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Abstract

In this paper we propose a kernel density estimate for interval-censored data. It
retains the simplicity and intuitive appeal of the usual kernel density estimate and is
easy to compute. The estimate results from an algorithm where conditional expecta-
tions of a kernel are computed at each iteration. These conditional expectations are
computed with respect to the density estimate from the previous iteration, allowing
the estimator to extract more information from the data at each step. The estimator
is applied to HIV data where interval censoring is common.

In terms of the cumulative distribution function the algorithm is shown to coincide
with those of Efron (1967), Turnbull (1976), and Li et al. (1997), as the window size of
the kernel shrinks to zero. Viewing the iterative scheme as a generalized EM algorithm
permits a natural interpretation of the estimator as being close to the ideal kernel
density estimate where the data is not censored in any way. Simulation results support
the conjecture that kernel smoothing at every iteration does not effect convergence.
In addition, comparison to the standard kernel density estimate, based on smoothing
Turnbull’s estimator, reflect favourably on the estimator for all criteria considered. Use

of the estimator for scatterplot smoothing is considered in a final example.

Keywords: Cross-validation, EM algorithm, HIV, importance sampling, interval censoring, ker-
nel smoothing, Kullbeck-Leibler, mean squared error, Monte Carlo integration, nonparametric maz-

imum likelihood, scatterplot smoothing, self-consistency.

1 Introduction

We propose a kernel density estimate to be used in the presence of interval censored data,

i.e. data that are observed to lie within an interval but whose exact value is unknown. The
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estimate results from a recursive scheme that generalizes the algorithms of Efron (1967),
Turnbull (1976) and Li et al. (1997) by kernel smoothing the data at each iteration

n
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Here expectation is with respect to the previous iterate conditional on the observed inter-
val. Convergence of the algorithm implies that fj approaches some density for which the
application of (1) has no effect. Efron (1967) called such a fixed point a self-consistent
estimator.

The estimator retains the simplicity and intuitive appeal of a kernel density estimate. In
fact, this simplicity avoids some of the awkward aspects associated with kernel smoothing

Turnbull’s estimator, Fj, of the cumulative distribution function (cdf)

fiw) = [ 55 () ar

which is a standard technique. Turnbull’s F} is a non-parametric maximum likelihood es-
timator (NPMLE) that is not uniquely defined over the whole real line but only up to an
equivalence class of distributions that may differ over gaps called “innermost” intervals.
Associated with these gaps are probability masses whose distribution over the gap is left
unspecified and that proves to be troublesome when computing ft. Pan (2000) suggests
arbitrarily assuming that jumps occur at the right-hand points of the gaps which may be
appropriate if the censoring proportion and the length of the censoring intervals are small.
However, if most observations are interval censored with interval lengths that can be large, as
is often the case with HIV/AIDS data, then assuming that the jumps occur at the right-hand
point of the interval may cause considerable bias in the estimator. This complication never
arises when computing (1) because we smooth the data directly at every iteration rather that
smoothing a NPMLE once. Moreover, this smoothing process distributes probability mass
over each observed interval using a conditional density determined by the previous iterate.
This process is data driven rather than arbitrary.

Figure 1 depicts use of the estimator as applied to a group of heavily treated hemophiliacs
(De Gruttola and Lagakos, 1989) whose time of infection with the HIV virus was interval
censored. The upper plot gives the original data ordered by the left end point. Time is
measured in six month intervals and right censored observations are denoted by dotted lines.
The lower plot gives ft and our estimator f4 based on four iterations of the algorithm. The
choice of j = 4 is based on both simulations and visual inspection of the estimator for several
values of 7 > 4. The latter can be made common practice as successive iterates are based
on an importance sampling scheme where the time to compute an iterate does not increase

with the number of iterations. The estimator ft was computed assuming jumps occur at the



center of innermost intervals rather than the right-hand point, which causes the estimate
to be shifted to the right. Window sizes were chosen using a method of cross-validation
discussed in §5. What is evident from the plot is that f4 does a better job of smoothing
what appears to be a sampling anomaly on the left side of the plot without eroding the peak
on the right. It eliminates sampling artifacts in the estimate without degrading the estimate
itself, and to some extent overcomes the fact that smoothing the NPMLE does not recover
the information lost by the non-parametric estimation (Pan, 2000). By smoothing at every
iteration it does a better job of borrowing information from neighbouring data points in the
smoothing process. This is borne out in simulations of mean squared error. This example
is used throughout the paper to illustrate other aspects of the estimator and a separate
example concerning HIV infection and infant mortality is given in §7.

