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Abstract By modifying the statistic of Malkovich and Afifi (1973), we introduce and study
the properties of a notion of multivariate skewness that provides both a magnitude and
an overall direction for the skewness present in multivariate data. This notion leads to a
test statistic for the null hypothesis of multivariate symmetry. Under mild assumptions,
we find the asymptotic distribution of the test statistic and evaluate, by simulations, the
convergence of the finite sample size quantiles to their limits, as well as the power of the
statistic against some alternatives.
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1 Introduction

When reporting the skewness of a univariate distribution, it is customary to indicate
its direction by talking of skewness ‘to the left’ (negative) or ‘to the right’ (positive).
It seems natural, that in the multivariate setting, one would like as well to indicate
a direction for the skewness of a distribution or a data set. There seems to be a lack
for a vectorial notion of skewness in the literature, even though various measures of
multivariate skewness have been proposed (see Chapter 44 in Kotz, Balakrishnan and
Johnson, 2000), including those based on the notion of median balls introduced by
Avérous and Meste (1997). Perhaps closer to the spirit of the present work is the
‘geometric notion of quantiles’ presented by Chaudhuri (1996).

Malkovich and Afifi (1973) introduced one of the most popular measures of mul-
tivariate skewness, defined as follows for an i.i.d. sample X1, X2, . . . , Xn of random
points in RI d. Let Ωd denote the unit d-dimensional sphere, {x ∈ RI d : ‖x‖ = 1}. For
u ∈ Ωd, let b1(u) denote the measure of skewness of the sample, in the u direction,
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2Dpto. de Matemáticas Puras y Aplicadas, Universidad Simón Bolivar
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given by

b1,n(u) =
n
(∑

1≤i≤n

(
ut(Xi −X)

)3
)2

[∑
1≤i≤n

(
ut(Xi −X)

)2
]3 , (1)

where X is the sample mean. Malkovich and Afifi’s multivariate measure of skewness
is

b∗1,n = sup
u∈Ωd

b1,n(u). (2)

Let S = SX denote the sample covariance matrix for the Xi sample, and let S−1/2

be the inverse of its square root, that is, S(S−1/2)2 = (S−1/2)2S = S−1/2SS−1/2 = Id,
where Id is the d× d identity matrix. In what follows, we will assume that all square
roots and square root inverses of positive definite real symmetric matrices are sym-
metric matrices computed in the (natural) way described in Section 4. Denote by
Zi, 1 ≤ i ≤ n, the standardized sample obtained through Mahalanobis’s transforma-
tion, i.e., Zi = S−1/2(Xi −X). Malkovich and Afifi point out that the computation
of b∗1,n is equivalent to that of

sup
u∈Ωd

 1√
n

∑
1≤i≤n

(
utZi

)3

2

, (3)

a fact which simplifies significantly the computation of the statistic in (2).

Each value c1,n(u) = 1√
n

∑
1≤i≤n (utZi)

3
in (3) can be seen as a signed measure of

skewness of the standardized sample in the direction of u (if negative it will indicate
skewness in the direction of −u). Thus, the vector uc1,n(u) provides a vectorial
indication of skewness in the u (or −u) direction. Summing these vectors over u will
give us an overall vectorial measure of skewness for the Zi sample. Therefore, we
want to consider the statistic

Tn =
∫

Ωd

uc1,n(u)dλ(u), (4)

where λ denotes the rotationally invariant probability measure on the unit sphere.
It turns out that the computation of Tn is rather simple and, when the distribution
of X is symmetric (in a sense to be specified below) it has, under some moment
assumptions, a gaussian asymptotic distribution with a limiting covariance matrix,
D, that can be consistently estimated from the Zi sample. Then, if D̃ is the sample
estimator forD, the quadratic formQn = T tnD̃

−1Tn will have a limiting χ2 distribution
with d degrees of freedom, under the null hypothesis of symmetry, and can be used in
testing the Xi sample for symmetry. Here, symmetry is taken to mean that for every
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u ∈ Ωd, the distribution of the random variable utXi is symmetric around its center,
in the usual univariate sense.

