
Perfect Sampling Algorithms:

Connections

Duncan Murdoch
University of Western Ontario

November 15, 2002

1

Outline

1. Background: Markov chain Monte
Carlo (MCMC)

2. Coupling from the past (CFTP)

3. Read-once CFTP

4. Fill’s Rejection Sampler

5. Variations

This talk is based on joint work with Jeff
Rosenthal, Jim Fill, Motoya Machida,
and Xiaoqiang Li.

2

Background

• Want to study the distribution of
X ∼ π(·), X ∈ X ⊂ Rd.

• Example: π(·) is the posterior
distribution in a Bayesian model,
want to know
E(f(X)) =

∫
f(x)π(x)dx.

• Problem: often π(·) is intractable.

• Partial solution: use Monte Carlo
simulation to generate X1, . . . , Xn

from π(·), estimate E(f(X)) by
(1/n)

∑
f(Xi).

3

MCMC continued. . .

• Problem: often we don’t know how to
sample from π(·).

• Partial solution: sample from a
Markov Chain, whose steady-state
distribution is π(·). Run “until
convergence”, treat sampled values as
samples from π(·).

4

Common MCMC Algorithms

1. The Gibbs Sampler: Split X into
components X = (X(1), . . . , X(p)).
Draw in sequence each X(j) from the
conditional distribution given the
other components.

2. General Metropolis-Hastings: Draw
Y from a “proposal distribution”
q(·|Xt).

Xt+1 =





Y if Unif(0, 1) < α(Y |Xt)

Xt otherwise

where

α(Y |X) =
π(Y)

q(Y |X)

/
π(X)

q(X|Y)

5

Common MCMC Algorithms
cont’d

3. The Independence Sampler:
Metropolis-Hastings with

q(y|x) = q(y)

α(Y |Xt) =
π(Y)
q(Y)

/
π(Xt)
q(Xt)

4. Random-Walk Metropolis:
Metropolis-Hastings with

q(y|x) = q(|y − x|)
α(Y |Xt) = π(Y)/π(Xt)

6

MCMC continued. . .

• Problem: The distribution of the Xt

values converges to π(·), but how
quickly?

• Solution: Use perfect sampling!

7

History

• Coupling from the past (CFTP):
Propp, J.G. and Wilson, D.B. (1996).
Random Structures and Algorithms
9, 223-252.

• Fill’s algorithm:
Fill, J.A. (1998). Ann. App. Prob. 8,
131-162.

Fill, J.A., Machida, M., Murdoch,
D.J. and Rosenthal, J.S. (2000).
Random Structures and Algorithms
17, 290-316.

• Numerous variations on both since.

8

Coupling from the Past

• CFTP samples from π(·).
• Idea: Compute result of infinitely

long run from the past by coupling
all possible tails of shorter runs.

• If they all give the same answer, it
must be in steady-state!

9

Example: Random Walk

Xt+1 =





min(Xt + 1, 5) p = 1/2

max(Xt − 1, 1) p = 1/2

Time

S
ta

te

5 10 15 20

1
2

3
4

5

10

Coupling

Write Xt+1 = φ(Xt, Ut+1) where Ut are
independent with a known distribution
and φ(·, ·) is deterministic.

Xt+1 = min[max(Xt + Ut+1, xmin), xmax]

Ut+1 = ±1 (with equal probability)

Time

S
ta

te

5 10 15 20

1
2

3
4

5

11

Coupling continued. . .

With many update functions, paths
coalesce: regardless of the initial state,
the value of Xt is the same for large
enough t. The past is forgotten; no
initialization bias remains.

Time

S
ta

te

5 10 15 20

1
2

3
4

5

12

Coupling from the Past
(CFTP)

Removing the initialization bias is not
enough: there may be a coupling time
bias. Compute the result of an infinitely
long run from the past by coupling all
possible tails of shorter runs.

Time

S
ta

te

-15 -10 -5 0

1
2

3
4

5

13

The CFTP Algorithm

CFTP(M):
t ← −M Try from −M

Bt ← X All states possible

while t < 0 Run to t = 0

t ← t + 1 Update t

Bt ← φ(Bt−1, Ut) Update Bt

if #B0 = 1 then Coalesced?

return(B0) Yes, we’re done!

else
CFTP(2M) No, try from −2M

14

Proof of Validity of CFTP

The CFTP algorithm generates X0 as a
function of the infinite sequence
U0, U−1, U−2, . . .:

X0 = C(U0, U−1, U−2, . . .) (1)

We can generate X1 in two ways:

X1 = φ(X0, U1) (2)

= C(U1, U0, U−1, . . .) (3)

By (1) and (3) and the invariance of the
distribution of an i.i.d. sequence under a
shift, X0 and X1 have the same
distribution. By (2), the distribution of
X1 is the update of the distribution of X0

under the Markov chain transition kernel.

The only distribution left invariant is the
stationary distribution.

15

Implementation problem

When M is increased to 2M , CFTP
needs
U−2M+1, . . . , U0, but U−M+1, . . . , U0

must not change.

This requires either lots of storage, or
tricky programming.

0.
0

0.
4

0.
8

−4M −2M −M 0

This figure and later ones use Wilson’s

(2000) multishift coupler.