Innermost intervals, whose concept is not entirely straightforward, never explicitly enter
into the calculation resulting in the advantage that our estimator fills in the gaps of Turnbull’s
F,. This idea of filling in the gaps is not new as Li et al. (1997) embed Turnbull’'s NPMLE
in an EM algorithm designed specifically for this purpose. They obtain an estimator that
will converge to the NPMLE where the NPMLE is uniquely defined, and to some cdf that
depends on the starting point of the algorithm where the NPMLE has gaps. In §3 we show
that as the window size, h, shrinks to zero our algorithm coincides with that of Li et al.
(1997) and hence with the algorithms of Efron (1967) and Turnbull (1976) as well.

The remainder of this paper is organized as follows. In §2 the estimator is proposed
as a natural extension of the usual kernel density estimate in the complete data case (no
censoring). It is formally defined through a generalized EM algorithm where the “M” step is
characterised by optimizing an “MSE” criterion. This criterion is quite natural as it involves
the complete data kernel density estimate, fc, allowing the estimator to be interpreted as
minimizing the distance between itself and the ideal estimate fc. Numerical implementation
of the method is discussed in §4 and the choice of the smoothing parameter is considered in §5.
The question of convergence of the algorithm is considered in §3. Although the developments
are not rigorous, the conjecture is that use of kernel smoothing at every iteration does not
perturb algorithms, that are known converge, to such an extent that they no longer converge.
The argument is supported by simulation results in §6. Finally, in §7 the method is used to
provide kernel weights for scatterplot smoothing. Throughout the paper analogies with the

complete data case make developments transparent.



2 Definition of the estimator

In the presence of complete data X1, ..., X, the standard kernel density estimate,
A 1 i 1 ( - X; )
S n&h ’

may be written as an expectation with respect to the empirical distribution, F,,, of the
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When the data are interval censored, so that X; € I; Vi and only I; = (L;, R;) is observed,
it seems natural to express the kernel density estimate in terms of iterated expectation
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Here conditional expectation is computed with respect to the distribution for the true value of

sample
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X, over the interval I;. Goutis (1997) uses such a strategy for the nonparametric estimation
of a mixing density.

This conditional distribution is itself unknown and must be estimated. A natural choice
is data driven and involves using the kernel density estimate itself to approximate each
conditional distribution. This results in an iterative algorithm with the following smooth
estimate of the density at the jth step:
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where R
S g fra(t)dt  L; # R;

Bl [9(X)| X € 1] = { o) L =R = X.

The conditional density fi.;(-) over the interval I; is defined as
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where 1;(-) is the indicator function for the interval I; and ¢y is its unconditional expectation
under fi. At the (k+1)* iterate it is the conditional density fi;(z) that is used to smoothly
distribute a probability mass of 1/n over the interval ;. Note how this differs from, for
example, the product limit estimator which distributes the mass associated with a right
censored observation X; to only those uncensored observations that exceed X; and not to

the entire interval [X;, 00).



Given the estimator weights a data point by computing the average height of the kernel
over the observed interval consider Figure 2 which depicts how the weight depends on the
length and proximity of the interval to the location of the kernel. In the figure the weights
for two intervals, centered at 0 but with different lengths, are shown for different positions
of the kernel. When the kernel is also centered at 0, the method rewards precision by giving
the shorter interval a greater weight. However, when the location of the kernel is shifted so
it overlaps predominantly with the longer interval, it assigns a larger weight to this interval
even though it is less precise. This is due to the longer interval being more “local” than the
shorter interval to the point of estimation, or the center of the kernel. The longer interval is
local because there is non-zero probability that the true observation is in a region close to
“-2” while this is not the case for the shorter interval.