In the next two sections, we will discuss some of the properties of Tn and Qn,
including their calculation, asymptotics and behaviour on some examples. Some
results will be stated for which proofs will be presented in Section 4.

2 Computation and properties of Tn and Qn

In what follows, we will need the integrals of some monomials over the unit sphere
Ωd. Let us write xj for the j-th coordinate of a point x ∈ Ωd. The values of the
following integrals are obtained using Theorem 3.3 of Fang, Kotz and Ng (1990):

J4 =
∫

Ωd

x4
jdλ(x) =

3

d(d+ 2)
, J2 =

∫
Ωd

x2
jdλ(x) =

1

d

and J2,2 =
∫

Ωd

x2
jx

2
l dλ(x) =

1

d(d+ 2)
, (5)

for j 6= l, 1 ≤ j, l ≤ d. The integrals do not depend on the particular choices of j and
l. Let us write Zi,j for the j-th coordinate of Zi. Direct calculation shows that the
r-th coordinate of Tn is given by

Tn,r =
√
nJ4

1

n

∑
i≤n

Z3
i,r + 3

√
n
∑
j 6=r

J2,2
1

n

∑
i≤n

Z2
i,jZi,r. (6)

The following proposition expresses the type of invariance enjoyed by Tn. If an affine
transformation Yi = MXi + c, for some non-singular M , is applied to the original
data, the value of Tn will be rotated, by an orthonormal matrix which, in case M is
a rotation, will coincide with M . All proofs are deferred to Section 4.

Proposition 2.1 Let Tn be the statistic given by (4) calculated on the sample

X1, . . . , Xn. Denote by SX the sample covariance matrix of the Xi’s and by S
1/2
X its

square root, computed as indicated in Section 4. We assume that SX is non-singular.
Let M and c be, respectively, a non-singular d×d matrix and a vector in RI d. Let T ′n be
the statistic given by (4), computed on the sample Y1, . . . , Yn, where Yi = MXi + c.

Then, T ′n = UTn, where U = (MSXM
t)−1/2MS

1/2
X is an orthonormal matrix. If

the eigenvalues of SX are all different and M ∈ O(d) (the orthogonal group), then
U = M .
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Note: When the sample comes from a distribution with a density with respect to
Lebesgue measure, the eigenvalues of SX will all be different, with probability 1, as
can be easily checked.

In order to illustrate the behaviour of Tn on skewed data, consider the following
bivariate example. Using the R Language, we generated a sample of 200 data points
with independent coordinates, each coordinate with the exp(1) distribution. This
data set, after Mahalanobis’s standardization, is shown in Figure 1. In this Figure, as
well as in the original data (not shown) a marked skewness to the ‘north’ and to the
‘east’ is evident, so that one should expect an overall indicator of skewness to point in
the ‘northeast’ direction. When Tn is computed for this data set, its value turns out to
be (10.367, 9.041), a vector pointing, approximately, in the 41o direction. Calculation
of the quadratic form Qn produces the value 13.909, that can be interpreted as strong
evidence of asymmetry for this data set, when compared to the quantiles of the χ2

distribution with 2 degrees of freedom.

For symmetric data, Tn has a limiting gaussian distribution, as the following
Theorem states. Let X be a random vector with the same distribution of X1, X2, . . .,
and let µ = EI X. We will call the distribution of X symmetric, when for every u ∈ Ωd

and t > 0, Pr(ut(X−µ) ≥ t) = Pr(ut(X−µ) ≤ −t) (the one-dimensional projections
are symmetric in the usual univariate sense).