16

Read-once CFTP

Do CFTP, but only use each Ut once
(Wilson, 1999).

Motivation:

0.
0

0.
4

0.
8

−3T −2T −T 0

C−n
∆= {Paths from −nT coalesce by −(n− 1)T}

The pair (C−n, X−(n−1)T) depends only

on {Ut}t=−(n−1)T
t=−n+1 , so such pairs are

independent across n.

17

ROCFTP–The Algorithm

1. Run from t = 0 to the first Cn event.

2. Follow the path from X(n+1)T .

3. Run from t = (n + 1)T until Cm,
m > n, occurs.

4. Output XmT .

nT (n+1)T (m−1)T mT (m+1)T

Valid since distribution of XmT is the
same as if a fixed stopping time was used.

This is the easiest perfect sampler to
program.

18

Impatience Bias

CFTP may terminate, but there is no
upper bound on how long it will take. If
we give up when M > M∗, we introduce
an impatience bias: we are more likely to
see outcomes arising from fast
coalescence.

E.g. asymmetric random walk on
{1, . . . , N} that steps up 1, down 2 can
coalesce at 1 in N/2 steps, but needs at
least N − 1 steps to coalesce at N .

−15 −10 −5 0

1
3

5

t

19

Fill’s Algorithm is
interruptible

Fill’s rejection sampling algorithm is a
variation on ROCFTP that does not have
impatience bias, i.e. it is interruptible.

Given coalescence, the value at the end of
the block is independent of the value at
the start.

nT (n+1)T (m−1)T mT (m+1)T

This allows us to construct a rejection
sampler.

20

The Reverse Process

Fill’s algorithm makes use of the reversal
of a Markov chain. The reversal Yt of Xt

has the same transition probabilities, in
reverse:

P (Yt+1 ∈ A|Yt ∈ B) = P (Xt ∈ A|Xt+1 ∈ B)

where we assume Xt is in steady-state.

For reversible chains (common in
MCMC), Yt has the same transition
probabilities as Xt. If not, we may be
able to use Bayes Rule to find the
transition probabilities.

21

Fill’s Algorithm

1. Arbitrarily choose XT .

2. Using the reverse process, simulate

XT−1, . . . , X0.

3. Choose U1, . . . , UT such that

Xt+1 = φ(Xt, Ut+1).

4. Use U1, . . . , UT to simulate all paths

from 0 to T .

5. If all paths coalesce, output X0.

6. Otherwise, reject and repeat

independently.

Reject

0.
0

0.
4

0.
8

0 T

Reject

0.
0

0.
4

0.
8

0 T

Accept

0.
0

0.
4

0.
8

0 T

22

Is Fill’s X0 ∼ π(·)?
Yes. We are constructing the value at the
beginning of a coalescent block, just as
ROCFTP does. The fact that XT is
chosen arbitrarily doesn’t matter as long
as XT is in the support of π, since X0 is
independent of it.

Is Fill interruptible?

Yes (well, maybe). We always take T

steps to generate a block, and each block
is independent of all others. There is no
dependence between the number of steps
and the output value (though there may
be dependence on the length of time to
calculate each step).

23

Practical difficulties with Fill

Usually it is possible to work out the
transition probabilities of the reversal of
Xt, but it may be hard.

It is usually quite difficult to draw the Ut

values. Ut are i.i.d. from a distribution
that is designed to be straightforward to
sample, but we require draws conditional
on Xt = φ(Xt−1, Ut). Since φ(·, ·) may be
quite complicated in practical situations,
this is not easy.

24

Variations

In practice, X is usually too big to follow
every path—φ(Bt, Ut+1) is impractical to
calculate. We usually work with bounds,
i.e. we define Φ(·, Ut+1) on sets such that

Φ(Bt, Ut+1) ⊇ φ(Bt, Ut+1)

e.g. if x ≤ y implies φ(x, u) ≤ φ(y, u)
(monotonicity), then it is sufficient to
follow minimal and maximal paths to
determine coalescence.

Dominated CFTP (also known as
coupling into and from the past) makes
use of this idea together with time
reversals to handle unbounded spaces.

25

Dominated CFTP

When X is unbounded, often CFTP fails.
If the step size Xt+1 −Xt stays bounded,
then there is no M large enough that
coalescence can happen (the process is
not uniformly ergodic).

Kendall and Møller solved this by
coupling Xt to a more-easily simulated
dominating process Dt, i.e. defining

Xt+1 = φ1(Xt, Ut+1)

Dt+1 = φ2(Dt, Ut+1)

in such a way that Dt ≥ Xt implies
Dt+1 ≥ Xt+1.

We then simulate Dt backwards from its
steady-state distribution at time 0, and
use it to bound Xt.

26

Conclusions

• All of these algorithms are closely
related, being based on the idea of
coalescence of coupled paths.

• CFTP is easiest to understand, but
ROCFTP is easiest to implement.

• Routine use of ROCFTP is possible,
but not always: some kind of [partial]
ordering is essential in a large state
space.

• CFTP generalizes to non-Markov
processes more easily than ROCFTP
does.

For more on perfect sampling, see David
Wilson’s bibliography:
http://dimacs.rutgers.edu/

~dbwilson/exact.html

27