While the above derivation has intuitive appeal the estimator may be formally defined
as minimizing an integrated squared distance between some arbitrary function and the ideal
estimator fc We first present the following result.

Theorem 2.1 Let F be the set of absolutely continuous density functions in Ly. Suppose
~ 2 ~
that X is distributed with density f* € F. Let C(f) = [°, {fc(x) - f(x)} dz, where f.(x) =

(nh)™' 3", K((x — X;)/h), and assume that h'K((- — u)/h) € F for any fized h > 0 and
u € IR. Then f = Ep[(nh)™' 0 K((z — X;)/h)|X; € I;,Vi] solves
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By minimizing the positive integrand for every fixed z, we minimize the integral. Thus for

a fixed value of = the definition of conditional expectation implies that
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Note the criterion is quite restrictive. It explicitly involves fc and hence the form of the
optimal estimator is not surprising. Nevertheless, the result is useful due to the interpretation
it lends the estimator. In terms of squared distance the estimator gets as close as possible
to the ideal kernel density estimate. In addition, since we do not know the true density f*,
we replace it with any current guess for f*, say fj_l. Hence the estimator may be regarded

as resulting from a generalized EM algorithm with:

() x e

E-step: Vi define fj,l;i(x) and compute w;(z) = E;_4 [ -

M-step: Compute f;(z) = w(z) = L 37 w;().

1
h

Computational issues concerning the E-step are considered in §4.

Figure 3 gives the result of the first four iterations of the algorithm for the hemophiliac
data. In this data set, patients who were infected at the time of entry were assigned a left-
hand point of L; = 1 which resulted in a number of lengthy intervals commencing from the
beginning of the study. The common practice in the HIV literature of assuming a uniform
distribution over each interval is clearly inappropriate from an inspection of the data. For the
estimates in Figure 3 we used a uniform distribution as our starting point (right censored
observations were given a weight of 0). As one expects, differences between the first two
iterates are quite large as the initial assumption of a uniform distribution is adjusted by the
density estimate itself which places more weight on the later period of the study. Convergence

is achieved after four iterations.

3 Properties of the estimator

When the complete data kernel density estimate, fc, is used to estimate the cdf as

Fuw) = [ fwdu,

the estimate F, reduces to the NPMLE as h | 0. Here the NPMLE is the empirical distri-
bution function F,. An analogous development holds for the estimator fj as well. In this
section we show the algorithm (1) reduces to that of Efron (1967), Turnbull (1976) and Li
et al. (1997) as h | 0. Since each of these converges under broad conditions we conjecture
that the use of kernel smoothing at each iteration does not perturb the algorithm to such
an extent as to effect convergence. The simulation results of §6 support this.

Efron (1967) proposed an iterative scheme for approximating the survivor function at a
point z, S(x) = P[X > z|:



where N(z) = #X; > z, §; = 1 if X, is observed exactly and §; = 0 if X; is right-censored
(R; = o0). Efron shows Sj converges to a fixed point that coincides with the Kaplan-Meier
product limit estimator, that is the NPMLE. Turnbull (1976) generalized this algorithm
to obtain a NPMLE of the distribution function under general censoring and truncation
schemes. Li et al. (1997) proposed an estimator that is the fixed point of an EM algorithm.
Their estimator coincides with Turnbull’s estimator where Turnbull’s estimator is uniquely
defined, and converges to a value that depends on the starting point of the iterative scheme
where Turnbull’s estimator is not uniquely defined. The iterative scheme proposed by Li et
al. (1997) involves computing the conditional expectation of F,, at each step

Fi(z) = Ej 1 [Fo(z)| X; € I; Vi].