Theorem 2.2 Suppose the Xi’s form an i.i.d. sample from a symmetric distribution,
with EI ‖X1‖6 <∞. Denote by Σ the covariance matrix of the Xi’s, which we assume
to be non-singular, and let Wi = Σ−1/2(Xi − µ). The Wi are symmetric with mean 0
and covariance matrix the identity, Id. Consider the following moments of coordinates
of Wi. For different indices r, j, k ≤ d, let

m4
r = EI W 4

i,r, m
6
r = EI W 6

i,r, m
2,2
j,r = EI W 2

i,jW
2
i,r,

m2,4
j,r = EI W 2

i,jW
4
i,r and m2,2,2

j,k,r = EI W 2
i,jW

2
i,kW

2
i,r. (7)

Then, as n → ∞, the distribution of Tn converges to a mean zero, d-dimensional
gaussian distribution, with diagonal covariance matrix D=diag(σ1,1, . . . , σd,d), where

σr,r = J2
4m

6
r + 9J2

2,2

∑
j 6=r

m2,4
r,j + 2

∑
j<k;j,k 6=r

m2,2,2
j,k,r

+

9J2
2 + 6J4J2,2

∑
j 6=r

m2,4
j,r − 6J4J2m

4
r − 18J2J2,2

∑
j 6=r

m2,2
j,r . (8)

The reading of Theorem 2.2 must be cautious in the sense that it is not saying that
the limiting distribution of Tn is independent of Σ. The variable Wi has covariance

4



matrix equal to the identity, but it is not necessarily rotationally invariant, and the
moments in (7) might depend on the particular standardization being carried out to
produce the Wi’s, which depends on Σ (see also Proposition 2.1). Still, our next result
does give us an asymptotic distribution for Qn which is independent of Σ and other
parameters of the distribution of X1. It is also worth mentioning that the theoretical
analysis leading to Theorem 2.2 parallels, to a certain extent, the analysis carried
out by Baringhaus and Henze (1991) in their study of properties of b∗1,n under the
hypothesis of elliptical symmetry.

Theorem 2.3 Under the assumptions of Theorem 2.2, the moments in (7) are
consistently estimated by their sample counterparts computed on the standardized
Zi sample. For example, m2,2

j,r is consistently estimated by

m̃2,2
j,r =

1

n

∑
1≤i≤n

Z2
i,jZ

2
i,r.

Substituting these estimated moments in formula (8), we obtain a consistent estimator
D̃ of D, and the quadratic form Qn = TnD̃

−1Tn has a limiting χ2 distribution with d
degrees of freedom.

In view of Theorems 2.2 and 2.3, we expect to use Qn as a test statistic for the
null hypothesis of multivariate symmetry and, when the value of Qn suggests strong
evidence of asymmetry in the data, Tn will indicate the overall direction of the skew-
ness present in the standardized Zi sample. In the following section, we evaluate, via
Monte Carlo simulations, the convergence of quantiles of Qn to their limiting values
in the bivariate context for various distributions satisfying the conditions of Theorem
2.3, and evaluate the power of Qn, as a statistic for testing the null hypothesis of
bivariate symmetry, against some alternatives.

3 Simulation analysis of the behaviour of Qn

In order to evaluate the performance of Qn, we carried out a bivariate simulation
analysis. We analyzed first the behavior of quantiles of Qn, when the conditions of
Theorem 2.3 hold. The following distributions were considered, which offer a variety
of ‘shapes’ within the family of symmetric distributions:

• Uniform: The Uniform distribution on the unit square [0, 1]2.
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• Double exponential: The distribution with independent coordinates, each coor-
dinate with the dexp(1) (double exponential) distribution.

• Standard Gaussian: The standard gaussian distribution.

• Symmetric Mixture: A fifty-fifty mixture of the standard gaussian distribution
and the N(µ, I2) distribution, for µ = (3, 3)t.

