(p|D)— E(p2|D)
T+ aq To + Qo

n+or+0 na+as+ B

2
0}3 = Var(p) = Z.:Zl\/ar(pAD)
2 (zi + ;) (n; — x; + ;)

S+ o+ B8) (i + B+ 1)
References

1. Pham-Gia T. Value of the Beta Prior Information. Commun Statist-
Theory Meth 23(8): 2175-95 (1994).

2. Pham-Gia T, Turkkan, N. Bayesian Analysis of the Difference of
two proportions. Commun Statist-Theory Meth 22(6): 1755-71
(1993).

3. Geisser S. On Prior Distributions for Binary Trials (with discus-
sions). The American Statistian 38: 244-51 (1984).
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4 Asymptotic Posterior Distribution of p & NNT

e Asymptotic Posterior Distribution of p:

_ 2
R e o HECE

e Asymptotic Posterior Distribution of NNT = y = 1/p

RV
F0ID) = e UL )

p

e Generalized Inverse Normal Family: Robert (1991), Johnson at al
(1995, p.171)

K 1/y —
ly[* 202
(4.5)
& k" moment exists only if & > k + 1
& Modes at
p+ /1?2 + dao? ViZ +4a0? —
== 2002 and g2 = 2002 '

e From (4.4), the modes are

. + /s + 8o A V15 + 802 —

NNy = BTV TR0 g NNy = VR T T
4o 4o

(4.6)
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5 Benefits of Adopting Bayesian Approach

e Intuitive interpretation of credible intervals

e Uncertainly about NNT' expressed explicitly through its posterior
density

e Posterior Odds of Needed to Treat at least k& subjects
* (%)
- ()

e More on advantages of Bayesian approach in health research:

Odds(NNT > k) =

— Wingler RL. Why Bayesian Analysis hasn’t cought on in health-
care decision making. Int J Tech Assess Health Care 17 (1):56-
66 (2001)

— Hornberger J. Introduction to Bayesian Reasoning. Int J Tech
Assess Health Care 17 (1):9-16 (2001)
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6 Simulations

6.1 Objectives
e To study the behaviour of the posterior distribution of NNT

e To compare the performance of the posterior mode (Bayesian “Es-
timator”) with conventional Estimators

1. Classical Estimator: NNT, = (w1/n1 — x2/n2) 7t

i ; A +1 w1\ 1
2. Adjusted Estimator: NNT = (931 _ )

7’L1+2 TL2+2

3. Posterior Mode: NN T.

6.2 Results: Behaviour of Posterior Distribution
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6.3 Comparison of Estimators
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Table 1: Average Percentage Error based on 100,000
simulations

[Estimate—NNT] % 100

Average % Error=

(p1,p2) NNT (ni,np) NNT, NNT, N]]\\/fvijTc
(08,0.1) 143 (100,100) 576 6.10 5.64
(150,150)  4.69 4.87 4.63
(250,250)  3.62  3.71 3.5
(300,300) 329 3.35 3.26
(08,0.2) 1.67 (100,100)  7.62 7.94 7.0
(150,150)  6.23  6.39 6.01
(250,250) 4.80 4.88 4.70
(300,300)  4.38  4.45 4.31
(08,03) 2 (100,100) 10.02 10.32 9.21
(150,150)  8.11 8.28 7.67
(250,250)  6.25 6.32 6.04
(300,300)  5.65 5.71 5.50
(0.8,0.34) 2.5 (100,100) 13.40 13.78 11.70
(150,150)  10.68 10.88 9.78
(250,250) 8.18  8.27 7.77
(300,300)  7.41 7.48 7.10
(0.8,045) 2.86 (100,100) 13.74 16.17 13.23
(150,150) 1247 12.66 11.12
(250,250) 9.51 9.60 8.88
(300,300) 857 8.65 8.13
(08,05) 333 (100,100) 19.12 19.63 15.10
(150,150)  14.90 15.16 12.81
(250,250)  11.17 11.29 10.23
(300,300) 10.14 10.23 9.44
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6.4 General Comments

1. The plots show that while the posterior distribution of p is
nicely symmetric, that of N NT' is not.

2. The posterior mode consistently gives the least average er-
ror percentages.

3. It out-performs the other conventional estimators if the sup-
port of the distribution lies entirely in the positive range,
(i.e. if the probability of negative NNT is zero or very close
to zero).
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7 Future Directions

e The case of bimodality: The support of the distribution lies
in both positive and negative axes.

e Meta-Analysis
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