The following theorem shows that Li et al.’s estimator can be obtained as a limit of our

estimator when we let the window width of the kernel shrink to zero at every step.

Theorem 3.1 Let Fj(z) be the estimate of the cdf corresponding to the density estimate (1).
Assuming both algorithms have the same initial value, then

léﬁ)lFJ(x) =Fi(z)Vz, j=1, 2, ...

Proof: F’J may be rewritten as
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Note Li et al. (1997) use the third expression for computation. Defining K*(u) = [* K(y)dy
and using Tonelli’s theorem to interchange expectation and integration we may similarly

write
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51 1 X;
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Since K*((x — X;)/h) <1 for all h, we can bring the limit inside the expectation. The result
obtains since limy, o K*((u — v)/h) = I[v < u|, Yu,v € R. O

In the case of right-censored data the algorithm (1) reduces to that of Efron (1967) as
an immediate consequence of Theorem 3.1.

Corollary 3.1.1 If R; = oo for all interval censored data points, then

%Fj(x) =1-5,(z) Yz, j=1,2,...,
Proof: Under right censoring, 1 — S;(z) = Fj(z) and hence the result. O

The above developments naturally lead to the consideration of convergence of the algo-
rithm to a fixed point. Series expansions, (Silverman 1986), similar to those for the complete
data kernel density estimate, fc, show that Fj is equivalent to Fj to second order. The follow-
ing theorem does not prove convergence but it does show that convergence of the algorithm
is linked to the convergence of FJ and may be inherited from FJ In other words, the con-
vergence of FJ is a necessary condition for the convergence of Fj. Li et al. (1997) show that

Fj converges when Fj is a strictly increasing distribution function.

Theorem 3.2 Assume, [p K(u)du = 1, [puK(u)du = 0 and [pu?K(u)du = 0% < oo,

then, assuming both algorithms have same initial value we have
Fj(z) = Fj(z) + O(h?), Vrj=1,2,...

The proof of this Theorem can be found in the Appendix.

The assumptions of the theorem are typical of most popular kernel functions, including
the Gaussian kernel. The effect of the O(h?) term depends on both the properties of the
kernel as well as the size of h. In the simulations of §6 the O(h?) term does not disturb

convergence.

4 Implementation through importance sampling

Computing an iterate in the recursive scheme (1) requires the computation of a conditional
expectation for each interval censored observation. For an interval I this conditional expec-
tation has the form

= e (55 ] - e () o

which, except in special cases, will not be computable in closed form. Rather than numer-

ically approximating the integral involved in the expectation, we estimate it by a sample



mean in a Monte Carlo scheme that is fast and easy to implement. Thus the iterative algo-
rithm involves a sampling process which iterates until we are confident that we are sampling
from the fixed point of (1).

Two sampling schemes are considered where the second is an approximation of the first.
The first method involves sampling exactly from fj ; using an acceptance/rejection method
where candidate values Y are generated from the distribution with density f] and accepted
ifYel

1. generate Y ~ fj
2. ifY € I set X <— Y otherwise goto 1.

The first step is accomplished by the following recursive scheme:
1. sample with replacement from {Iy,...,I,} to get I*
2. sample p from f; .1«
3. sample Y from ;K (%)

where the recursion occurs at step 2. Once a sample X, ..., Xpg is obtained, fi; is computed

as B
1 1 .’E—Xk
- b E ()
s Bkz::lh h

and since the sampling is exact

i 2% B, FK (‘”_XNX € I]
h h

Thus we can limit the effect of Monte Carlo error by choosing B to be as large as we want.