For each distribution in this set, and each sample size n = 50, 100, 200, a total of
m = 10, 000 samples were produced, using the R Statistical Environment (for a
description of R see Ihaka and Gentleman, 1996). For each sample, Tn and Qn

were computed, according to the procedure outlined in the previous sections, and
from the m values of Qn, approximate quantiles were obtained. The results are
displayed in Table 1, where we can appreciate the (moderately fast) convergence of
the quantiles to their limiting values for all the distributions considered. In all cases,
the Monte Carlo quantiles are smaller than the limiting values, which appear in the
last row of the Table, labelled ‘symmetric’, suggesting that the use of the limiting
χ2 quantiles will result in a conservative test for the null hypothesis of bivariate
symmetry. In the same experiment just described, we computed, in each case, the
empirical cummulative distribution function at the theoretical limiting quantiles, i.e.,
the percentage of values of Qn which were less than or equal to the given quantile. The
resulting probabilities, expressed as percentages, are shown in Table 2. In this Table
we can see how the agreement between the MonteCarlo and nominal probabilities
generally improves with sample size, being quite acceptable at n = 200.

In order to evaluate the power of the procedure proposed as a test for symmetry,
we considered the following bivariate alternatives:

• Moonshape: The Uniform distribution on the region of the plane limited by the
curves y = 2x(1− x) and y = 4x(1− x).

• Exponential: The distribution with independent coordinates, each coordinate
with the exp(1) distribution.

• Contaminated Gaussian 1: The mixture defined by 0.9N(0, I2)+0.1N(µ, I2)
distribution, for µ = (3, 3)t.

• Contaminated Gaussian 2: The mixture defined by 0.95N(0, I2)+0.05N(µ, I2)
distribution, for µ = (2, 2)t.
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These alternatives present different forms of departure from the null hypothesis of
symmetry. The last two are included to evaluate the ability of Qn to detect contam-
ination on gaussian data, with the last one being a more difficult alternative, since it
presents less contamination in terms of percentage (of data contaminated) and mag-
nitude of the contamination. Power was estimated, at the 5% level, by generating
1000 samples from each distribution and each sample size (n = 50, 100, 200), calcu-
lating Qn for each sample, and comparing with the 95% quantile of the asymptotic
χ2 distribution with 2 degrees of freedom (5.991). The resulting approximate power
values are displayed, as percentages, in Table 3. We observe that Qn offers very good
power against the first three alternatives, even for sample size n = 50. The last al-
ternative turns out to be a more difficult one, as expected, and Qn shows very little
power against it for n = 50, a case in which the expected number of contaminated
points is only 2.5. Yet, against this alternative power does improve with sample size,
and a reasonable amount of power is obtained for sample size n = 200.

4 Proofs of results

For a real symmetric positive definite d×d matrix A, let Γ be a matrix whose columns
form an orthonormal basis of eigenvectors of A. Then, E = ΓtAΓ is a diagonal
matrix, with the eigenvalues of A on its diagonal. We require Γ to be such that the
eigenvalues of A appear in increasing order in the diagonal of E. Let E1/2 and E−1/2

be the matrices obtained by taking square root of the elements in the diagonal of
E, and by taking the reciprocal of the square root of the diagonal elements of E,
respectively. Then, as is well known, ΓE1/2Γt is a symmetric square root of A and
ΓE−1/2Γt is a symmetric square root inverse of A. We assume in this Section, that
square roots and inverse square roots are computed, when required, in this fashion.

Proof of Proposition 2.1 Let SY denote the sample covariance matrix of the Yi
sample. Then SY = MSXM

t, and T ′n can be written in this case as

T ′n =
∫

Ωd

1

n

∑
1≤i≤n

(
ut(MSXM

t)−1/2MS
1/2
X S

−1/2
X (Xi −X)

)3
udu

=
∫

Ωd

1

n

∑
1≤i≤n

(
utUS

−1/2
X (Xi −X)

)3
udu, (9)

for U = (MSXM
t)−1/2MS

1/2
X . Now, UU t = (MSXM

t)−1/2MSXM
t(MSXM

t)−1/2

= Id, showing that U is orthogonal. Then, the change of variables v = U tu in
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equation (9) finishes the proof of the first claim in Proposition 2.1. Suppose now that
MM t = Id and the eigenvalues of SX are all distinct. We can write

(i) MSXM
t = Γ1E Γt1 and (ii) SX = Γ2E Γt2,

for orthogonal matrices Γ1 and Γ2, as described at the beginning of this section. The
diagonal matrix E is the same in both expressions, since M is orthogonal. Now, SX
can be solved for in (i), yielding

SX = M tΓ1E Γt1M = Γ2E Γt2.

Since the eigenvalues of SX are distinct, Γ2 is unique, and it follows that M tΓ1 = Γ2.
Using this fact and our convention for computing square roots of matrices, we have

U = (MSXM
t)−1/2MS

1/2
X = Γ1E

−1/2Γt1MΓ2E
1/2Γt2 = Γ1Γt2 = M,

as we wanted to prove.

The next two Lemmas will be used in the proof of Theorem 2.2. Lemma 4.2
provides an approximation to the stochastic process Rn(u) = n−1/2∑

1≤i≤n(utZi)
3,

considered as a process indexed on u ∈ Ωd. The approximation obtained is the same
one obtained by Baringhaus and Henze (1991, Lemma 2.2) for the related process√
nb1,n(u). Still, we decided to include a proof of this fact, since the process being

approximated is a different one and we are working in more generality (we do not
assume elliptical symmetry). In the statement of Lemma 4.1 and some of the proofs
that follow, we use the language and results from the Theory of Empirical Processes.
When necessary, the reader can consult the texts of van der Vaart and Wellner (1996),
or Pollard (1984).

In what follows, we assume thatX1, . . . , Xn form an i.i.d. sample from a symmetric
distribution on RI d, with mean µ and positive definite covariance matrix Σ. We write
A for its symmetric square root, Σ1/2. We consider the variables Wi = A−1(Xi −X),
which are i.i.d. symmetric, with mean 0 and covariance matrix Id. We call P the
distribution of the Wi. We denote by SX the sample covariance matrix of the Xi’s
and by SW the sample covariance matrix of the Wi’s. We assume that P has sixth
moment, that is, EI ‖Wi‖6 <∞.

Lemma 4.1 Let K denote a compact neighborhood of the identity matrix, Id. We
assume K small enough to guarantee that all the eigenvalues of matrices in K are
positive and bounded away from 0. Then
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(a) supu∈Ω,B∈K | 1n
∑
i≤n(utBWi)

2 − EI (utBW1)2| → 0, in probability, as n→∞.

(b) To u ∈ Ω and B ∈ K associate the function gu,B : RI d → RI , defined by gu,B(w) =
utBw. The collection of functions G = {gu,B : u ∈ Ω, B ∈ K} is a P -Donsker class of
functions.

(c) To u ∈ Ω and B ∈ K associate the function hu,B : RI d → RI , defined by hu,B(w) =
(utBw)3. The collection of functions H = {hu,B : u ∈ Ω, B ∈ K} is a P -Donsker
class of functions.

Proof: We will prove only (c), since the arguments leading to (a) and (b) are quite
similar. Since K is compact, there is a κ > 0 such that, for all hu,B ∈ H, we have
|hu,B(w)| ≤ κ‖w‖3. Furthermore, by our moment assumption, κ‖w‖3 is in L2(P ).
The subgraph of hu,B is the subset of RI d ×RI defined by

subg(hu,B) = {(w, t) ∈ RI d ×RI : t ≤ hu,B(w)}

(see van der Vaart and Wellner, 1996). By the definition of hu,B, subg(hu,B) can be
written as the positivity set of a polynomial, pu,B(w, t), of degree 3, on the coordinates
of w and the variable t. It follows from Theorem 3.1 in Wenocur and Dudley (1981),
that H is a VC-subgraph class and, using Theorems 2.6.7 and 2.5.2 of van der Vaart
and Wellner (1996), we get that H is a P -Donsker class.