The difficulty with this exact sampling method is that it punishes precision in the data.
When an interval is narrow the acceptance/rejection step will largely reject proposals. Thus
obtaining a large sample may take a long time and given the scheme is recursive the impact
can be substantial. To offset this we use an importance sampling scheme where the time to
compute an iterate does not increase with the number of iterations as in the exact sampling
scheme above. Based on

E; l%K (z _hX)>‘X el

- [ () ]

where g is some distribution over the interval I that is easy to sample from, and w(X) =

—f’;g )(())() is the importance sampling weight, [i; becomes

~ B 1 r — Xk
=2 5K ( h ) v
where wi = w(Xy)/ X2, w(X;) and the above acceptance/rejection scheme is replaced by

9



1. Generate Xy ~ g, k=1,...,B
2. Compute ji.

The only additional complication is to compute the sampling weights wj which, upon
inspection, simplify in a convenient way. Ultimately they involve the height of the uncondi-
tional kernel density estimate fj thus avoiding computation of the constants c;;;

o FuXe) JE Hu(X) _ fi(X) /B fHix) /ij

w — —
k g(Xk) =1 g(Xl) Cj;lg(Xk) 1 1C],Ig(Xl =1 g

Finally, using the values of the kernel density estimate fj at a sufficiently fine grid, fj,l(X k)
can be accurately computed by interpolation.

Using the hemophiliac data figure 4 gives the result of a simulation study for values of
B =10 & 100 respectively. For each plot the kernel density estimate, based on 4 iterations of
the algorithm, was computed 100 times for a fixed value of B. The plot depicts the resulting
pointwise mean and 99 % percentile interval. The method works quite well for samples of
size 100.

5 Choice of the smoothing parameter

A central component of kernel density estimation is the choice of the smoothing parameter.
We propose an automatic method for this purpose based on likelihood cross-validation that
is is analogous to the complete data case (Silverman, 1986). In the presence of complete

data X1,..., X, likelihood cross-validation aims to maximize

ﬁA( ) (x

with respect to the smoothing parameter h. The superscript indicates X; is left out when
the estimate f,(l_z) (X;) is computed and the method works because E[C'V (h)] involves the
Kullbeck-Leibler distance between f and f :

EICV ()] ~ — [ £()10g{f(8)/ f(®)}dt + [ F(t)log{f ()}t

In the case of interval censored data it is natural to mimic the above strategy through
analogy. In the above, f,(L_i) (X;) is obtained by eliminating a point of support, X; from the
NPMLE, namely F,. By eliminating X; the contribution to CV at that point of support
uses only the remaining data. In our case, the support of the NPMLE, Fj, are the innermost
intervals defined as J, = (pr,¢.),r = 1,...,m where p, € {L;;i = 1,...,n}, ¢ € {R;,i =

.,n} and J. N I; equals J, or ,Vr,i (see Turnbull 1976, or Li et al., 1997 for a more
detailed discussion of innermost sets). For simplicity of exposition, and without loss of

10



generality, assume all data are interval censored. In this case, the cross-validated likelihood

is defined as

I1/ A7
r=1"9"

where [; A,Efr) (t)dt is obtained by dropping the innermost interval J, when estimating the
density. Dropping an innermost interval is accomplished by removing all intervals in the
original sample that contribute to its presence but not to the presence of any other innermost
interval. This conveniently addresses the question of tied observations which are common for
interval censored data. For example, the hemophiliac data contains only 40 distinct intervals
in a sample of size 105. In addition it also addresses the issue of how to handle two observed
intervals that are not tied but have a high degree of overlap. If they both overlap completely
with the eliminated innermost interval then they are both eliminated when estimating the
contribution to the cross-validation process for that interval.

While the scheme is admittedly adhoc, it worked well in a limited simulation study using
40 samples. A description of how data was generated is given in §6. Table 1 compares
average values of our cross-validated likelihood with the Kullbeck-Leibler distance for both
fj and ft In both cases our cross-validated likelihood is quite accurate when compared to the
Kullbeck-Leibler distance. It obtains its maximum at, or near, the value of the window size
that minimizes the Kullbeck-Leibler distance. In addition, the ideal window size is smaller
for the proposed estimator, fj, indicating it uses more information in the data. Note the
method contradicts our aim of simplicity as knowledge of the innermost intervals is required
for computation. Ultimately, a method that is independent on innermost intervals, like k-fold

cross-validation as considered in Pan (2000), may be preferred.