Lemma 4.2 Let Xi and Wi, 1 ≤ i ≤ n be as stated above. The process Rn(u) =
n−1/2∑

1≤i≤n(utZi)
3, as a process indexed by u ∈ Ωd, is approximated as

Rn(u) =
1√
n

∑
1≤i≤n

(utWi)
3 − 3√

n

∑
1≤i≤n

utWi + oPr(1),

where the oPr(1) term is uniform over Ωd.

Proof: We have

utZi = utS
−1/2
X (Xi −X) = ut(ASWA)−1/2A(Wi −W ) = utBn(Wi −W ), (10)

where the matrix Bn = (ASWA)−1/2A converges, in probability, to the identity Id, by
the consistency of SW and the continuity of the ‘square root inverse’ operator over
the set of symmetric positive definite real matrices. Then,

Rn(u) =
1√
n

∑
i≤n

(utBnWi)
3 − 3

1√
n

∑
i≤n

(utBnWi)
2(utBnW )
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+3
1√
n

∑
i≤n

(utBnWi)(u
tBnW )2 −

√
n(utBnW )3

= (i) + (ii) + (iii) + (iv). (11)

For term (iv) in (11) we have the bound

sup
u
|
√
n(utBnW )3| = Kn

√
n‖W‖3 = OPr(n

−1), (12)

where Kn is the largest eigenvalue of Bn (bounded in probability) and we have used
that ‖W‖ = OPr(n

−1/2). Now, from Lemma 4.1(b), we have that
supu | 1√

n

∑
i≤n(utBnWi)| = OPr(1), while supu(u

tBnW )2 = OPr(n
−1) by the same

argument used for term (iv). Thus, we get the following bound for (iii):

sup
u
| 3√
n

∑
i≤n

(utBnWi)(u
tBnW )2| = OPr(n

−1). (13)

The approximation

sup
u
| 1√
n

∑
i≤n

(utBnWi)
3 − 1√

n

∑
i≤n

(utWi)
3| = oPr(1) (14)

for term (i) follows from the asymptotic equicontinuity condition implied by Lemma
4.1(c). Since EI (utBWi)

2 is a uniformly continuous function of u and B, Bn → Id, in
probability, and EI (utWi)

2 ≡ 1, for every u ∈ Ωd, we have, by Lemma 4.1(a),

sup
u
| 1
n

∑
i≤n

(utBnWi)
2 − 1| = oPr(1), (15)

while the approximation

sup
u
|
√
n(utBnW )− 1√

n

∑
i≤n

(utWi)| = oPr(1) (16)

follows by Lemma 4.1(b). From (15) and (16) we have that

sup
u
|3 1√

n

∑
i≤n

(utBnWi)
2(utBnW )− 3

1√
n

∑
i≤n

(utWi)| = oPr(1). (17)

Putting together (14), (17), (13) and (12) finishes the proof of Lemma 4.2.

Proof of Theorem 2.2 By Lemma 4.2, we have

Tn =
∫

Ωd

u
1√
n

∑
i≤n

(
(utWi)

3 − 3utWi

)
dλ(u) + oPr(1). (18)
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¿From (18), direct calculation shows that the r-th coordinate of Tn is given by

Tn,r =
√
nJ4

1

n

∑
i≤n

W 3
i,r +3

√
n
∑
j 6=r

J2,2
1

n

∑
i≤n

W 2
i,jWi,r−3

√
nJ2

1

n

∑
i≤n

Wi,r +oPr(1), (19)

and Theorem 2.2 follows, after some algebra, by application of the Multivariate Cen-
tral Limit Theorem.

Proof of Theorem 2.3 It suffices to show that the moments in (7) are con-
sistently estimated by their sample counterparts computed on the standardized Zi
sample. Since all the proofs are similar, we will consider only the estimation of
m2,4
j,r = EI W 2

i,jW
4
i,r by m̃2,4

j,r = 1
n

∑
i≤n Z

2
i,jZ

4
i,r.

¿From (10), m̃2,4
j,r can be written as

1

n

∑
i≤n

(btn,j(Wi − cn))2(btn,r(Wi − cn))4,

where btn,j and btn,r are, respectively, the j-th and the r-th rows of matrix Bn, while

cn = W . Recall that bn,j → ej, in probability, where ej is the vector with a 1
in the j-th position and zeroes in all other positions. Similarly, bn,r → er, while
cn → 0, in probability. Let Nj (resp. Nr) denote a compact neighborhood of ej
(resp. er), and let V denote a compact neighborhood of the vector 0 ∈ RI d. To each
triplet (bj, br, c) ∈ Nj × Nr × V , associate a function fbj ,br,c : RI d → RI , defined by

fbj ,br,c(w) = (btj(w − c))2(btr(Wi − c))4. Notice that EI fej ,er,0(W1) = m2,4
j,r . Consider

the class of functions

F = {fbj ,br,c : (bj, br, c) ∈ Nj ×Nr × V}.

By an application of the triangle inequality, it suffices to prove two things:

(a) supfbj ,br,c∈F
| 1
n

∑
i≤n fbj ,br,c(Wi)− EI fbj ,br,c(W1)| → 0, in probability, and

(b) EI fbj ,br,c(W1) is continuous, as a function of the argument (bj, br, c) ∈ Nj×Nr×V,
at (bj, br, c) = (ej, er, 0).

For both (a) and (b), we want the class F to have an envelope function in L1(P ).
Since the neighborhoods considered are compact, it is not hard to see that there exists
a κ > 0 such that, for all fbj ,br,c ∈ F and w ∈ RI d, |fbj ,br,c(w)| ≤ κ(1 + ‖w‖6). Our
moment assumption guarantees that the function κ(1 + ‖w‖6) is in L1(P ). Then, (b)
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is obtained by an application of the Dominated Convergence Theorem. To prove (a),
one can proceed as in the proof of Lemma 4.1(c): We observe that the subgraph of a
function fbj ,br,c ∈ F , given by

subg(fbj ,br,c) = {(w, s) ∈ RI d ×RI : s ≤ fbj ,br,c(w)},

can be written as the positivity set of a polynomial, pbj ,br,c(w, s), of degree 6, on the
coordinates of w and the variable s. Then, F is a VC-subgraph class by Theorem 3.1
in Wenocur and Dudley (1981), and the result follows.
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Table 1: Monte Carlo quantiles for Qn

Distribution Sample size 90% 92.5% 95%
50 3.741 4.181 4.798

Uniform 100 4.175 4.655 5.270
200 4.279 4.740 5.542
50 4.532 4.954 5.536

Double exponential 100 4.607 5.112 5.673
200 4.503 4.939 5.582
50 4.154 4.637 5.169

Standard Gaussian 100 4.391 4.805 5.414
200 4.400 4.899 5.578
50 3.867 4.304 4.835

Symmetric Mixture 100 4.249 4.685 5.311
200 4.389 4.923 5.565

Symmetric ∞ 4.605 5.181 5.991

Table 2: Monte Carlo cummulative probabilities for Qn at limit quantiles

Distribution Sample size 90% 92.5% 95%
50 94.3 96.2 97.9

Uniform 100 92.3 94.7 96.7
200 91.9 93.9 96.1
50 90.6 93.6 96.5

Double exponential 100 90.0 92.9 96.1
200 90.6 93.5 96.1
50 92.2 95.1 97.5

Standard Gaussian 100 91.4 94.0 96.6
200 91.0 93.6 96.1
50 94.0 96.1 97.9

Symmetric Mixture 100 92.1 94.5 96.8
200 91.1 93.5 96.0
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Table 3: Approximate power against asymmetric alternatives

Alternative n = 50 n = 100 n = 200

Moonshape 64.9 98.4 100

Exponential 72.8 92.7 99.0

Contam. Gaussian 1 57.5 95.4 100

Contam. Gaussian 2 6.7 20.6 44.1
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