6 A simulation study

For the estimator fj two patterns of behaviour are evident in the following simulation study:
convergence and improvement over the standard kernel density estimate, ft. Five criteria
are considered of which three are useful for comparing f] and ft. The remaining two assess
the dependence of the estimator on the initial value, fy, of the algorithm. All criteria assess

convergence. Define the squared distance, p, between two functions, v and v, as
plu,v) = Y {u(z) —v(2)}?
T€EX

where X is a fixed grid of equally spaced points spanning the range of the data. This distance
is central to all convergence criteria with the exception of one involving the Kullbeck-Leibler

distance.
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If the algorithm converges to a fixed point, f , that is independent of the initial value,
then it is said to be a contraction mapping, Y, if for some suitably defined space of densities
F, T is such that

T : F—F
fj = T(fj—l)
f=7(/)

IO(-]?J’-&J) < p(fj—lagj—l)a .7 > 1

where f] and g; are the density estimates at the j™ step for two arbitrary but different
starting points fo, go € F. The first two columns of table assess the behaviour of the
estimator as a contraction mapping. The “squared distance” column gives the average value
of p(fj,f]j), j=1,...,10 based on 100 samples
. 1 oo
U580 = 155 2 pi(fi: 9;)
where p;(-,-) denotes the value of p(-,-) for the i* sample. The “contraction” column give
the proportion of samples that satisfy the condition

pi(£j:85) < pi(Fim1.5-1), G > 1.

For each of the 100 random samples we generated 20 failure times from a Weibull distri-
bution with shape parameter 1.75 and scale parameter 3. Independently, we then generated
“visit times” using a homogeneous Poisson process. Each failure time was interval-censored
by the visit times that bracketed it. For each sample, we computed the iterative scheme (1)
using a Gaussian kernel with h = 1. We used a sample size of B = 100 for the importance
sampling scheme described in §4. The initial values of the density for the iterative scheme
are various scale and location shifted beta distributions. Here fy and gy are based on beta(5,
2) and beta(2, 5) distributions respectively.

The criteria “MSE,”, r = 1,2 use p(u,v) to assess the expected value of the squared
distance p(u,v) under the Weibull(1.75,3) distribution. When r = 1, the function u is set
to be the true density, f, and v = fj. Thus MSE; estimates the actual mean squared error
of the estimator. For MSE, the true density is replaced by the ideal estimator, fc, and the
criterion assesses the closeness of fj to the ideal estimator as discussed in §2. The final

column assesses an estimate of the Kullbeck-Leibler distance
W(f ) = E [log {f(X) / fm}] |

For each of the 100 samples an estimate,



is itself based on a sample X ~ Weibull(1.75,3). As in §4, the values of the density estimate
fj (X) are found by interpolation using the values of f] computed at the grid X. The entry

given in the table is
1 100

R(f, f;) = 100 & Rif, f5)-

Note the MSE and Kullbeck-Leibler criteria are evaluated for Turnbull’s estimator as well
where fJ is simply replaced by ft. All columns in the table give standard errors in brackets.

The results reported in Table 2 show the algorithm tends to reach convergence after
3-6 iterations. The contraction criterion improves until the 6" iteration after which its
behaviour is consistent with what would be expected if the Monte Carlo scheme of §4 in-
volved sampling from the fixed point (once convergence is reached we expect the condition
pi(fj,3;) < pi(fj 1,9, 1) to hold % 50 of the time). The squared distance criterion shows
the distance between estimators with different initial values gets very small indeed by the
6" iteration. The MSE and Kullbeck-Leibler criteria reach their minimum after only 3 it-
erations of the algorithm after which they remain fairly constant. The large improvement
between the first and second iterates, and the smaller improvement between the second and
third iterates, show how the estimator continues to extract more information out of the data
after the first iteration. It is these improvements that result in the estimator having better
properties than ft for these criteria. Finally, as an example, Figure 5 shows four successive

iterates for the hemophiliac data based on various initial values of the algorithm.

7 Use as a scatterplot smoother

Kernel weights are useful in regression as well as density estimation. In the regression context
we consider the use of kernel weights where a covariate is interval censored. The techniques
described here are understood to be applicable to multiple regression problems where an
additive or generalized additive model are used. This and the context where the response in
a regression is also interval censored are deferred. The purpose of the following example is
to exhibit the flexibility of the methods of the paper rather than to perform the ideal data
analysis. The data used is a subset of a larger dataset concerning HIV infection and infant
mortality (Hughes and Richardson, 2001). Here we only consider infants with no interval
censoring in the response (i.e. infants that died) and that were infected with HIV.
Consider the model
E[Y] = g(a)

where the covariate x may be interval censored. In terms of a scatterplot, interval censoring
in a covariate means only the y coordinate is known. Any smoothing process that uses

kernel weights whose size is determined by some nearest neighbourhood technique needs
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modification, as such neighbourhoods are determined by the covariate. Suppose, for example,

that a running mean smoother is used where

g=3g(x)= > vy

Yj ENw

where N, is the nearest neighbourhood for z. Typically, the weights v; are given as v; =

%K (wthj ) however the X; are not observed. In keeping with the spirit of this paper v; is
replaced by

1 z—X
o= [ (55w

where expectation is computed with respect to the fixed point fm of (1) restricted to the
interval I;. Note the estimate fm is the density estimate for the covariate X. As in §4
expectation is approximated by an importance sampling algorithm and so the recipe for

computing g is

1. Generate a sample Xy,..., Xg from the chosen importance sampling distri-
bution for the interval I;

2. Using fz compute the sampling weights wy as in §4

3. approximate yy; by fir, = Y5, {%K (z—th) wz}

4. Compute §(z) = ¥y en, 1Y

Figure 6 gives four plots for the infant data. The first of these is a scatterplot of the times
of death for the sixty infants used in the fitting process. The covariate is the time of infection
with the HIV virus. It is interval censored and hence a scatterplot “point” is actually a line
obtained by joining the right and left endpoints of each interval. The second plot gives
the fitted density estimate for the covariate based on four iterations of our algorithm. The
cross validation technique of §5 was used to pick the “ideal” window size of 3.75. The data
were originally collected in a study of the effect of breast feeding on infection. However,
for the infants used here the primary source of infection seems to be invetro. The time
point 0 indicates the time of birth of the child. Note intervals for the covariate extend to
-1 indicating infection may have taken place before the birth of the child. The remaining
two plots use this density estimate to kernel smooth the scatterplot using a running mean,
although any linear smoother could be used. Several window sizes were arbitrarily chosen.
The plots raise many interesting issues worthy of further study. For example, the smooths
are dominated in an unreasonable fashion by three points on the right suggesting that either
the techniques be made robust or the choice of smoothing parameter be made adaptive, or
both! These and o ther issues, like how to handle interval censored response as well, will be

considered in future work.
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Appendix
Proof of Theorem 3.2: The proof is given for the case where all data are interval censored.
Recall,

- L& [ Fioi(z) — Fii (L

Fiz) = =% {( Fj1(z) = Fy (L) ) Li(z) + Iz > R,]}

n i (\Fja(R) — Fj1 (L)
= [ fiwa

where

C )
TLZF] 1(R) F_l(LZ)IZ( )

= nzcz,] 1fj 1 ( )

Now standard calculations like those of Silverman (1984) allow expansion about A = 0 of

each conditional expectation and thus expansion of fj A

filz) =

S~ 3|~ 3|~ 3|~ 3|+ SI'—‘
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ic z) fi-1(z ){1+%h2§(m)g§(+...}

1

= fit)+0(r)

S|

Q

and therefore

I
'111

(z) = Fj(z) +O(R?), j=1,2,..., 0.
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Figure 1: The first plot gives the original data with a line joining the left and right endpoints
of each interval. The second plot gives two kernel density estimates with the solid line being
that of the method proposed, f4, after 4 iterations and the dotted line a kernel smoothed
version of Turnbull’s estimator, f;.
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Figure 2: The plot depicts how the kernel density estimate works. The diamond shaped
plotting character gives the weight for the longer interval.
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Figure 3: The plot gives the kernel density estimate fj for each of the first four iterations of

the algorithm. Convergence appears to have been reached by the third iteration.
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Figure 4: Plots of the pointwise mean and 99% percentile intervals for B with values of 10

and 100 respectively.
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Figure 5: Plots of fj, j=1,...,4 for different initial values of the algorithm.
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Figure 6: Clockwise from the upper left are plots of the data, a density estimate for the
interval censored covariate and two plots of the fitted curve for various window sizes. The
first of these includes the scatterplot data reported as the midpoint of the interval and the
second gives the interval itself.
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Table 1: Cross validation (CV) and Kullbeck-Leibler (KL) distances
h | CV (f2) | KL (fa) | CV () | KL ()
0.25| -3.820 | 0.1769 —00
0.33 | -3.790 | 0.1489 | -5.668
0.42 | -3.762 | 0.1309 | -4.895 o0

0.50 | -3.741 0.1234 | -4.473 o0

0.58 | -3.724 0.1149 | -4.225 | 0.4805
0.67 | -3.716 | 0.1093 | -4.073 | 0.3706
0.75 | -3.711 0.1131 | -3.977 | 0.2782
0.83 | -3.709 | 0.1146 | -3.915 | 0.2336
0.92 | -3.713 | 0.1190 | -3.876 | 0.1948
1.00 | -3.718 | 0.1277 | -3.851 | 0.1743
1.08 | -3.726 | 0.1358 | -3.837 | 0.1673
1.17 | -3.736 | 0.1477 | -3.830 | 0.1574
1.25 | -3.747 | 0.1589 | -3.829 | 0.1554
1.33 | -3.759 0.1721 | -3.832 | 0.1612
1.42 | -3.772 | 0.1854 | -3.838 | 0.1684
1.50 | -3.884 | 0.1991 | -3.846 | 0.1742

o
o
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Table 2: The behavior of various criteria

7 | Squared distance | Contraction MSE; MSE, Kullbeck-Leibler
1 | 1.2e-01 (3.7e-02) . 0.0700 (0.00312) | 0.0242 (0.00154) 0.179 (0.0059)
2 | 1.2e-02 (9.4e-03) | 1.000(N/A) | 0.0515 (0.00317) | 0.0130 (0.000875) | 0.131 (0.0049)
3 | 1.6e-03 (2.0e-03) | 1.000(N/A) | 0.0493 (0.00322) | 0.0122 (0.000844) | 0.125 (0.0047)
4 | 2.4e-04 (4.4e-04) | 1.000(N/A) | 0.0490 (0.00325) | 0.0122 (0.000866) | 0.126 (0.0050)
5 | 5.5e-05 (8.0e-05) | 0.91(0.0286) | 0.0492 (0.00328) | 0.0123 (0.000869) | 0.125 (0.0050)
6 | 2.7e-05 (2.6e-05) | 0.69(0.0462) | 0.0492 (0.00329) | 0.0124 (0.000884) | 0.126 (0.0050)
7 | 2.8e-05 (2.4e-05) | 0.47(0.0499) | 0.0491 (0.00328) | 0.0123 (0.000881) | 0.124 (0.0052)
8 | 2.6e-05 (2.7e-05) | 0.53(0.0499) | 0.0491 (0.00328) | 0.0123 (0.000879) | 0.125 (0.0049)
9 | 2.8e-05 (3.0e-05) | 0.46(0.0498) | 0.0493 (0.00331) | 0.0123 (0.000877) | 0.125 (0.0049)
10 | 2.5e-05 (2.5e-05) | 0.53(0.0499) | 0.0491 (0.00329) | 0.0123 (0.000882) | 0.126 (0.0052)
fi . . 0.0760 (0.00579) | 0.0385 (0.00302) 0.149 (0.0067)

24




